glsl: Convert ir_call to be a statement rather than a value.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91 const struct glsl_type *type;
92
93 /** ir_print_visitor helper for debugging. */
94 void print(void) const;
95
96 virtual void accept(ir_visitor *) = 0;
97 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
98 virtual ir_instruction *clone(void *mem_ctx,
99 struct hash_table *ht) const = 0;
100
101 /**
102 * \name IR instruction downcast functions
103 *
104 * These functions either cast the object to a derived class or return
105 * \c NULL if the object's type does not match the specified derived class.
106 * Additional downcast functions will be added as needed.
107 */
108 /*@{*/
109 virtual class ir_variable * as_variable() { return NULL; }
110 virtual class ir_function * as_function() { return NULL; }
111 virtual class ir_dereference * as_dereference() { return NULL; }
112 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
113 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
114 virtual class ir_expression * as_expression() { return NULL; }
115 virtual class ir_rvalue * as_rvalue() { return NULL; }
116 virtual class ir_loop * as_loop() { return NULL; }
117 virtual class ir_assignment * as_assignment() { return NULL; }
118 virtual class ir_call * as_call() { return NULL; }
119 virtual class ir_return * as_return() { return NULL; }
120 virtual class ir_if * as_if() { return NULL; }
121 virtual class ir_swizzle * as_swizzle() { return NULL; }
122 virtual class ir_constant * as_constant() { return NULL; }
123 virtual class ir_discard * as_discard() { return NULL; }
124 /*@}*/
125
126 protected:
127 ir_instruction()
128 {
129 ir_type = ir_type_unset;
130 type = NULL;
131 }
132 };
133
134
135 /**
136 * The base class for all "values"/expression trees.
137 */
138 class ir_rvalue : public ir_instruction {
139 public:
140 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
141
142 virtual void accept(ir_visitor *v)
143 {
144 v->visit(this);
145 }
146
147 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
148
149 virtual ir_constant *constant_expression_value();
150
151 virtual ir_rvalue * as_rvalue()
152 {
153 return this;
154 }
155
156 ir_rvalue *as_rvalue_to_saturate();
157
158 virtual bool is_lvalue() const
159 {
160 return false;
161 }
162
163 /**
164 * Get the variable that is ultimately referenced by an r-value
165 */
166 virtual ir_variable *variable_referenced() const
167 {
168 return NULL;
169 }
170
171
172 /**
173 * If an r-value is a reference to a whole variable, get that variable
174 *
175 * \return
176 * Pointer to a variable that is completely dereferenced by the r-value. If
177 * the r-value is not a dereference or the dereference does not access the
178 * entire variable (i.e., it's just one array element, struct field), \c NULL
179 * is returned.
180 */
181 virtual ir_variable *whole_variable_referenced()
182 {
183 return NULL;
184 }
185
186 /**
187 * Determine if an r-value has the value zero
188 *
189 * The base implementation of this function always returns \c false. The
190 * \c ir_constant class over-rides this function to return \c true \b only
191 * for vector and scalar types that have all elements set to the value
192 * zero (or \c false for booleans).
193 *
194 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
195 */
196 virtual bool is_zero() const;
197
198 /**
199 * Determine if an r-value has the value one
200 *
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * one (or \c true for booleans).
205 *
206 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
207 */
208 virtual bool is_one() const;
209
210 /**
211 * Determine if an r-value has the value negative one
212 *
213 * The base implementation of this function always returns \c false. The
214 * \c ir_constant class over-rides this function to return \c true \b only
215 * for vector and scalar types that have all elements set to the value
216 * negative one. For boolean times, the result is always \c false.
217 *
218 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
219 */
220 virtual bool is_negative_one() const;
221
222
223 /**
224 * Return a generic value of error_type.
225 *
226 * Allocation will be performed with 'mem_ctx' as ralloc owner.
227 */
228 static ir_rvalue *error_value(void *mem_ctx);
229
230 protected:
231 ir_rvalue();
232 };
233
234
235 /**
236 * Variable storage classes
237 */
238 enum ir_variable_mode {
239 ir_var_auto = 0, /**< Function local variables and globals. */
240 ir_var_uniform, /**< Variable declared as a uniform. */
241 ir_var_in,
242 ir_var_out,
243 ir_var_inout,
244 ir_var_const_in, /**< "in" param that must be a constant expression */
245 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
246 ir_var_temporary /**< Temporary variable generated during compilation. */
247 };
248
249 /**
250 * \brief Layout qualifiers for gl_FragDepth.
251 *
252 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
253 * with a layout qualifier.
254 */
255 enum ir_depth_layout {
256 ir_depth_layout_none, /**< No depth layout is specified. */
257 ir_depth_layout_any,
258 ir_depth_layout_greater,
259 ir_depth_layout_less,
260 ir_depth_layout_unchanged
261 };
262
263 /**
264 * \brief Convert depth layout qualifier to string.
265 */
266 const char*
267 depth_layout_string(ir_depth_layout layout);
268
269 /**
270 * Description of built-in state associated with a uniform
271 *
272 * \sa ir_variable::state_slots
273 */
274 struct ir_state_slot {
275 int tokens[5];
276 int swizzle;
277 };
278
279 class ir_variable : public ir_instruction {
280 public:
281 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
282
283 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
284
285 virtual ir_variable *as_variable()
286 {
287 return this;
288 }
289
290 virtual void accept(ir_visitor *v)
291 {
292 v->visit(this);
293 }
294
295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
296
297
298 /**
299 * Get the string value for the interpolation qualifier
300 *
301 * \return The string that would be used in a shader to specify \c
302 * mode will be returned.
303 *
304 * This function is used to generate error messages of the form "shader
305 * uses %s interpolation qualifier", so in the case where there is no
306 * interpolation qualifier, it returns "no".
307 *
308 * This function should only be used on a shader input or output variable.
309 */
310 const char *interpolation_string() const;
311
312 /**
313 * Determine how this variable should be interpolated based on its
314 * interpolation qualifier (if present), whether it is gl_Color or
315 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
316 * state.
317 *
318 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
319 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
320 */
321 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
322
323 /**
324 * Delcared name of the variable
325 */
326 const char *name;
327
328 /**
329 * Highest element accessed with a constant expression array index
330 *
331 * Not used for non-array variables.
332 */
333 unsigned max_array_access;
334
335 /**
336 * Is the variable read-only?
337 *
338 * This is set for variables declared as \c const, shader inputs,
339 * and uniforms.
340 */
341 unsigned read_only:1;
342 unsigned centroid:1;
343 unsigned invariant:1;
344
345 /**
346 * Has this variable been used for reading or writing?
347 *
348 * Several GLSL semantic checks require knowledge of whether or not a
349 * variable has been used. For example, it is an error to redeclare a
350 * variable as invariant after it has been used.
351 */
352 unsigned used:1;
353
354 /**
355 * Storage class of the variable.
356 *
357 * \sa ir_variable_mode
358 */
359 unsigned mode:3;
360
361 /**
362 * Interpolation mode for shader inputs / outputs
363 *
364 * \sa ir_variable_interpolation
365 */
366 unsigned interpolation:2;
367
368 /**
369 * \name ARB_fragment_coord_conventions
370 * @{
371 */
372 unsigned origin_upper_left:1;
373 unsigned pixel_center_integer:1;
374 /*@}*/
375
376 /**
377 * Was the location explicitly set in the shader?
378 *
379 * If the location is explicitly set in the shader, it \b cannot be changed
380 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
381 * no effect).
382 */
383 unsigned explicit_location:1;
384
385 /**
386 * Does this variable have an initializer?
387 *
388 * This is used by the linker to cross-validiate initializers of global
389 * variables.
390 */
391 unsigned has_initializer:1;
392
393 /**
394 * \brief Layout qualifier for gl_FragDepth.
395 *
396 * This is not equal to \c ir_depth_layout_none if and only if this
397 * variable is \c gl_FragDepth and a layout qualifier is specified.
398 */
399 ir_depth_layout depth_layout;
400
401 /**
402 * Storage location of the base of this variable
403 *
404 * The precise meaning of this field depends on the nature of the variable.
405 *
406 * - Vertex shader input: one of the values from \c gl_vert_attrib.
407 * - Vertex shader output: one of the values from \c gl_vert_result.
408 * - Fragment shader input: one of the values from \c gl_frag_attrib.
409 * - Fragment shader output: one of the values from \c gl_frag_result.
410 * - Uniforms: Per-stage uniform slot number.
411 * - Other: This field is not currently used.
412 *
413 * If the variable is a uniform, shader input, or shader output, and the
414 * slot has not been assigned, the value will be -1.
415 */
416 int location;
417
418 /**
419 * Built-in state that backs this uniform
420 *
421 * Once set at variable creation, \c state_slots must remain invariant.
422 * This is because, ideally, this array would be shared by all clones of
423 * this variable in the IR tree. In other words, we'd really like for it
424 * to be a fly-weight.
425 *
426 * If the variable is not a uniform, \c num_state_slots will be zero and
427 * \c state_slots will be \c NULL.
428 */
429 /*@{*/
430 unsigned num_state_slots; /**< Number of state slots used */
431 ir_state_slot *state_slots; /**< State descriptors. */
432 /*@}*/
433
434 /**
435 * Emit a warning if this variable is accessed.
436 */
437 const char *warn_extension;
438
439 /**
440 * Value assigned in the initializer of a variable declared "const"
441 */
442 ir_constant *constant_value;
443
444 /**
445 * Constant expression assigned in the initializer of the variable
446 *
447 * \warning
448 * This field and \c ::constant_value are distinct. Even if the two fields
449 * refer to constants with the same value, they must point to separate
450 * objects.
451 */
452 ir_constant *constant_initializer;
453 };
454
455
456 /*@{*/
457 /**
458 * The representation of a function instance; may be the full definition or
459 * simply a prototype.
460 */
461 class ir_function_signature : public ir_instruction {
462 /* An ir_function_signature will be part of the list of signatures in
463 * an ir_function.
464 */
465 public:
466 ir_function_signature(const glsl_type *return_type);
467
468 virtual ir_function_signature *clone(void *mem_ctx,
469 struct hash_table *ht) const;
470 ir_function_signature *clone_prototype(void *mem_ctx,
471 struct hash_table *ht) const;
472
473 virtual void accept(ir_visitor *v)
474 {
475 v->visit(this);
476 }
477
478 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
479
480 /**
481 * Attempt to evaluate this function as a constant expression, given
482 * a list of the actual parameters. Returns NULL for non-built-ins.
483 */
484 ir_constant *constant_expression_value(exec_list *actual_parameters);
485
486 /**
487 * Get the name of the function for which this is a signature
488 */
489 const char *function_name() const;
490
491 /**
492 * Get a handle to the function for which this is a signature
493 *
494 * There is no setter function, this function returns a \c const pointer,
495 * and \c ir_function_signature::_function is private for a reason. The
496 * only way to make a connection between a function and function signature
497 * is via \c ir_function::add_signature. This helps ensure that certain
498 * invariants (i.e., a function signature is in the list of signatures for
499 * its \c _function) are met.
500 *
501 * \sa ir_function::add_signature
502 */
503 inline const class ir_function *function() const
504 {
505 return this->_function;
506 }
507
508 /**
509 * Check whether the qualifiers match between this signature's parameters
510 * and the supplied parameter list. If not, returns the name of the first
511 * parameter with mismatched qualifiers (for use in error messages).
512 */
513 const char *qualifiers_match(exec_list *params);
514
515 /**
516 * Replace the current parameter list with the given one. This is useful
517 * if the current information came from a prototype, and either has invalid
518 * or missing parameter names.
519 */
520 void replace_parameters(exec_list *new_params);
521
522 /**
523 * Function return type.
524 *
525 * \note This discards the optional precision qualifier.
526 */
527 const struct glsl_type *return_type;
528
529 /**
530 * List of ir_variable of function parameters.
531 *
532 * This represents the storage. The paramaters passed in a particular
533 * call will be in ir_call::actual_paramaters.
534 */
535 struct exec_list parameters;
536
537 /** Whether or not this function has a body (which may be empty). */
538 unsigned is_defined:1;
539
540 /** Whether or not this function signature is a built-in. */
541 unsigned is_builtin:1;
542
543 /** Body of instructions in the function. */
544 struct exec_list body;
545
546 private:
547 /** Function of which this signature is one overload. */
548 class ir_function *_function;
549
550 friend class ir_function;
551 };
552
553
554 /**
555 * Header for tracking multiple overloaded functions with the same name.
556 * Contains a list of ir_function_signatures representing each of the
557 * actual functions.
558 */
559 class ir_function : public ir_instruction {
560 public:
561 ir_function(const char *name);
562
563 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
564
565 virtual ir_function *as_function()
566 {
567 return this;
568 }
569
570 virtual void accept(ir_visitor *v)
571 {
572 v->visit(this);
573 }
574
575 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
576
577 void add_signature(ir_function_signature *sig)
578 {
579 sig->_function = this;
580 this->signatures.push_tail(sig);
581 }
582
583 /**
584 * Get an iterator for the set of function signatures
585 */
586 exec_list_iterator iterator()
587 {
588 return signatures.iterator();
589 }
590
591 /**
592 * Find a signature that matches a set of actual parameters, taking implicit
593 * conversions into account. Also flags whether the match was exact.
594 */
595 ir_function_signature *matching_signature(const exec_list *actual_param,
596 bool *match_is_exact);
597
598 /**
599 * Find a signature that matches a set of actual parameters, taking implicit
600 * conversions into account.
601 */
602 ir_function_signature *matching_signature(const exec_list *actual_param);
603
604 /**
605 * Find a signature that exactly matches a set of actual parameters without
606 * any implicit type conversions.
607 */
608 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
609
610 /**
611 * Name of the function.
612 */
613 const char *name;
614
615 /** Whether or not this function has a signature that isn't a built-in. */
616 bool has_user_signature();
617
618 /**
619 * List of ir_function_signature for each overloaded function with this name.
620 */
621 struct exec_list signatures;
622 };
623
624 inline const char *ir_function_signature::function_name() const
625 {
626 return this->_function->name;
627 }
628 /*@}*/
629
630
631 /**
632 * IR instruction representing high-level if-statements
633 */
634 class ir_if : public ir_instruction {
635 public:
636 ir_if(ir_rvalue *condition)
637 : condition(condition)
638 {
639 ir_type = ir_type_if;
640 }
641
642 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
643
644 virtual ir_if *as_if()
645 {
646 return this;
647 }
648
649 virtual void accept(ir_visitor *v)
650 {
651 v->visit(this);
652 }
653
654 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
655
656 ir_rvalue *condition;
657 /** List of ir_instruction for the body of the then branch */
658 exec_list then_instructions;
659 /** List of ir_instruction for the body of the else branch */
660 exec_list else_instructions;
661 };
662
663
664 /**
665 * IR instruction representing a high-level loop structure.
666 */
667 class ir_loop : public ir_instruction {
668 public:
669 ir_loop();
670
671 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
672
673 virtual void accept(ir_visitor *v)
674 {
675 v->visit(this);
676 }
677
678 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
679
680 virtual ir_loop *as_loop()
681 {
682 return this;
683 }
684
685 /**
686 * Get an iterator for the instructions of the loop body
687 */
688 exec_list_iterator iterator()
689 {
690 return body_instructions.iterator();
691 }
692
693 /** List of ir_instruction that make up the body of the loop. */
694 exec_list body_instructions;
695
696 /**
697 * \name Loop counter and controls
698 *
699 * Represents a loop like a FORTRAN \c do-loop.
700 *
701 * \note
702 * If \c from and \c to are the same value, the loop will execute once.
703 */
704 /*@{*/
705 ir_rvalue *from; /** Value of the loop counter on the first
706 * iteration of the loop.
707 */
708 ir_rvalue *to; /** Value of the loop counter on the last
709 * iteration of the loop.
710 */
711 ir_rvalue *increment;
712 ir_variable *counter;
713
714 /**
715 * Comparison operation in the loop terminator.
716 *
717 * If any of the loop control fields are non-\c NULL, this field must be
718 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
719 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
720 */
721 int cmp;
722 /*@}*/
723 };
724
725
726 class ir_assignment : public ir_instruction {
727 public:
728 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
729
730 /**
731 * Construct an assignment with an explicit write mask
732 *
733 * \note
734 * Since a write mask is supplied, the LHS must already be a bare
735 * \c ir_dereference. The cannot be any swizzles in the LHS.
736 */
737 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
738 unsigned write_mask);
739
740 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
741
742 virtual ir_constant *constant_expression_value();
743
744 virtual void accept(ir_visitor *v)
745 {
746 v->visit(this);
747 }
748
749 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
750
751 virtual ir_assignment * as_assignment()
752 {
753 return this;
754 }
755
756 /**
757 * Get a whole variable written by an assignment
758 *
759 * If the LHS of the assignment writes a whole variable, the variable is
760 * returned. Otherwise \c NULL is returned. Examples of whole-variable
761 * assignment are:
762 *
763 * - Assigning to a scalar
764 * - Assigning to all components of a vector
765 * - Whole array (or matrix) assignment
766 * - Whole structure assignment
767 */
768 ir_variable *whole_variable_written();
769
770 /**
771 * Set the LHS of an assignment
772 */
773 void set_lhs(ir_rvalue *lhs);
774
775 /**
776 * Left-hand side of the assignment.
777 *
778 * This should be treated as read only. If you need to set the LHS of an
779 * assignment, use \c ir_assignment::set_lhs.
780 */
781 ir_dereference *lhs;
782
783 /**
784 * Value being assigned
785 */
786 ir_rvalue *rhs;
787
788 /**
789 * Optional condition for the assignment.
790 */
791 ir_rvalue *condition;
792
793
794 /**
795 * Component mask written
796 *
797 * For non-vector types in the LHS, this field will be zero. For vector
798 * types, a bit will be set for each component that is written. Note that
799 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
800 *
801 * A partially-set write mask means that each enabled channel gets
802 * the value from a consecutive channel of the rhs. For example,
803 * to write just .xyw of gl_FrontColor with color:
804 *
805 * (assign (constant bool (1)) (xyw)
806 * (var_ref gl_FragColor)
807 * (swiz xyw (var_ref color)))
808 */
809 unsigned write_mask:4;
810 };
811
812 /* Update ir_expression::num_operands() and operator_strs when
813 * updating this list.
814 */
815 enum ir_expression_operation {
816 ir_unop_bit_not,
817 ir_unop_logic_not,
818 ir_unop_neg,
819 ir_unop_abs,
820 ir_unop_sign,
821 ir_unop_rcp,
822 ir_unop_rsq,
823 ir_unop_sqrt,
824 ir_unop_exp, /**< Log base e on gentype */
825 ir_unop_log, /**< Natural log on gentype */
826 ir_unop_exp2,
827 ir_unop_log2,
828 ir_unop_f2i, /**< Float-to-integer conversion. */
829 ir_unop_i2f, /**< Integer-to-float conversion. */
830 ir_unop_f2b, /**< Float-to-boolean conversion */
831 ir_unop_b2f, /**< Boolean-to-float conversion */
832 ir_unop_i2b, /**< int-to-boolean conversion */
833 ir_unop_b2i, /**< Boolean-to-int conversion */
834 ir_unop_u2f, /**< Unsigned-to-float conversion. */
835 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
836 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
837 ir_unop_any,
838
839 /**
840 * \name Unary floating-point rounding operations.
841 */
842 /*@{*/
843 ir_unop_trunc,
844 ir_unop_ceil,
845 ir_unop_floor,
846 ir_unop_fract,
847 ir_unop_round_even,
848 /*@}*/
849
850 /**
851 * \name Trigonometric operations.
852 */
853 /*@{*/
854 ir_unop_sin,
855 ir_unop_cos,
856 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
857 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
858 /*@}*/
859
860 /**
861 * \name Partial derivatives.
862 */
863 /*@{*/
864 ir_unop_dFdx,
865 ir_unop_dFdy,
866 /*@}*/
867
868 ir_unop_noise,
869
870 /**
871 * A sentinel marking the last of the unary operations.
872 */
873 ir_last_unop = ir_unop_noise,
874
875 ir_binop_add,
876 ir_binop_sub,
877 ir_binop_mul,
878 ir_binop_div,
879
880 /**
881 * Takes one of two combinations of arguments:
882 *
883 * - mod(vecN, vecN)
884 * - mod(vecN, float)
885 *
886 * Does not take integer types.
887 */
888 ir_binop_mod,
889
890 /**
891 * \name Binary comparison operators which return a boolean vector.
892 * The type of both operands must be equal.
893 */
894 /*@{*/
895 ir_binop_less,
896 ir_binop_greater,
897 ir_binop_lequal,
898 ir_binop_gequal,
899 ir_binop_equal,
900 ir_binop_nequal,
901 /**
902 * Returns single boolean for whether all components of operands[0]
903 * equal the components of operands[1].
904 */
905 ir_binop_all_equal,
906 /**
907 * Returns single boolean for whether any component of operands[0]
908 * is not equal to the corresponding component of operands[1].
909 */
910 ir_binop_any_nequal,
911 /*@}*/
912
913 /**
914 * \name Bit-wise binary operations.
915 */
916 /*@{*/
917 ir_binop_lshift,
918 ir_binop_rshift,
919 ir_binop_bit_and,
920 ir_binop_bit_xor,
921 ir_binop_bit_or,
922 /*@}*/
923
924 ir_binop_logic_and,
925 ir_binop_logic_xor,
926 ir_binop_logic_or,
927
928 ir_binop_dot,
929 ir_binop_min,
930 ir_binop_max,
931
932 ir_binop_pow,
933
934 /**
935 * A sentinel marking the last of the binary operations.
936 */
937 ir_last_binop = ir_binop_pow,
938
939 ir_quadop_vector,
940
941 /**
942 * A sentinel marking the last of all operations.
943 */
944 ir_last_opcode = ir_last_binop
945 };
946
947 class ir_expression : public ir_rvalue {
948 public:
949 /**
950 * Constructor for unary operation expressions
951 */
952 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
953 ir_expression(int op, ir_rvalue *);
954
955 /**
956 * Constructor for binary operation expressions
957 */
958 ir_expression(int op, const struct glsl_type *type,
959 ir_rvalue *, ir_rvalue *);
960 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
961
962 /**
963 * Constructor for quad operator expressions
964 */
965 ir_expression(int op, const struct glsl_type *type,
966 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
967
968 virtual ir_expression *as_expression()
969 {
970 return this;
971 }
972
973 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
974
975 /**
976 * Attempt to constant-fold the expression
977 *
978 * If the expression cannot be constant folded, this method will return
979 * \c NULL.
980 */
981 virtual ir_constant *constant_expression_value();
982
983 /**
984 * Determine the number of operands used by an expression
985 */
986 static unsigned int get_num_operands(ir_expression_operation);
987
988 /**
989 * Determine the number of operands used by an expression
990 */
991 unsigned int get_num_operands() const
992 {
993 return (this->operation == ir_quadop_vector)
994 ? this->type->vector_elements : get_num_operands(operation);
995 }
996
997 /**
998 * Return a string representing this expression's operator.
999 */
1000 const char *operator_string();
1001
1002 /**
1003 * Return a string representing this expression's operator.
1004 */
1005 static const char *operator_string(ir_expression_operation);
1006
1007
1008 /**
1009 * Do a reverse-lookup to translate the given string into an operator.
1010 */
1011 static ir_expression_operation get_operator(const char *);
1012
1013 virtual void accept(ir_visitor *v)
1014 {
1015 v->visit(this);
1016 }
1017
1018 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1019
1020 ir_expression_operation operation;
1021 ir_rvalue *operands[4];
1022 };
1023
1024
1025 /**
1026 * HIR instruction representing a high-level function call, containing a list
1027 * of parameters and returning a value in the supplied temporary.
1028 */
1029 class ir_call : public ir_instruction {
1030 public:
1031 ir_call(ir_function_signature *callee,
1032 ir_dereference_variable *return_deref,
1033 exec_list *actual_parameters)
1034 : return_deref(return_deref), callee(callee)
1035 {
1036 ir_type = ir_type_call;
1037 assert(callee->return_type != NULL);
1038 actual_parameters->move_nodes_to(& this->actual_parameters);
1039 this->use_builtin = callee->is_builtin;
1040 }
1041
1042 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1043
1044 virtual ir_constant *constant_expression_value();
1045
1046 virtual ir_call *as_call()
1047 {
1048 return this;
1049 }
1050
1051 virtual void accept(ir_visitor *v)
1052 {
1053 v->visit(this);
1054 }
1055
1056 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1057
1058 /**
1059 * Get an iterator for the set of acutal parameters
1060 */
1061 exec_list_iterator iterator()
1062 {
1063 return actual_parameters.iterator();
1064 }
1065
1066 /**
1067 * Get the name of the function being called.
1068 */
1069 const char *callee_name() const
1070 {
1071 return callee->function_name();
1072 }
1073
1074 /**
1075 * Get the function signature bound to this function call
1076 */
1077 ir_function_signature *get_callee()
1078 {
1079 return callee;
1080 }
1081
1082 /**
1083 * Set the function call target
1084 */
1085 void set_callee(ir_function_signature *sig);
1086
1087 /**
1088 * Generates an inline version of the function before @ir,
1089 * storing the return value in return_deref.
1090 */
1091 void generate_inline(ir_instruction *ir);
1092
1093 /**
1094 * Storage for the function's return value.
1095 * This must be NULL if the return type is void.
1096 */
1097 ir_dereference_variable *return_deref;
1098
1099 /* List of ir_rvalue of paramaters passed in this call. */
1100 exec_list actual_parameters;
1101
1102 /** Should this call only bind to a built-in function? */
1103 bool use_builtin;
1104
1105 private:
1106 ir_function_signature *callee;
1107 };
1108
1109
1110 /**
1111 * \name Jump-like IR instructions.
1112 *
1113 * These include \c break, \c continue, \c return, and \c discard.
1114 */
1115 /*@{*/
1116 class ir_jump : public ir_instruction {
1117 protected:
1118 ir_jump()
1119 {
1120 ir_type = ir_type_unset;
1121 }
1122 };
1123
1124 class ir_return : public ir_jump {
1125 public:
1126 ir_return()
1127 : value(NULL)
1128 {
1129 this->ir_type = ir_type_return;
1130 }
1131
1132 ir_return(ir_rvalue *value)
1133 : value(value)
1134 {
1135 this->ir_type = ir_type_return;
1136 }
1137
1138 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1139
1140 virtual ir_return *as_return()
1141 {
1142 return this;
1143 }
1144
1145 ir_rvalue *get_value() const
1146 {
1147 return value;
1148 }
1149
1150 virtual void accept(ir_visitor *v)
1151 {
1152 v->visit(this);
1153 }
1154
1155 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1156
1157 ir_rvalue *value;
1158 };
1159
1160
1161 /**
1162 * Jump instructions used inside loops
1163 *
1164 * These include \c break and \c continue. The \c break within a loop is
1165 * different from the \c break within a switch-statement.
1166 *
1167 * \sa ir_switch_jump
1168 */
1169 class ir_loop_jump : public ir_jump {
1170 public:
1171 enum jump_mode {
1172 jump_break,
1173 jump_continue
1174 };
1175
1176 ir_loop_jump(jump_mode mode)
1177 {
1178 this->ir_type = ir_type_loop_jump;
1179 this->mode = mode;
1180 this->loop = loop;
1181 }
1182
1183 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1184
1185 virtual void accept(ir_visitor *v)
1186 {
1187 v->visit(this);
1188 }
1189
1190 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1191
1192 bool is_break() const
1193 {
1194 return mode == jump_break;
1195 }
1196
1197 bool is_continue() const
1198 {
1199 return mode == jump_continue;
1200 }
1201
1202 /** Mode selector for the jump instruction. */
1203 enum jump_mode mode;
1204 private:
1205 /** Loop containing this break instruction. */
1206 ir_loop *loop;
1207 };
1208
1209 /**
1210 * IR instruction representing discard statements.
1211 */
1212 class ir_discard : public ir_jump {
1213 public:
1214 ir_discard()
1215 {
1216 this->ir_type = ir_type_discard;
1217 this->condition = NULL;
1218 }
1219
1220 ir_discard(ir_rvalue *cond)
1221 {
1222 this->ir_type = ir_type_discard;
1223 this->condition = cond;
1224 }
1225
1226 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1227
1228 virtual void accept(ir_visitor *v)
1229 {
1230 v->visit(this);
1231 }
1232
1233 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1234
1235 virtual ir_discard *as_discard()
1236 {
1237 return this;
1238 }
1239
1240 ir_rvalue *condition;
1241 };
1242 /*@}*/
1243
1244
1245 /**
1246 * Texture sampling opcodes used in ir_texture
1247 */
1248 enum ir_texture_opcode {
1249 ir_tex, /**< Regular texture look-up */
1250 ir_txb, /**< Texture look-up with LOD bias */
1251 ir_txl, /**< Texture look-up with explicit LOD */
1252 ir_txd, /**< Texture look-up with partial derivatvies */
1253 ir_txf, /**< Texel fetch with explicit LOD */
1254 ir_txs /**< Texture size */
1255 };
1256
1257
1258 /**
1259 * IR instruction to sample a texture
1260 *
1261 * The specific form of the IR instruction depends on the \c mode value
1262 * selected from \c ir_texture_opcodes. In the printed IR, these will
1263 * appear as:
1264 *
1265 * Texel offset (0 or an expression)
1266 * | Projection divisor
1267 * | | Shadow comparitor
1268 * | | |
1269 * v v v
1270 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1271 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1272 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1273 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1274 * (txf <type> <sampler> <coordinate> 0 <lod>)
1275 * (txs <type> <sampler> <lod>)
1276 */
1277 class ir_texture : public ir_rvalue {
1278 public:
1279 ir_texture(enum ir_texture_opcode op)
1280 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1281 {
1282 this->ir_type = ir_type_texture;
1283 }
1284
1285 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1286
1287 virtual ir_constant *constant_expression_value();
1288
1289 virtual void accept(ir_visitor *v)
1290 {
1291 v->visit(this);
1292 }
1293
1294 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1295
1296 /**
1297 * Return a string representing the ir_texture_opcode.
1298 */
1299 const char *opcode_string();
1300
1301 /** Set the sampler and type. */
1302 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1303
1304 /**
1305 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1306 */
1307 static ir_texture_opcode get_opcode(const char *);
1308
1309 enum ir_texture_opcode op;
1310
1311 /** Sampler to use for the texture access. */
1312 ir_dereference *sampler;
1313
1314 /** Texture coordinate to sample */
1315 ir_rvalue *coordinate;
1316
1317 /**
1318 * Value used for projective divide.
1319 *
1320 * If there is no projective divide (the common case), this will be
1321 * \c NULL. Optimization passes should check for this to point to a constant
1322 * of 1.0 and replace that with \c NULL.
1323 */
1324 ir_rvalue *projector;
1325
1326 /**
1327 * Coordinate used for comparison on shadow look-ups.
1328 *
1329 * If there is no shadow comparison, this will be \c NULL. For the
1330 * \c ir_txf opcode, this *must* be \c NULL.
1331 */
1332 ir_rvalue *shadow_comparitor;
1333
1334 /** Texel offset. */
1335 ir_rvalue *offset;
1336
1337 union {
1338 ir_rvalue *lod; /**< Floating point LOD */
1339 ir_rvalue *bias; /**< Floating point LOD bias */
1340 struct {
1341 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1342 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1343 } grad;
1344 } lod_info;
1345 };
1346
1347
1348 struct ir_swizzle_mask {
1349 unsigned x:2;
1350 unsigned y:2;
1351 unsigned z:2;
1352 unsigned w:2;
1353
1354 /**
1355 * Number of components in the swizzle.
1356 */
1357 unsigned num_components:3;
1358
1359 /**
1360 * Does the swizzle contain duplicate components?
1361 *
1362 * L-value swizzles cannot contain duplicate components.
1363 */
1364 unsigned has_duplicates:1;
1365 };
1366
1367
1368 class ir_swizzle : public ir_rvalue {
1369 public:
1370 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1371 unsigned count);
1372
1373 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1374
1375 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1376
1377 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1378
1379 virtual ir_constant *constant_expression_value();
1380
1381 virtual ir_swizzle *as_swizzle()
1382 {
1383 return this;
1384 }
1385
1386 /**
1387 * Construct an ir_swizzle from the textual representation. Can fail.
1388 */
1389 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1390
1391 virtual void accept(ir_visitor *v)
1392 {
1393 v->visit(this);
1394 }
1395
1396 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1397
1398 bool is_lvalue() const
1399 {
1400 return val->is_lvalue() && !mask.has_duplicates;
1401 }
1402
1403 /**
1404 * Get the variable that is ultimately referenced by an r-value
1405 */
1406 virtual ir_variable *variable_referenced() const;
1407
1408 ir_rvalue *val;
1409 ir_swizzle_mask mask;
1410
1411 private:
1412 /**
1413 * Initialize the mask component of a swizzle
1414 *
1415 * This is used by the \c ir_swizzle constructors.
1416 */
1417 void init_mask(const unsigned *components, unsigned count);
1418 };
1419
1420
1421 class ir_dereference : public ir_rvalue {
1422 public:
1423 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1424
1425 virtual ir_dereference *as_dereference()
1426 {
1427 return this;
1428 }
1429
1430 bool is_lvalue() const;
1431
1432 /**
1433 * Get the variable that is ultimately referenced by an r-value
1434 */
1435 virtual ir_variable *variable_referenced() const = 0;
1436 };
1437
1438
1439 class ir_dereference_variable : public ir_dereference {
1440 public:
1441 ir_dereference_variable(ir_variable *var);
1442
1443 virtual ir_dereference_variable *clone(void *mem_ctx,
1444 struct hash_table *) const;
1445
1446 virtual ir_constant *constant_expression_value();
1447
1448 virtual ir_dereference_variable *as_dereference_variable()
1449 {
1450 return this;
1451 }
1452
1453 /**
1454 * Get the variable that is ultimately referenced by an r-value
1455 */
1456 virtual ir_variable *variable_referenced() const
1457 {
1458 return this->var;
1459 }
1460
1461 virtual ir_variable *whole_variable_referenced()
1462 {
1463 /* ir_dereference_variable objects always dereference the entire
1464 * variable. However, if this dereference is dereferenced by anything
1465 * else, the complete deferefernce chain is not a whole-variable
1466 * dereference. This method should only be called on the top most
1467 * ir_rvalue in a dereference chain.
1468 */
1469 return this->var;
1470 }
1471
1472 virtual void accept(ir_visitor *v)
1473 {
1474 v->visit(this);
1475 }
1476
1477 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1478
1479 /**
1480 * Object being dereferenced.
1481 */
1482 ir_variable *var;
1483 };
1484
1485
1486 class ir_dereference_array : public ir_dereference {
1487 public:
1488 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1489
1490 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1491
1492 virtual ir_dereference_array *clone(void *mem_ctx,
1493 struct hash_table *) const;
1494
1495 virtual ir_constant *constant_expression_value();
1496
1497 virtual ir_dereference_array *as_dereference_array()
1498 {
1499 return this;
1500 }
1501
1502 /**
1503 * Get the variable that is ultimately referenced by an r-value
1504 */
1505 virtual ir_variable *variable_referenced() const
1506 {
1507 return this->array->variable_referenced();
1508 }
1509
1510 virtual void accept(ir_visitor *v)
1511 {
1512 v->visit(this);
1513 }
1514
1515 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1516
1517 ir_rvalue *array;
1518 ir_rvalue *array_index;
1519
1520 private:
1521 void set_array(ir_rvalue *value);
1522 };
1523
1524
1525 class ir_dereference_record : public ir_dereference {
1526 public:
1527 ir_dereference_record(ir_rvalue *value, const char *field);
1528
1529 ir_dereference_record(ir_variable *var, const char *field);
1530
1531 virtual ir_dereference_record *clone(void *mem_ctx,
1532 struct hash_table *) const;
1533
1534 virtual ir_constant *constant_expression_value();
1535
1536 /**
1537 * Get the variable that is ultimately referenced by an r-value
1538 */
1539 virtual ir_variable *variable_referenced() const
1540 {
1541 return this->record->variable_referenced();
1542 }
1543
1544 virtual void accept(ir_visitor *v)
1545 {
1546 v->visit(this);
1547 }
1548
1549 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1550
1551 ir_rvalue *record;
1552 const char *field;
1553 };
1554
1555
1556 /**
1557 * Data stored in an ir_constant
1558 */
1559 union ir_constant_data {
1560 unsigned u[16];
1561 int i[16];
1562 float f[16];
1563 bool b[16];
1564 };
1565
1566
1567 class ir_constant : public ir_rvalue {
1568 public:
1569 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1570 ir_constant(bool b);
1571 ir_constant(unsigned int u);
1572 ir_constant(int i);
1573 ir_constant(float f);
1574
1575 /**
1576 * Construct an ir_constant from a list of ir_constant values
1577 */
1578 ir_constant(const struct glsl_type *type, exec_list *values);
1579
1580 /**
1581 * Construct an ir_constant from a scalar component of another ir_constant
1582 *
1583 * The new \c ir_constant inherits the type of the component from the
1584 * source constant.
1585 *
1586 * \note
1587 * In the case of a matrix constant, the new constant is a scalar, \b not
1588 * a vector.
1589 */
1590 ir_constant(const ir_constant *c, unsigned i);
1591
1592 /**
1593 * Return a new ir_constant of the specified type containing all zeros.
1594 */
1595 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1596
1597 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1598
1599 virtual ir_constant *constant_expression_value();
1600
1601 virtual ir_constant *as_constant()
1602 {
1603 return this;
1604 }
1605
1606 virtual void accept(ir_visitor *v)
1607 {
1608 v->visit(this);
1609 }
1610
1611 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1612
1613 /**
1614 * Get a particular component of a constant as a specific type
1615 *
1616 * This is useful, for example, to get a value from an integer constant
1617 * as a float or bool. This appears frequently when constructors are
1618 * called with all constant parameters.
1619 */
1620 /*@{*/
1621 bool get_bool_component(unsigned i) const;
1622 float get_float_component(unsigned i) const;
1623 int get_int_component(unsigned i) const;
1624 unsigned get_uint_component(unsigned i) const;
1625 /*@}*/
1626
1627 ir_constant *get_array_element(unsigned i) const;
1628
1629 ir_constant *get_record_field(const char *name);
1630
1631 /**
1632 * Determine whether a constant has the same value as another constant
1633 *
1634 * \sa ir_constant::is_zero, ir_constant::is_one,
1635 * ir_constant::is_negative_one
1636 */
1637 bool has_value(const ir_constant *) const;
1638
1639 virtual bool is_zero() const;
1640 virtual bool is_one() const;
1641 virtual bool is_negative_one() const;
1642
1643 /**
1644 * Value of the constant.
1645 *
1646 * The field used to back the values supplied by the constant is determined
1647 * by the type associated with the \c ir_instruction. Constants may be
1648 * scalars, vectors, or matrices.
1649 */
1650 union ir_constant_data value;
1651
1652 /* Array elements */
1653 ir_constant **array_elements;
1654
1655 /* Structure fields */
1656 exec_list components;
1657
1658 private:
1659 /**
1660 * Parameterless constructor only used by the clone method
1661 */
1662 ir_constant(void);
1663 };
1664
1665 /*@}*/
1666
1667 /**
1668 * Apply a visitor to each IR node in a list
1669 */
1670 void
1671 visit_exec_list(exec_list *list, ir_visitor *visitor);
1672
1673 /**
1674 * Validate invariants on each IR node in a list
1675 */
1676 void validate_ir_tree(exec_list *instructions);
1677
1678 struct _mesa_glsl_parse_state;
1679 struct gl_shader_program;
1680
1681 /**
1682 * Detect whether an unlinked shader contains static recursion
1683 *
1684 * If the list of instructions is determined to contain static recursion,
1685 * \c _mesa_glsl_error will be called to emit error messages for each function
1686 * that is in the recursion cycle.
1687 */
1688 void
1689 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1690 exec_list *instructions);
1691
1692 /**
1693 * Detect whether a linked shader contains static recursion
1694 *
1695 * If the list of instructions is determined to contain static recursion,
1696 * \c link_error_printf will be called to emit error messages for each function
1697 * that is in the recursion cycle. In addition,
1698 * \c gl_shader_program::LinkStatus will be set to false.
1699 */
1700 void
1701 detect_recursion_linked(struct gl_shader_program *prog,
1702 exec_list *instructions);
1703
1704 /**
1705 * Make a clone of each IR instruction in a list
1706 *
1707 * \param in List of IR instructions that are to be cloned
1708 * \param out List to hold the cloned instructions
1709 */
1710 void
1711 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1712
1713 extern void
1714 _mesa_glsl_initialize_variables(exec_list *instructions,
1715 struct _mesa_glsl_parse_state *state);
1716
1717 extern void
1718 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1719
1720 extern void
1721 _mesa_glsl_release_functions(void);
1722
1723 extern void
1724 reparent_ir(exec_list *list, void *mem_ctx);
1725
1726 struct glsl_symbol_table;
1727
1728 extern void
1729 import_prototypes(const exec_list *source, exec_list *dest,
1730 struct glsl_symbol_table *symbols, void *mem_ctx);
1731
1732 extern bool
1733 ir_has_call(ir_instruction *ir);
1734
1735 extern void
1736 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1737 bool is_fragment_shader);
1738
1739 extern char *
1740 prototype_string(const glsl_type *return_type, const char *name,
1741 exec_list *parameters);
1742
1743 #endif /* IR_H */