Revert "egl: Unhide functionality in _eglInitContext()"
[mesa.git] / src / glsl / ir_builder.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "ir_builder.h"
25 #include "program/prog_instruction.h"
26
27 using namespace ir_builder;
28
29 namespace ir_builder {
30
31 void
32 ir_factory::emit(ir_instruction *ir)
33 {
34 instructions->push_tail(ir);
35 }
36
37 ir_variable *
38 ir_factory::make_temp(const glsl_type *type, const char *name)
39 {
40 ir_variable *var;
41
42 var = new(mem_ctx) ir_variable(type, name, ir_var_temporary);
43 emit(var);
44
45 return var;
46 }
47
48 ir_assignment *
49 assign(deref lhs, operand rhs, operand condition, int writemask)
50 {
51 void *mem_ctx = ralloc_parent(lhs.val);
52
53 ir_assignment *assign = new(mem_ctx) ir_assignment(lhs.val,
54 rhs.val,
55 condition.val,
56 writemask);
57
58 return assign;
59 }
60
61 ir_assignment *
62 assign(deref lhs, operand rhs)
63 {
64 return assign(lhs, rhs, (1 << lhs.val->type->vector_elements) - 1);
65 }
66
67 ir_assignment *
68 assign(deref lhs, operand rhs, int writemask)
69 {
70 return assign(lhs, rhs, (ir_rvalue *) NULL, writemask);
71 }
72
73 ir_assignment *
74 assign(deref lhs, operand rhs, operand condition)
75 {
76 return assign(lhs, rhs, condition, (1 << lhs.val->type->vector_elements) - 1);
77 }
78
79 ir_return *
80 ret(operand retval)
81 {
82 void *mem_ctx = ralloc_parent(retval.val);
83 return new(mem_ctx) ir_return(retval.val);
84 }
85
86 ir_swizzle *
87 swizzle(operand a, int swizzle, int components)
88 {
89 void *mem_ctx = ralloc_parent(a.val);
90
91 return new(mem_ctx) ir_swizzle(a.val,
92 GET_SWZ(swizzle, 0),
93 GET_SWZ(swizzle, 1),
94 GET_SWZ(swizzle, 2),
95 GET_SWZ(swizzle, 3),
96 components);
97 }
98
99 ir_swizzle *
100 swizzle_for_size(operand a, unsigned components)
101 {
102 void *mem_ctx = ralloc_parent(a.val);
103
104 if (a.val->type->vector_elements < components)
105 components = a.val->type->vector_elements;
106
107 unsigned s[4] = { 0, 1, 2, 3 };
108 for (int i = components; i < 4; i++)
109 s[i] = components - 1;
110
111 return new(mem_ctx) ir_swizzle(a.val, s, components);
112 }
113
114 ir_swizzle *
115 swizzle_xxxx(operand a)
116 {
117 return swizzle(a, SWIZZLE_XXXX, 4);
118 }
119
120 ir_swizzle *
121 swizzle_yyyy(operand a)
122 {
123 return swizzle(a, SWIZZLE_YYYY, 4);
124 }
125
126 ir_swizzle *
127 swizzle_zzzz(operand a)
128 {
129 return swizzle(a, SWIZZLE_ZZZZ, 4);
130 }
131
132 ir_swizzle *
133 swizzle_wwww(operand a)
134 {
135 return swizzle(a, SWIZZLE_WWWW, 4);
136 }
137
138 ir_swizzle *
139 swizzle_x(operand a)
140 {
141 return swizzle(a, SWIZZLE_XXXX, 1);
142 }
143
144 ir_swizzle *
145 swizzle_y(operand a)
146 {
147 return swizzle(a, SWIZZLE_YYYY, 1);
148 }
149
150 ir_swizzle *
151 swizzle_z(operand a)
152 {
153 return swizzle(a, SWIZZLE_ZZZZ, 1);
154 }
155
156 ir_swizzle *
157 swizzle_w(operand a)
158 {
159 return swizzle(a, SWIZZLE_WWWW, 1);
160 }
161
162 ir_swizzle *
163 swizzle_xy(operand a)
164 {
165 return swizzle(a, SWIZZLE_XYZW, 2);
166 }
167
168 ir_swizzle *
169 swizzle_xyz(operand a)
170 {
171 return swizzle(a, SWIZZLE_XYZW, 3);
172 }
173
174 ir_swizzle *
175 swizzle_xyzw(operand a)
176 {
177 return swizzle(a, SWIZZLE_XYZW, 4);
178 }
179
180 ir_expression *
181 expr(ir_expression_operation op, operand a)
182 {
183 void *mem_ctx = ralloc_parent(a.val);
184
185 return new(mem_ctx) ir_expression(op, a.val);
186 }
187
188 ir_expression *
189 expr(ir_expression_operation op, operand a, operand b)
190 {
191 void *mem_ctx = ralloc_parent(a.val);
192
193 return new(mem_ctx) ir_expression(op, a.val, b.val);
194 }
195
196 ir_expression *
197 expr(ir_expression_operation op, operand a, operand b, operand c)
198 {
199 void *mem_ctx = ralloc_parent(a.val);
200
201 return new(mem_ctx) ir_expression(op, a.val, b.val, c.val);
202 }
203
204 ir_expression *add(operand a, operand b)
205 {
206 return expr(ir_binop_add, a, b);
207 }
208
209 ir_expression *sub(operand a, operand b)
210 {
211 return expr(ir_binop_sub, a, b);
212 }
213
214 ir_expression *min2(operand a, operand b)
215 {
216 return expr(ir_binop_min, a, b);
217 }
218
219 ir_expression *max2(operand a, operand b)
220 {
221 return expr(ir_binop_max, a, b);
222 }
223
224 ir_expression *mul(operand a, operand b)
225 {
226 return expr(ir_binop_mul, a, b);
227 }
228
229 ir_expression *imul_high(operand a, operand b)
230 {
231 return expr(ir_binop_imul_high, a, b);
232 }
233
234 ir_expression *div(operand a, operand b)
235 {
236 return expr(ir_binop_div, a, b);
237 }
238
239 ir_expression *carry(operand a, operand b)
240 {
241 return expr(ir_binop_carry, a, b);
242 }
243
244 ir_expression *borrow(operand a, operand b)
245 {
246 return expr(ir_binop_borrow, a, b);
247 }
248
249 ir_expression *round_even(operand a)
250 {
251 return expr(ir_unop_round_even, a);
252 }
253
254 ir_expression *dot(operand a, operand b)
255 {
256 return expr(ir_binop_dot, a, b);
257 }
258
259 /* dot for vectors, mul for scalars */
260 ir_expression *dotlike(operand a, operand b)
261 {
262 assert(a.val->type == b.val->type);
263
264 if (a.val->type->vector_elements == 1)
265 return expr(ir_binop_mul, a, b);
266
267 return expr(ir_binop_dot, a, b);
268 }
269
270 ir_expression*
271 clamp(operand a, operand b, operand c)
272 {
273 return expr(ir_binop_min, expr(ir_binop_max, a, b), c);
274 }
275
276 ir_expression *
277 saturate(operand a)
278 {
279 void *mem_ctx = ralloc_parent(a.val);
280
281 return expr(ir_binop_max,
282 expr(ir_binop_min, a, new(mem_ctx) ir_constant(1.0f)),
283 new(mem_ctx) ir_constant(0.0f));
284 }
285
286 ir_expression *
287 abs(operand a)
288 {
289 return expr(ir_unop_abs, a);
290 }
291
292 ir_expression *
293 neg(operand a)
294 {
295 return expr(ir_unop_neg, a);
296 }
297
298 ir_expression *
299 sin(operand a)
300 {
301 return expr(ir_unop_sin, a);
302 }
303
304 ir_expression *
305 cos(operand a)
306 {
307 return expr(ir_unop_cos, a);
308 }
309
310 ir_expression *
311 exp(operand a)
312 {
313 return expr(ir_unop_exp, a);
314 }
315
316 ir_expression *
317 rsq(operand a)
318 {
319 return expr(ir_unop_rsq, a);
320 }
321
322 ir_expression *
323 sqrt(operand a)
324 {
325 return expr(ir_unop_sqrt, a);
326 }
327
328 ir_expression *
329 log(operand a)
330 {
331 return expr(ir_unop_log, a);
332 }
333
334 ir_expression *
335 sign(operand a)
336 {
337 return expr(ir_unop_sign, a);
338 }
339
340 ir_expression*
341 equal(operand a, operand b)
342 {
343 return expr(ir_binop_equal, a, b);
344 }
345
346 ir_expression*
347 nequal(operand a, operand b)
348 {
349 return expr(ir_binop_nequal, a, b);
350 }
351
352 ir_expression*
353 less(operand a, operand b)
354 {
355 return expr(ir_binop_less, a, b);
356 }
357
358 ir_expression*
359 greater(operand a, operand b)
360 {
361 return expr(ir_binop_greater, a, b);
362 }
363
364 ir_expression*
365 lequal(operand a, operand b)
366 {
367 return expr(ir_binop_lequal, a, b);
368 }
369
370 ir_expression*
371 gequal(operand a, operand b)
372 {
373 return expr(ir_binop_gequal, a, b);
374 }
375
376 ir_expression*
377 logic_not(operand a)
378 {
379 return expr(ir_unop_logic_not, a);
380 }
381
382 ir_expression*
383 logic_and(operand a, operand b)
384 {
385 return expr(ir_binop_logic_and, a, b);
386 }
387
388 ir_expression*
389 logic_or(operand a, operand b)
390 {
391 return expr(ir_binop_logic_or, a, b);
392 }
393
394 ir_expression*
395 bit_not(operand a)
396 {
397 return expr(ir_unop_bit_not, a);
398 }
399
400 ir_expression*
401 bit_and(operand a, operand b)
402 {
403 return expr(ir_binop_bit_and, a, b);
404 }
405
406 ir_expression*
407 bit_or(operand a, operand b)
408 {
409 return expr(ir_binop_bit_or, a, b);
410 }
411
412 ir_expression*
413 lshift(operand a, operand b)
414 {
415 return expr(ir_binop_lshift, a, b);
416 }
417
418 ir_expression*
419 rshift(operand a, operand b)
420 {
421 return expr(ir_binop_rshift, a, b);
422 }
423
424 ir_expression*
425 f2i(operand a)
426 {
427 return expr(ir_unop_f2i, a);
428 }
429
430 ir_expression*
431 bitcast_f2i(operand a)
432 {
433 return expr(ir_unop_bitcast_f2i, a);
434 }
435
436 ir_expression*
437 i2f(operand a)
438 {
439 return expr(ir_unop_i2f, a);
440 }
441
442 ir_expression*
443 bitcast_i2f(operand a)
444 {
445 return expr(ir_unop_bitcast_i2f, a);
446 }
447
448 ir_expression*
449 i2u(operand a)
450 {
451 return expr(ir_unop_i2u, a);
452 }
453
454 ir_expression*
455 u2i(operand a)
456 {
457 return expr(ir_unop_u2i, a);
458 }
459
460 ir_expression*
461 f2u(operand a)
462 {
463 return expr(ir_unop_f2u, a);
464 }
465
466 ir_expression*
467 bitcast_f2u(operand a)
468 {
469 return expr(ir_unop_bitcast_f2u, a);
470 }
471
472 ir_expression*
473 u2f(operand a)
474 {
475 return expr(ir_unop_u2f, a);
476 }
477
478 ir_expression*
479 bitcast_u2f(operand a)
480 {
481 return expr(ir_unop_bitcast_u2f, a);
482 }
483
484 ir_expression*
485 i2b(operand a)
486 {
487 return expr(ir_unop_i2b, a);
488 }
489
490 ir_expression*
491 b2i(operand a)
492 {
493 return expr(ir_unop_b2i, a);
494 }
495
496 ir_expression *
497 f2b(operand a)
498 {
499 return expr(ir_unop_f2b, a);
500 }
501
502 ir_expression *
503 b2f(operand a)
504 {
505 return expr(ir_unop_b2f, a);
506 }
507
508 ir_expression *
509 fma(operand a, operand b, operand c)
510 {
511 return expr(ir_triop_fma, a, b, c);
512 }
513
514 ir_expression *
515 lrp(operand x, operand y, operand a)
516 {
517 return expr(ir_triop_lrp, x, y, a);
518 }
519
520 ir_expression *
521 csel(operand a, operand b, operand c)
522 {
523 return expr(ir_triop_csel, a, b, c);
524 }
525
526 ir_expression *
527 bitfield_insert(operand a, operand b, operand c, operand d)
528 {
529 void *mem_ctx = ralloc_parent(a.val);
530 return new(mem_ctx) ir_expression(ir_quadop_bitfield_insert,
531 a.val->type, a.val, b.val, c.val, d.val);
532 }
533
534 ir_if*
535 if_tree(operand condition,
536 ir_instruction *then_branch)
537 {
538 assert(then_branch != NULL);
539
540 void *mem_ctx = ralloc_parent(condition.val);
541
542 ir_if *result = new(mem_ctx) ir_if(condition.val);
543 result->then_instructions.push_tail(then_branch);
544 return result;
545 }
546
547 ir_if*
548 if_tree(operand condition,
549 ir_instruction *then_branch,
550 ir_instruction *else_branch)
551 {
552 assert(then_branch != NULL);
553 assert(else_branch != NULL);
554
555 void *mem_ctx = ralloc_parent(condition.val);
556
557 ir_if *result = new(mem_ctx) ir_if(condition.val);
558 result->then_instructions.push_tail(then_branch);
559 result->else_instructions.push_tail(else_branch);
560 return result;
561 }
562
563 } /* namespace ir_builder */