mesa: Expose GLSL interpolation qualifiers in gl_fragment_program.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91 const struct glsl_type *type;
92
93 /** ir_print_visitor helper for debugging. */
94 void print(void) const;
95
96 virtual void accept(ir_visitor *) = 0;
97 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
98 virtual ir_instruction *clone(void *mem_ctx,
99 struct hash_table *ht) const = 0;
100
101 /**
102 * \name IR instruction downcast functions
103 *
104 * These functions either cast the object to a derived class or return
105 * \c NULL if the object's type does not match the specified derived class.
106 * Additional downcast functions will be added as needed.
107 */
108 /*@{*/
109 virtual class ir_variable * as_variable() { return NULL; }
110 virtual class ir_function * as_function() { return NULL; }
111 virtual class ir_dereference * as_dereference() { return NULL; }
112 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
113 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
114 virtual class ir_expression * as_expression() { return NULL; }
115 virtual class ir_rvalue * as_rvalue() { return NULL; }
116 virtual class ir_loop * as_loop() { return NULL; }
117 virtual class ir_assignment * as_assignment() { return NULL; }
118 virtual class ir_call * as_call() { return NULL; }
119 virtual class ir_return * as_return() { return NULL; }
120 virtual class ir_if * as_if() { return NULL; }
121 virtual class ir_swizzle * as_swizzle() { return NULL; }
122 virtual class ir_constant * as_constant() { return NULL; }
123 virtual class ir_discard * as_discard() { return NULL; }
124 /*@}*/
125
126 protected:
127 ir_instruction()
128 {
129 ir_type = ir_type_unset;
130 type = NULL;
131 }
132 };
133
134
135 class ir_rvalue : public ir_instruction {
136 public:
137 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
138
139 virtual ir_constant *constant_expression_value() = 0;
140
141 virtual ir_rvalue * as_rvalue()
142 {
143 return this;
144 }
145
146 ir_rvalue *as_rvalue_to_saturate();
147
148 virtual bool is_lvalue() const
149 {
150 return false;
151 }
152
153 /**
154 * Get the variable that is ultimately referenced by an r-value
155 */
156 virtual ir_variable *variable_referenced() const
157 {
158 return NULL;
159 }
160
161
162 /**
163 * If an r-value is a reference to a whole variable, get that variable
164 *
165 * \return
166 * Pointer to a variable that is completely dereferenced by the r-value. If
167 * the r-value is not a dereference or the dereference does not access the
168 * entire variable (i.e., it's just one array element, struct field), \c NULL
169 * is returned.
170 */
171 virtual ir_variable *whole_variable_referenced()
172 {
173 return NULL;
174 }
175
176 /**
177 * Determine if an r-value has the value zero
178 *
179 * The base implementation of this function always returns \c false. The
180 * \c ir_constant class over-rides this function to return \c true \b only
181 * for vector and scalar types that have all elements set to the value
182 * zero (or \c false for booleans).
183 *
184 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
185 */
186 virtual bool is_zero() const;
187
188 /**
189 * Determine if an r-value has the value one
190 *
191 * The base implementation of this function always returns \c false. The
192 * \c ir_constant class over-rides this function to return \c true \b only
193 * for vector and scalar types that have all elements set to the value
194 * one (or \c true for booleans).
195 *
196 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
197 */
198 virtual bool is_one() const;
199
200 /**
201 * Determine if an r-value has the value negative one
202 *
203 * The base implementation of this function always returns \c false. The
204 * \c ir_constant class over-rides this function to return \c true \b only
205 * for vector and scalar types that have all elements set to the value
206 * negative one. For boolean times, the result is always \c false.
207 *
208 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
209 */
210 virtual bool is_negative_one() const;
211
212 protected:
213 ir_rvalue();
214 };
215
216
217 /**
218 * Variable storage classes
219 */
220 enum ir_variable_mode {
221 ir_var_auto = 0, /**< Function local variables and globals. */
222 ir_var_uniform, /**< Variable declared as a uniform. */
223 ir_var_in,
224 ir_var_out,
225 ir_var_inout,
226 ir_var_const_in, /**< "in" param that must be a constant expression */
227 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
228 ir_var_temporary /**< Temporary variable generated during compilation. */
229 };
230
231 /**
232 * \brief Layout qualifiers for gl_FragDepth.
233 *
234 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
235 * with a layout qualifier.
236 */
237 enum ir_depth_layout {
238 ir_depth_layout_none, /**< No depth layout is specified. */
239 ir_depth_layout_any,
240 ir_depth_layout_greater,
241 ir_depth_layout_less,
242 ir_depth_layout_unchanged
243 };
244
245 /**
246 * \brief Convert depth layout qualifier to string.
247 */
248 const char*
249 depth_layout_string(ir_depth_layout layout);
250
251 /**
252 * Description of built-in state associated with a uniform
253 *
254 * \sa ir_variable::state_slots
255 */
256 struct ir_state_slot {
257 int tokens[5];
258 int swizzle;
259 };
260
261 class ir_variable : public ir_instruction {
262 public:
263 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
264
265 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
266
267 virtual ir_variable *as_variable()
268 {
269 return this;
270 }
271
272 virtual void accept(ir_visitor *v)
273 {
274 v->visit(this);
275 }
276
277 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
278
279
280 /**
281 * Get the string value for the interpolation qualifier
282 *
283 * \return The string that would be used in a shader to specify \c
284 * mode will be returned.
285 *
286 * This function should only be used on a shader input or output variable.
287 */
288 const char *interpolation_string() const;
289
290 /**
291 * Delcared name of the variable
292 */
293 const char *name;
294
295 /**
296 * Highest element accessed with a constant expression array index
297 *
298 * Not used for non-array variables.
299 */
300 unsigned max_array_access;
301
302 /**
303 * Is the variable read-only?
304 *
305 * This is set for variables declared as \c const, shader inputs,
306 * and uniforms.
307 */
308 unsigned read_only:1;
309 unsigned centroid:1;
310 unsigned invariant:1;
311
312 /**
313 * Has this variable been used for reading or writing?
314 *
315 * Several GLSL semantic checks require knowledge of whether or not a
316 * variable has been used. For example, it is an error to redeclare a
317 * variable as invariant after it has been used.
318 */
319 unsigned used:1;
320
321 /**
322 * Storage class of the variable.
323 *
324 * \sa ir_variable_mode
325 */
326 unsigned mode:3;
327
328 /**
329 * Interpolation mode for shader inputs / outputs
330 *
331 * \sa ir_variable_interpolation
332 */
333 unsigned interpolation:2;
334
335 /**
336 * \name ARB_fragment_coord_conventions
337 * @{
338 */
339 unsigned origin_upper_left:1;
340 unsigned pixel_center_integer:1;
341 /*@}*/
342
343 /**
344 * \brief Layout qualifier for gl_FragDepth.
345 *
346 * This is not equal to \c ir_depth_layout_none if and only if this
347 * variable is \c gl_FragDepth and a layout qualifier is specified.
348 */
349 ir_depth_layout depth_layout;
350
351 /**
352 * Was the location explicitly set in the shader?
353 *
354 * If the location is explicitly set in the shader, it \b cannot be changed
355 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
356 * no effect).
357 */
358 unsigned explicit_location:1;
359
360 /**
361 * Storage location of the base of this variable
362 *
363 * The precise meaning of this field depends on the nature of the variable.
364 *
365 * - Vertex shader input: one of the values from \c gl_vert_attrib.
366 * - Vertex shader output: one of the values from \c gl_vert_result.
367 * - Fragment shader input: one of the values from \c gl_frag_attrib.
368 * - Fragment shader output: one of the values from \c gl_frag_result.
369 * - Uniforms: Per-stage uniform slot number.
370 * - Other: This field is not currently used.
371 *
372 * If the variable is a uniform, shader input, or shader output, and the
373 * slot has not been assigned, the value will be -1.
374 */
375 int location;
376
377 /**
378 * Built-in state that backs this uniform
379 *
380 * Once set at variable creation, \c state_slots must remain invariant.
381 * This is because, ideally, this array would be shared by all clones of
382 * this variable in the IR tree. In other words, we'd really like for it
383 * to be a fly-weight.
384 *
385 * If the variable is not a uniform, \c num_state_slots will be zero and
386 * \c state_slots will be \c NULL.
387 */
388 /*@{*/
389 unsigned num_state_slots; /**< Number of state slots used */
390 ir_state_slot *state_slots; /**< State descriptors. */
391 /*@}*/
392
393 /**
394 * Emit a warning if this variable is accessed.
395 */
396 const char *warn_extension;
397
398 /**
399 * Value assigned in the initializer of a variable declared "const"
400 */
401 ir_constant *constant_value;
402 };
403
404
405 /*@{*/
406 /**
407 * The representation of a function instance; may be the full definition or
408 * simply a prototype.
409 */
410 class ir_function_signature : public ir_instruction {
411 /* An ir_function_signature will be part of the list of signatures in
412 * an ir_function.
413 */
414 public:
415 ir_function_signature(const glsl_type *return_type);
416
417 virtual ir_function_signature *clone(void *mem_ctx,
418 struct hash_table *ht) const;
419 ir_function_signature *clone_prototype(void *mem_ctx,
420 struct hash_table *ht) const;
421
422 virtual void accept(ir_visitor *v)
423 {
424 v->visit(this);
425 }
426
427 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
428
429 /**
430 * Get the name of the function for which this is a signature
431 */
432 const char *function_name() const;
433
434 /**
435 * Get a handle to the function for which this is a signature
436 *
437 * There is no setter function, this function returns a \c const pointer,
438 * and \c ir_function_signature::_function is private for a reason. The
439 * only way to make a connection between a function and function signature
440 * is via \c ir_function::add_signature. This helps ensure that certain
441 * invariants (i.e., a function signature is in the list of signatures for
442 * its \c _function) are met.
443 *
444 * \sa ir_function::add_signature
445 */
446 inline const class ir_function *function() const
447 {
448 return this->_function;
449 }
450
451 /**
452 * Check whether the qualifiers match between this signature's parameters
453 * and the supplied parameter list. If not, returns the name of the first
454 * parameter with mismatched qualifiers (for use in error messages).
455 */
456 const char *qualifiers_match(exec_list *params);
457
458 /**
459 * Replace the current parameter list with the given one. This is useful
460 * if the current information came from a prototype, and either has invalid
461 * or missing parameter names.
462 */
463 void replace_parameters(exec_list *new_params);
464
465 /**
466 * Function return type.
467 *
468 * \note This discards the optional precision qualifier.
469 */
470 const struct glsl_type *return_type;
471
472 /**
473 * List of ir_variable of function parameters.
474 *
475 * This represents the storage. The paramaters passed in a particular
476 * call will be in ir_call::actual_paramaters.
477 */
478 struct exec_list parameters;
479
480 /** Whether or not this function has a body (which may be empty). */
481 unsigned is_defined:1;
482
483 /** Whether or not this function signature is a built-in. */
484 unsigned is_builtin:1;
485
486 /** Body of instructions in the function. */
487 struct exec_list body;
488
489 private:
490 /** Function of which this signature is one overload. */
491 class ir_function *_function;
492
493 friend class ir_function;
494 };
495
496
497 /**
498 * Header for tracking multiple overloaded functions with the same name.
499 * Contains a list of ir_function_signatures representing each of the
500 * actual functions.
501 */
502 class ir_function : public ir_instruction {
503 public:
504 ir_function(const char *name);
505
506 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
507
508 virtual ir_function *as_function()
509 {
510 return this;
511 }
512
513 virtual void accept(ir_visitor *v)
514 {
515 v->visit(this);
516 }
517
518 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
519
520 void add_signature(ir_function_signature *sig)
521 {
522 sig->_function = this;
523 this->signatures.push_tail(sig);
524 }
525
526 /**
527 * Get an iterator for the set of function signatures
528 */
529 exec_list_iterator iterator()
530 {
531 return signatures.iterator();
532 }
533
534 /**
535 * Find a signature that matches a set of actual parameters, taking implicit
536 * conversions into account.
537 */
538 ir_function_signature *matching_signature(const exec_list *actual_param);
539
540 /**
541 * Find a signature that exactly matches a set of actual parameters without
542 * any implicit type conversions.
543 */
544 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
545
546 /**
547 * Name of the function.
548 */
549 const char *name;
550
551 /** Whether or not this function has a signature that isn't a built-in. */
552 bool has_user_signature();
553
554 /**
555 * List of ir_function_signature for each overloaded function with this name.
556 */
557 struct exec_list signatures;
558 };
559
560 inline const char *ir_function_signature::function_name() const
561 {
562 return this->_function->name;
563 }
564 /*@}*/
565
566
567 /**
568 * IR instruction representing high-level if-statements
569 */
570 class ir_if : public ir_instruction {
571 public:
572 ir_if(ir_rvalue *condition)
573 : condition(condition)
574 {
575 ir_type = ir_type_if;
576 }
577
578 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
579
580 virtual ir_if *as_if()
581 {
582 return this;
583 }
584
585 virtual void accept(ir_visitor *v)
586 {
587 v->visit(this);
588 }
589
590 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
591
592 ir_rvalue *condition;
593 /** List of ir_instruction for the body of the then branch */
594 exec_list then_instructions;
595 /** List of ir_instruction for the body of the else branch */
596 exec_list else_instructions;
597 };
598
599
600 /**
601 * IR instruction representing a high-level loop structure.
602 */
603 class ir_loop : public ir_instruction {
604 public:
605 ir_loop();
606
607 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
608
609 virtual void accept(ir_visitor *v)
610 {
611 v->visit(this);
612 }
613
614 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
615
616 virtual ir_loop *as_loop()
617 {
618 return this;
619 }
620
621 /**
622 * Get an iterator for the instructions of the loop body
623 */
624 exec_list_iterator iterator()
625 {
626 return body_instructions.iterator();
627 }
628
629 /** List of ir_instruction that make up the body of the loop. */
630 exec_list body_instructions;
631
632 /**
633 * \name Loop counter and controls
634 *
635 * Represents a loop like a FORTRAN \c do-loop.
636 *
637 * \note
638 * If \c from and \c to are the same value, the loop will execute once.
639 */
640 /*@{*/
641 ir_rvalue *from; /** Value of the loop counter on the first
642 * iteration of the loop.
643 */
644 ir_rvalue *to; /** Value of the loop counter on the last
645 * iteration of the loop.
646 */
647 ir_rvalue *increment;
648 ir_variable *counter;
649
650 /**
651 * Comparison operation in the loop terminator.
652 *
653 * If any of the loop control fields are non-\c NULL, this field must be
654 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
655 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
656 */
657 int cmp;
658 /*@}*/
659 };
660
661
662 class ir_assignment : public ir_instruction {
663 public:
664 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
665
666 /**
667 * Construct an assignment with an explicit write mask
668 *
669 * \note
670 * Since a write mask is supplied, the LHS must already be a bare
671 * \c ir_dereference. The cannot be any swizzles in the LHS.
672 */
673 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
674 unsigned write_mask);
675
676 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
677
678 virtual ir_constant *constant_expression_value();
679
680 virtual void accept(ir_visitor *v)
681 {
682 v->visit(this);
683 }
684
685 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
686
687 virtual ir_assignment * as_assignment()
688 {
689 return this;
690 }
691
692 /**
693 * Get a whole variable written by an assignment
694 *
695 * If the LHS of the assignment writes a whole variable, the variable is
696 * returned. Otherwise \c NULL is returned. Examples of whole-variable
697 * assignment are:
698 *
699 * - Assigning to a scalar
700 * - Assigning to all components of a vector
701 * - Whole array (or matrix) assignment
702 * - Whole structure assignment
703 */
704 ir_variable *whole_variable_written();
705
706 /**
707 * Set the LHS of an assignment
708 */
709 void set_lhs(ir_rvalue *lhs);
710
711 /**
712 * Left-hand side of the assignment.
713 *
714 * This should be treated as read only. If you need to set the LHS of an
715 * assignment, use \c ir_assignment::set_lhs.
716 */
717 ir_dereference *lhs;
718
719 /**
720 * Value being assigned
721 */
722 ir_rvalue *rhs;
723
724 /**
725 * Optional condition for the assignment.
726 */
727 ir_rvalue *condition;
728
729
730 /**
731 * Component mask written
732 *
733 * For non-vector types in the LHS, this field will be zero. For vector
734 * types, a bit will be set for each component that is written. Note that
735 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
736 *
737 * A partially-set write mask means that each enabled channel gets
738 * the value from a consecutive channel of the rhs. For example,
739 * to write just .xyw of gl_FrontColor with color:
740 *
741 * (assign (constant bool (1)) (xyw)
742 * (var_ref gl_FragColor)
743 * (swiz xyw (var_ref color)))
744 */
745 unsigned write_mask:4;
746 };
747
748 /* Update ir_expression::num_operands() and operator_strs when
749 * updating this list.
750 */
751 enum ir_expression_operation {
752 ir_unop_bit_not,
753 ir_unop_logic_not,
754 ir_unop_neg,
755 ir_unop_abs,
756 ir_unop_sign,
757 ir_unop_rcp,
758 ir_unop_rsq,
759 ir_unop_sqrt,
760 ir_unop_exp, /**< Log base e on gentype */
761 ir_unop_log, /**< Natural log on gentype */
762 ir_unop_exp2,
763 ir_unop_log2,
764 ir_unop_f2i, /**< Float-to-integer conversion. */
765 ir_unop_i2f, /**< Integer-to-float conversion. */
766 ir_unop_f2b, /**< Float-to-boolean conversion */
767 ir_unop_b2f, /**< Boolean-to-float conversion */
768 ir_unop_i2b, /**< int-to-boolean conversion */
769 ir_unop_b2i, /**< Boolean-to-int conversion */
770 ir_unop_u2f, /**< Unsigned-to-float conversion. */
771 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
772 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
773 ir_unop_any,
774
775 /**
776 * \name Unary floating-point rounding operations.
777 */
778 /*@{*/
779 ir_unop_trunc,
780 ir_unop_ceil,
781 ir_unop_floor,
782 ir_unop_fract,
783 ir_unop_round_even,
784 /*@}*/
785
786 /**
787 * \name Trigonometric operations.
788 */
789 /*@{*/
790 ir_unop_sin,
791 ir_unop_cos,
792 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
793 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
794 /*@}*/
795
796 /**
797 * \name Partial derivatives.
798 */
799 /*@{*/
800 ir_unop_dFdx,
801 ir_unop_dFdy,
802 /*@}*/
803
804 ir_unop_noise,
805
806 /**
807 * A sentinel marking the last of the unary operations.
808 */
809 ir_last_unop = ir_unop_noise,
810
811 ir_binop_add,
812 ir_binop_sub,
813 ir_binop_mul,
814 ir_binop_div,
815
816 /**
817 * Takes one of two combinations of arguments:
818 *
819 * - mod(vecN, vecN)
820 * - mod(vecN, float)
821 *
822 * Does not take integer types.
823 */
824 ir_binop_mod,
825
826 /**
827 * \name Binary comparison operators which return a boolean vector.
828 * The type of both operands must be equal.
829 */
830 /*@{*/
831 ir_binop_less,
832 ir_binop_greater,
833 ir_binop_lequal,
834 ir_binop_gequal,
835 ir_binop_equal,
836 ir_binop_nequal,
837 /**
838 * Returns single boolean for whether all components of operands[0]
839 * equal the components of operands[1].
840 */
841 ir_binop_all_equal,
842 /**
843 * Returns single boolean for whether any component of operands[0]
844 * is not equal to the corresponding component of operands[1].
845 */
846 ir_binop_any_nequal,
847 /*@}*/
848
849 /**
850 * \name Bit-wise binary operations.
851 */
852 /*@{*/
853 ir_binop_lshift,
854 ir_binop_rshift,
855 ir_binop_bit_and,
856 ir_binop_bit_xor,
857 ir_binop_bit_or,
858 /*@}*/
859
860 ir_binop_logic_and,
861 ir_binop_logic_xor,
862 ir_binop_logic_or,
863
864 ir_binop_dot,
865 ir_binop_min,
866 ir_binop_max,
867
868 ir_binop_pow,
869
870 /**
871 * A sentinel marking the last of the binary operations.
872 */
873 ir_last_binop = ir_binop_pow,
874
875 ir_quadop_vector,
876
877 /**
878 * A sentinel marking the last of all operations.
879 */
880 ir_last_opcode = ir_last_binop
881 };
882
883 class ir_expression : public ir_rvalue {
884 public:
885 /**
886 * Constructor for unary operation expressions
887 */
888 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
889 ir_expression(int op, ir_rvalue *);
890
891 /**
892 * Constructor for binary operation expressions
893 */
894 ir_expression(int op, const struct glsl_type *type,
895 ir_rvalue *, ir_rvalue *);
896 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
897
898 /**
899 * Constructor for quad operator expressions
900 */
901 ir_expression(int op, const struct glsl_type *type,
902 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
903
904 virtual ir_expression *as_expression()
905 {
906 return this;
907 }
908
909 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
910
911 /**
912 * Attempt to constant-fold the expression
913 *
914 * If the expression cannot be constant folded, this method will return
915 * \c NULL.
916 */
917 virtual ir_constant *constant_expression_value();
918
919 /**
920 * Determine the number of operands used by an expression
921 */
922 static unsigned int get_num_operands(ir_expression_operation);
923
924 /**
925 * Determine the number of operands used by an expression
926 */
927 unsigned int get_num_operands() const
928 {
929 return (this->operation == ir_quadop_vector)
930 ? this->type->vector_elements : get_num_operands(operation);
931 }
932
933 /**
934 * Return a string representing this expression's operator.
935 */
936 const char *operator_string();
937
938 /**
939 * Return a string representing this expression's operator.
940 */
941 static const char *operator_string(ir_expression_operation);
942
943
944 /**
945 * Do a reverse-lookup to translate the given string into an operator.
946 */
947 static ir_expression_operation get_operator(const char *);
948
949 virtual void accept(ir_visitor *v)
950 {
951 v->visit(this);
952 }
953
954 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
955
956 ir_expression_operation operation;
957 ir_rvalue *operands[4];
958 };
959
960
961 /**
962 * IR instruction representing a function call
963 */
964 class ir_call : public ir_rvalue {
965 public:
966 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
967 : callee(callee)
968 {
969 ir_type = ir_type_call;
970 assert(callee->return_type != NULL);
971 type = callee->return_type;
972 actual_parameters->move_nodes_to(& this->actual_parameters);
973 this->use_builtin = callee->is_builtin;
974 }
975
976 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
977
978 virtual ir_constant *constant_expression_value();
979
980 virtual ir_call *as_call()
981 {
982 return this;
983 }
984
985 virtual void accept(ir_visitor *v)
986 {
987 v->visit(this);
988 }
989
990 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
991
992 /**
993 * Get a generic ir_call object when an error occurs
994 *
995 * Any allocation will be performed with 'ctx' as ralloc owner.
996 */
997 static ir_call *get_error_instruction(void *ctx);
998
999 /**
1000 * Get an iterator for the set of acutal parameters
1001 */
1002 exec_list_iterator iterator()
1003 {
1004 return actual_parameters.iterator();
1005 }
1006
1007 /**
1008 * Get the name of the function being called.
1009 */
1010 const char *callee_name() const
1011 {
1012 return callee->function_name();
1013 }
1014
1015 /**
1016 * Get the function signature bound to this function call
1017 */
1018 ir_function_signature *get_callee()
1019 {
1020 return callee;
1021 }
1022
1023 /**
1024 * Set the function call target
1025 */
1026 void set_callee(ir_function_signature *sig);
1027
1028 /**
1029 * Generates an inline version of the function before @ir,
1030 * returning the return value of the function.
1031 */
1032 ir_rvalue *generate_inline(ir_instruction *ir);
1033
1034 /* List of ir_rvalue of paramaters passed in this call. */
1035 exec_list actual_parameters;
1036
1037 /** Should this call only bind to a built-in function? */
1038 bool use_builtin;
1039
1040 private:
1041 ir_call()
1042 : callee(NULL)
1043 {
1044 this->ir_type = ir_type_call;
1045 }
1046
1047 ir_function_signature *callee;
1048 };
1049
1050
1051 /**
1052 * \name Jump-like IR instructions.
1053 *
1054 * These include \c break, \c continue, \c return, and \c discard.
1055 */
1056 /*@{*/
1057 class ir_jump : public ir_instruction {
1058 protected:
1059 ir_jump()
1060 {
1061 ir_type = ir_type_unset;
1062 }
1063 };
1064
1065 class ir_return : public ir_jump {
1066 public:
1067 ir_return()
1068 : value(NULL)
1069 {
1070 this->ir_type = ir_type_return;
1071 }
1072
1073 ir_return(ir_rvalue *value)
1074 : value(value)
1075 {
1076 this->ir_type = ir_type_return;
1077 }
1078
1079 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1080
1081 virtual ir_return *as_return()
1082 {
1083 return this;
1084 }
1085
1086 ir_rvalue *get_value() const
1087 {
1088 return value;
1089 }
1090
1091 virtual void accept(ir_visitor *v)
1092 {
1093 v->visit(this);
1094 }
1095
1096 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1097
1098 ir_rvalue *value;
1099 };
1100
1101
1102 /**
1103 * Jump instructions used inside loops
1104 *
1105 * These include \c break and \c continue. The \c break within a loop is
1106 * different from the \c break within a switch-statement.
1107 *
1108 * \sa ir_switch_jump
1109 */
1110 class ir_loop_jump : public ir_jump {
1111 public:
1112 enum jump_mode {
1113 jump_break,
1114 jump_continue
1115 };
1116
1117 ir_loop_jump(jump_mode mode)
1118 {
1119 this->ir_type = ir_type_loop_jump;
1120 this->mode = mode;
1121 this->loop = loop;
1122 }
1123
1124 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1125
1126 virtual void accept(ir_visitor *v)
1127 {
1128 v->visit(this);
1129 }
1130
1131 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1132
1133 bool is_break() const
1134 {
1135 return mode == jump_break;
1136 }
1137
1138 bool is_continue() const
1139 {
1140 return mode == jump_continue;
1141 }
1142
1143 /** Mode selector for the jump instruction. */
1144 enum jump_mode mode;
1145 private:
1146 /** Loop containing this break instruction. */
1147 ir_loop *loop;
1148 };
1149
1150 /**
1151 * IR instruction representing discard statements.
1152 */
1153 class ir_discard : public ir_jump {
1154 public:
1155 ir_discard()
1156 {
1157 this->ir_type = ir_type_discard;
1158 this->condition = NULL;
1159 }
1160
1161 ir_discard(ir_rvalue *cond)
1162 {
1163 this->ir_type = ir_type_discard;
1164 this->condition = cond;
1165 }
1166
1167 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1168
1169 virtual void accept(ir_visitor *v)
1170 {
1171 v->visit(this);
1172 }
1173
1174 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1175
1176 virtual ir_discard *as_discard()
1177 {
1178 return this;
1179 }
1180
1181 ir_rvalue *condition;
1182 };
1183 /*@}*/
1184
1185
1186 /**
1187 * Texture sampling opcodes used in ir_texture
1188 */
1189 enum ir_texture_opcode {
1190 ir_tex, /**< Regular texture look-up */
1191 ir_txb, /**< Texture look-up with LOD bias */
1192 ir_txl, /**< Texture look-up with explicit LOD */
1193 ir_txd, /**< Texture look-up with partial derivatvies */
1194 ir_txf, /**< Texel fetch with explicit LOD */
1195 ir_txs /**< Texture size */
1196 };
1197
1198
1199 /**
1200 * IR instruction to sample a texture
1201 *
1202 * The specific form of the IR instruction depends on the \c mode value
1203 * selected from \c ir_texture_opcodes. In the printed IR, these will
1204 * appear as:
1205 *
1206 * Texel offset (0 or an expression)
1207 * | Projection divisor
1208 * | | Shadow comparitor
1209 * | | |
1210 * v v v
1211 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1212 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1213 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1214 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1215 * (txf <type> <sampler> <coordinate> 0 <lod>)
1216 * (txs <type> <sampler> <lod>)
1217 */
1218 class ir_texture : public ir_rvalue {
1219 public:
1220 ir_texture(enum ir_texture_opcode op)
1221 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1222 {
1223 this->ir_type = ir_type_texture;
1224 }
1225
1226 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1227
1228 virtual ir_constant *constant_expression_value();
1229
1230 virtual void accept(ir_visitor *v)
1231 {
1232 v->visit(this);
1233 }
1234
1235 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1236
1237 /**
1238 * Return a string representing the ir_texture_opcode.
1239 */
1240 const char *opcode_string();
1241
1242 /** Set the sampler and type. */
1243 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1244
1245 /**
1246 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1247 */
1248 static ir_texture_opcode get_opcode(const char *);
1249
1250 enum ir_texture_opcode op;
1251
1252 /** Sampler to use for the texture access. */
1253 ir_dereference *sampler;
1254
1255 /** Texture coordinate to sample */
1256 ir_rvalue *coordinate;
1257
1258 /**
1259 * Value used for projective divide.
1260 *
1261 * If there is no projective divide (the common case), this will be
1262 * \c NULL. Optimization passes should check for this to point to a constant
1263 * of 1.0 and replace that with \c NULL.
1264 */
1265 ir_rvalue *projector;
1266
1267 /**
1268 * Coordinate used for comparison on shadow look-ups.
1269 *
1270 * If there is no shadow comparison, this will be \c NULL. For the
1271 * \c ir_txf opcode, this *must* be \c NULL.
1272 */
1273 ir_rvalue *shadow_comparitor;
1274
1275 /** Texel offset. */
1276 ir_rvalue *offset;
1277
1278 union {
1279 ir_rvalue *lod; /**< Floating point LOD */
1280 ir_rvalue *bias; /**< Floating point LOD bias */
1281 struct {
1282 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1283 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1284 } grad;
1285 } lod_info;
1286 };
1287
1288
1289 struct ir_swizzle_mask {
1290 unsigned x:2;
1291 unsigned y:2;
1292 unsigned z:2;
1293 unsigned w:2;
1294
1295 /**
1296 * Number of components in the swizzle.
1297 */
1298 unsigned num_components:3;
1299
1300 /**
1301 * Does the swizzle contain duplicate components?
1302 *
1303 * L-value swizzles cannot contain duplicate components.
1304 */
1305 unsigned has_duplicates:1;
1306 };
1307
1308
1309 class ir_swizzle : public ir_rvalue {
1310 public:
1311 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1312 unsigned count);
1313
1314 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1315
1316 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1317
1318 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1319
1320 virtual ir_constant *constant_expression_value();
1321
1322 virtual ir_swizzle *as_swizzle()
1323 {
1324 return this;
1325 }
1326
1327 /**
1328 * Construct an ir_swizzle from the textual representation. Can fail.
1329 */
1330 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1331
1332 virtual void accept(ir_visitor *v)
1333 {
1334 v->visit(this);
1335 }
1336
1337 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1338
1339 bool is_lvalue() const
1340 {
1341 return val->is_lvalue() && !mask.has_duplicates;
1342 }
1343
1344 /**
1345 * Get the variable that is ultimately referenced by an r-value
1346 */
1347 virtual ir_variable *variable_referenced() const;
1348
1349 ir_rvalue *val;
1350 ir_swizzle_mask mask;
1351
1352 private:
1353 /**
1354 * Initialize the mask component of a swizzle
1355 *
1356 * This is used by the \c ir_swizzle constructors.
1357 */
1358 void init_mask(const unsigned *components, unsigned count);
1359 };
1360
1361
1362 class ir_dereference : public ir_rvalue {
1363 public:
1364 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1365
1366 virtual ir_dereference *as_dereference()
1367 {
1368 return this;
1369 }
1370
1371 bool is_lvalue() const;
1372
1373 /**
1374 * Get the variable that is ultimately referenced by an r-value
1375 */
1376 virtual ir_variable *variable_referenced() const = 0;
1377 };
1378
1379
1380 class ir_dereference_variable : public ir_dereference {
1381 public:
1382 ir_dereference_variable(ir_variable *var);
1383
1384 virtual ir_dereference_variable *clone(void *mem_ctx,
1385 struct hash_table *) const;
1386
1387 virtual ir_constant *constant_expression_value();
1388
1389 virtual ir_dereference_variable *as_dereference_variable()
1390 {
1391 return this;
1392 }
1393
1394 /**
1395 * Get the variable that is ultimately referenced by an r-value
1396 */
1397 virtual ir_variable *variable_referenced() const
1398 {
1399 return this->var;
1400 }
1401
1402 virtual ir_variable *whole_variable_referenced()
1403 {
1404 /* ir_dereference_variable objects always dereference the entire
1405 * variable. However, if this dereference is dereferenced by anything
1406 * else, the complete deferefernce chain is not a whole-variable
1407 * dereference. This method should only be called on the top most
1408 * ir_rvalue in a dereference chain.
1409 */
1410 return this->var;
1411 }
1412
1413 virtual void accept(ir_visitor *v)
1414 {
1415 v->visit(this);
1416 }
1417
1418 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1419
1420 /**
1421 * Object being dereferenced.
1422 */
1423 ir_variable *var;
1424 };
1425
1426
1427 class ir_dereference_array : public ir_dereference {
1428 public:
1429 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1430
1431 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1432
1433 virtual ir_dereference_array *clone(void *mem_ctx,
1434 struct hash_table *) const;
1435
1436 virtual ir_constant *constant_expression_value();
1437
1438 virtual ir_dereference_array *as_dereference_array()
1439 {
1440 return this;
1441 }
1442
1443 /**
1444 * Get the variable that is ultimately referenced by an r-value
1445 */
1446 virtual ir_variable *variable_referenced() const
1447 {
1448 return this->array->variable_referenced();
1449 }
1450
1451 virtual void accept(ir_visitor *v)
1452 {
1453 v->visit(this);
1454 }
1455
1456 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1457
1458 ir_rvalue *array;
1459 ir_rvalue *array_index;
1460
1461 private:
1462 void set_array(ir_rvalue *value);
1463 };
1464
1465
1466 class ir_dereference_record : public ir_dereference {
1467 public:
1468 ir_dereference_record(ir_rvalue *value, const char *field);
1469
1470 ir_dereference_record(ir_variable *var, const char *field);
1471
1472 virtual ir_dereference_record *clone(void *mem_ctx,
1473 struct hash_table *) const;
1474
1475 virtual ir_constant *constant_expression_value();
1476
1477 /**
1478 * Get the variable that is ultimately referenced by an r-value
1479 */
1480 virtual ir_variable *variable_referenced() const
1481 {
1482 return this->record->variable_referenced();
1483 }
1484
1485 virtual void accept(ir_visitor *v)
1486 {
1487 v->visit(this);
1488 }
1489
1490 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1491
1492 ir_rvalue *record;
1493 const char *field;
1494 };
1495
1496
1497 /**
1498 * Data stored in an ir_constant
1499 */
1500 union ir_constant_data {
1501 unsigned u[16];
1502 int i[16];
1503 float f[16];
1504 bool b[16];
1505 };
1506
1507
1508 class ir_constant : public ir_rvalue {
1509 public:
1510 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1511 ir_constant(bool b);
1512 ir_constant(unsigned int u);
1513 ir_constant(int i);
1514 ir_constant(float f);
1515
1516 /**
1517 * Construct an ir_constant from a list of ir_constant values
1518 */
1519 ir_constant(const struct glsl_type *type, exec_list *values);
1520
1521 /**
1522 * Construct an ir_constant from a scalar component of another ir_constant
1523 *
1524 * The new \c ir_constant inherits the type of the component from the
1525 * source constant.
1526 *
1527 * \note
1528 * In the case of a matrix constant, the new constant is a scalar, \b not
1529 * a vector.
1530 */
1531 ir_constant(const ir_constant *c, unsigned i);
1532
1533 /**
1534 * Return a new ir_constant of the specified type containing all zeros.
1535 */
1536 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1537
1538 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1539
1540 virtual ir_constant *constant_expression_value();
1541
1542 virtual ir_constant *as_constant()
1543 {
1544 return this;
1545 }
1546
1547 virtual void accept(ir_visitor *v)
1548 {
1549 v->visit(this);
1550 }
1551
1552 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1553
1554 /**
1555 * Get a particular component of a constant as a specific type
1556 *
1557 * This is useful, for example, to get a value from an integer constant
1558 * as a float or bool. This appears frequently when constructors are
1559 * called with all constant parameters.
1560 */
1561 /*@{*/
1562 bool get_bool_component(unsigned i) const;
1563 float get_float_component(unsigned i) const;
1564 int get_int_component(unsigned i) const;
1565 unsigned get_uint_component(unsigned i) const;
1566 /*@}*/
1567
1568 ir_constant *get_array_element(unsigned i) const;
1569
1570 ir_constant *get_record_field(const char *name);
1571
1572 /**
1573 * Determine whether a constant has the same value as another constant
1574 *
1575 * \sa ir_constant::is_zero, ir_constant::is_one,
1576 * ir_constant::is_negative_one
1577 */
1578 bool has_value(const ir_constant *) const;
1579
1580 virtual bool is_zero() const;
1581 virtual bool is_one() const;
1582 virtual bool is_negative_one() const;
1583
1584 /**
1585 * Value of the constant.
1586 *
1587 * The field used to back the values supplied by the constant is determined
1588 * by the type associated with the \c ir_instruction. Constants may be
1589 * scalars, vectors, or matrices.
1590 */
1591 union ir_constant_data value;
1592
1593 /* Array elements */
1594 ir_constant **array_elements;
1595
1596 /* Structure fields */
1597 exec_list components;
1598
1599 private:
1600 /**
1601 * Parameterless constructor only used by the clone method
1602 */
1603 ir_constant(void);
1604 };
1605
1606 /*@}*/
1607
1608 /**
1609 * Apply a visitor to each IR node in a list
1610 */
1611 void
1612 visit_exec_list(exec_list *list, ir_visitor *visitor);
1613
1614 /**
1615 * Validate invariants on each IR node in a list
1616 */
1617 void validate_ir_tree(exec_list *instructions);
1618
1619 struct _mesa_glsl_parse_state;
1620 struct gl_shader_program;
1621
1622 /**
1623 * Detect whether an unlinked shader contains static recursion
1624 *
1625 * If the list of instructions is determined to contain static recursion,
1626 * \c _mesa_glsl_error will be called to emit error messages for each function
1627 * that is in the recursion cycle.
1628 */
1629 void
1630 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1631 exec_list *instructions);
1632
1633 /**
1634 * Detect whether a linked shader contains static recursion
1635 *
1636 * If the list of instructions is determined to contain static recursion,
1637 * \c link_error_printf will be called to emit error messages for each function
1638 * that is in the recursion cycle. In addition,
1639 * \c gl_shader_program::LinkStatus will be set to false.
1640 */
1641 void
1642 detect_recursion_linked(struct gl_shader_program *prog,
1643 exec_list *instructions);
1644
1645 /**
1646 * Make a clone of each IR instruction in a list
1647 *
1648 * \param in List of IR instructions that are to be cloned
1649 * \param out List to hold the cloned instructions
1650 */
1651 void
1652 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1653
1654 extern void
1655 _mesa_glsl_initialize_variables(exec_list *instructions,
1656 struct _mesa_glsl_parse_state *state);
1657
1658 extern void
1659 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1660
1661 extern void
1662 _mesa_glsl_release_functions(void);
1663
1664 extern void
1665 reparent_ir(exec_list *list, void *mem_ctx);
1666
1667 struct glsl_symbol_table;
1668
1669 extern void
1670 import_prototypes(const exec_list *source, exec_list *dest,
1671 struct glsl_symbol_table *symbols, void *mem_ctx);
1672
1673 extern bool
1674 ir_has_call(ir_instruction *ir);
1675
1676 extern void
1677 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1678 bool is_fragment_shader);
1679
1680 extern char *
1681 prototype_string(const glsl_type *return_type, const char *name,
1682 exec_list *parameters);
1683
1684 #endif /* IR_H */