glsl: Add doxygen comments
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 /**
45 * \defgroup IR Intermediate representation nodes
46 *
47 * @{
48 */
49
50 /**
51 * Class tags
52 *
53 * Each concrete class derived from \c ir_instruction has a value in this
54 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
55 * by the constructor. While using type tags is not very C++, it is extremely
56 * convenient. For example, during debugging you can simply inspect
57 * \c ir_instruction::ir_type to find out the actual type of the object.
58 *
59 * In addition, it is possible to use a switch-statement based on \c
60 * \c ir_instruction::ir_type to select different behavior for different object
61 * types. For functions that have only slight differences for several object
62 * types, this allows writing very straightforward, readable code.
63 */
64 enum ir_node_type {
65 /**
66 * Zero is unused so that the IR validator can detect cases where
67 * \c ir_instruction::ir_type has not been initialized.
68 */
69 ir_type_unset,
70 ir_type_variable,
71 ir_type_assignment,
72 ir_type_call,
73 ir_type_constant,
74 ir_type_dereference_array,
75 ir_type_dereference_record,
76 ir_type_dereference_variable,
77 ir_type_discard,
78 ir_type_expression,
79 ir_type_function,
80 ir_type_function_signature,
81 ir_type_if,
82 ir_type_loop,
83 ir_type_loop_jump,
84 ir_type_return,
85 ir_type_swizzle,
86 ir_type_texture,
87 ir_type_max /**< maximum ir_type enum number, for validation */
88 };
89
90 /**
91 * Base class of all IR instructions
92 */
93 class ir_instruction : public exec_node {
94 public:
95 enum ir_node_type ir_type;
96 const struct glsl_type *type;
97
98 /** ir_print_visitor helper for debugging. */
99 void print(void) const;
100
101 virtual void accept(ir_visitor *) = 0;
102 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
103 virtual ir_instruction *clone(void *mem_ctx,
104 struct hash_table *ht) const = 0;
105
106 /**
107 * \name IR instruction downcast functions
108 *
109 * These functions either cast the object to a derived class or return
110 * \c NULL if the object's type does not match the specified derived class.
111 * Additional downcast functions will be added as needed.
112 */
113 /*@{*/
114 virtual class ir_variable * as_variable() { return NULL; }
115 virtual class ir_function * as_function() { return NULL; }
116 virtual class ir_dereference * as_dereference() { return NULL; }
117 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
118 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
119 virtual class ir_expression * as_expression() { return NULL; }
120 virtual class ir_rvalue * as_rvalue() { return NULL; }
121 virtual class ir_loop * as_loop() { return NULL; }
122 virtual class ir_assignment * as_assignment() { return NULL; }
123 virtual class ir_call * as_call() { return NULL; }
124 virtual class ir_return * as_return() { return NULL; }
125 virtual class ir_if * as_if() { return NULL; }
126 virtual class ir_swizzle * as_swizzle() { return NULL; }
127 virtual class ir_constant * as_constant() { return NULL; }
128 /*@}*/
129
130 protected:
131 ir_instruction()
132 {
133 ir_type = ir_type_unset;
134 type = NULL;
135 }
136 };
137
138
139 class ir_rvalue : public ir_instruction {
140 public:
141 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
142
143 virtual ir_constant *constant_expression_value() = 0;
144
145 virtual ir_rvalue * as_rvalue()
146 {
147 return this;
148 }
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 protected:
179 ir_rvalue();
180 };
181
182
183 /**
184 * Variable storage classes
185 */
186 enum ir_variable_mode {
187 ir_var_auto = 0, /**< Function local variables and globals. */
188 ir_var_uniform, /**< Variable declared as a uniform. */
189 ir_var_in,
190 ir_var_out,
191 ir_var_inout,
192 ir_var_temporary /**< Temporary variable generated during compilation. */
193 };
194
195 enum ir_variable_interpolation {
196 ir_var_smooth = 0,
197 ir_var_flat,
198 ir_var_noperspective
199 };
200
201
202 class ir_variable : public ir_instruction {
203 public:
204 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
205
206 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
207
208 virtual ir_variable *as_variable()
209 {
210 return this;
211 }
212
213 virtual void accept(ir_visitor *v)
214 {
215 v->visit(this);
216 }
217
218 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
219
220
221 /**
222 * Get the string value for the interpolation qualifier
223 *
224 * \return The string that would be used in a shader to specify \c
225 * mode will be returned.
226 *
227 * This function should only be used on a shader input or output variable.
228 */
229 const char *interpolation_string() const;
230
231 /**
232 * Calculate the number of slots required to hold this variable
233 *
234 * This is used to determine how many uniform or varying locations a variable
235 * occupies. The count is in units of floating point components.
236 */
237 unsigned component_slots() const;
238
239 /**
240 * Delcared name of the variable
241 */
242 const char *name;
243
244 /**
245 * Highest element accessed with a constant expression array index
246 *
247 * Not used for non-array variables.
248 */
249 unsigned max_array_access;
250
251 /**
252 * Is the variable read-only?
253 *
254 * This is set for variables declared as \c const, shader inputs,
255 * and uniforms.
256 */
257 unsigned read_only:1;
258 unsigned centroid:1;
259 unsigned invariant:1;
260
261 /**
262 * Storage class of the variable.
263 *
264 * \sa ir_variable_mode
265 */
266 unsigned mode:3;
267
268 /**
269 * Interpolation mode for shader inputs / outputs
270 *
271 * \sa ir_variable_interpolation
272 */
273 unsigned interpolation:2;
274
275 /**
276 * Flag that the whole array is assignable
277 *
278 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
279 * equality). This flag enables this behavior.
280 */
281 unsigned array_lvalue:1;
282
283 /**
284 * \name ARB_fragment_coord_conventions
285 * @{
286 */
287 unsigned origin_upper_left:1;
288 unsigned pixel_center_integer:1;
289 /*@}*/
290
291 /**
292 * Storage location of the base of this variable
293 *
294 * The precise meaning of this field depends on the nature of the variable.
295 *
296 * - Vertex shader input: one of the values from \c gl_vert_attrib.
297 * - Vertex shader output: one of the values from \c gl_vert_result.
298 * - Fragment shader input: one of the values from \c gl_frag_attrib.
299 * - Fragment shader output: one of the values from \c gl_frag_result.
300 * - Uniforms: Per-stage uniform slot number.
301 * - Other: This field is not currently used.
302 *
303 * If the variable is a uniform, shader input, or shader output, and the
304 * slot has not been assigned, the value will be -1.
305 */
306 int location;
307
308 /**
309 * Emit a warning if this variable is accessed.
310 */
311 const char *warn_extension;
312
313 /**
314 * Value assigned in the initializer of a variable declared "const"
315 */
316 ir_constant *constant_value;
317 };
318
319
320 /*@{*/
321 /**
322 * The representation of a function instance; may be the full definition or
323 * simply a prototype.
324 */
325 class ir_function_signature : public ir_instruction {
326 /* An ir_function_signature will be part of the list of signatures in
327 * an ir_function.
328 */
329 public:
330 ir_function_signature(const glsl_type *return_type);
331
332 virtual ir_function_signature *clone(void *mem_ctx,
333 struct hash_table *ht) const;
334
335 virtual void accept(ir_visitor *v)
336 {
337 v->visit(this);
338 }
339
340 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
341
342 /**
343 * Get the name of the function for which this is a signature
344 */
345 const char *function_name() const;
346
347 /**
348 * Get a handle to the function for which this is a signature
349 *
350 * There is no setter function, this function returns a \c const pointer,
351 * and \c ir_function_signature::_function is private for a reason. The
352 * only way to make a connection between a function and function signature
353 * is via \c ir_function::add_signature. This helps ensure that certain
354 * invariants (i.e., a function signature is in the list of signatures for
355 * its \c _function) are met.
356 *
357 * \sa ir_function::add_signature
358 */
359 inline const class ir_function *function() const
360 {
361 return this->_function;
362 }
363
364 /**
365 * Check whether the qualifiers match between this signature's parameters
366 * and the supplied parameter list. If not, returns the name of the first
367 * parameter with mismatched qualifiers (for use in error messages).
368 */
369 const char *qualifiers_match(exec_list *params);
370
371 /**
372 * Replace the current parameter list with the given one. This is useful
373 * if the current information came from a prototype, and either has invalid
374 * or missing parameter names.
375 */
376 void replace_parameters(exec_list *new_params);
377
378 /**
379 * Function return type.
380 *
381 * \note This discards the optional precision qualifier.
382 */
383 const struct glsl_type *return_type;
384
385 /**
386 * List of ir_variable of function parameters.
387 *
388 * This represents the storage. The paramaters passed in a particular
389 * call will be in ir_call::actual_paramaters.
390 */
391 struct exec_list parameters;
392
393 /** Whether or not this function has a body (which may be empty). */
394 unsigned is_defined:1;
395
396 /** Whether or not this function signature is a built-in. */
397 unsigned is_builtin:1;
398
399 /** Body of instructions in the function. */
400 struct exec_list body;
401
402 private:
403 /** Function of which this signature is one overload. */
404 class ir_function *_function;
405
406 friend class ir_function;
407 };
408
409
410 /**
411 * Header for tracking multiple overloaded functions with the same name.
412 * Contains a list of ir_function_signatures representing each of the
413 * actual functions.
414 */
415 class ir_function : public ir_instruction {
416 public:
417 ir_function(const char *name);
418
419 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
420
421 virtual ir_function *as_function()
422 {
423 return this;
424 }
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433 void add_signature(ir_function_signature *sig)
434 {
435 sig->_function = this;
436 this->signatures.push_tail(sig);
437 }
438
439 /**
440 * Get an iterator for the set of function signatures
441 */
442 exec_list_iterator iterator()
443 {
444 return signatures.iterator();
445 }
446
447 /**
448 * Find a signature that matches a set of actual parameters, taking implicit
449 * conversions into account.
450 */
451 ir_function_signature *matching_signature(const exec_list *actual_param);
452
453 /**
454 * Find a signature that exactly matches a set of actual parameters without
455 * any implicit type conversions.
456 */
457 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
458
459 /**
460 * Name of the function.
461 */
462 const char *name;
463
464 /** Whether or not this function has a signature that isn't a built-in. */
465 bool has_user_signature();
466
467 /**
468 * List of ir_function_signature for each overloaded function with this name.
469 */
470 struct exec_list signatures;
471 };
472
473 inline const char *ir_function_signature::function_name() const
474 {
475 return this->_function->name;
476 }
477 /*@}*/
478
479
480 /**
481 * IR instruction representing high-level if-statements
482 */
483 class ir_if : public ir_instruction {
484 public:
485 ir_if(ir_rvalue *condition)
486 : condition(condition)
487 {
488 ir_type = ir_type_if;
489 }
490
491 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
492
493 virtual ir_if *as_if()
494 {
495 return this;
496 }
497
498 virtual void accept(ir_visitor *v)
499 {
500 v->visit(this);
501 }
502
503 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
504
505 ir_rvalue *condition;
506 /** List of ir_instruction for the body of the then branch */
507 exec_list then_instructions;
508 /** List of ir_instruction for the body of the else branch */
509 exec_list else_instructions;
510 };
511
512
513 /**
514 * IR instruction representing a high-level loop structure.
515 */
516 class ir_loop : public ir_instruction {
517 public:
518 ir_loop();
519
520 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
521
522 virtual void accept(ir_visitor *v)
523 {
524 v->visit(this);
525 }
526
527 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
528
529 virtual ir_loop *as_loop()
530 {
531 return this;
532 }
533
534 /**
535 * Get an iterator for the instructions of the loop body
536 */
537 exec_list_iterator iterator()
538 {
539 return body_instructions.iterator();
540 }
541
542 /** List of ir_instruction that make up the body of the loop. */
543 exec_list body_instructions;
544
545 /**
546 * \name Loop counter and controls
547 *
548 * Represents a loop like a FORTRAN \c do-loop.
549 *
550 * \note
551 * If \c from and \c to are the same value, the loop will execute once.
552 */
553 /*@{*/
554 ir_rvalue *from; /** Value of the loop counter on the first
555 * iteration of the loop.
556 */
557 ir_rvalue *to; /** Value of the loop counter on the last
558 * iteration of the loop.
559 */
560 ir_rvalue *increment;
561 ir_variable *counter;
562
563 /**
564 * Comparison operation in the loop terminator.
565 *
566 * If any of the loop control fields are non-\c NULL, this field must be
567 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
568 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
569 */
570 int cmp;
571 /*@}*/
572 };
573
574
575 class ir_assignment : public ir_instruction {
576 public:
577 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
578
579 /**
580 * Construct an assignment with an explicit write mask
581 *
582 * \note
583 * Since a write mask is supplied, the LHS must already be a bare
584 * \c ir_dereference. The cannot be any swizzles in the LHS.
585 */
586 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
587 unsigned write_mask);
588
589 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
590
591 virtual ir_constant *constant_expression_value();
592
593 virtual void accept(ir_visitor *v)
594 {
595 v->visit(this);
596 }
597
598 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
599
600 virtual ir_assignment * as_assignment()
601 {
602 return this;
603 }
604
605 /**
606 * Get a whole variable written by an assignment
607 *
608 * If the LHS of the assignment writes a whole variable, the variable is
609 * returned. Otherwise \c NULL is returned. Examples of whole-variable
610 * assignment are:
611 *
612 * - Assigning to a scalar
613 * - Assigning to all components of a vector
614 * - Whole array (or matrix) assignment
615 * - Whole structure assignment
616 */
617 ir_variable *whole_variable_written();
618
619 /**
620 * Set the LHS of an assignment
621 */
622 void set_lhs(ir_rvalue *lhs);
623
624 /**
625 * Left-hand side of the assignment.
626 *
627 * This should be treated as read only. If you need to set the LHS of an
628 * assignment, use \c ir_assignment::set_lhs.
629 */
630 ir_dereference *lhs;
631
632 /**
633 * Value being assigned
634 */
635 ir_rvalue *rhs;
636
637 /**
638 * Optional condition for the assignment.
639 */
640 ir_rvalue *condition;
641
642
643 /**
644 * Component mask written
645 *
646 * For non-vector types in the LHS, this field will be zero. For vector
647 * types, a bit will be set for each component that is written. Note that
648 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
649 */
650 unsigned write_mask:4;
651 };
652
653 /* Update ir_expression::num_operands() and operator_strs when
654 * updating this list.
655 */
656 enum ir_expression_operation {
657 ir_unop_bit_not,
658 ir_unop_logic_not,
659 ir_unop_neg,
660 ir_unop_abs,
661 ir_unop_sign,
662 ir_unop_rcp,
663 ir_unop_rsq,
664 ir_unop_sqrt,
665 ir_unop_exp, /**< Log base e on gentype */
666 ir_unop_log, /**< Natural log on gentype */
667 ir_unop_exp2,
668 ir_unop_log2,
669 ir_unop_f2i, /**< Float-to-integer conversion. */
670 ir_unop_i2f, /**< Integer-to-float conversion. */
671 ir_unop_f2b, /**< Float-to-boolean conversion */
672 ir_unop_b2f, /**< Boolean-to-float conversion */
673 ir_unop_i2b, /**< int-to-boolean conversion */
674 ir_unop_b2i, /**< Boolean-to-int conversion */
675 ir_unop_u2f, /**< Unsigned-to-float conversion. */
676 ir_unop_any,
677
678 /**
679 * \name Unary floating-point rounding operations.
680 */
681 /*@{*/
682 ir_unop_trunc,
683 ir_unop_ceil,
684 ir_unop_floor,
685 ir_unop_fract,
686 /*@}*/
687
688 /**
689 * \name Trigonometric operations.
690 */
691 /*@{*/
692 ir_unop_sin,
693 ir_unop_cos,
694 /*@}*/
695
696 /**
697 * \name Partial derivatives.
698 */
699 /*@{*/
700 ir_unop_dFdx,
701 ir_unop_dFdy,
702 /*@}*/
703
704 ir_unop_noise,
705
706 ir_binop_add,
707 ir_binop_sub,
708 ir_binop_mul,
709 ir_binop_div,
710
711 /**
712 * Takes one of two combinations of arguments:
713 *
714 * - mod(vecN, vecN)
715 * - mod(vecN, float)
716 *
717 * Does not take integer types.
718 */
719 ir_binop_mod,
720
721 /**
722 * \name Binary comparison operators
723 */
724 /*@{*/
725 ir_binop_less,
726 ir_binop_greater,
727 ir_binop_lequal,
728 ir_binop_gequal,
729 ir_binop_equal,
730 ir_binop_nequal,
731 /**
732 * Returns single boolean for whether all components of operands[0]
733 * equal the components of operands[1].
734 */
735 ir_binop_all_equal,
736 /**
737 * Returns single boolean for whether any component of operands[0]
738 * is not equal to the corresponding component of operands[1].
739 */
740 ir_binop_any_nequal,
741 /*@}*/
742
743 /**
744 * \name Bit-wise binary operations.
745 */
746 /*@{*/
747 ir_binop_lshift,
748 ir_binop_rshift,
749 ir_binop_bit_and,
750 ir_binop_bit_xor,
751 ir_binop_bit_or,
752 /*@}*/
753
754 ir_binop_logic_and,
755 ir_binop_logic_xor,
756 ir_binop_logic_or,
757
758 ir_binop_dot,
759 ir_binop_cross,
760 ir_binop_min,
761 ir_binop_max,
762
763 ir_binop_pow
764 };
765
766 class ir_expression : public ir_rvalue {
767 public:
768 ir_expression(int op, const struct glsl_type *type,
769 ir_rvalue *, ir_rvalue *);
770
771 virtual ir_expression *as_expression()
772 {
773 return this;
774 }
775
776 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
777
778 /**
779 * Attempt to constant-fold the expression
780 *
781 * If the expression cannot be constant folded, this method will return
782 * \c NULL.
783 */
784 virtual ir_constant *constant_expression_value();
785
786 /**
787 * Determine the number of operands used by an expression
788 */
789 static unsigned int get_num_operands(ir_expression_operation);
790
791 /**
792 * Determine the number of operands used by an expression
793 */
794 unsigned int get_num_operands() const
795 {
796 return get_num_operands(operation);
797 }
798
799 /**
800 * Return a string representing this expression's operator.
801 */
802 const char *operator_string();
803
804 /**
805 * Return a string representing this expression's operator.
806 */
807 static const char *operator_string(ir_expression_operation);
808
809
810 /**
811 * Do a reverse-lookup to translate the given string into an operator.
812 */
813 static ir_expression_operation get_operator(const char *);
814
815 virtual void accept(ir_visitor *v)
816 {
817 v->visit(this);
818 }
819
820 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
821
822 ir_expression_operation operation;
823 ir_rvalue *operands[2];
824 };
825
826
827 /**
828 * IR instruction representing a function call
829 */
830 class ir_call : public ir_rvalue {
831 public:
832 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
833 : callee(callee)
834 {
835 ir_type = ir_type_call;
836 assert(callee->return_type != NULL);
837 type = callee->return_type;
838 actual_parameters->move_nodes_to(& this->actual_parameters);
839 }
840
841 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
842
843 virtual ir_constant *constant_expression_value();
844
845 virtual ir_call *as_call()
846 {
847 return this;
848 }
849
850 virtual void accept(ir_visitor *v)
851 {
852 v->visit(this);
853 }
854
855 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
856
857 /**
858 * Get a generic ir_call object when an error occurs
859 *
860 * Any allocation will be performed with 'ctx' as talloc owner.
861 */
862 static ir_call *get_error_instruction(void *ctx);
863
864 /**
865 * Get an iterator for the set of acutal parameters
866 */
867 exec_list_iterator iterator()
868 {
869 return actual_parameters.iterator();
870 }
871
872 /**
873 * Get the name of the function being called.
874 */
875 const char *callee_name() const
876 {
877 return callee->function_name();
878 }
879
880 /**
881 * Get the function signature bound to this function call
882 */
883 ir_function_signature *get_callee()
884 {
885 return callee;
886 }
887
888 /**
889 * Set the function call target
890 */
891 void set_callee(ir_function_signature *sig);
892
893 /**
894 * Generates an inline version of the function before @ir,
895 * returning the return value of the function.
896 */
897 ir_rvalue *generate_inline(ir_instruction *ir);
898
899 /* List of ir_rvalue of paramaters passed in this call. */
900 exec_list actual_parameters;
901
902 private:
903 ir_call()
904 : callee(NULL)
905 {
906 this->ir_type = ir_type_call;
907 }
908
909 ir_function_signature *callee;
910 };
911
912
913 /**
914 * \name Jump-like IR instructions.
915 *
916 * These include \c break, \c continue, \c return, and \c discard.
917 */
918 /*@{*/
919 class ir_jump : public ir_instruction {
920 protected:
921 ir_jump()
922 {
923 ir_type = ir_type_unset;
924 }
925 };
926
927 class ir_return : public ir_jump {
928 public:
929 ir_return()
930 : value(NULL)
931 {
932 this->ir_type = ir_type_return;
933 }
934
935 ir_return(ir_rvalue *value)
936 : value(value)
937 {
938 this->ir_type = ir_type_return;
939 }
940
941 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
942
943 virtual ir_return *as_return()
944 {
945 return this;
946 }
947
948 ir_rvalue *get_value() const
949 {
950 return value;
951 }
952
953 virtual void accept(ir_visitor *v)
954 {
955 v->visit(this);
956 }
957
958 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
959
960 ir_rvalue *value;
961 };
962
963
964 /**
965 * Jump instructions used inside loops
966 *
967 * These include \c break and \c continue. The \c break within a loop is
968 * different from the \c break within a switch-statement.
969 *
970 * \sa ir_switch_jump
971 */
972 class ir_loop_jump : public ir_jump {
973 public:
974 enum jump_mode {
975 jump_break,
976 jump_continue
977 };
978
979 ir_loop_jump(jump_mode mode)
980 {
981 this->ir_type = ir_type_loop_jump;
982 this->mode = mode;
983 this->loop = loop;
984 }
985
986 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
987
988 virtual void accept(ir_visitor *v)
989 {
990 v->visit(this);
991 }
992
993 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
994
995 bool is_break() const
996 {
997 return mode == jump_break;
998 }
999
1000 bool is_continue() const
1001 {
1002 return mode == jump_continue;
1003 }
1004
1005 /** Mode selector for the jump instruction. */
1006 enum jump_mode mode;
1007 private:
1008 /** Loop containing this break instruction. */
1009 ir_loop *loop;
1010 };
1011
1012 /**
1013 * IR instruction representing discard statements.
1014 */
1015 class ir_discard : public ir_jump {
1016 public:
1017 ir_discard()
1018 {
1019 this->ir_type = ir_type_discard;
1020 this->condition = NULL;
1021 }
1022
1023 ir_discard(ir_rvalue *cond)
1024 {
1025 this->ir_type = ir_type_discard;
1026 this->condition = cond;
1027 }
1028
1029 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1030
1031 virtual void accept(ir_visitor *v)
1032 {
1033 v->visit(this);
1034 }
1035
1036 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1037
1038 ir_rvalue *condition;
1039 };
1040 /*@}*/
1041
1042
1043 /**
1044 * Texture sampling opcodes used in ir_texture
1045 */
1046 enum ir_texture_opcode {
1047 ir_tex, /**< Regular texture look-up */
1048 ir_txb, /**< Texture look-up with LOD bias */
1049 ir_txl, /**< Texture look-up with explicit LOD */
1050 ir_txd, /**< Texture look-up with partial derivatvies */
1051 ir_txf /**< Texel fetch with explicit LOD */
1052 };
1053
1054
1055 /**
1056 * IR instruction to sample a texture
1057 *
1058 * The specific form of the IR instruction depends on the \c mode value
1059 * selected from \c ir_texture_opcodes. In the printed IR, these will
1060 * appear as:
1061 *
1062 * Texel offset
1063 * | Projection divisor
1064 * | | Shadow comparitor
1065 * | | |
1066 * v v v
1067 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1068 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1069 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1070 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1071 * (txf (sampler) (coordinate) (0 0 0) (lod))
1072 */
1073 class ir_texture : public ir_rvalue {
1074 public:
1075 ir_texture(enum ir_texture_opcode op)
1076 : op(op), projector(NULL), shadow_comparitor(NULL)
1077 {
1078 this->ir_type = ir_type_texture;
1079 }
1080
1081 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1082
1083 virtual ir_constant *constant_expression_value();
1084
1085 virtual void accept(ir_visitor *v)
1086 {
1087 v->visit(this);
1088 }
1089
1090 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1091
1092 /**
1093 * Return a string representing the ir_texture_opcode.
1094 */
1095 const char *opcode_string();
1096
1097 /** Set the sampler and infer the type. */
1098 void set_sampler(ir_dereference *sampler);
1099
1100 /**
1101 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1102 */
1103 static ir_texture_opcode get_opcode(const char *);
1104
1105 enum ir_texture_opcode op;
1106
1107 /** Sampler to use for the texture access. */
1108 ir_dereference *sampler;
1109
1110 /** Texture coordinate to sample */
1111 ir_rvalue *coordinate;
1112
1113 /**
1114 * Value used for projective divide.
1115 *
1116 * If there is no projective divide (the common case), this will be
1117 * \c NULL. Optimization passes should check for this to point to a constant
1118 * of 1.0 and replace that with \c NULL.
1119 */
1120 ir_rvalue *projector;
1121
1122 /**
1123 * Coordinate used for comparison on shadow look-ups.
1124 *
1125 * If there is no shadow comparison, this will be \c NULL. For the
1126 * \c ir_txf opcode, this *must* be \c NULL.
1127 */
1128 ir_rvalue *shadow_comparitor;
1129
1130 /** Explicit texel offsets. */
1131 signed char offsets[3];
1132
1133 union {
1134 ir_rvalue *lod; /**< Floating point LOD */
1135 ir_rvalue *bias; /**< Floating point LOD bias */
1136 struct {
1137 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1138 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1139 } grad;
1140 } lod_info;
1141 };
1142
1143
1144 struct ir_swizzle_mask {
1145 unsigned x:2;
1146 unsigned y:2;
1147 unsigned z:2;
1148 unsigned w:2;
1149
1150 /**
1151 * Number of components in the swizzle.
1152 */
1153 unsigned num_components:3;
1154
1155 /**
1156 * Does the swizzle contain duplicate components?
1157 *
1158 * L-value swizzles cannot contain duplicate components.
1159 */
1160 unsigned has_duplicates:1;
1161 };
1162
1163
1164 class ir_swizzle : public ir_rvalue {
1165 public:
1166 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1167 unsigned count);
1168
1169 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1170
1171 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1172
1173 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1174
1175 virtual ir_constant *constant_expression_value();
1176
1177 virtual ir_swizzle *as_swizzle()
1178 {
1179 return this;
1180 }
1181
1182 /**
1183 * Construct an ir_swizzle from the textual representation. Can fail.
1184 */
1185 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1186
1187 virtual void accept(ir_visitor *v)
1188 {
1189 v->visit(this);
1190 }
1191
1192 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1193
1194 bool is_lvalue()
1195 {
1196 return val->is_lvalue() && !mask.has_duplicates;
1197 }
1198
1199 /**
1200 * Get the variable that is ultimately referenced by an r-value
1201 */
1202 virtual ir_variable *variable_referenced();
1203
1204 ir_rvalue *val;
1205 ir_swizzle_mask mask;
1206
1207 private:
1208 /**
1209 * Initialize the mask component of a swizzle
1210 *
1211 * This is used by the \c ir_swizzle constructors.
1212 */
1213 void init_mask(const unsigned *components, unsigned count);
1214 };
1215
1216
1217 class ir_dereference : public ir_rvalue {
1218 public:
1219 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1220
1221 virtual ir_dereference *as_dereference()
1222 {
1223 return this;
1224 }
1225
1226 bool is_lvalue();
1227
1228 /**
1229 * Get the variable that is ultimately referenced by an r-value
1230 */
1231 virtual ir_variable *variable_referenced() = 0;
1232 };
1233
1234
1235 class ir_dereference_variable : public ir_dereference {
1236 public:
1237 ir_dereference_variable(ir_variable *var);
1238
1239 virtual ir_dereference_variable *clone(void *mem_ctx,
1240 struct hash_table *) const;
1241
1242 virtual ir_constant *constant_expression_value();
1243
1244 virtual ir_dereference_variable *as_dereference_variable()
1245 {
1246 return this;
1247 }
1248
1249 /**
1250 * Get the variable that is ultimately referenced by an r-value
1251 */
1252 virtual ir_variable *variable_referenced()
1253 {
1254 return this->var;
1255 }
1256
1257 virtual ir_variable *whole_variable_referenced()
1258 {
1259 /* ir_dereference_variable objects always dereference the entire
1260 * variable. However, if this dereference is dereferenced by anything
1261 * else, the complete deferefernce chain is not a whole-variable
1262 * dereference. This method should only be called on the top most
1263 * ir_rvalue in a dereference chain.
1264 */
1265 return this->var;
1266 }
1267
1268 virtual void accept(ir_visitor *v)
1269 {
1270 v->visit(this);
1271 }
1272
1273 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1274
1275 /**
1276 * Object being dereferenced.
1277 */
1278 ir_variable *var;
1279 };
1280
1281
1282 class ir_dereference_array : public ir_dereference {
1283 public:
1284 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1285
1286 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1287
1288 virtual ir_dereference_array *clone(void *mem_ctx,
1289 struct hash_table *) const;
1290
1291 virtual ir_constant *constant_expression_value();
1292
1293 virtual ir_dereference_array *as_dereference_array()
1294 {
1295 return this;
1296 }
1297
1298 /**
1299 * Get the variable that is ultimately referenced by an r-value
1300 */
1301 virtual ir_variable *variable_referenced()
1302 {
1303 return this->array->variable_referenced();
1304 }
1305
1306 virtual void accept(ir_visitor *v)
1307 {
1308 v->visit(this);
1309 }
1310
1311 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1312
1313 ir_rvalue *array;
1314 ir_rvalue *array_index;
1315
1316 private:
1317 void set_array(ir_rvalue *value);
1318 };
1319
1320
1321 class ir_dereference_record : public ir_dereference {
1322 public:
1323 ir_dereference_record(ir_rvalue *value, const char *field);
1324
1325 ir_dereference_record(ir_variable *var, const char *field);
1326
1327 virtual ir_dereference_record *clone(void *mem_ctx,
1328 struct hash_table *) const;
1329
1330 virtual ir_constant *constant_expression_value();
1331
1332 /**
1333 * Get the variable that is ultimately referenced by an r-value
1334 */
1335 virtual ir_variable *variable_referenced()
1336 {
1337 return this->record->variable_referenced();
1338 }
1339
1340 virtual void accept(ir_visitor *v)
1341 {
1342 v->visit(this);
1343 }
1344
1345 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1346
1347 ir_rvalue *record;
1348 const char *field;
1349 };
1350
1351
1352 /**
1353 * Data stored in an ir_constant
1354 */
1355 union ir_constant_data {
1356 unsigned u[16];
1357 int i[16];
1358 float f[16];
1359 bool b[16];
1360 };
1361
1362
1363 class ir_constant : public ir_rvalue {
1364 public:
1365 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1366 ir_constant(bool b);
1367 ir_constant(unsigned int u);
1368 ir_constant(int i);
1369 ir_constant(float f);
1370
1371 /**
1372 * Construct an ir_constant from a list of ir_constant values
1373 */
1374 ir_constant(const struct glsl_type *type, exec_list *values);
1375
1376 /**
1377 * Construct an ir_constant from a scalar component of another ir_constant
1378 *
1379 * The new \c ir_constant inherits the type of the component from the
1380 * source constant.
1381 *
1382 * \note
1383 * In the case of a matrix constant, the new constant is a scalar, \b not
1384 * a vector.
1385 */
1386 ir_constant(const ir_constant *c, unsigned i);
1387
1388 /**
1389 * Return a new ir_constant of the specified type containing all zeros.
1390 */
1391 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1392
1393 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1394
1395 virtual ir_constant *constant_expression_value();
1396
1397 virtual ir_constant *as_constant()
1398 {
1399 return this;
1400 }
1401
1402 virtual void accept(ir_visitor *v)
1403 {
1404 v->visit(this);
1405 }
1406
1407 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1408
1409 /**
1410 * Get a particular component of a constant as a specific type
1411 *
1412 * This is useful, for example, to get a value from an integer constant
1413 * as a float or bool. This appears frequently when constructors are
1414 * called with all constant parameters.
1415 */
1416 /*@{*/
1417 bool get_bool_component(unsigned i) const;
1418 float get_float_component(unsigned i) const;
1419 int get_int_component(unsigned i) const;
1420 unsigned get_uint_component(unsigned i) const;
1421 /*@}*/
1422
1423 ir_constant *get_array_element(unsigned i) const;
1424
1425 ir_constant *get_record_field(const char *name);
1426
1427 /**
1428 * Determine whether a constant has the same value as another constant
1429 */
1430 bool has_value(const ir_constant *) const;
1431
1432 /**
1433 * Value of the constant.
1434 *
1435 * The field used to back the values supplied by the constant is determined
1436 * by the type associated with the \c ir_instruction. Constants may be
1437 * scalars, vectors, or matrices.
1438 */
1439 union ir_constant_data value;
1440
1441 /* Array elements */
1442 ir_constant **array_elements;
1443
1444 /* Structure fields */
1445 exec_list components;
1446
1447 private:
1448 /**
1449 * Parameterless constructor only used by the clone method
1450 */
1451 ir_constant(void);
1452 };
1453
1454 /*@}*/
1455
1456 /**
1457 * Apply a visitor to each IR node in a list
1458 */
1459 void
1460 visit_exec_list(exec_list *list, ir_visitor *visitor);
1461
1462 /**
1463 * Validate invariants on each IR node in a list
1464 */
1465 void validate_ir_tree(exec_list *instructions);
1466
1467 /**
1468 * Make a clone of each IR instruction in a list
1469 *
1470 * \param in List of IR instructions that are to be cloned
1471 * \param out List to hold the cloned instructions
1472 */
1473 void
1474 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1475
1476 extern void
1477 _mesa_glsl_initialize_variables(exec_list *instructions,
1478 struct _mesa_glsl_parse_state *state);
1479
1480 extern void
1481 _mesa_glsl_initialize_functions(exec_list *instructions,
1482 struct _mesa_glsl_parse_state *state);
1483
1484 extern void
1485 _mesa_glsl_release_functions(void);
1486
1487 extern void
1488 reparent_ir(exec_list *list, void *mem_ctx);
1489
1490 struct glsl_symbol_table;
1491
1492 extern void
1493 import_prototypes(const exec_list *source, exec_list *dest,
1494 struct glsl_symbol_table *symbols, void *mem_ctx);
1495
1496 extern bool
1497 ir_has_call(ir_instruction *ir);
1498
1499 extern void
1500 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1501
1502 #endif /* IR_H */