glsl: Extend ir_expression_operation for GLSL 3.00 pack/unpack functions (v2)
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_shader_in,
269 ir_var_shader_out,
270 ir_var_function_in,
271 ir_var_function_out,
272 ir_var_function_inout,
273 ir_var_const_in, /**< "in" param that must be a constant expression */
274 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
275 ir_var_temporary /**< Temporary variable generated during compilation. */
276 };
277
278 /**
279 * \brief Layout qualifiers for gl_FragDepth.
280 *
281 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
282 * with a layout qualifier.
283 */
284 enum ir_depth_layout {
285 ir_depth_layout_none, /**< No depth layout is specified. */
286 ir_depth_layout_any,
287 ir_depth_layout_greater,
288 ir_depth_layout_less,
289 ir_depth_layout_unchanged
290 };
291
292 /**
293 * \brief Convert depth layout qualifier to string.
294 */
295 const char*
296 depth_layout_string(ir_depth_layout layout);
297
298 /**
299 * Description of built-in state associated with a uniform
300 *
301 * \sa ir_variable::state_slots
302 */
303 struct ir_state_slot {
304 int tokens[5];
305 int swizzle;
306 };
307
308 class ir_variable : public ir_instruction {
309 public:
310 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
311
312 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
313
314 virtual ir_variable *as_variable()
315 {
316 return this;
317 }
318
319 virtual void accept(ir_visitor *v)
320 {
321 v->visit(this);
322 }
323
324 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
325
326
327 /**
328 * Get the string value for the interpolation qualifier
329 *
330 * \return The string that would be used in a shader to specify \c
331 * mode will be returned.
332 *
333 * This function is used to generate error messages of the form "shader
334 * uses %s interpolation qualifier", so in the case where there is no
335 * interpolation qualifier, it returns "no".
336 *
337 * This function should only be used on a shader input or output variable.
338 */
339 const char *interpolation_string() const;
340
341 /**
342 * Determine how this variable should be interpolated based on its
343 * interpolation qualifier (if present), whether it is gl_Color or
344 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
345 * state.
346 *
347 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
348 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
349 */
350 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
351
352 /**
353 * Declared type of the variable
354 */
355 const struct glsl_type *type;
356
357 /**
358 * Declared name of the variable
359 */
360 const char *name;
361
362 /**
363 * Highest element accessed with a constant expression array index
364 *
365 * Not used for non-array variables.
366 */
367 unsigned max_array_access;
368
369 /**
370 * Is the variable read-only?
371 *
372 * This is set for variables declared as \c const, shader inputs,
373 * and uniforms.
374 */
375 unsigned read_only:1;
376 unsigned centroid:1;
377 unsigned invariant:1;
378
379 /**
380 * Has this variable been used for reading or writing?
381 *
382 * Several GLSL semantic checks require knowledge of whether or not a
383 * variable has been used. For example, it is an error to redeclare a
384 * variable as invariant after it has been used.
385 *
386 * This is only maintained in the ast_to_hir.cpp path, not in
387 * Mesa's fixed function or ARB program paths.
388 */
389 unsigned used:1;
390
391 /**
392 * Has this variable been statically assigned?
393 *
394 * This answers whether the variable was assigned in any path of
395 * the shader during ast_to_hir. This doesn't answer whether it is
396 * still written after dead code removal, nor is it maintained in
397 * non-ast_to_hir.cpp (GLSL parsing) paths.
398 */
399 unsigned assigned:1;
400
401 /**
402 * Storage class of the variable.
403 *
404 * \sa ir_variable_mode
405 */
406 unsigned mode:4;
407
408 /**
409 * Interpolation mode for shader inputs / outputs
410 *
411 * \sa ir_variable_interpolation
412 */
413 unsigned interpolation:2;
414
415 /**
416 * \name ARB_fragment_coord_conventions
417 * @{
418 */
419 unsigned origin_upper_left:1;
420 unsigned pixel_center_integer:1;
421 /*@}*/
422
423 /**
424 * Was the location explicitly set in the shader?
425 *
426 * If the location is explicitly set in the shader, it \b cannot be changed
427 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
428 * no effect).
429 */
430 unsigned explicit_location:1;
431 unsigned explicit_index:1;
432
433 /**
434 * Does this variable have an initializer?
435 *
436 * This is used by the linker to cross-validiate initializers of global
437 * variables.
438 */
439 unsigned has_initializer:1;
440
441 /**
442 * Is this variable a generic output or input that has not yet been matched
443 * up to a variable in another stage of the pipeline?
444 *
445 * This is used by the linker as scratch storage while assigning locations
446 * to generic inputs and outputs.
447 */
448 unsigned is_unmatched_generic_inout:1;
449
450 /**
451 * If non-zero, then this variable may be packed along with other variables
452 * into a single varying slot, so this offset should be applied when
453 * accessing components. For example, an offset of 1 means that the x
454 * component of this variable is actually stored in component y of the
455 * location specified by \c location.
456 */
457 unsigned location_frac:2;
458
459 /**
460 * \brief Layout qualifier for gl_FragDepth.
461 *
462 * This is not equal to \c ir_depth_layout_none if and only if this
463 * variable is \c gl_FragDepth and a layout qualifier is specified.
464 */
465 ir_depth_layout depth_layout;
466
467 /**
468 * Storage location of the base of this variable
469 *
470 * The precise meaning of this field depends on the nature of the variable.
471 *
472 * - Vertex shader input: one of the values from \c gl_vert_attrib.
473 * - Vertex shader output: one of the values from \c gl_vert_result.
474 * - Fragment shader input: one of the values from \c gl_frag_attrib.
475 * - Fragment shader output: one of the values from \c gl_frag_result.
476 * - Uniforms: Per-stage uniform slot number for default uniform block.
477 * - Uniforms: Index within the uniform block definition for UBO members.
478 * - Other: This field is not currently used.
479 *
480 * If the variable is a uniform, shader input, or shader output, and the
481 * slot has not been assigned, the value will be -1.
482 */
483 int location;
484
485 /**
486 * Uniform block number for uniforms.
487 *
488 * This index is into the shader's list of uniform blocks, not the
489 * linked program's merged list.
490 *
491 * If the variable is not in a uniform block, the value will be -1.
492 */
493 int uniform_block;
494
495 /**
496 * output index for dual source blending.
497 */
498 int index;
499
500 /**
501 * Built-in state that backs this uniform
502 *
503 * Once set at variable creation, \c state_slots must remain invariant.
504 * This is because, ideally, this array would be shared by all clones of
505 * this variable in the IR tree. In other words, we'd really like for it
506 * to be a fly-weight.
507 *
508 * If the variable is not a uniform, \c num_state_slots will be zero and
509 * \c state_slots will be \c NULL.
510 */
511 /*@{*/
512 unsigned num_state_slots; /**< Number of state slots used */
513 ir_state_slot *state_slots; /**< State descriptors. */
514 /*@}*/
515
516 /**
517 * Emit a warning if this variable is accessed.
518 */
519 const char *warn_extension;
520
521 /**
522 * Value assigned in the initializer of a variable declared "const"
523 */
524 ir_constant *constant_value;
525
526 /**
527 * Constant expression assigned in the initializer of the variable
528 *
529 * \warning
530 * This field and \c ::constant_value are distinct. Even if the two fields
531 * refer to constants with the same value, they must point to separate
532 * objects.
533 */
534 ir_constant *constant_initializer;
535 };
536
537
538 /*@{*/
539 /**
540 * The representation of a function instance; may be the full definition or
541 * simply a prototype.
542 */
543 class ir_function_signature : public ir_instruction {
544 /* An ir_function_signature will be part of the list of signatures in
545 * an ir_function.
546 */
547 public:
548 ir_function_signature(const glsl_type *return_type);
549
550 virtual ir_function_signature *clone(void *mem_ctx,
551 struct hash_table *ht) const;
552 ir_function_signature *clone_prototype(void *mem_ctx,
553 struct hash_table *ht) const;
554
555 virtual void accept(ir_visitor *v)
556 {
557 v->visit(this);
558 }
559
560 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
561
562 /**
563 * Attempt to evaluate this function as a constant expression,
564 * given a list of the actual parameters and the variable context.
565 * Returns NULL for non-built-ins.
566 */
567 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
568
569 /**
570 * Get the name of the function for which this is a signature
571 */
572 const char *function_name() const;
573
574 /**
575 * Get a handle to the function for which this is a signature
576 *
577 * There is no setter function, this function returns a \c const pointer,
578 * and \c ir_function_signature::_function is private for a reason. The
579 * only way to make a connection between a function and function signature
580 * is via \c ir_function::add_signature. This helps ensure that certain
581 * invariants (i.e., a function signature is in the list of signatures for
582 * its \c _function) are met.
583 *
584 * \sa ir_function::add_signature
585 */
586 inline const class ir_function *function() const
587 {
588 return this->_function;
589 }
590
591 /**
592 * Check whether the qualifiers match between this signature's parameters
593 * and the supplied parameter list. If not, returns the name of the first
594 * parameter with mismatched qualifiers (for use in error messages).
595 */
596 const char *qualifiers_match(exec_list *params);
597
598 /**
599 * Replace the current parameter list with the given one. This is useful
600 * if the current information came from a prototype, and either has invalid
601 * or missing parameter names.
602 */
603 void replace_parameters(exec_list *new_params);
604
605 /**
606 * Function return type.
607 *
608 * \note This discards the optional precision qualifier.
609 */
610 const struct glsl_type *return_type;
611
612 /**
613 * List of ir_variable of function parameters.
614 *
615 * This represents the storage. The paramaters passed in a particular
616 * call will be in ir_call::actual_paramaters.
617 */
618 struct exec_list parameters;
619
620 /** Whether or not this function has a body (which may be empty). */
621 unsigned is_defined:1;
622
623 /** Whether or not this function signature is a built-in. */
624 unsigned is_builtin:1;
625
626 /** Body of instructions in the function. */
627 struct exec_list body;
628
629 private:
630 /** Function of which this signature is one overload. */
631 class ir_function *_function;
632
633 /** Function signature of which this one is a prototype clone */
634 const ir_function_signature *origin;
635
636 friend class ir_function;
637
638 /**
639 * Helper function to run a list of instructions for constant
640 * expression evaluation.
641 *
642 * The hash table represents the values of the visible variables.
643 * There are no scoping issues because the table is indexed on
644 * ir_variable pointers, not variable names.
645 *
646 * Returns false if the expression is not constant, true otherwise,
647 * and the value in *result if result is non-NULL.
648 */
649 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
650 struct hash_table *variable_context,
651 ir_constant **result);
652 };
653
654
655 /**
656 * Header for tracking multiple overloaded functions with the same name.
657 * Contains a list of ir_function_signatures representing each of the
658 * actual functions.
659 */
660 class ir_function : public ir_instruction {
661 public:
662 ir_function(const char *name);
663
664 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
665
666 virtual ir_function *as_function()
667 {
668 return this;
669 }
670
671 virtual void accept(ir_visitor *v)
672 {
673 v->visit(this);
674 }
675
676 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
677
678 void add_signature(ir_function_signature *sig)
679 {
680 sig->_function = this;
681 this->signatures.push_tail(sig);
682 }
683
684 /**
685 * Get an iterator for the set of function signatures
686 */
687 exec_list_iterator iterator()
688 {
689 return signatures.iterator();
690 }
691
692 /**
693 * Find a signature that matches a set of actual parameters, taking implicit
694 * conversions into account. Also flags whether the match was exact.
695 */
696 ir_function_signature *matching_signature(const exec_list *actual_param,
697 bool *match_is_exact);
698
699 /**
700 * Find a signature that matches a set of actual parameters, taking implicit
701 * conversions into account.
702 */
703 ir_function_signature *matching_signature(const exec_list *actual_param);
704
705 /**
706 * Find a signature that exactly matches a set of actual parameters without
707 * any implicit type conversions.
708 */
709 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
710
711 /**
712 * Name of the function.
713 */
714 const char *name;
715
716 /** Whether or not this function has a signature that isn't a built-in. */
717 bool has_user_signature();
718
719 /**
720 * List of ir_function_signature for each overloaded function with this name.
721 */
722 struct exec_list signatures;
723 };
724
725 inline const char *ir_function_signature::function_name() const
726 {
727 return this->_function->name;
728 }
729 /*@}*/
730
731
732 /**
733 * IR instruction representing high-level if-statements
734 */
735 class ir_if : public ir_instruction {
736 public:
737 ir_if(ir_rvalue *condition)
738 : condition(condition)
739 {
740 ir_type = ir_type_if;
741 }
742
743 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
744
745 virtual ir_if *as_if()
746 {
747 return this;
748 }
749
750 virtual void accept(ir_visitor *v)
751 {
752 v->visit(this);
753 }
754
755 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
756
757 ir_rvalue *condition;
758 /** List of ir_instruction for the body of the then branch */
759 exec_list then_instructions;
760 /** List of ir_instruction for the body of the else branch */
761 exec_list else_instructions;
762 };
763
764
765 /**
766 * IR instruction representing a high-level loop structure.
767 */
768 class ir_loop : public ir_instruction {
769 public:
770 ir_loop();
771
772 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
773
774 virtual void accept(ir_visitor *v)
775 {
776 v->visit(this);
777 }
778
779 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
780
781 virtual ir_loop *as_loop()
782 {
783 return this;
784 }
785
786 /**
787 * Get an iterator for the instructions of the loop body
788 */
789 exec_list_iterator iterator()
790 {
791 return body_instructions.iterator();
792 }
793
794 /** List of ir_instruction that make up the body of the loop. */
795 exec_list body_instructions;
796
797 /**
798 * \name Loop counter and controls
799 *
800 * Represents a loop like a FORTRAN \c do-loop.
801 *
802 * \note
803 * If \c from and \c to are the same value, the loop will execute once.
804 */
805 /*@{*/
806 ir_rvalue *from; /** Value of the loop counter on the first
807 * iteration of the loop.
808 */
809 ir_rvalue *to; /** Value of the loop counter on the last
810 * iteration of the loop.
811 */
812 ir_rvalue *increment;
813 ir_variable *counter;
814
815 /**
816 * Comparison operation in the loop terminator.
817 *
818 * If any of the loop control fields are non-\c NULL, this field must be
819 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
820 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
821 */
822 int cmp;
823 /*@}*/
824 };
825
826
827 class ir_assignment : public ir_instruction {
828 public:
829 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
830
831 /**
832 * Construct an assignment with an explicit write mask
833 *
834 * \note
835 * Since a write mask is supplied, the LHS must already be a bare
836 * \c ir_dereference. The cannot be any swizzles in the LHS.
837 */
838 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
839 unsigned write_mask);
840
841 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
842
843 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
844
845 virtual void accept(ir_visitor *v)
846 {
847 v->visit(this);
848 }
849
850 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
851
852 virtual ir_assignment * as_assignment()
853 {
854 return this;
855 }
856
857 /**
858 * Get a whole variable written by an assignment
859 *
860 * If the LHS of the assignment writes a whole variable, the variable is
861 * returned. Otherwise \c NULL is returned. Examples of whole-variable
862 * assignment are:
863 *
864 * - Assigning to a scalar
865 * - Assigning to all components of a vector
866 * - Whole array (or matrix) assignment
867 * - Whole structure assignment
868 */
869 ir_variable *whole_variable_written();
870
871 /**
872 * Set the LHS of an assignment
873 */
874 void set_lhs(ir_rvalue *lhs);
875
876 /**
877 * Left-hand side of the assignment.
878 *
879 * This should be treated as read only. If you need to set the LHS of an
880 * assignment, use \c ir_assignment::set_lhs.
881 */
882 ir_dereference *lhs;
883
884 /**
885 * Value being assigned
886 */
887 ir_rvalue *rhs;
888
889 /**
890 * Optional condition for the assignment.
891 */
892 ir_rvalue *condition;
893
894
895 /**
896 * Component mask written
897 *
898 * For non-vector types in the LHS, this field will be zero. For vector
899 * types, a bit will be set for each component that is written. Note that
900 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
901 *
902 * A partially-set write mask means that each enabled channel gets
903 * the value from a consecutive channel of the rhs. For example,
904 * to write just .xyw of gl_FrontColor with color:
905 *
906 * (assign (constant bool (1)) (xyw)
907 * (var_ref gl_FragColor)
908 * (swiz xyw (var_ref color)))
909 */
910 unsigned write_mask:4;
911 };
912
913 /* Update ir_expression::get_num_operands() and operator_strs when
914 * updating this list.
915 */
916 enum ir_expression_operation {
917 ir_unop_bit_not,
918 ir_unop_logic_not,
919 ir_unop_neg,
920 ir_unop_abs,
921 ir_unop_sign,
922 ir_unop_rcp,
923 ir_unop_rsq,
924 ir_unop_sqrt,
925 ir_unop_exp, /**< Log base e on gentype */
926 ir_unop_log, /**< Natural log on gentype */
927 ir_unop_exp2,
928 ir_unop_log2,
929 ir_unop_f2i, /**< Float-to-integer conversion. */
930 ir_unop_f2u, /**< Float-to-unsigned conversion. */
931 ir_unop_i2f, /**< Integer-to-float conversion. */
932 ir_unop_f2b, /**< Float-to-boolean conversion */
933 ir_unop_b2f, /**< Boolean-to-float conversion */
934 ir_unop_i2b, /**< int-to-boolean conversion */
935 ir_unop_b2i, /**< Boolean-to-int conversion */
936 ir_unop_u2f, /**< Unsigned-to-float conversion. */
937 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
938 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
939 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
940 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
941 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
942 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
943 ir_unop_any,
944
945 /**
946 * \name Unary floating-point rounding operations.
947 */
948 /*@{*/
949 ir_unop_trunc,
950 ir_unop_ceil,
951 ir_unop_floor,
952 ir_unop_fract,
953 ir_unop_round_even,
954 /*@}*/
955
956 /**
957 * \name Trigonometric operations.
958 */
959 /*@{*/
960 ir_unop_sin,
961 ir_unop_cos,
962 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
963 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
964 /*@}*/
965
966 /**
967 * \name Partial derivatives.
968 */
969 /*@{*/
970 ir_unop_dFdx,
971 ir_unop_dFdy,
972 /*@}*/
973
974 /**
975 * \name Floating point pack and unpack operations.
976 */
977 /*@{*/
978 ir_unop_pack_snorm_2x16,
979 ir_unop_pack_unorm_2x16,
980 ir_unop_pack_half_2x16,
981 ir_unop_unpack_snorm_2x16,
982 ir_unop_unpack_unorm_2x16,
983 ir_unop_unpack_half_2x16,
984 /*@}*/
985
986 /**
987 * \name Lowered floating point unpacking operations.
988 *
989 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
990 */
991 /*@{*/
992 ir_unop_unpack_half_2x16_split_x,
993 ir_unop_unpack_half_2x16_split_y,
994 /*@}*/
995
996 ir_unop_noise,
997
998 /**
999 * A sentinel marking the last of the unary operations.
1000 */
1001 ir_last_unop = ir_unop_noise,
1002
1003 ir_binop_add,
1004 ir_binop_sub,
1005 ir_binop_mul,
1006 ir_binop_div,
1007
1008 /**
1009 * Takes one of two combinations of arguments:
1010 *
1011 * - mod(vecN, vecN)
1012 * - mod(vecN, float)
1013 *
1014 * Does not take integer types.
1015 */
1016 ir_binop_mod,
1017
1018 /**
1019 * \name Binary comparison operators which return a boolean vector.
1020 * The type of both operands must be equal.
1021 */
1022 /*@{*/
1023 ir_binop_less,
1024 ir_binop_greater,
1025 ir_binop_lequal,
1026 ir_binop_gequal,
1027 ir_binop_equal,
1028 ir_binop_nequal,
1029 /**
1030 * Returns single boolean for whether all components of operands[0]
1031 * equal the components of operands[1].
1032 */
1033 ir_binop_all_equal,
1034 /**
1035 * Returns single boolean for whether any component of operands[0]
1036 * is not equal to the corresponding component of operands[1].
1037 */
1038 ir_binop_any_nequal,
1039 /*@}*/
1040
1041 /**
1042 * \name Bit-wise binary operations.
1043 */
1044 /*@{*/
1045 ir_binop_lshift,
1046 ir_binop_rshift,
1047 ir_binop_bit_and,
1048 ir_binop_bit_xor,
1049 ir_binop_bit_or,
1050 /*@}*/
1051
1052 ir_binop_logic_and,
1053 ir_binop_logic_xor,
1054 ir_binop_logic_or,
1055
1056 ir_binop_dot,
1057 ir_binop_min,
1058 ir_binop_max,
1059
1060 ir_binop_pow,
1061
1062 /**
1063 * \name Lowered floating point packing operations.
1064 *
1065 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1066 */
1067 /*@{*/
1068 ir_binop_pack_half_2x16_split,
1069 /*@}*/
1070
1071 /**
1072 * Load a value the size of a given GLSL type from a uniform block.
1073 *
1074 * operand0 is the ir_constant uniform block index in the linked shader.
1075 * operand1 is a byte offset within the uniform block.
1076 */
1077 ir_binop_ubo_load,
1078
1079 /**
1080 * A sentinel marking the last of the binary operations.
1081 */
1082 ir_last_binop = ir_binop_ubo_load,
1083
1084 ir_quadop_vector,
1085
1086 /**
1087 * A sentinel marking the last of all operations.
1088 */
1089 ir_last_opcode = ir_quadop_vector
1090 };
1091
1092 class ir_expression : public ir_rvalue {
1093 public:
1094 /**
1095 * Constructor for unary operation expressions
1096 */
1097 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1098 ir_expression(int op, ir_rvalue *);
1099
1100 /**
1101 * Constructor for binary operation expressions
1102 */
1103 ir_expression(int op, const struct glsl_type *type,
1104 ir_rvalue *, ir_rvalue *);
1105 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1106
1107 /**
1108 * Constructor for quad operator expressions
1109 */
1110 ir_expression(int op, const struct glsl_type *type,
1111 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1112
1113 virtual ir_expression *as_expression()
1114 {
1115 return this;
1116 }
1117
1118 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1119
1120 /**
1121 * Attempt to constant-fold the expression
1122 *
1123 * The "variable_context" hash table links ir_variable * to ir_constant *
1124 * that represent the variables' values. \c NULL represents an empty
1125 * context.
1126 *
1127 * If the expression cannot be constant folded, this method will return
1128 * \c NULL.
1129 */
1130 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1131
1132 /**
1133 * Determine the number of operands used by an expression
1134 */
1135 static unsigned int get_num_operands(ir_expression_operation);
1136
1137 /**
1138 * Determine the number of operands used by an expression
1139 */
1140 unsigned int get_num_operands() const
1141 {
1142 return (this->operation == ir_quadop_vector)
1143 ? this->type->vector_elements : get_num_operands(operation);
1144 }
1145
1146 /**
1147 * Return a string representing this expression's operator.
1148 */
1149 const char *operator_string();
1150
1151 /**
1152 * Return a string representing this expression's operator.
1153 */
1154 static const char *operator_string(ir_expression_operation);
1155
1156
1157 /**
1158 * Do a reverse-lookup to translate the given string into an operator.
1159 */
1160 static ir_expression_operation get_operator(const char *);
1161
1162 virtual void accept(ir_visitor *v)
1163 {
1164 v->visit(this);
1165 }
1166
1167 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1168
1169 ir_expression_operation operation;
1170 ir_rvalue *operands[4];
1171 };
1172
1173
1174 /**
1175 * HIR instruction representing a high-level function call, containing a list
1176 * of parameters and returning a value in the supplied temporary.
1177 */
1178 class ir_call : public ir_instruction {
1179 public:
1180 ir_call(ir_function_signature *callee,
1181 ir_dereference_variable *return_deref,
1182 exec_list *actual_parameters)
1183 : return_deref(return_deref), callee(callee)
1184 {
1185 ir_type = ir_type_call;
1186 assert(callee->return_type != NULL);
1187 actual_parameters->move_nodes_to(& this->actual_parameters);
1188 this->use_builtin = callee->is_builtin;
1189 }
1190
1191 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1192
1193 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1194
1195 virtual ir_call *as_call()
1196 {
1197 return this;
1198 }
1199
1200 virtual void accept(ir_visitor *v)
1201 {
1202 v->visit(this);
1203 }
1204
1205 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1206
1207 /**
1208 * Get an iterator for the set of acutal parameters
1209 */
1210 exec_list_iterator iterator()
1211 {
1212 return actual_parameters.iterator();
1213 }
1214
1215 /**
1216 * Get the name of the function being called.
1217 */
1218 const char *callee_name() const
1219 {
1220 return callee->function_name();
1221 }
1222
1223 /**
1224 * Generates an inline version of the function before @ir,
1225 * storing the return value in return_deref.
1226 */
1227 void generate_inline(ir_instruction *ir);
1228
1229 /**
1230 * Storage for the function's return value.
1231 * This must be NULL if the return type is void.
1232 */
1233 ir_dereference_variable *return_deref;
1234
1235 /**
1236 * The specific function signature being called.
1237 */
1238 ir_function_signature *callee;
1239
1240 /* List of ir_rvalue of paramaters passed in this call. */
1241 exec_list actual_parameters;
1242
1243 /** Should this call only bind to a built-in function? */
1244 bool use_builtin;
1245 };
1246
1247
1248 /**
1249 * \name Jump-like IR instructions.
1250 *
1251 * These include \c break, \c continue, \c return, and \c discard.
1252 */
1253 /*@{*/
1254 class ir_jump : public ir_instruction {
1255 protected:
1256 ir_jump()
1257 {
1258 ir_type = ir_type_unset;
1259 }
1260 };
1261
1262 class ir_return : public ir_jump {
1263 public:
1264 ir_return()
1265 : value(NULL)
1266 {
1267 this->ir_type = ir_type_return;
1268 }
1269
1270 ir_return(ir_rvalue *value)
1271 : value(value)
1272 {
1273 this->ir_type = ir_type_return;
1274 }
1275
1276 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1277
1278 virtual ir_return *as_return()
1279 {
1280 return this;
1281 }
1282
1283 ir_rvalue *get_value() const
1284 {
1285 return value;
1286 }
1287
1288 virtual void accept(ir_visitor *v)
1289 {
1290 v->visit(this);
1291 }
1292
1293 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1294
1295 ir_rvalue *value;
1296 };
1297
1298
1299 /**
1300 * Jump instructions used inside loops
1301 *
1302 * These include \c break and \c continue. The \c break within a loop is
1303 * different from the \c break within a switch-statement.
1304 *
1305 * \sa ir_switch_jump
1306 */
1307 class ir_loop_jump : public ir_jump {
1308 public:
1309 enum jump_mode {
1310 jump_break,
1311 jump_continue
1312 };
1313
1314 ir_loop_jump(jump_mode mode)
1315 {
1316 this->ir_type = ir_type_loop_jump;
1317 this->mode = mode;
1318 }
1319
1320 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1321
1322 virtual void accept(ir_visitor *v)
1323 {
1324 v->visit(this);
1325 }
1326
1327 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1328
1329 bool is_break() const
1330 {
1331 return mode == jump_break;
1332 }
1333
1334 bool is_continue() const
1335 {
1336 return mode == jump_continue;
1337 }
1338
1339 /** Mode selector for the jump instruction. */
1340 enum jump_mode mode;
1341 };
1342
1343 /**
1344 * IR instruction representing discard statements.
1345 */
1346 class ir_discard : public ir_jump {
1347 public:
1348 ir_discard()
1349 {
1350 this->ir_type = ir_type_discard;
1351 this->condition = NULL;
1352 }
1353
1354 ir_discard(ir_rvalue *cond)
1355 {
1356 this->ir_type = ir_type_discard;
1357 this->condition = cond;
1358 }
1359
1360 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1361
1362 virtual void accept(ir_visitor *v)
1363 {
1364 v->visit(this);
1365 }
1366
1367 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1368
1369 virtual ir_discard *as_discard()
1370 {
1371 return this;
1372 }
1373
1374 ir_rvalue *condition;
1375 };
1376 /*@}*/
1377
1378
1379 /**
1380 * Texture sampling opcodes used in ir_texture
1381 */
1382 enum ir_texture_opcode {
1383 ir_tex, /**< Regular texture look-up */
1384 ir_txb, /**< Texture look-up with LOD bias */
1385 ir_txl, /**< Texture look-up with explicit LOD */
1386 ir_txd, /**< Texture look-up with partial derivatvies */
1387 ir_txf, /**< Texel fetch with explicit LOD */
1388 ir_txs /**< Texture size */
1389 };
1390
1391
1392 /**
1393 * IR instruction to sample a texture
1394 *
1395 * The specific form of the IR instruction depends on the \c mode value
1396 * selected from \c ir_texture_opcodes. In the printed IR, these will
1397 * appear as:
1398 *
1399 * Texel offset (0 or an expression)
1400 * | Projection divisor
1401 * | | Shadow comparitor
1402 * | | |
1403 * v v v
1404 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1405 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1406 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1407 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1408 * (txf <type> <sampler> <coordinate> 0 <lod>)
1409 * (txs <type> <sampler> <lod>)
1410 */
1411 class ir_texture : public ir_rvalue {
1412 public:
1413 ir_texture(enum ir_texture_opcode op)
1414 : op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL),
1415 offset(NULL)
1416 {
1417 this->ir_type = ir_type_texture;
1418 }
1419
1420 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1421
1422 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1423
1424 virtual void accept(ir_visitor *v)
1425 {
1426 v->visit(this);
1427 }
1428
1429 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1430
1431 /**
1432 * Return a string representing the ir_texture_opcode.
1433 */
1434 const char *opcode_string();
1435
1436 /** Set the sampler and type. */
1437 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1438
1439 /**
1440 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1441 */
1442 static ir_texture_opcode get_opcode(const char *);
1443
1444 enum ir_texture_opcode op;
1445
1446 /** Sampler to use for the texture access. */
1447 ir_dereference *sampler;
1448
1449 /** Texture coordinate to sample */
1450 ir_rvalue *coordinate;
1451
1452 /**
1453 * Value used for projective divide.
1454 *
1455 * If there is no projective divide (the common case), this will be
1456 * \c NULL. Optimization passes should check for this to point to a constant
1457 * of 1.0 and replace that with \c NULL.
1458 */
1459 ir_rvalue *projector;
1460
1461 /**
1462 * Coordinate used for comparison on shadow look-ups.
1463 *
1464 * If there is no shadow comparison, this will be \c NULL. For the
1465 * \c ir_txf opcode, this *must* be \c NULL.
1466 */
1467 ir_rvalue *shadow_comparitor;
1468
1469 /** Texel offset. */
1470 ir_rvalue *offset;
1471
1472 union {
1473 ir_rvalue *lod; /**< Floating point LOD */
1474 ir_rvalue *bias; /**< Floating point LOD bias */
1475 struct {
1476 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1477 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1478 } grad;
1479 } lod_info;
1480 };
1481
1482
1483 struct ir_swizzle_mask {
1484 unsigned x:2;
1485 unsigned y:2;
1486 unsigned z:2;
1487 unsigned w:2;
1488
1489 /**
1490 * Number of components in the swizzle.
1491 */
1492 unsigned num_components:3;
1493
1494 /**
1495 * Does the swizzle contain duplicate components?
1496 *
1497 * L-value swizzles cannot contain duplicate components.
1498 */
1499 unsigned has_duplicates:1;
1500 };
1501
1502
1503 class ir_swizzle : public ir_rvalue {
1504 public:
1505 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1506 unsigned count);
1507
1508 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1509
1510 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1511
1512 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1513
1514 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1515
1516 virtual ir_swizzle *as_swizzle()
1517 {
1518 return this;
1519 }
1520
1521 /**
1522 * Construct an ir_swizzle from the textual representation. Can fail.
1523 */
1524 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1525
1526 virtual void accept(ir_visitor *v)
1527 {
1528 v->visit(this);
1529 }
1530
1531 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1532
1533 bool is_lvalue() const
1534 {
1535 return val->is_lvalue() && !mask.has_duplicates;
1536 }
1537
1538 /**
1539 * Get the variable that is ultimately referenced by an r-value
1540 */
1541 virtual ir_variable *variable_referenced() const;
1542
1543 ir_rvalue *val;
1544 ir_swizzle_mask mask;
1545
1546 private:
1547 /**
1548 * Initialize the mask component of a swizzle
1549 *
1550 * This is used by the \c ir_swizzle constructors.
1551 */
1552 void init_mask(const unsigned *components, unsigned count);
1553 };
1554
1555
1556 class ir_dereference : public ir_rvalue {
1557 public:
1558 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1559
1560 virtual ir_dereference *as_dereference()
1561 {
1562 return this;
1563 }
1564
1565 bool is_lvalue() const;
1566
1567 /**
1568 * Get the variable that is ultimately referenced by an r-value
1569 */
1570 virtual ir_variable *variable_referenced() const = 0;
1571
1572 /**
1573 * Get the constant that is ultimately referenced by an r-value,
1574 * in a constant expression evaluation context.
1575 *
1576 * The offset is used when the reference is to a specific column of
1577 * a matrix.
1578 */
1579 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1580 };
1581
1582
1583 class ir_dereference_variable : public ir_dereference {
1584 public:
1585 ir_dereference_variable(ir_variable *var);
1586
1587 virtual ir_dereference_variable *clone(void *mem_ctx,
1588 struct hash_table *) const;
1589
1590 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1591
1592 virtual ir_dereference_variable *as_dereference_variable()
1593 {
1594 return this;
1595 }
1596
1597 /**
1598 * Get the variable that is ultimately referenced by an r-value
1599 */
1600 virtual ir_variable *variable_referenced() const
1601 {
1602 return this->var;
1603 }
1604
1605 /**
1606 * Get the constant that is ultimately referenced by an r-value,
1607 * in a constant expression evaluation context.
1608 *
1609 * The offset is used when the reference is to a specific column of
1610 * a matrix.
1611 */
1612 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1613
1614 virtual ir_variable *whole_variable_referenced()
1615 {
1616 /* ir_dereference_variable objects always dereference the entire
1617 * variable. However, if this dereference is dereferenced by anything
1618 * else, the complete deferefernce chain is not a whole-variable
1619 * dereference. This method should only be called on the top most
1620 * ir_rvalue in a dereference chain.
1621 */
1622 return this->var;
1623 }
1624
1625 virtual void accept(ir_visitor *v)
1626 {
1627 v->visit(this);
1628 }
1629
1630 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1631
1632 /**
1633 * Object being dereferenced.
1634 */
1635 ir_variable *var;
1636 };
1637
1638
1639 class ir_dereference_array : public ir_dereference {
1640 public:
1641 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1642
1643 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1644
1645 virtual ir_dereference_array *clone(void *mem_ctx,
1646 struct hash_table *) const;
1647
1648 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1649
1650 virtual ir_dereference_array *as_dereference_array()
1651 {
1652 return this;
1653 }
1654
1655 /**
1656 * Get the variable that is ultimately referenced by an r-value
1657 */
1658 virtual ir_variable *variable_referenced() const
1659 {
1660 return this->array->variable_referenced();
1661 }
1662
1663 /**
1664 * Get the constant that is ultimately referenced by an r-value,
1665 * in a constant expression evaluation context.
1666 *
1667 * The offset is used when the reference is to a specific column of
1668 * a matrix.
1669 */
1670 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1671
1672 virtual void accept(ir_visitor *v)
1673 {
1674 v->visit(this);
1675 }
1676
1677 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1678
1679 ir_rvalue *array;
1680 ir_rvalue *array_index;
1681
1682 private:
1683 void set_array(ir_rvalue *value);
1684 };
1685
1686
1687 class ir_dereference_record : public ir_dereference {
1688 public:
1689 ir_dereference_record(ir_rvalue *value, const char *field);
1690
1691 ir_dereference_record(ir_variable *var, const char *field);
1692
1693 virtual ir_dereference_record *clone(void *mem_ctx,
1694 struct hash_table *) const;
1695
1696 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1697
1698 /**
1699 * Get the variable that is ultimately referenced by an r-value
1700 */
1701 virtual ir_variable *variable_referenced() const
1702 {
1703 return this->record->variable_referenced();
1704 }
1705
1706 /**
1707 * Get the constant that is ultimately referenced by an r-value,
1708 * in a constant expression evaluation context.
1709 *
1710 * The offset is used when the reference is to a specific column of
1711 * a matrix.
1712 */
1713 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1714
1715 virtual void accept(ir_visitor *v)
1716 {
1717 v->visit(this);
1718 }
1719
1720 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1721
1722 ir_rvalue *record;
1723 const char *field;
1724 };
1725
1726
1727 /**
1728 * Data stored in an ir_constant
1729 */
1730 union ir_constant_data {
1731 unsigned u[16];
1732 int i[16];
1733 float f[16];
1734 bool b[16];
1735 };
1736
1737
1738 class ir_constant : public ir_rvalue {
1739 public:
1740 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1741 ir_constant(bool b);
1742 ir_constant(unsigned int u);
1743 ir_constant(int i);
1744 ir_constant(float f);
1745
1746 /**
1747 * Construct an ir_constant from a list of ir_constant values
1748 */
1749 ir_constant(const struct glsl_type *type, exec_list *values);
1750
1751 /**
1752 * Construct an ir_constant from a scalar component of another ir_constant
1753 *
1754 * The new \c ir_constant inherits the type of the component from the
1755 * source constant.
1756 *
1757 * \note
1758 * In the case of a matrix constant, the new constant is a scalar, \b not
1759 * a vector.
1760 */
1761 ir_constant(const ir_constant *c, unsigned i);
1762
1763 /**
1764 * Return a new ir_constant of the specified type containing all zeros.
1765 */
1766 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1767
1768 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1769
1770 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1771
1772 virtual ir_constant *as_constant()
1773 {
1774 return this;
1775 }
1776
1777 virtual void accept(ir_visitor *v)
1778 {
1779 v->visit(this);
1780 }
1781
1782 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1783
1784 /**
1785 * Get a particular component of a constant as a specific type
1786 *
1787 * This is useful, for example, to get a value from an integer constant
1788 * as a float or bool. This appears frequently when constructors are
1789 * called with all constant parameters.
1790 */
1791 /*@{*/
1792 bool get_bool_component(unsigned i) const;
1793 float get_float_component(unsigned i) const;
1794 int get_int_component(unsigned i) const;
1795 unsigned get_uint_component(unsigned i) const;
1796 /*@}*/
1797
1798 ir_constant *get_array_element(unsigned i) const;
1799
1800 ir_constant *get_record_field(const char *name);
1801
1802 /**
1803 * Copy the values on another constant at a given offset.
1804 *
1805 * The offset is ignored for array or struct copies, it's only for
1806 * scalars or vectors into vectors or matrices.
1807 *
1808 * With identical types on both sides and zero offset it's clone()
1809 * without creating a new object.
1810 */
1811
1812 void copy_offset(ir_constant *src, int offset);
1813
1814 /**
1815 * Copy the values on another constant at a given offset and
1816 * following an assign-like mask.
1817 *
1818 * The mask is ignored for scalars.
1819 *
1820 * Note that this function only handles what assign can handle,
1821 * i.e. at most a vector as source and a column of a matrix as
1822 * destination.
1823 */
1824
1825 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1826
1827 /**
1828 * Determine whether a constant has the same value as another constant
1829 *
1830 * \sa ir_constant::is_zero, ir_constant::is_one,
1831 * ir_constant::is_negative_one, ir_constant::is_basis
1832 */
1833 bool has_value(const ir_constant *) const;
1834
1835 virtual bool is_zero() const;
1836 virtual bool is_one() const;
1837 virtual bool is_negative_one() const;
1838 virtual bool is_basis() const;
1839
1840 /**
1841 * Value of the constant.
1842 *
1843 * The field used to back the values supplied by the constant is determined
1844 * by the type associated with the \c ir_instruction. Constants may be
1845 * scalars, vectors, or matrices.
1846 */
1847 union ir_constant_data value;
1848
1849 /* Array elements */
1850 ir_constant **array_elements;
1851
1852 /* Structure fields */
1853 exec_list components;
1854
1855 private:
1856 /**
1857 * Parameterless constructor only used by the clone method
1858 */
1859 ir_constant(void);
1860 };
1861
1862 /*@}*/
1863
1864 /**
1865 * Apply a visitor to each IR node in a list
1866 */
1867 void
1868 visit_exec_list(exec_list *list, ir_visitor *visitor);
1869
1870 /**
1871 * Validate invariants on each IR node in a list
1872 */
1873 void validate_ir_tree(exec_list *instructions);
1874
1875 struct _mesa_glsl_parse_state;
1876 struct gl_shader_program;
1877
1878 /**
1879 * Detect whether an unlinked shader contains static recursion
1880 *
1881 * If the list of instructions is determined to contain static recursion,
1882 * \c _mesa_glsl_error will be called to emit error messages for each function
1883 * that is in the recursion cycle.
1884 */
1885 void
1886 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1887 exec_list *instructions);
1888
1889 /**
1890 * Detect whether a linked shader contains static recursion
1891 *
1892 * If the list of instructions is determined to contain static recursion,
1893 * \c link_error_printf will be called to emit error messages for each function
1894 * that is in the recursion cycle. In addition,
1895 * \c gl_shader_program::LinkStatus will be set to false.
1896 */
1897 void
1898 detect_recursion_linked(struct gl_shader_program *prog,
1899 exec_list *instructions);
1900
1901 /**
1902 * Make a clone of each IR instruction in a list
1903 *
1904 * \param in List of IR instructions that are to be cloned
1905 * \param out List to hold the cloned instructions
1906 */
1907 void
1908 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1909
1910 extern void
1911 _mesa_glsl_initialize_variables(exec_list *instructions,
1912 struct _mesa_glsl_parse_state *state);
1913
1914 extern void
1915 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1916
1917 extern void
1918 _mesa_glsl_release_functions(void);
1919
1920 extern void
1921 reparent_ir(exec_list *list, void *mem_ctx);
1922
1923 struct glsl_symbol_table;
1924
1925 extern void
1926 import_prototypes(const exec_list *source, exec_list *dest,
1927 struct glsl_symbol_table *symbols, void *mem_ctx);
1928
1929 extern bool
1930 ir_has_call(ir_instruction *ir);
1931
1932 extern void
1933 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1934 bool is_fragment_shader);
1935
1936 extern char *
1937 prototype_string(const glsl_type *return_type, const char *name,
1938 exec_list *parameters);
1939
1940 #endif /* IR_H */