Merge branch 'glsl2-head' into glsl2
[mesa.git] / src / glsl / ir_constant_expression.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ir_constant_expression.cpp
26 * Evaluate and process constant valued expressions
27 *
28 * In GLSL, constant valued expressions are used in several places. These
29 * must be processed and evaluated very early in the compilation process.
30 *
31 * * Sizes of arrays
32 * * Initializers for uniforms
33 * * Initializers for \c const variables
34 */
35
36 #include <math.h>
37 #include "ir.h"
38 #include "ir_visitor.h"
39 #include "glsl_types.h"
40
41 /**
42 * Visitor class for evaluating constant expressions
43 */
44 class ir_constant_visitor : public ir_visitor {
45 public:
46 ir_constant_visitor()
47 : value(NULL)
48 {
49 /* empty */
50 }
51
52 virtual ~ir_constant_visitor()
53 {
54 /* empty */
55 }
56
57 /**
58 * \name Visit methods
59 *
60 * As typical for the visitor pattern, there must be one \c visit method for
61 * each concrete subclass of \c ir_instruction. Virtual base classes within
62 * the hierarchy should not have \c visit methods.
63 */
64 /*@{*/
65 virtual void visit(ir_variable *);
66 virtual void visit(ir_function_signature *);
67 virtual void visit(ir_function *);
68 virtual void visit(ir_expression *);
69 virtual void visit(ir_texture *);
70 virtual void visit(ir_swizzle *);
71 virtual void visit(ir_dereference_variable *);
72 virtual void visit(ir_dereference_array *);
73 virtual void visit(ir_dereference_record *);
74 virtual void visit(ir_assignment *);
75 virtual void visit(ir_constant *);
76 virtual void visit(ir_call *);
77 virtual void visit(ir_return *);
78 virtual void visit(ir_if *);
79 virtual void visit(ir_loop *);
80 virtual void visit(ir_loop_jump *);
81 /*@}*/
82
83 /**
84 * Value of the constant expression.
85 *
86 * \note
87 * This field will be \c NULL if the expression is not constant valued.
88 */
89 /* FINIHSME: This cannot hold values for constant arrays or structures. */
90 ir_constant *value;
91 };
92
93
94 ir_constant *
95 ir_instruction::constant_expression_value()
96 {
97 ir_constant_visitor visitor;
98
99 this->accept(& visitor);
100 return visitor.value;
101 }
102
103
104 void
105 ir_constant_visitor::visit(ir_variable *ir)
106 {
107 (void) ir;
108 value = NULL;
109 }
110
111
112 void
113 ir_constant_visitor::visit(ir_function_signature *ir)
114 {
115 (void) ir;
116 value = NULL;
117 }
118
119
120 void
121 ir_constant_visitor::visit(ir_function *ir)
122 {
123 (void) ir;
124 value = NULL;
125 }
126
127 void
128 ir_constant_visitor::visit(ir_expression *ir)
129 {
130 value = NULL;
131 ir_constant *op[2];
132 unsigned int operand, c;
133 ir_constant_data data;
134
135 for (operand = 0; operand < ir->get_num_operands(); operand++) {
136 op[operand] = ir->operands[operand]->constant_expression_value();
137 if (!op[operand])
138 return;
139 }
140
141 switch (ir->operation) {
142 case ir_unop_logic_not:
143 assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
144 for (c = 0; c < ir->operands[0]->type->components(); c++)
145 data.b[c] = !op[0]->value.b[c];
146 break;
147
148 case ir_unop_f2i:
149 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
150 for (c = 0; c < ir->operands[0]->type->components(); c++) {
151 data.i[c] = op[0]->value.f[c];
152 }
153 break;
154 case ir_unop_i2f:
155 assert(op[0]->type->base_type == GLSL_TYPE_UINT ||
156 op[0]->type->base_type == GLSL_TYPE_INT);
157 for (c = 0; c < ir->operands[0]->type->components(); c++) {
158 if (op[0]->type->base_type == GLSL_TYPE_INT)
159 data.f[c] = op[0]->value.i[c];
160 else
161 data.f[c] = op[0]->value.u[c];
162 }
163 break;
164 case ir_unop_b2f:
165 assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
166 for (c = 0; c < ir->operands[0]->type->components(); c++) {
167 data.f[c] = op[0]->value.b[c] ? 1.0 : 0.0;
168 }
169 break;
170 case ir_unop_f2b:
171 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
172 for (c = 0; c < ir->operands[0]->type->components(); c++) {
173 data.b[c] = bool(op[0]->value.f[c]);
174 }
175 break;
176 case ir_unop_b2i:
177 assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
178 for (c = 0; c < ir->operands[0]->type->components(); c++) {
179 data.u[c] = op[0]->value.b[c] ? 1 : 0;
180 }
181 break;
182 case ir_unop_i2b:
183 assert(op[0]->type->is_integer());
184 for (c = 0; c < ir->operands[0]->type->components(); c++) {
185 data.b[c] = bool(op[0]->value.u[c]);
186 }
187 break;
188
189 case ir_unop_neg:
190 for (c = 0; c < ir->operands[0]->type->components(); c++) {
191 switch (ir->type->base_type) {
192 case GLSL_TYPE_UINT:
193 data.u[c] = -op[0]->value.u[c];
194 break;
195 case GLSL_TYPE_INT:
196 data.i[c] = -op[0]->value.i[c];
197 break;
198 case GLSL_TYPE_FLOAT:
199 data.f[c] = -op[0]->value.f[c];
200 break;
201 default:
202 assert(0);
203 }
204 }
205 break;
206
207 case ir_unop_abs:
208 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
209 for (c = 0; c < ir->operands[0]->type->components(); c++) {
210 switch (ir->type->base_type) {
211 case GLSL_TYPE_UINT:
212 data.u[c] = op[0]->value.u[c];
213 break;
214 case GLSL_TYPE_INT:
215 data.i[c] = op[0]->value.i[c];
216 if (data.i[c] < 0)
217 data.i[c] = -data.i[c];
218 break;
219 case GLSL_TYPE_FLOAT:
220 data.f[c] = fabs(op[0]->value.f[c]);
221 break;
222 default:
223 assert(0);
224 }
225 }
226 break;
227
228 case ir_unop_rcp:
229 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
230 for (c = 0; c < ir->operands[0]->type->components(); c++) {
231 switch (ir->type->base_type) {
232 case GLSL_TYPE_UINT:
233 if (op[0]->value.u[c] != 0.0)
234 data.u[c] = 1 / op[0]->value.u[c];
235 break;
236 case GLSL_TYPE_INT:
237 if (op[0]->value.i[c] != 0.0)
238 data.i[c] = 1 / op[0]->value.i[c];
239 break;
240 case GLSL_TYPE_FLOAT:
241 if (op[0]->value.f[c] != 0.0)
242 data.f[c] = 1.0 / op[0]->value.f[c];
243 break;
244 default:
245 assert(0);
246 }
247 }
248 break;
249
250 case ir_unop_rsq:
251 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
252 for (c = 0; c < ir->operands[0]->type->components(); c++) {
253 data.f[c] = 1.0 / sqrtf(op[0]->value.f[c]);
254 }
255 break;
256
257 case ir_unop_sqrt:
258 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
259 for (c = 0; c < ir->operands[0]->type->components(); c++) {
260 data.f[c] = sqrtf(op[0]->value.f[c]);
261 }
262 break;
263
264 case ir_unop_exp:
265 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
266 for (c = 0; c < ir->operands[0]->type->components(); c++) {
267 data.f[c] = expf(op[0]->value.f[c]);
268 }
269 break;
270
271 case ir_unop_log:
272 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
273 for (c = 0; c < ir->operands[0]->type->components(); c++) {
274 data.f[c] = logf(op[0]->value.f[c]);
275 }
276 break;
277
278 case ir_unop_dFdx:
279 case ir_unop_dFdy:
280 assert(op[0]->type->base_type == GLSL_TYPE_FLOAT);
281 for (c = 0; c < ir->operands[0]->type->components(); c++) {
282 data.f[c] = 0.0;
283 }
284 break;
285
286 case ir_binop_add:
287 if (ir->operands[0]->type == ir->operands[1]->type) {
288 for (c = 0; c < ir->operands[0]->type->components(); c++) {
289 switch (ir->operands[0]->type->base_type) {
290 case GLSL_TYPE_UINT:
291 data.u[c] = op[0]->value.u[c] + op[1]->value.u[c];
292 break;
293 case GLSL_TYPE_INT:
294 data.i[c] = op[0]->value.i[c] + op[1]->value.i[c];
295 break;
296 case GLSL_TYPE_FLOAT:
297 data.f[c] = op[0]->value.f[c] + op[1]->value.f[c];
298 break;
299 default:
300 assert(0);
301 }
302 }
303 } else
304 /* FINISHME: Support operations with non-equal types. */
305 return;
306
307 break;
308 case ir_binop_sub:
309 if (ir->operands[0]->type == ir->operands[1]->type) {
310 for (c = 0; c < ir->operands[0]->type->components(); c++) {
311 switch (ir->operands[0]->type->base_type) {
312 case GLSL_TYPE_UINT:
313 data.u[c] = op[0]->value.u[c] - op[1]->value.u[c];
314 break;
315 case GLSL_TYPE_INT:
316 data.i[c] = op[0]->value.i[c] - op[1]->value.i[c];
317 break;
318 case GLSL_TYPE_FLOAT:
319 data.f[c] = op[0]->value.f[c] - op[1]->value.f[c];
320 break;
321 default:
322 assert(0);
323 }
324 }
325 } else
326 /* FINISHME: Support operations with non-equal types. */
327 return;
328
329 break;
330 case ir_binop_mul:
331 if (ir->operands[0]->type == ir->operands[1]->type &&
332 !ir->operands[0]->type->is_matrix()) {
333 for (c = 0; c < ir->operands[0]->type->components(); c++) {
334 switch (ir->operands[0]->type->base_type) {
335 case GLSL_TYPE_UINT:
336 data.u[c] = op[0]->value.u[c] * op[1]->value.u[c];
337 break;
338 case GLSL_TYPE_INT:
339 data.i[c] = op[0]->value.i[c] * op[1]->value.i[c];
340 break;
341 case GLSL_TYPE_FLOAT:
342 data.f[c] = op[0]->value.f[c] * op[1]->value.f[c];
343 break;
344 default:
345 assert(0);
346 }
347 }
348 } else
349 /* FINISHME: Support operations with non-equal types. */
350 return;
351
352 break;
353 case ir_binop_div:
354 if (ir->operands[0]->type == ir->operands[1]->type) {
355 for (c = 0; c < ir->operands[0]->type->components(); c++) {
356 switch (ir->operands[0]->type->base_type) {
357 case GLSL_TYPE_UINT:
358 data.u[c] = op[0]->value.u[c] / op[1]->value.u[c];
359 break;
360 case GLSL_TYPE_INT:
361 data.i[c] = op[0]->value.i[c] / op[1]->value.i[c];
362 break;
363 case GLSL_TYPE_FLOAT:
364 data.f[c] = op[0]->value.f[c] / op[1]->value.f[c];
365 break;
366 default:
367 assert(0);
368 }
369 }
370 } else
371 /* FINISHME: Support operations with non-equal types. */
372 return;
373
374 break;
375 case ir_binop_logic_and:
376 assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
377 for (c = 0; c < ir->operands[0]->type->components(); c++)
378 data.b[c] = op[0]->value.b[c] && op[1]->value.b[c];
379 break;
380 case ir_binop_logic_xor:
381 assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
382 for (c = 0; c < ir->operands[0]->type->components(); c++)
383 data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c];
384 break;
385 case ir_binop_logic_or:
386 assert(op[0]->type->base_type == GLSL_TYPE_BOOL);
387 for (c = 0; c < ir->operands[0]->type->components(); c++)
388 data.b[c] = op[0]->value.b[c] || op[1]->value.b[c];
389 break;
390
391 case ir_binop_less:
392 switch (ir->operands[0]->type->base_type) {
393 case GLSL_TYPE_UINT:
394 data.b[0] = op[0]->value.u[0] < op[1]->value.u[0];
395 break;
396 case GLSL_TYPE_INT:
397 data.b[0] = op[0]->value.i[0] < op[1]->value.i[0];
398 break;
399 case GLSL_TYPE_FLOAT:
400 data.b[0] = op[0]->value.f[0] < op[1]->value.f[0];
401 break;
402 default:
403 assert(0);
404 }
405 break;
406 case ir_binop_greater:
407 switch (ir->operands[0]->type->base_type) {
408 case GLSL_TYPE_UINT:
409 data.b[0] = op[0]->value.u[0] > op[1]->value.u[0];
410 break;
411 case GLSL_TYPE_INT:
412 data.b[0] = op[0]->value.i[0] > op[1]->value.i[0];
413 break;
414 case GLSL_TYPE_FLOAT:
415 data.b[0] = op[0]->value.f[0] > op[1]->value.f[0];
416 break;
417 default:
418 assert(0);
419 }
420 break;
421 case ir_binop_lequal:
422 switch (ir->operands[0]->type->base_type) {
423 case GLSL_TYPE_UINT:
424 data.b[0] = op[0]->value.u[0] <= op[1]->value.u[0];
425 break;
426 case GLSL_TYPE_INT:
427 data.b[0] = op[0]->value.i[0] <= op[1]->value.i[0];
428 break;
429 case GLSL_TYPE_FLOAT:
430 data.b[0] = op[0]->value.f[0] <= op[1]->value.f[0];
431 break;
432 default:
433 assert(0);
434 }
435 break;
436 case ir_binop_gequal:
437 switch (ir->operands[0]->type->base_type) {
438 case GLSL_TYPE_UINT:
439 data.b[0] = op[0]->value.u[0] >= op[1]->value.u[0];
440 break;
441 case GLSL_TYPE_INT:
442 data.b[0] = op[0]->value.i[0] >= op[1]->value.i[0];
443 break;
444 case GLSL_TYPE_FLOAT:
445 data.b[0] = op[0]->value.f[0] >= op[1]->value.f[0];
446 break;
447 default:
448 assert(0);
449 }
450 break;
451
452 case ir_binop_equal:
453 data.b[0] = true;
454 for (c = 0; c < ir->operands[0]->type->components(); c++) {
455 switch (ir->operands[0]->type->base_type) {
456 case GLSL_TYPE_UINT:
457 data.b[0] = data.b[0] && op[0]->value.u[c] == op[1]->value.u[c];
458 break;
459 case GLSL_TYPE_INT:
460 data.b[0] = data.b[0] && op[0]->value.i[c] == op[1]->value.i[c];
461 break;
462 case GLSL_TYPE_FLOAT:
463 data.b[0] = data.b[0] && op[0]->value.f[c] == op[1]->value.f[c];
464 break;
465 case GLSL_TYPE_BOOL:
466 data.b[0] = data.b[0] && op[0]->value.b[c] == op[1]->value.b[c];
467 break;
468 default:
469 assert(0);
470 }
471 }
472 break;
473 case ir_binop_nequal:
474 data.b[0] = false;
475 for (c = 0; c < ir->operands[0]->type->components(); c++) {
476 switch (ir->operands[0]->type->base_type) {
477 case GLSL_TYPE_UINT:
478 data.b[0] = data.b[0] || op[0]->value.u[c] != op[1]->value.u[c];
479 break;
480 case GLSL_TYPE_INT:
481 data.b[0] = data.b[0] || op[0]->value.i[c] != op[1]->value.i[c];
482 break;
483 case GLSL_TYPE_FLOAT:
484 data.b[0] = data.b[0] || op[0]->value.f[c] != op[1]->value.f[c];
485 break;
486 case GLSL_TYPE_BOOL:
487 data.b[0] = data.b[0] || op[0]->value.b[c] != op[1]->value.b[c];
488 break;
489 default:
490 assert(0);
491 }
492 }
493 break;
494
495 default:
496 /* FINISHME: Should handle all expression types. */
497 return;
498 }
499
500 void *ctx = talloc_parent(ir);
501 this->value = new(ctx) ir_constant(ir->type, &data);
502 }
503
504
505 void
506 ir_constant_visitor::visit(ir_texture *ir)
507 {
508 // FINISHME: Do stuff with texture lookups
509 (void) ir;
510 value = NULL;
511 }
512
513
514 void
515 ir_constant_visitor::visit(ir_swizzle *ir)
516 {
517 ir_constant *v = ir->val->constant_expression_value();
518
519 this->value = NULL;
520
521 if (v != NULL) {
522 ir_constant_data data;
523
524 const unsigned swiz_idx[4] = {
525 ir->mask.x, ir->mask.y, ir->mask.z, ir->mask.w
526 };
527
528 for (unsigned i = 0; i < ir->mask.num_components; i++) {
529 switch (v->type->base_type) {
530 case GLSL_TYPE_UINT:
531 case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break;
532 case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break;
533 case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break;
534 default: assert(!"Should not get here."); break;
535 }
536 }
537
538 void *ctx = talloc_parent(ir);
539 this->value = new(ctx) ir_constant(ir->type, &data);
540 }
541 }
542
543
544 void
545 ir_constant_visitor::visit(ir_dereference_variable *ir)
546 {
547 value = NULL;
548
549 ir_variable *var = ir->variable_referenced();
550 if (var && var->constant_value)
551 value = (ir_constant *)var->constant_value->clone(NULL);
552 }
553
554
555 void
556 ir_constant_visitor::visit(ir_dereference_array *ir)
557 {
558 void *ctx = talloc_parent(ir);
559 ir_constant *array = ir->array->constant_expression_value();
560 ir_constant *idx = ir->array_index->constant_expression_value();
561
562 this->value = NULL;
563
564 if ((array != NULL) && (idx != NULL)) {
565 if (array->type->is_matrix()) {
566 /* Array access of a matrix results in a vector.
567 */
568 const unsigned column = idx->value.u[0];
569
570 const glsl_type *const column_type = array->type->column_type();
571
572 /* Offset in the constant matrix to the first element of the column
573 * to be extracted.
574 */
575 const unsigned mat_idx = column * column_type->vector_elements;
576
577 ir_constant_data data;
578
579 switch (column_type->base_type) {
580 case GLSL_TYPE_UINT:
581 case GLSL_TYPE_INT:
582 for (unsigned i = 0; i < column_type->vector_elements; i++)
583 data.u[i] = array->value.u[mat_idx + i];
584
585 break;
586
587 case GLSL_TYPE_FLOAT:
588 for (unsigned i = 0; i < column_type->vector_elements; i++)
589 data.f[i] = array->value.f[mat_idx + i];
590
591 break;
592
593 default:
594 assert(!"Should not get here.");
595 break;
596 }
597
598 this->value = new(ctx) ir_constant(column_type, &data);
599 } else if (array->type->is_vector()) {
600 const unsigned component = idx->value.u[0];
601
602 this->value = new(ctx) ir_constant(array, component);
603 } else {
604 /* FINISHME: Handle access of constant arrays. */
605 }
606 }
607 }
608
609
610 void
611 ir_constant_visitor::visit(ir_dereference_record *ir)
612 {
613 ir_constant *v = ir->record->constant_expression_value();
614
615 this->value = (v != NULL) ? v->get_record_field(ir->field) : NULL;
616 }
617
618
619 void
620 ir_constant_visitor::visit(ir_assignment *ir)
621 {
622 (void) ir;
623 value = NULL;
624 }
625
626
627 void
628 ir_constant_visitor::visit(ir_constant *ir)
629 {
630 value = ir;
631 }
632
633
634 void
635 ir_constant_visitor::visit(ir_call *ir)
636 {
637 (void) ir;
638 value = NULL;
639 }
640
641
642 void
643 ir_constant_visitor::visit(ir_return *ir)
644 {
645 (void) ir;
646 value = NULL;
647 }
648
649
650 void
651 ir_constant_visitor::visit(ir_if *ir)
652 {
653 (void) ir;
654 value = NULL;
655 }
656
657
658 void
659 ir_constant_visitor::visit(ir_loop *ir)
660 {
661 (void) ir;
662 value = NULL;
663 }
664
665
666 void
667 ir_constant_visitor::visit(ir_loop_jump *ir)
668 {
669 (void) ir;
670 value = NULL;
671 }