glsl: Fix handling of function calls inside nested loops.
[mesa.git] / src / glsl / ir_builder.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "ir_builder.h"
25 #include "program/prog_instruction.h"
26
27 using namespace ir_builder;
28
29 namespace ir_builder {
30
31 void
32 ir_factory::emit(ir_instruction *ir)
33 {
34 instructions->push_tail(ir);
35 }
36
37 ir_variable *
38 ir_factory::make_temp(const glsl_type *type, const char *name)
39 {
40 ir_variable *var;
41
42 var = new(mem_ctx) ir_variable(type, name, ir_var_temporary);
43 emit(var);
44
45 return var;
46 }
47
48 ir_assignment *
49 assign(deref lhs, operand rhs, operand condition, int writemask)
50 {
51 void *mem_ctx = ralloc_parent(lhs.val);
52
53 ir_assignment *assign = new(mem_ctx) ir_assignment(lhs.val,
54 rhs.val,
55 condition.val,
56 writemask);
57
58 return assign;
59 }
60
61 ir_assignment *
62 assign(deref lhs, operand rhs)
63 {
64 return assign(lhs, rhs, (1 << lhs.val->type->vector_elements) - 1);
65 }
66
67 ir_assignment *
68 assign(deref lhs, operand rhs, int writemask)
69 {
70 return assign(lhs, rhs, (ir_rvalue *) NULL, writemask);
71 }
72
73 ir_assignment *
74 assign(deref lhs, operand rhs, operand condition)
75 {
76 return assign(lhs, rhs, condition, (1 << lhs.val->type->vector_elements) - 1);
77 }
78
79 ir_return *
80 ret(operand retval)
81 {
82 void *mem_ctx = ralloc_parent(retval.val);
83 return new(mem_ctx) ir_return(retval.val);
84 }
85
86 ir_swizzle *
87 swizzle(operand a, int swizzle, int components)
88 {
89 void *mem_ctx = ralloc_parent(a.val);
90
91 return new(mem_ctx) ir_swizzle(a.val,
92 GET_SWZ(swizzle, 0),
93 GET_SWZ(swizzle, 1),
94 GET_SWZ(swizzle, 2),
95 GET_SWZ(swizzle, 3),
96 components);
97 }
98
99 ir_swizzle *
100 swizzle_for_size(operand a, unsigned components)
101 {
102 void *mem_ctx = ralloc_parent(a.val);
103
104 if (a.val->type->vector_elements < components)
105 components = a.val->type->vector_elements;
106
107 unsigned s[4] = { 0, 1, 2, 3 };
108 for (int i = components; i < 4; i++)
109 s[i] = components - 1;
110
111 return new(mem_ctx) ir_swizzle(a.val, s, components);
112 }
113
114 ir_swizzle *
115 swizzle_xxxx(operand a)
116 {
117 return swizzle(a, SWIZZLE_XXXX, 4);
118 }
119
120 ir_swizzle *
121 swizzle_yyyy(operand a)
122 {
123 return swizzle(a, SWIZZLE_YYYY, 4);
124 }
125
126 ir_swizzle *
127 swizzle_zzzz(operand a)
128 {
129 return swizzle(a, SWIZZLE_ZZZZ, 4);
130 }
131
132 ir_swizzle *
133 swizzle_wwww(operand a)
134 {
135 return swizzle(a, SWIZZLE_WWWW, 4);
136 }
137
138 ir_swizzle *
139 swizzle_x(operand a)
140 {
141 return swizzle(a, SWIZZLE_XXXX, 1);
142 }
143
144 ir_swizzle *
145 swizzle_y(operand a)
146 {
147 return swizzle(a, SWIZZLE_YYYY, 1);
148 }
149
150 ir_swizzle *
151 swizzle_z(operand a)
152 {
153 return swizzle(a, SWIZZLE_ZZZZ, 1);
154 }
155
156 ir_swizzle *
157 swizzle_w(operand a)
158 {
159 return swizzle(a, SWIZZLE_WWWW, 1);
160 }
161
162 ir_swizzle *
163 swizzle_xy(operand a)
164 {
165 return swizzle(a, SWIZZLE_XYZW, 2);
166 }
167
168 ir_swizzle *
169 swizzle_xyz(operand a)
170 {
171 return swizzle(a, SWIZZLE_XYZW, 3);
172 }
173
174 ir_swizzle *
175 swizzle_xyzw(operand a)
176 {
177 return swizzle(a, SWIZZLE_XYZW, 4);
178 }
179
180 ir_expression *
181 expr(ir_expression_operation op, operand a)
182 {
183 void *mem_ctx = ralloc_parent(a.val);
184
185 return new(mem_ctx) ir_expression(op, a.val);
186 }
187
188 ir_expression *
189 expr(ir_expression_operation op, operand a, operand b)
190 {
191 void *mem_ctx = ralloc_parent(a.val);
192
193 return new(mem_ctx) ir_expression(op, a.val, b.val);
194 }
195
196 ir_expression *
197 expr(ir_expression_operation op, operand a, operand b, operand c)
198 {
199 void *mem_ctx = ralloc_parent(a.val);
200
201 return new(mem_ctx) ir_expression(op, a.val, b.val, c.val);
202 }
203
204 ir_expression *add(operand a, operand b)
205 {
206 return expr(ir_binop_add, a, b);
207 }
208
209 ir_expression *sub(operand a, operand b)
210 {
211 return expr(ir_binop_sub, a, b);
212 }
213
214 ir_expression *mul(operand a, operand b)
215 {
216 return expr(ir_binop_mul, a, b);
217 }
218
219 ir_expression *imul_high(operand a, operand b)
220 {
221 return expr(ir_binop_imul_high, a, b);
222 }
223
224 ir_expression *div(operand a, operand b)
225 {
226 return expr(ir_binop_div, a, b);
227 }
228
229 ir_expression *carry(operand a, operand b)
230 {
231 return expr(ir_binop_carry, a, b);
232 }
233
234 ir_expression *borrow(operand a, operand b)
235 {
236 return expr(ir_binop_borrow, a, b);
237 }
238
239 ir_expression *round_even(operand a)
240 {
241 return expr(ir_unop_round_even, a);
242 }
243
244 ir_expression *dot(operand a, operand b)
245 {
246 return expr(ir_binop_dot, a, b);
247 }
248
249 /* dot for vectors, mul for scalars */
250 ir_expression *dotlike(operand a, operand b)
251 {
252 assert(a.val->type == b.val->type);
253
254 if (a.val->type->vector_elements == 1)
255 return expr(ir_binop_mul, a, b);
256
257 return expr(ir_binop_dot, a, b);
258 }
259
260 ir_expression*
261 clamp(operand a, operand b, operand c)
262 {
263 return expr(ir_binop_min, expr(ir_binop_max, a, b), c);
264 }
265
266 ir_expression *
267 saturate(operand a)
268 {
269 void *mem_ctx = ralloc_parent(a.val);
270
271 return expr(ir_binop_max,
272 expr(ir_binop_min, a, new(mem_ctx) ir_constant(1.0f)),
273 new(mem_ctx) ir_constant(0.0f));
274 }
275
276 ir_expression *
277 abs(operand a)
278 {
279 return expr(ir_unop_abs, a);
280 }
281
282 ir_expression *
283 neg(operand a)
284 {
285 return expr(ir_unop_neg, a);
286 }
287
288 ir_expression *
289 sin(operand a)
290 {
291 return expr(ir_unop_sin, a);
292 }
293
294 ir_expression *
295 cos(operand a)
296 {
297 return expr(ir_unop_cos, a);
298 }
299
300 ir_expression *
301 exp(operand a)
302 {
303 return expr(ir_unop_exp, a);
304 }
305
306 ir_expression *
307 rsq(operand a)
308 {
309 return expr(ir_unop_rsq, a);
310 }
311
312 ir_expression *
313 sqrt(operand a)
314 {
315 return expr(ir_unop_sqrt, a);
316 }
317
318 ir_expression *
319 log(operand a)
320 {
321 return expr(ir_unop_log, a);
322 }
323
324 ir_expression *
325 sign(operand a)
326 {
327 return expr(ir_unop_sign, a);
328 }
329
330 ir_expression*
331 equal(operand a, operand b)
332 {
333 return expr(ir_binop_equal, a, b);
334 }
335
336 ir_expression*
337 nequal(operand a, operand b)
338 {
339 return expr(ir_binop_nequal, a, b);
340 }
341
342 ir_expression*
343 less(operand a, operand b)
344 {
345 return expr(ir_binop_less, a, b);
346 }
347
348 ir_expression*
349 greater(operand a, operand b)
350 {
351 return expr(ir_binop_greater, a, b);
352 }
353
354 ir_expression*
355 lequal(operand a, operand b)
356 {
357 return expr(ir_binop_lequal, a, b);
358 }
359
360 ir_expression*
361 gequal(operand a, operand b)
362 {
363 return expr(ir_binop_gequal, a, b);
364 }
365
366 ir_expression*
367 logic_not(operand a)
368 {
369 return expr(ir_unop_logic_not, a);
370 }
371
372 ir_expression*
373 logic_and(operand a, operand b)
374 {
375 return expr(ir_binop_logic_and, a, b);
376 }
377
378 ir_expression*
379 logic_or(operand a, operand b)
380 {
381 return expr(ir_binop_logic_or, a, b);
382 }
383
384 ir_expression*
385 bit_not(operand a)
386 {
387 return expr(ir_unop_bit_not, a);
388 }
389
390 ir_expression*
391 bit_and(operand a, operand b)
392 {
393 return expr(ir_binop_bit_and, a, b);
394 }
395
396 ir_expression*
397 bit_or(operand a, operand b)
398 {
399 return expr(ir_binop_bit_or, a, b);
400 }
401
402 ir_expression*
403 lshift(operand a, operand b)
404 {
405 return expr(ir_binop_lshift, a, b);
406 }
407
408 ir_expression*
409 rshift(operand a, operand b)
410 {
411 return expr(ir_binop_rshift, a, b);
412 }
413
414 ir_expression*
415 f2i(operand a)
416 {
417 return expr(ir_unop_f2i, a);
418 }
419
420 ir_expression*
421 bitcast_f2i(operand a)
422 {
423 return expr(ir_unop_bitcast_f2i, a);
424 }
425
426 ir_expression*
427 i2f(operand a)
428 {
429 return expr(ir_unop_i2f, a);
430 }
431
432 ir_expression*
433 bitcast_i2f(operand a)
434 {
435 return expr(ir_unop_bitcast_i2f, a);
436 }
437
438 ir_expression*
439 i2u(operand a)
440 {
441 return expr(ir_unop_i2u, a);
442 }
443
444 ir_expression*
445 u2i(operand a)
446 {
447 return expr(ir_unop_u2i, a);
448 }
449
450 ir_expression*
451 f2u(operand a)
452 {
453 return expr(ir_unop_f2u, a);
454 }
455
456 ir_expression*
457 bitcast_f2u(operand a)
458 {
459 return expr(ir_unop_bitcast_f2u, a);
460 }
461
462 ir_expression*
463 u2f(operand a)
464 {
465 return expr(ir_unop_u2f, a);
466 }
467
468 ir_expression*
469 bitcast_u2f(operand a)
470 {
471 return expr(ir_unop_bitcast_u2f, a);
472 }
473
474 ir_expression*
475 i2b(operand a)
476 {
477 return expr(ir_unop_i2b, a);
478 }
479
480 ir_expression*
481 b2i(operand a)
482 {
483 return expr(ir_unop_b2i, a);
484 }
485
486 ir_expression *
487 f2b(operand a)
488 {
489 return expr(ir_unop_f2b, a);
490 }
491
492 ir_expression *
493 b2f(operand a)
494 {
495 return expr(ir_unop_b2f, a);
496 }
497
498 ir_expression *
499 fma(operand a, operand b, operand c)
500 {
501 return expr(ir_triop_fma, a, b, c);
502 }
503
504 ir_expression *
505 lrp(operand x, operand y, operand a)
506 {
507 return expr(ir_triop_lrp, x, y, a);
508 }
509
510 ir_expression *
511 csel(operand a, operand b, operand c)
512 {
513 return expr(ir_triop_csel, a, b, c);
514 }
515
516 ir_expression *
517 bitfield_insert(operand a, operand b, operand c, operand d)
518 {
519 void *mem_ctx = ralloc_parent(a.val);
520 return new(mem_ctx) ir_expression(ir_quadop_bitfield_insert,
521 a.val->type, a.val, b.val, c.val, d.val);
522 }
523
524 ir_if*
525 if_tree(operand condition,
526 ir_instruction *then_branch)
527 {
528 assert(then_branch != NULL);
529
530 void *mem_ctx = ralloc_parent(condition.val);
531
532 ir_if *result = new(mem_ctx) ir_if(condition.val);
533 result->then_instructions.push_tail(then_branch);
534 return result;
535 }
536
537 ir_if*
538 if_tree(operand condition,
539 ir_instruction *then_branch,
540 ir_instruction *else_branch)
541 {
542 assert(then_branch != NULL);
543 assert(else_branch != NULL);
544
545 void *mem_ctx = ralloc_parent(condition.val);
546
547 ir_if *result = new(mem_ctx) ir_if(condition.val);
548 result->then_instructions.push_tail(then_branch);
549 result->else_instructions.push_tail(else_branch);
550 return result;
551 }
552
553 } /* namespace ir_builder */