glsl: Remove unused ARRAY_SIZE macro.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 /**
41 * \defgroup IR Intermediate representation nodes
42 *
43 * @{
44 */
45
46 /**
47 * Class tags
48 *
49 * Each concrete class derived from \c ir_instruction has a value in this
50 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
51 * by the constructor. While using type tags is not very C++, it is extremely
52 * convenient. For example, during debugging you can simply inspect
53 * \c ir_instruction::ir_type to find out the actual type of the object.
54 *
55 * In addition, it is possible to use a switch-statement based on \c
56 * \c ir_instruction::ir_type to select different behavior for different object
57 * types. For functions that have only slight differences for several object
58 * types, this allows writing very straightforward, readable code.
59 */
60 enum ir_node_type {
61 /**
62 * Zero is unused so that the IR validator can detect cases where
63 * \c ir_instruction::ir_type has not been initialized.
64 */
65 ir_type_unset,
66 ir_type_variable,
67 ir_type_assignment,
68 ir_type_call,
69 ir_type_constant,
70 ir_type_dereference_array,
71 ir_type_dereference_record,
72 ir_type_dereference_variable,
73 ir_type_discard,
74 ir_type_expression,
75 ir_type_function,
76 ir_type_function_signature,
77 ir_type_if,
78 ir_type_loop,
79 ir_type_loop_jump,
80 ir_type_return,
81 ir_type_swizzle,
82 ir_type_texture,
83 ir_type_max /**< maximum ir_type enum number, for validation */
84 };
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92 const struct glsl_type *type;
93
94 /** ir_print_visitor helper for debugging. */
95 void print(void) const;
96
97 virtual void accept(ir_visitor *) = 0;
98 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
99 virtual ir_instruction *clone(void *mem_ctx,
100 struct hash_table *ht) const = 0;
101
102 /**
103 * \name IR instruction downcast functions
104 *
105 * These functions either cast the object to a derived class or return
106 * \c NULL if the object's type does not match the specified derived class.
107 * Additional downcast functions will be added as needed.
108 */
109 /*@{*/
110 virtual class ir_variable * as_variable() { return NULL; }
111 virtual class ir_function * as_function() { return NULL; }
112 virtual class ir_dereference * as_dereference() { return NULL; }
113 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
114 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
115 virtual class ir_expression * as_expression() { return NULL; }
116 virtual class ir_rvalue * as_rvalue() { return NULL; }
117 virtual class ir_loop * as_loop() { return NULL; }
118 virtual class ir_assignment * as_assignment() { return NULL; }
119 virtual class ir_call * as_call() { return NULL; }
120 virtual class ir_return * as_return() { return NULL; }
121 virtual class ir_if * as_if() { return NULL; }
122 virtual class ir_swizzle * as_swizzle() { return NULL; }
123 virtual class ir_constant * as_constant() { return NULL; }
124 /*@}*/
125
126 protected:
127 ir_instruction()
128 {
129 ir_type = ir_type_unset;
130 type = NULL;
131 }
132 };
133
134
135 class ir_rvalue : public ir_instruction {
136 public:
137 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
138
139 virtual ir_constant *constant_expression_value() = 0;
140
141 virtual ir_rvalue * as_rvalue()
142 {
143 return this;
144 }
145
146 virtual bool is_lvalue()
147 {
148 return false;
149 }
150
151 /**
152 * Get the variable that is ultimately referenced by an r-value
153 */
154 virtual ir_variable *variable_referenced()
155 {
156 return NULL;
157 }
158
159
160 /**
161 * If an r-value is a reference to a whole variable, get that variable
162 *
163 * \return
164 * Pointer to a variable that is completely dereferenced by the r-value. If
165 * the r-value is not a dereference or the dereference does not access the
166 * entire variable (i.e., it's just one array element, struct field), \c NULL
167 * is returned.
168 */
169 virtual ir_variable *whole_variable_referenced()
170 {
171 return NULL;
172 }
173
174 protected:
175 ir_rvalue();
176 };
177
178
179 /**
180 * Variable storage classes
181 */
182 enum ir_variable_mode {
183 ir_var_auto = 0, /**< Function local variables and globals. */
184 ir_var_uniform, /**< Variable declared as a uniform. */
185 ir_var_in,
186 ir_var_out,
187 ir_var_inout,
188 ir_var_temporary /**< Temporary variable generated during compilation. */
189 };
190
191 enum ir_variable_interpolation {
192 ir_var_smooth = 0,
193 ir_var_flat,
194 ir_var_noperspective
195 };
196
197
198 class ir_variable : public ir_instruction {
199 public:
200 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
201
202 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
203
204 virtual ir_variable *as_variable()
205 {
206 return this;
207 }
208
209 virtual void accept(ir_visitor *v)
210 {
211 v->visit(this);
212 }
213
214 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
215
216
217 /**
218 * Get the string value for the interpolation qualifier
219 *
220 * \return The string that would be used in a shader to specify \c
221 * mode will be returned.
222 *
223 * This function should only be used on a shader input or output variable.
224 */
225 const char *interpolation_string() const;
226
227 /**
228 * Calculate the number of slots required to hold this variable
229 *
230 * This is used to determine how many uniform or varying locations a variable
231 * occupies. The count is in units of floating point components.
232 */
233 unsigned component_slots() const;
234
235 /**
236 * Delcared name of the variable
237 */
238 const char *name;
239
240 /**
241 * Highest element accessed with a constant expression array index
242 *
243 * Not used for non-array variables.
244 */
245 unsigned max_array_access;
246
247 /**
248 * Is the variable read-only?
249 *
250 * This is set for variables declared as \c const, shader inputs,
251 * and uniforms.
252 */
253 unsigned read_only:1;
254 unsigned centroid:1;
255 unsigned invariant:1;
256
257 /**
258 * Storage class of the variable.
259 *
260 * \sa ir_variable_mode
261 */
262 unsigned mode:3;
263
264 /**
265 * Interpolation mode for shader inputs / outputs
266 *
267 * \sa ir_variable_interpolation
268 */
269 unsigned interpolation:2;
270
271 /**
272 * Flag that the whole array is assignable
273 *
274 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
275 * equality). This flag enables this behavior.
276 */
277 unsigned array_lvalue:1;
278
279 /**
280 * \name ARB_fragment_coord_conventions
281 * @{
282 */
283 unsigned origin_upper_left:1;
284 unsigned pixel_center_integer:1;
285 /*@}*/
286
287 /**
288 * Was the location explicitly set in the shader?
289 *
290 * If the location is explicitly set in the shader, it \b cannot be changed
291 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
292 * no effect).
293 */
294 unsigned explicit_location:1;
295
296 /**
297 * Storage location of the base of this variable
298 *
299 * The precise meaning of this field depends on the nature of the variable.
300 *
301 * - Vertex shader input: one of the values from \c gl_vert_attrib.
302 * - Vertex shader output: one of the values from \c gl_vert_result.
303 * - Fragment shader input: one of the values from \c gl_frag_attrib.
304 * - Fragment shader output: one of the values from \c gl_frag_result.
305 * - Uniforms: Per-stage uniform slot number.
306 * - Other: This field is not currently used.
307 *
308 * If the variable is a uniform, shader input, or shader output, and the
309 * slot has not been assigned, the value will be -1.
310 */
311 int location;
312
313 /**
314 * Emit a warning if this variable is accessed.
315 */
316 const char *warn_extension;
317
318 /**
319 * Value assigned in the initializer of a variable declared "const"
320 */
321 ir_constant *constant_value;
322 };
323
324
325 /*@{*/
326 /**
327 * The representation of a function instance; may be the full definition or
328 * simply a prototype.
329 */
330 class ir_function_signature : public ir_instruction {
331 /* An ir_function_signature will be part of the list of signatures in
332 * an ir_function.
333 */
334 public:
335 ir_function_signature(const glsl_type *return_type);
336
337 virtual ir_function_signature *clone(void *mem_ctx,
338 struct hash_table *ht) const;
339
340 virtual void accept(ir_visitor *v)
341 {
342 v->visit(this);
343 }
344
345 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
346
347 /**
348 * Get the name of the function for which this is a signature
349 */
350 const char *function_name() const;
351
352 /**
353 * Get a handle to the function for which this is a signature
354 *
355 * There is no setter function, this function returns a \c const pointer,
356 * and \c ir_function_signature::_function is private for a reason. The
357 * only way to make a connection between a function and function signature
358 * is via \c ir_function::add_signature. This helps ensure that certain
359 * invariants (i.e., a function signature is in the list of signatures for
360 * its \c _function) are met.
361 *
362 * \sa ir_function::add_signature
363 */
364 inline const class ir_function *function() const
365 {
366 return this->_function;
367 }
368
369 /**
370 * Check whether the qualifiers match between this signature's parameters
371 * and the supplied parameter list. If not, returns the name of the first
372 * parameter with mismatched qualifiers (for use in error messages).
373 */
374 const char *qualifiers_match(exec_list *params);
375
376 /**
377 * Replace the current parameter list with the given one. This is useful
378 * if the current information came from a prototype, and either has invalid
379 * or missing parameter names.
380 */
381 void replace_parameters(exec_list *new_params);
382
383 /**
384 * Function return type.
385 *
386 * \note This discards the optional precision qualifier.
387 */
388 const struct glsl_type *return_type;
389
390 /**
391 * List of ir_variable of function parameters.
392 *
393 * This represents the storage. The paramaters passed in a particular
394 * call will be in ir_call::actual_paramaters.
395 */
396 struct exec_list parameters;
397
398 /** Whether or not this function has a body (which may be empty). */
399 unsigned is_defined:1;
400
401 /** Whether or not this function signature is a built-in. */
402 unsigned is_builtin:1;
403
404 /** Body of instructions in the function. */
405 struct exec_list body;
406
407 private:
408 /** Function of which this signature is one overload. */
409 class ir_function *_function;
410
411 friend class ir_function;
412 };
413
414
415 /**
416 * Header for tracking multiple overloaded functions with the same name.
417 * Contains a list of ir_function_signatures representing each of the
418 * actual functions.
419 */
420 class ir_function : public ir_instruction {
421 public:
422 ir_function(const char *name);
423
424 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual ir_function *as_function()
427 {
428 return this;
429 }
430
431 virtual void accept(ir_visitor *v)
432 {
433 v->visit(this);
434 }
435
436 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
437
438 void add_signature(ir_function_signature *sig)
439 {
440 sig->_function = this;
441 this->signatures.push_tail(sig);
442 }
443
444 /**
445 * Get an iterator for the set of function signatures
446 */
447 exec_list_iterator iterator()
448 {
449 return signatures.iterator();
450 }
451
452 /**
453 * Find a signature that matches a set of actual parameters, taking implicit
454 * conversions into account.
455 */
456 ir_function_signature *matching_signature(const exec_list *actual_param);
457
458 /**
459 * Find a signature that exactly matches a set of actual parameters without
460 * any implicit type conversions.
461 */
462 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
463
464 /**
465 * Name of the function.
466 */
467 const char *name;
468
469 /** Whether or not this function has a signature that isn't a built-in. */
470 bool has_user_signature();
471
472 /**
473 * List of ir_function_signature for each overloaded function with this name.
474 */
475 struct exec_list signatures;
476 };
477
478 inline const char *ir_function_signature::function_name() const
479 {
480 return this->_function->name;
481 }
482 /*@}*/
483
484
485 /**
486 * IR instruction representing high-level if-statements
487 */
488 class ir_if : public ir_instruction {
489 public:
490 ir_if(ir_rvalue *condition)
491 : condition(condition)
492 {
493 ir_type = ir_type_if;
494 }
495
496 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
497
498 virtual ir_if *as_if()
499 {
500 return this;
501 }
502
503 virtual void accept(ir_visitor *v)
504 {
505 v->visit(this);
506 }
507
508 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
509
510 ir_rvalue *condition;
511 /** List of ir_instruction for the body of the then branch */
512 exec_list then_instructions;
513 /** List of ir_instruction for the body of the else branch */
514 exec_list else_instructions;
515 };
516
517
518 /**
519 * IR instruction representing a high-level loop structure.
520 */
521 class ir_loop : public ir_instruction {
522 public:
523 ir_loop();
524
525 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
526
527 virtual void accept(ir_visitor *v)
528 {
529 v->visit(this);
530 }
531
532 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
533
534 virtual ir_loop *as_loop()
535 {
536 return this;
537 }
538
539 /**
540 * Get an iterator for the instructions of the loop body
541 */
542 exec_list_iterator iterator()
543 {
544 return body_instructions.iterator();
545 }
546
547 /** List of ir_instruction that make up the body of the loop. */
548 exec_list body_instructions;
549
550 /**
551 * \name Loop counter and controls
552 *
553 * Represents a loop like a FORTRAN \c do-loop.
554 *
555 * \note
556 * If \c from and \c to are the same value, the loop will execute once.
557 */
558 /*@{*/
559 ir_rvalue *from; /** Value of the loop counter on the first
560 * iteration of the loop.
561 */
562 ir_rvalue *to; /** Value of the loop counter on the last
563 * iteration of the loop.
564 */
565 ir_rvalue *increment;
566 ir_variable *counter;
567
568 /**
569 * Comparison operation in the loop terminator.
570 *
571 * If any of the loop control fields are non-\c NULL, this field must be
572 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
573 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
574 */
575 int cmp;
576 /*@}*/
577 };
578
579
580 class ir_assignment : public ir_instruction {
581 public:
582 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
583
584 /**
585 * Construct an assignment with an explicit write mask
586 *
587 * \note
588 * Since a write mask is supplied, the LHS must already be a bare
589 * \c ir_dereference. The cannot be any swizzles in the LHS.
590 */
591 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
592 unsigned write_mask);
593
594 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
595
596 virtual ir_constant *constant_expression_value();
597
598 virtual void accept(ir_visitor *v)
599 {
600 v->visit(this);
601 }
602
603 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
604
605 virtual ir_assignment * as_assignment()
606 {
607 return this;
608 }
609
610 /**
611 * Get a whole variable written by an assignment
612 *
613 * If the LHS of the assignment writes a whole variable, the variable is
614 * returned. Otherwise \c NULL is returned. Examples of whole-variable
615 * assignment are:
616 *
617 * - Assigning to a scalar
618 * - Assigning to all components of a vector
619 * - Whole array (or matrix) assignment
620 * - Whole structure assignment
621 */
622 ir_variable *whole_variable_written();
623
624 /**
625 * Set the LHS of an assignment
626 */
627 void set_lhs(ir_rvalue *lhs);
628
629 /**
630 * Left-hand side of the assignment.
631 *
632 * This should be treated as read only. If you need to set the LHS of an
633 * assignment, use \c ir_assignment::set_lhs.
634 */
635 ir_dereference *lhs;
636
637 /**
638 * Value being assigned
639 */
640 ir_rvalue *rhs;
641
642 /**
643 * Optional condition for the assignment.
644 */
645 ir_rvalue *condition;
646
647
648 /**
649 * Component mask written
650 *
651 * For non-vector types in the LHS, this field will be zero. For vector
652 * types, a bit will be set for each component that is written. Note that
653 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
654 *
655 * A partially-set write mask means that each enabled channel gets
656 * the value from a consecutive channel of the rhs. For example,
657 * to write just .xyw of gl_FrontColor with color:
658 *
659 * (assign (constant bool (1)) (xyw)
660 * (var_ref gl_FragColor)
661 * (swiz xyw (var_ref color)))
662 */
663 unsigned write_mask:4;
664 };
665
666 /* Update ir_expression::num_operands() and operator_strs when
667 * updating this list.
668 */
669 enum ir_expression_operation {
670 ir_unop_bit_not,
671 ir_unop_logic_not,
672 ir_unop_neg,
673 ir_unop_abs,
674 ir_unop_sign,
675 ir_unop_rcp,
676 ir_unop_rsq,
677 ir_unop_sqrt,
678 ir_unop_exp, /**< Log base e on gentype */
679 ir_unop_log, /**< Natural log on gentype */
680 ir_unop_exp2,
681 ir_unop_log2,
682 ir_unop_f2i, /**< Float-to-integer conversion. */
683 ir_unop_i2f, /**< Integer-to-float conversion. */
684 ir_unop_f2b, /**< Float-to-boolean conversion */
685 ir_unop_b2f, /**< Boolean-to-float conversion */
686 ir_unop_i2b, /**< int-to-boolean conversion */
687 ir_unop_b2i, /**< Boolean-to-int conversion */
688 ir_unop_u2f, /**< Unsigned-to-float conversion. */
689 ir_unop_any,
690
691 /**
692 * \name Unary floating-point rounding operations.
693 */
694 /*@{*/
695 ir_unop_trunc,
696 ir_unop_ceil,
697 ir_unop_floor,
698 ir_unop_fract,
699 ir_unop_round_even,
700 /*@}*/
701
702 /**
703 * \name Trigonometric operations.
704 */
705 /*@{*/
706 ir_unop_sin,
707 ir_unop_cos,
708 /*@}*/
709
710 /**
711 * \name Partial derivatives.
712 */
713 /*@{*/
714 ir_unop_dFdx,
715 ir_unop_dFdy,
716 /*@}*/
717
718 ir_unop_noise,
719
720 ir_binop_add,
721 ir_binop_sub,
722 ir_binop_mul,
723 ir_binop_div,
724
725 /**
726 * Takes one of two combinations of arguments:
727 *
728 * - mod(vecN, vecN)
729 * - mod(vecN, float)
730 *
731 * Does not take integer types.
732 */
733 ir_binop_mod,
734
735 /**
736 * \name Binary comparison operators which return a boolean vector.
737 * The type of both operands must be equal.
738 */
739 /*@{*/
740 ir_binop_less,
741 ir_binop_greater,
742 ir_binop_lequal,
743 ir_binop_gequal,
744 ir_binop_equal,
745 ir_binop_nequal,
746 /**
747 * Returns single boolean for whether all components of operands[0]
748 * equal the components of operands[1].
749 */
750 ir_binop_all_equal,
751 /**
752 * Returns single boolean for whether any component of operands[0]
753 * is not equal to the corresponding component of operands[1].
754 */
755 ir_binop_any_nequal,
756 /*@}*/
757
758 /**
759 * \name Bit-wise binary operations.
760 */
761 /*@{*/
762 ir_binop_lshift,
763 ir_binop_rshift,
764 ir_binop_bit_and,
765 ir_binop_bit_xor,
766 ir_binop_bit_or,
767 /*@}*/
768
769 ir_binop_logic_and,
770 ir_binop_logic_xor,
771 ir_binop_logic_or,
772
773 ir_binop_dot,
774 ir_binop_cross,
775 ir_binop_min,
776 ir_binop_max,
777
778 ir_binop_pow
779 };
780
781 class ir_expression : public ir_rvalue {
782 public:
783 ir_expression(int op, const struct glsl_type *type,
784 ir_rvalue *, ir_rvalue *);
785
786 virtual ir_expression *as_expression()
787 {
788 return this;
789 }
790
791 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
792
793 /**
794 * Attempt to constant-fold the expression
795 *
796 * If the expression cannot be constant folded, this method will return
797 * \c NULL.
798 */
799 virtual ir_constant *constant_expression_value();
800
801 /**
802 * Determine the number of operands used by an expression
803 */
804 static unsigned int get_num_operands(ir_expression_operation);
805
806 /**
807 * Determine the number of operands used by an expression
808 */
809 unsigned int get_num_operands() const
810 {
811 return get_num_operands(operation);
812 }
813
814 /**
815 * Return a string representing this expression's operator.
816 */
817 const char *operator_string();
818
819 /**
820 * Return a string representing this expression's operator.
821 */
822 static const char *operator_string(ir_expression_operation);
823
824
825 /**
826 * Do a reverse-lookup to translate the given string into an operator.
827 */
828 static ir_expression_operation get_operator(const char *);
829
830 virtual void accept(ir_visitor *v)
831 {
832 v->visit(this);
833 }
834
835 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
836
837 ir_expression_operation operation;
838 ir_rvalue *operands[2];
839 };
840
841
842 /**
843 * IR instruction representing a function call
844 */
845 class ir_call : public ir_rvalue {
846 public:
847 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
848 : callee(callee)
849 {
850 ir_type = ir_type_call;
851 assert(callee->return_type != NULL);
852 type = callee->return_type;
853 actual_parameters->move_nodes_to(& this->actual_parameters);
854 }
855
856 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
857
858 virtual ir_constant *constant_expression_value();
859
860 virtual ir_call *as_call()
861 {
862 return this;
863 }
864
865 virtual void accept(ir_visitor *v)
866 {
867 v->visit(this);
868 }
869
870 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
871
872 /**
873 * Get a generic ir_call object when an error occurs
874 *
875 * Any allocation will be performed with 'ctx' as talloc owner.
876 */
877 static ir_call *get_error_instruction(void *ctx);
878
879 /**
880 * Get an iterator for the set of acutal parameters
881 */
882 exec_list_iterator iterator()
883 {
884 return actual_parameters.iterator();
885 }
886
887 /**
888 * Get the name of the function being called.
889 */
890 const char *callee_name() const
891 {
892 return callee->function_name();
893 }
894
895 /**
896 * Get the function signature bound to this function call
897 */
898 ir_function_signature *get_callee()
899 {
900 return callee;
901 }
902
903 /**
904 * Set the function call target
905 */
906 void set_callee(ir_function_signature *sig);
907
908 /**
909 * Generates an inline version of the function before @ir,
910 * returning the return value of the function.
911 */
912 ir_rvalue *generate_inline(ir_instruction *ir);
913
914 /* List of ir_rvalue of paramaters passed in this call. */
915 exec_list actual_parameters;
916
917 private:
918 ir_call()
919 : callee(NULL)
920 {
921 this->ir_type = ir_type_call;
922 }
923
924 ir_function_signature *callee;
925 };
926
927
928 /**
929 * \name Jump-like IR instructions.
930 *
931 * These include \c break, \c continue, \c return, and \c discard.
932 */
933 /*@{*/
934 class ir_jump : public ir_instruction {
935 protected:
936 ir_jump()
937 {
938 ir_type = ir_type_unset;
939 }
940 };
941
942 class ir_return : public ir_jump {
943 public:
944 ir_return()
945 : value(NULL)
946 {
947 this->ir_type = ir_type_return;
948 }
949
950 ir_return(ir_rvalue *value)
951 : value(value)
952 {
953 this->ir_type = ir_type_return;
954 }
955
956 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
957
958 virtual ir_return *as_return()
959 {
960 return this;
961 }
962
963 ir_rvalue *get_value() const
964 {
965 return value;
966 }
967
968 virtual void accept(ir_visitor *v)
969 {
970 v->visit(this);
971 }
972
973 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
974
975 ir_rvalue *value;
976 };
977
978
979 /**
980 * Jump instructions used inside loops
981 *
982 * These include \c break and \c continue. The \c break within a loop is
983 * different from the \c break within a switch-statement.
984 *
985 * \sa ir_switch_jump
986 */
987 class ir_loop_jump : public ir_jump {
988 public:
989 enum jump_mode {
990 jump_break,
991 jump_continue
992 };
993
994 ir_loop_jump(jump_mode mode)
995 {
996 this->ir_type = ir_type_loop_jump;
997 this->mode = mode;
998 this->loop = loop;
999 }
1000
1001 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1002
1003 virtual void accept(ir_visitor *v)
1004 {
1005 v->visit(this);
1006 }
1007
1008 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1009
1010 bool is_break() const
1011 {
1012 return mode == jump_break;
1013 }
1014
1015 bool is_continue() const
1016 {
1017 return mode == jump_continue;
1018 }
1019
1020 /** Mode selector for the jump instruction. */
1021 enum jump_mode mode;
1022 private:
1023 /** Loop containing this break instruction. */
1024 ir_loop *loop;
1025 };
1026
1027 /**
1028 * IR instruction representing discard statements.
1029 */
1030 class ir_discard : public ir_jump {
1031 public:
1032 ir_discard()
1033 {
1034 this->ir_type = ir_type_discard;
1035 this->condition = NULL;
1036 }
1037
1038 ir_discard(ir_rvalue *cond)
1039 {
1040 this->ir_type = ir_type_discard;
1041 this->condition = cond;
1042 }
1043
1044 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1045
1046 virtual void accept(ir_visitor *v)
1047 {
1048 v->visit(this);
1049 }
1050
1051 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1052
1053 ir_rvalue *condition;
1054 };
1055 /*@}*/
1056
1057
1058 /**
1059 * Texture sampling opcodes used in ir_texture
1060 */
1061 enum ir_texture_opcode {
1062 ir_tex, /**< Regular texture look-up */
1063 ir_txb, /**< Texture look-up with LOD bias */
1064 ir_txl, /**< Texture look-up with explicit LOD */
1065 ir_txd, /**< Texture look-up with partial derivatvies */
1066 ir_txf /**< Texel fetch with explicit LOD */
1067 };
1068
1069
1070 /**
1071 * IR instruction to sample a texture
1072 *
1073 * The specific form of the IR instruction depends on the \c mode value
1074 * selected from \c ir_texture_opcodes. In the printed IR, these will
1075 * appear as:
1076 *
1077 * Texel offset
1078 * | Projection divisor
1079 * | | Shadow comparitor
1080 * | | |
1081 * v v v
1082 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1083 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1084 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1085 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1086 * (txf (sampler) (coordinate) (0 0 0) (lod))
1087 */
1088 class ir_texture : public ir_rvalue {
1089 public:
1090 ir_texture(enum ir_texture_opcode op)
1091 : op(op), projector(NULL), shadow_comparitor(NULL)
1092 {
1093 this->ir_type = ir_type_texture;
1094 }
1095
1096 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1097
1098 virtual ir_constant *constant_expression_value();
1099
1100 virtual void accept(ir_visitor *v)
1101 {
1102 v->visit(this);
1103 }
1104
1105 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1106
1107 /**
1108 * Return a string representing the ir_texture_opcode.
1109 */
1110 const char *opcode_string();
1111
1112 /** Set the sampler and infer the type. */
1113 void set_sampler(ir_dereference *sampler);
1114
1115 /**
1116 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1117 */
1118 static ir_texture_opcode get_opcode(const char *);
1119
1120 enum ir_texture_opcode op;
1121
1122 /** Sampler to use for the texture access. */
1123 ir_dereference *sampler;
1124
1125 /** Texture coordinate to sample */
1126 ir_rvalue *coordinate;
1127
1128 /**
1129 * Value used for projective divide.
1130 *
1131 * If there is no projective divide (the common case), this will be
1132 * \c NULL. Optimization passes should check for this to point to a constant
1133 * of 1.0 and replace that with \c NULL.
1134 */
1135 ir_rvalue *projector;
1136
1137 /**
1138 * Coordinate used for comparison on shadow look-ups.
1139 *
1140 * If there is no shadow comparison, this will be \c NULL. For the
1141 * \c ir_txf opcode, this *must* be \c NULL.
1142 */
1143 ir_rvalue *shadow_comparitor;
1144
1145 /** Explicit texel offsets. */
1146 signed char offsets[3];
1147
1148 union {
1149 ir_rvalue *lod; /**< Floating point LOD */
1150 ir_rvalue *bias; /**< Floating point LOD bias */
1151 struct {
1152 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1153 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1154 } grad;
1155 } lod_info;
1156 };
1157
1158
1159 struct ir_swizzle_mask {
1160 unsigned x:2;
1161 unsigned y:2;
1162 unsigned z:2;
1163 unsigned w:2;
1164
1165 /**
1166 * Number of components in the swizzle.
1167 */
1168 unsigned num_components:3;
1169
1170 /**
1171 * Does the swizzle contain duplicate components?
1172 *
1173 * L-value swizzles cannot contain duplicate components.
1174 */
1175 unsigned has_duplicates:1;
1176 };
1177
1178
1179 class ir_swizzle : public ir_rvalue {
1180 public:
1181 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1182 unsigned count);
1183
1184 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1185
1186 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1187
1188 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1189
1190 virtual ir_constant *constant_expression_value();
1191
1192 virtual ir_swizzle *as_swizzle()
1193 {
1194 return this;
1195 }
1196
1197 /**
1198 * Construct an ir_swizzle from the textual representation. Can fail.
1199 */
1200 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1201
1202 virtual void accept(ir_visitor *v)
1203 {
1204 v->visit(this);
1205 }
1206
1207 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1208
1209 bool is_lvalue()
1210 {
1211 return val->is_lvalue() && !mask.has_duplicates;
1212 }
1213
1214 /**
1215 * Get the variable that is ultimately referenced by an r-value
1216 */
1217 virtual ir_variable *variable_referenced();
1218
1219 ir_rvalue *val;
1220 ir_swizzle_mask mask;
1221
1222 private:
1223 /**
1224 * Initialize the mask component of a swizzle
1225 *
1226 * This is used by the \c ir_swizzle constructors.
1227 */
1228 void init_mask(const unsigned *components, unsigned count);
1229 };
1230
1231
1232 class ir_dereference : public ir_rvalue {
1233 public:
1234 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1235
1236 virtual ir_dereference *as_dereference()
1237 {
1238 return this;
1239 }
1240
1241 bool is_lvalue();
1242
1243 /**
1244 * Get the variable that is ultimately referenced by an r-value
1245 */
1246 virtual ir_variable *variable_referenced() = 0;
1247 };
1248
1249
1250 class ir_dereference_variable : public ir_dereference {
1251 public:
1252 ir_dereference_variable(ir_variable *var);
1253
1254 virtual ir_dereference_variable *clone(void *mem_ctx,
1255 struct hash_table *) const;
1256
1257 virtual ir_constant *constant_expression_value();
1258
1259 virtual ir_dereference_variable *as_dereference_variable()
1260 {
1261 return this;
1262 }
1263
1264 /**
1265 * Get the variable that is ultimately referenced by an r-value
1266 */
1267 virtual ir_variable *variable_referenced()
1268 {
1269 return this->var;
1270 }
1271
1272 virtual ir_variable *whole_variable_referenced()
1273 {
1274 /* ir_dereference_variable objects always dereference the entire
1275 * variable. However, if this dereference is dereferenced by anything
1276 * else, the complete deferefernce chain is not a whole-variable
1277 * dereference. This method should only be called on the top most
1278 * ir_rvalue in a dereference chain.
1279 */
1280 return this->var;
1281 }
1282
1283 virtual void accept(ir_visitor *v)
1284 {
1285 v->visit(this);
1286 }
1287
1288 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1289
1290 /**
1291 * Object being dereferenced.
1292 */
1293 ir_variable *var;
1294 };
1295
1296
1297 class ir_dereference_array : public ir_dereference {
1298 public:
1299 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1300
1301 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1302
1303 virtual ir_dereference_array *clone(void *mem_ctx,
1304 struct hash_table *) const;
1305
1306 virtual ir_constant *constant_expression_value();
1307
1308 virtual ir_dereference_array *as_dereference_array()
1309 {
1310 return this;
1311 }
1312
1313 /**
1314 * Get the variable that is ultimately referenced by an r-value
1315 */
1316 virtual ir_variable *variable_referenced()
1317 {
1318 return this->array->variable_referenced();
1319 }
1320
1321 virtual void accept(ir_visitor *v)
1322 {
1323 v->visit(this);
1324 }
1325
1326 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1327
1328 ir_rvalue *array;
1329 ir_rvalue *array_index;
1330
1331 private:
1332 void set_array(ir_rvalue *value);
1333 };
1334
1335
1336 class ir_dereference_record : public ir_dereference {
1337 public:
1338 ir_dereference_record(ir_rvalue *value, const char *field);
1339
1340 ir_dereference_record(ir_variable *var, const char *field);
1341
1342 virtual ir_dereference_record *clone(void *mem_ctx,
1343 struct hash_table *) const;
1344
1345 virtual ir_constant *constant_expression_value();
1346
1347 /**
1348 * Get the variable that is ultimately referenced by an r-value
1349 */
1350 virtual ir_variable *variable_referenced()
1351 {
1352 return this->record->variable_referenced();
1353 }
1354
1355 virtual void accept(ir_visitor *v)
1356 {
1357 v->visit(this);
1358 }
1359
1360 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1361
1362 ir_rvalue *record;
1363 const char *field;
1364 };
1365
1366
1367 /**
1368 * Data stored in an ir_constant
1369 */
1370 union ir_constant_data {
1371 unsigned u[16];
1372 int i[16];
1373 float f[16];
1374 bool b[16];
1375 };
1376
1377
1378 class ir_constant : public ir_rvalue {
1379 public:
1380 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1381 ir_constant(bool b);
1382 ir_constant(unsigned int u);
1383 ir_constant(int i);
1384 ir_constant(float f);
1385
1386 /**
1387 * Construct an ir_constant from a list of ir_constant values
1388 */
1389 ir_constant(const struct glsl_type *type, exec_list *values);
1390
1391 /**
1392 * Construct an ir_constant from a scalar component of another ir_constant
1393 *
1394 * The new \c ir_constant inherits the type of the component from the
1395 * source constant.
1396 *
1397 * \note
1398 * In the case of a matrix constant, the new constant is a scalar, \b not
1399 * a vector.
1400 */
1401 ir_constant(const ir_constant *c, unsigned i);
1402
1403 /**
1404 * Return a new ir_constant of the specified type containing all zeros.
1405 */
1406 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1407
1408 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1409
1410 virtual ir_constant *constant_expression_value();
1411
1412 virtual ir_constant *as_constant()
1413 {
1414 return this;
1415 }
1416
1417 virtual void accept(ir_visitor *v)
1418 {
1419 v->visit(this);
1420 }
1421
1422 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1423
1424 /**
1425 * Get a particular component of a constant as a specific type
1426 *
1427 * This is useful, for example, to get a value from an integer constant
1428 * as a float or bool. This appears frequently when constructors are
1429 * called with all constant parameters.
1430 */
1431 /*@{*/
1432 bool get_bool_component(unsigned i) const;
1433 float get_float_component(unsigned i) const;
1434 int get_int_component(unsigned i) const;
1435 unsigned get_uint_component(unsigned i) const;
1436 /*@}*/
1437
1438 ir_constant *get_array_element(unsigned i) const;
1439
1440 ir_constant *get_record_field(const char *name);
1441
1442 /**
1443 * Determine whether a constant has the same value as another constant
1444 */
1445 bool has_value(const ir_constant *) const;
1446
1447 /**
1448 * Value of the constant.
1449 *
1450 * The field used to back the values supplied by the constant is determined
1451 * by the type associated with the \c ir_instruction. Constants may be
1452 * scalars, vectors, or matrices.
1453 */
1454 union ir_constant_data value;
1455
1456 /* Array elements */
1457 ir_constant **array_elements;
1458
1459 /* Structure fields */
1460 exec_list components;
1461
1462 private:
1463 /**
1464 * Parameterless constructor only used by the clone method
1465 */
1466 ir_constant(void);
1467 };
1468
1469 /*@}*/
1470
1471 /**
1472 * Apply a visitor to each IR node in a list
1473 */
1474 void
1475 visit_exec_list(exec_list *list, ir_visitor *visitor);
1476
1477 /**
1478 * Validate invariants on each IR node in a list
1479 */
1480 void validate_ir_tree(exec_list *instructions);
1481
1482 /**
1483 * Make a clone of each IR instruction in a list
1484 *
1485 * \param in List of IR instructions that are to be cloned
1486 * \param out List to hold the cloned instructions
1487 */
1488 void
1489 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1490
1491 extern void
1492 _mesa_glsl_initialize_variables(exec_list *instructions,
1493 struct _mesa_glsl_parse_state *state);
1494
1495 extern void
1496 _mesa_glsl_initialize_functions(exec_list *instructions,
1497 struct _mesa_glsl_parse_state *state);
1498
1499 extern void
1500 _mesa_glsl_release_functions(void);
1501
1502 extern void
1503 reparent_ir(exec_list *list, void *mem_ctx);
1504
1505 struct glsl_symbol_table;
1506
1507 extern void
1508 import_prototypes(const exec_list *source, exec_list *dest,
1509 struct glsl_symbol_table *symbols, void *mem_ctx);
1510
1511 extern bool
1512 ir_has_call(ir_instruction *ir);
1513
1514 extern void
1515 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1516
1517 #endif /* IR_H */