43245b84a8679af971d4ba7e7412e5f0d6d82ff4
[mesa.git] / src / glsl / link_varyings.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file link_varyings.cpp
26 *
27 * Linker functions related specifically to linking varyings between shader
28 * stages.
29 */
30
31
32 #include "main/mtypes.h"
33 #include "glsl_symbol_table.h"
34 #include "glsl_parser_extras.h"
35 #include "ir_optimization.h"
36 #include "linker.h"
37 #include "link_varyings.h"
38 #include "main/macros.h"
39 #include "program/hash_table.h"
40 #include "program.h"
41
42
43 /**
44 * Validate the types and qualifiers of an output from one stage against the
45 * matching input to another stage.
46 */
47 static void
48 cross_validate_types_and_qualifiers(struct gl_shader_program *prog,
49 const ir_variable *input,
50 const ir_variable *output,
51 gl_shader_stage consumer_stage,
52 gl_shader_stage producer_stage)
53 {
54 /* Check that the types match between stages.
55 */
56 const glsl_type *type_to_match = input->type;
57
58 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */
59 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX &&
60 consumer_stage != MESA_SHADER_FRAGMENT) ||
61 consumer_stage == MESA_SHADER_GEOMETRY;
62 if (extra_array_level) {
63 assert(type_to_match->is_array());
64 type_to_match = type_to_match->fields.array;
65 }
66
67 if (type_to_match != output->type) {
68 /* There is a bit of a special case for gl_TexCoord. This
69 * built-in is unsized by default. Applications that variable
70 * access it must redeclare it with a size. There is some
71 * language in the GLSL spec that implies the fragment shader
72 * and vertex shader do not have to agree on this size. Other
73 * driver behave this way, and one or two applications seem to
74 * rely on it.
75 *
76 * Neither declaration needs to be modified here because the array
77 * sizes are fixed later when update_array_sizes is called.
78 *
79 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
80 *
81 * "Unlike user-defined varying variables, the built-in
82 * varying variables don't have a strict one-to-one
83 * correspondence between the vertex language and the
84 * fragment language."
85 */
86 if (!output->type->is_array() || !is_gl_identifier(output->name)) {
87 linker_error(prog,
88 "%s shader output `%s' declared as type `%s', "
89 "but %s shader input declared as type `%s'\n",
90 _mesa_shader_stage_to_string(producer_stage),
91 output->name,
92 output->type->name,
93 _mesa_shader_stage_to_string(consumer_stage),
94 input->type->name);
95 return;
96 }
97 }
98
99 /* Check that all of the qualifiers match between stages.
100 */
101 if (input->data.centroid != output->data.centroid) {
102 linker_error(prog,
103 "%s shader output `%s' %s centroid qualifier, "
104 "but %s shader input %s centroid qualifier\n",
105 _mesa_shader_stage_to_string(producer_stage),
106 output->name,
107 (output->data.centroid) ? "has" : "lacks",
108 _mesa_shader_stage_to_string(consumer_stage),
109 (input->data.centroid) ? "has" : "lacks");
110 return;
111 }
112
113 if (input->data.sample != output->data.sample) {
114 linker_error(prog,
115 "%s shader output `%s' %s sample qualifier, "
116 "but %s shader input %s sample qualifier\n",
117 _mesa_shader_stage_to_string(producer_stage),
118 output->name,
119 (output->data.sample) ? "has" : "lacks",
120 _mesa_shader_stage_to_string(consumer_stage),
121 (input->data.sample) ? "has" : "lacks");
122 return;
123 }
124
125 if (input->data.patch != output->data.patch) {
126 linker_error(prog,
127 "%s shader output `%s' %s patch qualifier, "
128 "but %s shader input %s patch qualifier\n",
129 _mesa_shader_stage_to_string(producer_stage),
130 output->name,
131 (output->data.patch) ? "has" : "lacks",
132 _mesa_shader_stage_to_string(consumer_stage),
133 (input->data.patch) ? "has" : "lacks");
134 return;
135 }
136
137 if (!prog->IsES && input->data.invariant != output->data.invariant) {
138 linker_error(prog,
139 "%s shader output `%s' %s invariant qualifier, "
140 "but %s shader input %s invariant qualifier\n",
141 _mesa_shader_stage_to_string(producer_stage),
142 output->name,
143 (output->data.invariant) ? "has" : "lacks",
144 _mesa_shader_stage_to_string(consumer_stage),
145 (input->data.invariant) ? "has" : "lacks");
146 return;
147 }
148
149 /* GLSL >= 4.40 removes text requiring interpolation qualifiers
150 * to match cross stage, they must only match within the same stage.
151 *
152 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec:
153 *
154 * "It is a link-time error if, within the same stage, the interpolation
155 * qualifiers of variables of the same name do not match.
156 *
157 */
158 if (input->data.interpolation != output->data.interpolation &&
159 prog->Version < 440) {
160 linker_error(prog,
161 "%s shader output `%s' specifies %s "
162 "interpolation qualifier, "
163 "but %s shader input specifies %s "
164 "interpolation qualifier\n",
165 _mesa_shader_stage_to_string(producer_stage),
166 output->name,
167 interpolation_string(output->data.interpolation),
168 _mesa_shader_stage_to_string(consumer_stage),
169 interpolation_string(input->data.interpolation));
170 return;
171 }
172 }
173
174 /**
175 * Validate front and back color outputs against single color input
176 */
177 static void
178 cross_validate_front_and_back_color(struct gl_shader_program *prog,
179 const ir_variable *input,
180 const ir_variable *front_color,
181 const ir_variable *back_color,
182 gl_shader_stage consumer_stage,
183 gl_shader_stage producer_stage)
184 {
185 if (front_color != NULL && front_color->data.assigned)
186 cross_validate_types_and_qualifiers(prog, input, front_color,
187 consumer_stage, producer_stage);
188
189 if (back_color != NULL && back_color->data.assigned)
190 cross_validate_types_and_qualifiers(prog, input, back_color,
191 consumer_stage, producer_stage);
192 }
193
194 /**
195 * Validate that outputs from one stage match inputs of another
196 */
197 void
198 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
199 gl_shader *producer, gl_shader *consumer)
200 {
201 glsl_symbol_table parameters;
202 ir_variable *explicit_locations[MAX_VARYING] = { NULL, };
203
204 /* Find all shader outputs in the "producer" stage.
205 */
206 foreach_in_list(ir_instruction, node, producer->ir) {
207 ir_variable *const var = node->as_variable();
208
209 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
210 continue;
211
212 if (!var->data.explicit_location
213 || var->data.location < VARYING_SLOT_VAR0)
214 parameters.add_variable(var);
215 else {
216 /* User-defined varyings with explicit locations are handled
217 * differently because they do not need to have matching names.
218 */
219 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
220
221 if (explicit_locations[idx] != NULL) {
222 linker_error(prog,
223 "%s shader has multiple outputs explicitly "
224 "assigned to location %d\n",
225 _mesa_shader_stage_to_string(producer->Stage),
226 idx);
227 return;
228 }
229
230 explicit_locations[idx] = var;
231 }
232 }
233
234
235 /* Find all shader inputs in the "consumer" stage. Any variables that have
236 * matching outputs already in the symbol table must have the same type and
237 * qualifiers.
238 *
239 * Exception: if the consumer is the geometry shader, then the inputs
240 * should be arrays and the type of the array element should match the type
241 * of the corresponding producer output.
242 */
243 foreach_in_list(ir_instruction, node, consumer->ir) {
244 ir_variable *const input = node->as_variable();
245
246 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
247 continue;
248
249 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) {
250 const ir_variable *const front_color =
251 parameters.get_variable("gl_FrontColor");
252
253 const ir_variable *const back_color =
254 parameters.get_variable("gl_BackColor");
255
256 cross_validate_front_and_back_color(prog, input,
257 front_color, back_color,
258 consumer->Stage, producer->Stage);
259 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) {
260 const ir_variable *const front_color =
261 parameters.get_variable("gl_FrontSecondaryColor");
262
263 const ir_variable *const back_color =
264 parameters.get_variable("gl_BackSecondaryColor");
265
266 cross_validate_front_and_back_color(prog, input,
267 front_color, back_color,
268 consumer->Stage, producer->Stage);
269 } else {
270 /* The rules for connecting inputs and outputs change in the presence
271 * of explicit locations. In this case, we no longer care about the
272 * names of the variables. Instead, we care only about the
273 * explicitly assigned location.
274 */
275 ir_variable *output = NULL;
276 if (input->data.explicit_location
277 && input->data.location >= VARYING_SLOT_VAR0) {
278 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
279
280 if (output == NULL) {
281 linker_error(prog,
282 "%s shader input `%s' with explicit location "
283 "has no matching output\n",
284 _mesa_shader_stage_to_string(consumer->Stage),
285 input->name);
286 }
287 } else {
288 output = parameters.get_variable(input->name);
289 }
290
291 if (output != NULL) {
292 cross_validate_types_and_qualifiers(prog, input, output,
293 consumer->Stage, producer->Stage);
294 } else {
295 /* Check for input vars with unmatched output vars in prev stage
296 * taking into account that interface blocks could have a matching
297 * output but with different name, so we ignore them.
298 */
299 assert(!input->data.assigned);
300 if (input->data.used && !input->get_interface_type() &&
301 !input->data.explicit_location && !prog->SeparateShader)
302 linker_error(prog,
303 "%s shader input `%s' "
304 "has no matching output in the previous stage\n",
305 _mesa_shader_stage_to_string(consumer->Stage),
306 input->name);
307 }
308 }
309 }
310 }
311
312
313 /**
314 * Initialize this object based on a string that was passed to
315 * glTransformFeedbackVaryings.
316 *
317 * If the input is mal-formed, this call still succeeds, but it sets
318 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var()
319 * will fail to find any matching variable.
320 */
321 void
322 tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx,
323 const char *input)
324 {
325 /* We don't have to be pedantic about what is a valid GLSL variable name,
326 * because any variable with an invalid name can't exist in the IR anyway.
327 */
328
329 this->location = -1;
330 this->orig_name = input;
331 this->lowered_builtin_array_variable = none;
332 this->skip_components = 0;
333 this->next_buffer_separator = false;
334 this->matched_candidate = NULL;
335 this->stream_id = 0;
336
337 if (ctx->Extensions.ARB_transform_feedback3) {
338 /* Parse gl_NextBuffer. */
339 if (strcmp(input, "gl_NextBuffer") == 0) {
340 this->next_buffer_separator = true;
341 return;
342 }
343
344 /* Parse gl_SkipComponents. */
345 if (strcmp(input, "gl_SkipComponents1") == 0)
346 this->skip_components = 1;
347 else if (strcmp(input, "gl_SkipComponents2") == 0)
348 this->skip_components = 2;
349 else if (strcmp(input, "gl_SkipComponents3") == 0)
350 this->skip_components = 3;
351 else if (strcmp(input, "gl_SkipComponents4") == 0)
352 this->skip_components = 4;
353
354 if (this->skip_components)
355 return;
356 }
357
358 /* Parse a declaration. */
359 const char *base_name_end;
360 long subscript = parse_program_resource_name(input, &base_name_end);
361 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
362 if (this->var_name == NULL) {
363 _mesa_error_no_memory(__func__);
364 return;
365 }
366
367 if (subscript >= 0) {
368 this->array_subscript = subscript;
369 this->is_subscripted = true;
370 } else {
371 this->is_subscripted = false;
372 }
373
374 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
375 * class must behave specially to account for the fact that gl_ClipDistance
376 * is converted from a float[8] to a vec4[2].
377 */
378 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
379 strcmp(this->var_name, "gl_ClipDistance") == 0) {
380 this->lowered_builtin_array_variable = clip_distance;
381 }
382
383 if (ctx->Const.LowerTessLevel &&
384 (strcmp(this->var_name, "gl_TessLevelOuter") == 0))
385 this->lowered_builtin_array_variable = tess_level_outer;
386 if (ctx->Const.LowerTessLevel &&
387 (strcmp(this->var_name, "gl_TessLevelInner") == 0))
388 this->lowered_builtin_array_variable = tess_level_inner;
389 }
390
391
392 /**
393 * Determine whether two tfeedback_decl objects refer to the same variable and
394 * array index (if applicable).
395 */
396 bool
397 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
398 {
399 assert(x.is_varying() && y.is_varying());
400
401 if (strcmp(x.var_name, y.var_name) != 0)
402 return false;
403 if (x.is_subscripted != y.is_subscripted)
404 return false;
405 if (x.is_subscripted && x.array_subscript != y.array_subscript)
406 return false;
407 return true;
408 }
409
410
411 /**
412 * Assign a location and stream ID for this tfeedback_decl object based on the
413 * transform feedback candidate found by find_candidate.
414 *
415 * If an error occurs, the error is reported through linker_error() and false
416 * is returned.
417 */
418 bool
419 tfeedback_decl::assign_location(struct gl_context *ctx,
420 struct gl_shader_program *prog)
421 {
422 assert(this->is_varying());
423
424 unsigned fine_location
425 = this->matched_candidate->toplevel_var->data.location * 4
426 + this->matched_candidate->toplevel_var->data.location_frac
427 + this->matched_candidate->offset;
428
429 if (this->matched_candidate->type->is_array()) {
430 /* Array variable */
431 const unsigned matrix_cols =
432 this->matched_candidate->type->fields.array->matrix_columns;
433 const unsigned vector_elements =
434 this->matched_candidate->type->fields.array->vector_elements;
435 unsigned actual_array_size;
436 switch (this->lowered_builtin_array_variable) {
437 case clip_distance:
438 actual_array_size = prog->LastClipDistanceArraySize;
439 break;
440 case tess_level_outer:
441 actual_array_size = 4;
442 break;
443 case tess_level_inner:
444 actual_array_size = 2;
445 break;
446 case none:
447 default:
448 actual_array_size = this->matched_candidate->type->array_size();
449 break;
450 }
451
452 if (this->is_subscripted) {
453 /* Check array bounds. */
454 if (this->array_subscript >= actual_array_size) {
455 linker_error(prog, "Transform feedback varying %s has index "
456 "%i, but the array size is %u.",
457 this->orig_name, this->array_subscript,
458 actual_array_size);
459 return false;
460 }
461 unsigned array_elem_size = this->lowered_builtin_array_variable ?
462 1 : vector_elements * matrix_cols;
463 fine_location += array_elem_size * this->array_subscript;
464 this->size = 1;
465 } else {
466 this->size = actual_array_size;
467 }
468 this->vector_elements = vector_elements;
469 this->matrix_columns = matrix_cols;
470 if (this->lowered_builtin_array_variable)
471 this->type = GL_FLOAT;
472 else
473 this->type = this->matched_candidate->type->fields.array->gl_type;
474 } else {
475 /* Regular variable (scalar, vector, or matrix) */
476 if (this->is_subscripted) {
477 linker_error(prog, "Transform feedback varying %s requested, "
478 "but %s is not an array.",
479 this->orig_name, this->var_name);
480 return false;
481 }
482 this->size = 1;
483 this->vector_elements = this->matched_candidate->type->vector_elements;
484 this->matrix_columns = this->matched_candidate->type->matrix_columns;
485 this->type = this->matched_candidate->type->gl_type;
486 }
487 this->location = fine_location / 4;
488 this->location_frac = fine_location % 4;
489
490 /* From GL_EXT_transform_feedback:
491 * A program will fail to link if:
492 *
493 * * the total number of components to capture in any varying
494 * variable in <varyings> is greater than the constant
495 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
496 * buffer mode is SEPARATE_ATTRIBS_EXT;
497 */
498 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
499 this->num_components() >
500 ctx->Const.MaxTransformFeedbackSeparateComponents) {
501 linker_error(prog, "Transform feedback varying %s exceeds "
502 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
503 this->orig_name);
504 return false;
505 }
506
507 /* Only transform feedback varyings can be assigned to non-zero streams,
508 * so assign the stream id here.
509 */
510 this->stream_id = this->matched_candidate->toplevel_var->data.stream;
511
512 return true;
513 }
514
515
516 unsigned
517 tfeedback_decl::get_num_outputs() const
518 {
519 if (!this->is_varying()) {
520 return 0;
521 }
522
523 return (this->num_components() + this->location_frac + 3)/4;
524 }
525
526
527 /**
528 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
529 *
530 * If an error occurs, the error is reported through linker_error() and false
531 * is returned.
532 */
533 bool
534 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
535 struct gl_transform_feedback_info *info,
536 unsigned buffer, const unsigned max_outputs) const
537 {
538 assert(!this->next_buffer_separator);
539
540 /* Handle gl_SkipComponents. */
541 if (this->skip_components) {
542 info->BufferStride[buffer] += this->skip_components;
543 return true;
544 }
545
546 /* From GL_EXT_transform_feedback:
547 * A program will fail to link if:
548 *
549 * * the total number of components to capture is greater than
550 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
551 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
552 */
553 if (prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS &&
554 info->BufferStride[buffer] + this->num_components() >
555 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
556 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
557 "limit has been exceeded.");
558 return false;
559 }
560
561 unsigned location = this->location;
562 unsigned location_frac = this->location_frac;
563 unsigned num_components = this->num_components();
564 while (num_components > 0) {
565 unsigned output_size = MIN2(num_components, 4 - location_frac);
566 assert(info->NumOutputs < max_outputs);
567 info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
568 info->Outputs[info->NumOutputs].OutputRegister = location;
569 info->Outputs[info->NumOutputs].NumComponents = output_size;
570 info->Outputs[info->NumOutputs].StreamId = stream_id;
571 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
572 info->Outputs[info->NumOutputs].DstOffset = info->BufferStride[buffer];
573 ++info->NumOutputs;
574 info->BufferStride[buffer] += output_size;
575 num_components -= output_size;
576 location++;
577 location_frac = 0;
578 }
579
580 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog, this->orig_name);
581 info->Varyings[info->NumVarying].Type = this->type;
582 info->Varyings[info->NumVarying].Size = this->size;
583 info->NumVarying++;
584
585 return true;
586 }
587
588
589 const tfeedback_candidate *
590 tfeedback_decl::find_candidate(gl_shader_program *prog,
591 hash_table *tfeedback_candidates)
592 {
593 const char *name = this->var_name;
594 switch (this->lowered_builtin_array_variable) {
595 case none:
596 name = this->var_name;
597 break;
598 case clip_distance:
599 name = "gl_ClipDistanceMESA";
600 break;
601 case tess_level_outer:
602 name = "gl_TessLevelOuterMESA";
603 break;
604 case tess_level_inner:
605 name = "gl_TessLevelInnerMESA";
606 break;
607 }
608 this->matched_candidate = (const tfeedback_candidate *)
609 hash_table_find(tfeedback_candidates, name);
610 if (!this->matched_candidate) {
611 /* From GL_EXT_transform_feedback:
612 * A program will fail to link if:
613 *
614 * * any variable name specified in the <varyings> array is not
615 * declared as an output in the geometry shader (if present) or
616 * the vertex shader (if no geometry shader is present);
617 */
618 linker_error(prog, "Transform feedback varying %s undeclared.",
619 this->orig_name);
620 }
621 return this->matched_candidate;
622 }
623
624
625 /**
626 * Parse all the transform feedback declarations that were passed to
627 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
628 *
629 * If an error occurs, the error is reported through linker_error() and false
630 * is returned.
631 */
632 bool
633 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
634 const void *mem_ctx, unsigned num_names,
635 char **varying_names, tfeedback_decl *decls)
636 {
637 for (unsigned i = 0; i < num_names; ++i) {
638 decls[i].init(ctx, mem_ctx, varying_names[i]);
639
640 if (!decls[i].is_varying())
641 continue;
642
643 /* From GL_EXT_transform_feedback:
644 * A program will fail to link if:
645 *
646 * * any two entries in the <varyings> array specify the same varying
647 * variable;
648 *
649 * We interpret this to mean "any two entries in the <varyings> array
650 * specify the same varying variable and array index", since transform
651 * feedback of arrays would be useless otherwise.
652 */
653 for (unsigned j = 0; j < i; ++j) {
654 if (!decls[j].is_varying())
655 continue;
656
657 if (tfeedback_decl::is_same(decls[i], decls[j])) {
658 linker_error(prog, "Transform feedback varying %s specified "
659 "more than once.", varying_names[i]);
660 return false;
661 }
662 }
663 }
664 return true;
665 }
666
667
668 /**
669 * Store transform feedback location assignments into
670 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
671 *
672 * If an error occurs, the error is reported through linker_error() and false
673 * is returned.
674 */
675 bool
676 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
677 unsigned num_tfeedback_decls,
678 tfeedback_decl *tfeedback_decls)
679 {
680 bool separate_attribs_mode =
681 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
682
683 ralloc_free(prog->LinkedTransformFeedback.Varyings);
684 ralloc_free(prog->LinkedTransformFeedback.Outputs);
685
686 memset(&prog->LinkedTransformFeedback, 0,
687 sizeof(prog->LinkedTransformFeedback));
688
689 prog->LinkedTransformFeedback.Varyings =
690 rzalloc_array(prog,
691 struct gl_transform_feedback_varying_info,
692 num_tfeedback_decls);
693
694 unsigned num_outputs = 0;
695 for (unsigned i = 0; i < num_tfeedback_decls; ++i)
696 num_outputs += tfeedback_decls[i].get_num_outputs();
697
698 prog->LinkedTransformFeedback.Outputs =
699 rzalloc_array(prog,
700 struct gl_transform_feedback_output,
701 num_outputs);
702
703 unsigned num_buffers = 0;
704
705 if (separate_attribs_mode) {
706 /* GL_SEPARATE_ATTRIBS */
707 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
708 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
709 num_buffers, num_outputs))
710 return false;
711
712 num_buffers++;
713 }
714 }
715 else {
716 /* GL_INVERLEAVED_ATTRIBS */
717 int buffer_stream_id = -1;
718 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
719 if (tfeedback_decls[i].is_next_buffer_separator()) {
720 num_buffers++;
721 buffer_stream_id = -1;
722 continue;
723 } else if (buffer_stream_id == -1) {
724 /* First varying writing to this buffer: remember its stream */
725 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id();
726 } else if (buffer_stream_id !=
727 (int) tfeedback_decls[i].get_stream_id()) {
728 /* Varying writes to the same buffer from a different stream */
729 linker_error(prog,
730 "Transform feedback can't capture varyings belonging "
731 "to different vertex streams in a single buffer. "
732 "Varying %s writes to buffer from stream %u, other "
733 "varyings in the same buffer write from stream %u.",
734 tfeedback_decls[i].name(),
735 tfeedback_decls[i].get_stream_id(),
736 buffer_stream_id);
737 return false;
738 }
739
740 if (!tfeedback_decls[i].store(ctx, prog,
741 &prog->LinkedTransformFeedback,
742 num_buffers, num_outputs))
743 return false;
744 }
745 num_buffers++;
746 }
747
748 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
749
750 prog->LinkedTransformFeedback.NumBuffers = num_buffers;
751 return true;
752 }
753
754 namespace {
755
756 /**
757 * Data structure recording the relationship between outputs of one shader
758 * stage (the "producer") and inputs of another (the "consumer").
759 */
760 class varying_matches
761 {
762 public:
763 varying_matches(bool disable_varying_packing, bool consumer_is_fs);
764 ~varying_matches();
765 void record(ir_variable *producer_var, ir_variable *consumer_var);
766 unsigned assign_locations();
767 void store_locations() const;
768
769 private:
770 /**
771 * If true, this driver disables varying packing, so all varyings need to
772 * be aligned on slot boundaries, and take up a number of slots equal to
773 * their number of matrix columns times their array size.
774 */
775 const bool disable_varying_packing;
776
777 /**
778 * Enum representing the order in which varyings are packed within a
779 * packing class.
780 *
781 * Currently we pack vec4's first, then vec2's, then scalar values, then
782 * vec3's. This order ensures that the only vectors that are at risk of
783 * having to be "double parked" (split between two adjacent varying slots)
784 * are the vec3's.
785 */
786 enum packing_order_enum {
787 PACKING_ORDER_VEC4,
788 PACKING_ORDER_VEC2,
789 PACKING_ORDER_SCALAR,
790 PACKING_ORDER_VEC3,
791 };
792
793 static unsigned compute_packing_class(const ir_variable *var);
794 static packing_order_enum compute_packing_order(const ir_variable *var);
795 static int match_comparator(const void *x_generic, const void *y_generic);
796
797 /**
798 * Structure recording the relationship between a single producer output
799 * and a single consumer input.
800 */
801 struct match {
802 /**
803 * Packing class for this varying, computed by compute_packing_class().
804 */
805 unsigned packing_class;
806
807 /**
808 * Packing order for this varying, computed by compute_packing_order().
809 */
810 packing_order_enum packing_order;
811 unsigned num_components;
812
813 /**
814 * The output variable in the producer stage.
815 */
816 ir_variable *producer_var;
817
818 /**
819 * The input variable in the consumer stage.
820 */
821 ir_variable *consumer_var;
822
823 /**
824 * The location which has been assigned for this varying. This is
825 * expressed in multiples of a float, with the first generic varying
826 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
827 * value 0.
828 */
829 unsigned generic_location;
830 } *matches;
831
832 /**
833 * The number of elements in the \c matches array that are currently in
834 * use.
835 */
836 unsigned num_matches;
837
838 /**
839 * The number of elements that were set aside for the \c matches array when
840 * it was allocated.
841 */
842 unsigned matches_capacity;
843
844 const bool consumer_is_fs;
845 };
846
847 } /* anonymous namespace */
848
849 varying_matches::varying_matches(bool disable_varying_packing,
850 bool consumer_is_fs)
851 : disable_varying_packing(disable_varying_packing),
852 consumer_is_fs(consumer_is_fs)
853 {
854 /* Note: this initial capacity is rather arbitrarily chosen to be large
855 * enough for many cases without wasting an unreasonable amount of space.
856 * varying_matches::record() will resize the array if there are more than
857 * this number of varyings.
858 */
859 this->matches_capacity = 8;
860 this->matches = (match *)
861 malloc(sizeof(*this->matches) * this->matches_capacity);
862 this->num_matches = 0;
863 }
864
865
866 varying_matches::~varying_matches()
867 {
868 free(this->matches);
869 }
870
871
872 /**
873 * Record the given producer/consumer variable pair in the list of variables
874 * that should later be assigned locations.
875 *
876 * It is permissible for \c consumer_var to be NULL (this happens if a
877 * variable is output by the producer and consumed by transform feedback, but
878 * not consumed by the consumer).
879 *
880 * If \c producer_var has already been paired up with a consumer_var, or
881 * producer_var is part of fixed pipeline functionality (and hence already has
882 * a location assigned), this function has no effect.
883 *
884 * Note: as a side effect this function may change the interpolation type of
885 * \c producer_var, but only when the change couldn't possibly affect
886 * rendering.
887 */
888 void
889 varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var)
890 {
891 assert(producer_var != NULL || consumer_var != NULL);
892
893 if ((producer_var && !producer_var->data.is_unmatched_generic_inout)
894 || (consumer_var && !consumer_var->data.is_unmatched_generic_inout)) {
895 /* Either a location already exists for this variable (since it is part
896 * of fixed functionality), or it has already been recorded as part of a
897 * previous match.
898 */
899 return;
900 }
901
902 if ((consumer_var == NULL && producer_var->type->contains_integer()) ||
903 !consumer_is_fs) {
904 /* Since this varying is not being consumed by the fragment shader, its
905 * interpolation type varying cannot possibly affect rendering. Also,
906 * this variable is non-flat and is (or contains) an integer.
907 *
908 * lower_packed_varyings requires all integer varyings to flat,
909 * regardless of where they appear. We can trivially satisfy that
910 * requirement by changing the interpolation type to flat here.
911 */
912 if (producer_var) {
913 producer_var->data.centroid = false;
914 producer_var->data.sample = false;
915 producer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
916 }
917
918 if (consumer_var) {
919 consumer_var->data.centroid = false;
920 consumer_var->data.sample = false;
921 consumer_var->data.interpolation = INTERP_QUALIFIER_FLAT;
922 }
923 }
924
925 if (this->num_matches == this->matches_capacity) {
926 this->matches_capacity *= 2;
927 this->matches = (match *)
928 realloc(this->matches,
929 sizeof(*this->matches) * this->matches_capacity);
930 }
931
932 const ir_variable *const var = (producer_var != NULL)
933 ? producer_var : consumer_var;
934
935 this->matches[this->num_matches].packing_class
936 = this->compute_packing_class(var);
937 this->matches[this->num_matches].packing_order
938 = this->compute_packing_order(var);
939 if (this->disable_varying_packing) {
940 unsigned slots = var->type->is_array()
941 ? (var->type->length * var->type->fields.array->matrix_columns)
942 : var->type->matrix_columns;
943 this->matches[this->num_matches].num_components = 4 * slots;
944 } else {
945 this->matches[this->num_matches].num_components
946 = var->type->component_slots();
947 }
948 this->matches[this->num_matches].producer_var = producer_var;
949 this->matches[this->num_matches].consumer_var = consumer_var;
950 this->num_matches++;
951 if (producer_var)
952 producer_var->data.is_unmatched_generic_inout = 0;
953 if (consumer_var)
954 consumer_var->data.is_unmatched_generic_inout = 0;
955 }
956
957
958 /**
959 * Choose locations for all of the variable matches that were previously
960 * passed to varying_matches::record().
961 */
962 unsigned
963 varying_matches::assign_locations()
964 {
965 /* Sort varying matches into an order that makes them easy to pack. */
966 qsort(this->matches, this->num_matches, sizeof(*this->matches),
967 &varying_matches::match_comparator);
968
969 unsigned generic_location = 0;
970
971 for (unsigned i = 0; i < this->num_matches; i++) {
972 /* Advance to the next slot if this varying has a different packing
973 * class than the previous one, and we're not already on a slot
974 * boundary.
975 */
976 if (i > 0 &&
977 this->matches[i - 1].packing_class
978 != this->matches[i].packing_class) {
979 generic_location = ALIGN(generic_location, 4);
980 }
981
982 this->matches[i].generic_location = generic_location;
983
984 generic_location += this->matches[i].num_components;
985 }
986
987 return (generic_location + 3) / 4;
988 }
989
990
991 /**
992 * Update the producer and consumer shaders to reflect the locations
993 * assignments that were made by varying_matches::assign_locations().
994 */
995 void
996 varying_matches::store_locations() const
997 {
998 for (unsigned i = 0; i < this->num_matches; i++) {
999 ir_variable *producer_var = this->matches[i].producer_var;
1000 ir_variable *consumer_var = this->matches[i].consumer_var;
1001 unsigned generic_location = this->matches[i].generic_location;
1002 unsigned slot = generic_location / 4;
1003 unsigned offset = generic_location % 4;
1004
1005 if (producer_var) {
1006 producer_var->data.location = VARYING_SLOT_VAR0 + slot;
1007 producer_var->data.location_frac = offset;
1008 }
1009
1010 if (consumer_var) {
1011 assert(consumer_var->data.location == -1);
1012 consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
1013 consumer_var->data.location_frac = offset;
1014 }
1015 }
1016 }
1017
1018
1019 /**
1020 * Compute the "packing class" of the given varying. This is an unsigned
1021 * integer with the property that two variables in the same packing class can
1022 * be safely backed into the same vec4.
1023 */
1024 unsigned
1025 varying_matches::compute_packing_class(const ir_variable *var)
1026 {
1027 /* Without help from the back-end, there is no way to pack together
1028 * variables with different interpolation types, because
1029 * lower_packed_varyings must choose exactly one interpolation type for
1030 * each packed varying it creates.
1031 *
1032 * However, we can safely pack together floats, ints, and uints, because:
1033 *
1034 * - varyings of base type "int" and "uint" must use the "flat"
1035 * interpolation type, which can only occur in GLSL 1.30 and above.
1036 *
1037 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings
1038 * can store flat floats as ints without losing any information (using
1039 * the ir_unop_bitcast_* opcodes).
1040 *
1041 * Therefore, the packing class depends only on the interpolation type.
1042 */
1043 unsigned packing_class = var->data.centroid | (var->data.sample << 1) |
1044 (var->data.patch << 2);
1045 packing_class *= 4;
1046 packing_class += var->data.interpolation;
1047 return packing_class;
1048 }
1049
1050
1051 /**
1052 * Compute the "packing order" of the given varying. This is a sort key we
1053 * use to determine when to attempt to pack the given varying relative to
1054 * other varyings in the same packing class.
1055 */
1056 varying_matches::packing_order_enum
1057 varying_matches::compute_packing_order(const ir_variable *var)
1058 {
1059 const glsl_type *element_type = var->type;
1060
1061 while (element_type->base_type == GLSL_TYPE_ARRAY) {
1062 element_type = element_type->fields.array;
1063 }
1064
1065 switch (element_type->component_slots() % 4) {
1066 case 1: return PACKING_ORDER_SCALAR;
1067 case 2: return PACKING_ORDER_VEC2;
1068 case 3: return PACKING_ORDER_VEC3;
1069 case 0: return PACKING_ORDER_VEC4;
1070 default:
1071 assert(!"Unexpected value of vector_elements");
1072 return PACKING_ORDER_VEC4;
1073 }
1074 }
1075
1076
1077 /**
1078 * Comparison function passed to qsort() to sort varyings by packing_class and
1079 * then by packing_order.
1080 */
1081 int
1082 varying_matches::match_comparator(const void *x_generic, const void *y_generic)
1083 {
1084 const match *x = (const match *) x_generic;
1085 const match *y = (const match *) y_generic;
1086
1087 if (x->packing_class != y->packing_class)
1088 return x->packing_class - y->packing_class;
1089 return x->packing_order - y->packing_order;
1090 }
1091
1092
1093 /**
1094 * Is the given variable a varying variable to be counted against the
1095 * limit in ctx->Const.MaxVarying?
1096 * This includes variables such as texcoords, colors and generic
1097 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1098 */
1099 static bool
1100 var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var)
1101 {
1102 /* Only fragment shaders will take a varying variable as an input */
1103 if (stage == MESA_SHADER_FRAGMENT &&
1104 var->data.mode == ir_var_shader_in) {
1105 switch (var->data.location) {
1106 case VARYING_SLOT_POS:
1107 case VARYING_SLOT_FACE:
1108 case VARYING_SLOT_PNTC:
1109 return false;
1110 default:
1111 return true;
1112 }
1113 }
1114 return false;
1115 }
1116
1117
1118 /**
1119 * Visitor class that generates tfeedback_candidate structs describing all
1120 * possible targets of transform feedback.
1121 *
1122 * tfeedback_candidate structs are stored in the hash table
1123 * tfeedback_candidates, which is passed to the constructor. This hash table
1124 * maps varying names to instances of the tfeedback_candidate struct.
1125 */
1126 class tfeedback_candidate_generator : public program_resource_visitor
1127 {
1128 public:
1129 tfeedback_candidate_generator(void *mem_ctx,
1130 hash_table *tfeedback_candidates)
1131 : mem_ctx(mem_ctx),
1132 tfeedback_candidates(tfeedback_candidates),
1133 toplevel_var(NULL),
1134 varying_floats(0)
1135 {
1136 }
1137
1138 void process(ir_variable *var)
1139 {
1140 this->toplevel_var = var;
1141 this->varying_floats = 0;
1142 if (var->is_interface_instance())
1143 program_resource_visitor::process(var->get_interface_type(),
1144 var->get_interface_type()->name);
1145 else
1146 program_resource_visitor::process(var);
1147 }
1148
1149 private:
1150 virtual void visit_field(const glsl_type *type, const char *name,
1151 bool row_major)
1152 {
1153 assert(!type->without_array()->is_record());
1154 assert(!type->without_array()->is_interface());
1155
1156 (void) row_major;
1157
1158 tfeedback_candidate *candidate
1159 = rzalloc(this->mem_ctx, tfeedback_candidate);
1160 candidate->toplevel_var = this->toplevel_var;
1161 candidate->type = type;
1162 candidate->offset = this->varying_floats;
1163 hash_table_insert(this->tfeedback_candidates, candidate,
1164 ralloc_strdup(this->mem_ctx, name));
1165 this->varying_floats += type->component_slots();
1166 }
1167
1168 /**
1169 * Memory context used to allocate hash table keys and values.
1170 */
1171 void * const mem_ctx;
1172
1173 /**
1174 * Hash table in which tfeedback_candidate objects should be stored.
1175 */
1176 hash_table * const tfeedback_candidates;
1177
1178 /**
1179 * Pointer to the toplevel variable that is being traversed.
1180 */
1181 ir_variable *toplevel_var;
1182
1183 /**
1184 * Total number of varying floats that have been visited so far. This is
1185 * used to determine the offset to each varying within the toplevel
1186 * variable.
1187 */
1188 unsigned varying_floats;
1189 };
1190
1191
1192 namespace linker {
1193
1194 bool
1195 populate_consumer_input_sets(void *mem_ctx, exec_list *ir,
1196 hash_table *consumer_inputs,
1197 hash_table *consumer_interface_inputs,
1198 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_MAX])
1199 {
1200 memset(consumer_inputs_with_locations,
1201 0,
1202 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_MAX);
1203
1204 foreach_in_list(ir_instruction, node, ir) {
1205 ir_variable *const input_var = node->as_variable();
1206
1207 if ((input_var != NULL) && (input_var->data.mode == ir_var_shader_in)) {
1208 if (input_var->type->is_interface())
1209 return false;
1210
1211 if (input_var->data.explicit_location) {
1212 /* assign_varying_locations only cares about finding the
1213 * ir_variable at the start of a contiguous location block.
1214 *
1215 * - For !producer, consumer_inputs_with_locations isn't used.
1216 *
1217 * - For !consumer, consumer_inputs_with_locations is empty.
1218 *
1219 * For consumer && producer, if you were trying to set some
1220 * ir_variable to the middle of a location block on the other side
1221 * of producer/consumer, cross_validate_outputs_to_inputs() should
1222 * be link-erroring due to either type mismatch or location
1223 * overlaps. If the variables do match up, then they've got a
1224 * matching data.location and you only looked at
1225 * consumer_inputs_with_locations[var->data.location], not any
1226 * following entries for the array/structure.
1227 */
1228 consumer_inputs_with_locations[input_var->data.location] =
1229 input_var;
1230 } else if (input_var->get_interface_type() != NULL) {
1231 char *const iface_field_name =
1232 ralloc_asprintf(mem_ctx, "%s.%s",
1233 input_var->get_interface_type()->name,
1234 input_var->name);
1235 hash_table_insert(consumer_interface_inputs, input_var,
1236 iface_field_name);
1237 } else {
1238 hash_table_insert(consumer_inputs, input_var,
1239 ralloc_strdup(mem_ctx, input_var->name));
1240 }
1241 }
1242 }
1243
1244 return true;
1245 }
1246
1247 /**
1248 * Find a variable from the consumer that "matches" the specified variable
1249 *
1250 * This function only finds inputs with names that match. There is no
1251 * validation (here) that the types, etc. are compatible.
1252 */
1253 ir_variable *
1254 get_matching_input(void *mem_ctx,
1255 const ir_variable *output_var,
1256 hash_table *consumer_inputs,
1257 hash_table *consumer_interface_inputs,
1258 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_MAX])
1259 {
1260 ir_variable *input_var;
1261
1262 if (output_var->data.explicit_location) {
1263 input_var = consumer_inputs_with_locations[output_var->data.location];
1264 } else if (output_var->get_interface_type() != NULL) {
1265 char *const iface_field_name =
1266 ralloc_asprintf(mem_ctx, "%s.%s",
1267 output_var->get_interface_type()->name,
1268 output_var->name);
1269 input_var =
1270 (ir_variable *) hash_table_find(consumer_interface_inputs,
1271 iface_field_name);
1272 } else {
1273 input_var =
1274 (ir_variable *) hash_table_find(consumer_inputs, output_var->name);
1275 }
1276
1277 return (input_var == NULL || input_var->data.mode != ir_var_shader_in)
1278 ? NULL : input_var;
1279 }
1280
1281 }
1282
1283 static int
1284 io_variable_cmp(const void *_a, const void *_b)
1285 {
1286 const ir_variable *const a = *(const ir_variable **) _a;
1287 const ir_variable *const b = *(const ir_variable **) _b;
1288
1289 if (a->data.explicit_location && b->data.explicit_location)
1290 return b->data.location - a->data.location;
1291
1292 if (a->data.explicit_location && !b->data.explicit_location)
1293 return 1;
1294
1295 if (!a->data.explicit_location && b->data.explicit_location)
1296 return -1;
1297
1298 return -strcmp(a->name, b->name);
1299 }
1300
1301 /**
1302 * Sort the shader IO variables into canonical order
1303 */
1304 static void
1305 canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode)
1306 {
1307 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
1308 unsigned num_variables = 0;
1309
1310 foreach_in_list(ir_instruction, node, ir) {
1311 ir_variable *const var = node->as_variable();
1312
1313 if (var == NULL || var->data.mode != io_mode)
1314 continue;
1315
1316 /* If we have already encountered more I/O variables that could
1317 * successfully link, bail.
1318 */
1319 if (num_variables == ARRAY_SIZE(var_table))
1320 return;
1321
1322 var_table[num_variables++] = var;
1323 }
1324
1325 if (num_variables == 0)
1326 return;
1327
1328 /* Sort the list in reverse order (io_variable_cmp handles this). Later
1329 * we're going to push the variables on to the IR list as a stack, so we
1330 * want the last variable (in canonical order) to be first in the list.
1331 */
1332 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
1333
1334 /* Remove the variable from it's current location in the IR, and put it at
1335 * the front.
1336 */
1337 for (unsigned i = 0; i < num_variables; i++) {
1338 var_table[i]->remove();
1339 ir->push_head(var_table[i]);
1340 }
1341 }
1342
1343 /**
1344 * Assign locations for all variables that are produced in one pipeline stage
1345 * (the "producer") and consumed in the next stage (the "consumer").
1346 *
1347 * Variables produced by the producer may also be consumed by transform
1348 * feedback.
1349 *
1350 * \param num_tfeedback_decls is the number of declarations indicating
1351 * variables that may be consumed by transform feedback.
1352 *
1353 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1354 * representing the result of parsing the strings passed to
1355 * glTransformFeedbackVaryings(). assign_location() will be called for
1356 * each of these objects that matches one of the outputs of the
1357 * producer.
1358 *
1359 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1360 * be NULL. In this case, varying locations are assigned solely based on the
1361 * requirements of transform feedback.
1362 */
1363 bool
1364 assign_varying_locations(struct gl_context *ctx,
1365 void *mem_ctx,
1366 struct gl_shader_program *prog,
1367 gl_shader *producer, gl_shader *consumer,
1368 unsigned num_tfeedback_decls,
1369 tfeedback_decl *tfeedback_decls)
1370 {
1371 if (ctx->Const.DisableVaryingPacking) {
1372 /* Transform feedback code assumes varyings are packed, so if the driver
1373 * has disabled varying packing, make sure it does not support transform
1374 * feedback.
1375 */
1376 assert(!ctx->Extensions.EXT_transform_feedback);
1377 }
1378
1379 /* Tessellation shaders treat inputs and outputs as shared memory and can
1380 * access inputs and outputs of other invocations.
1381 * Therefore, they can't be lowered to temps easily (and definitely not
1382 * efficiently).
1383 */
1384 bool disable_varying_packing =
1385 ctx->Const.DisableVaryingPacking ||
1386 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) ||
1387 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) ||
1388 (producer && producer->Stage == MESA_SHADER_TESS_CTRL);
1389
1390 varying_matches matches(disable_varying_packing,
1391 consumer && consumer->Stage == MESA_SHADER_FRAGMENT);
1392 hash_table *tfeedback_candidates
1393 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1394 hash_table *consumer_inputs
1395 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1396 hash_table *consumer_interface_inputs
1397 = hash_table_ctor(0, hash_table_string_hash, hash_table_string_compare);
1398 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_MAX] = {
1399 NULL,
1400 };
1401
1402 unsigned consumer_vertices = 0;
1403 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
1404 consumer_vertices = prog->Geom.VerticesIn;
1405
1406 /* Operate in a total of four passes.
1407 *
1408 * 1. Sort inputs / outputs into a canonical order. This is necessary so
1409 * that inputs / outputs of separable shaders will be assigned
1410 * predictable locations regardless of the order in which declarations
1411 * appeared in the shader source.
1412 *
1413 * 2. Assign locations for any matching inputs and outputs.
1414 *
1415 * 3. Mark output variables in the producer that do not have locations as
1416 * not being outputs. This lets the optimizer eliminate them.
1417 *
1418 * 4. Mark input variables in the consumer that do not have locations as
1419 * not being inputs. This lets the optimizer eliminate them.
1420 */
1421 if (consumer)
1422 canonicalize_shader_io(consumer->ir, ir_var_shader_in);
1423
1424 if (producer)
1425 canonicalize_shader_io(producer->ir, ir_var_shader_out);
1426
1427 if (consumer
1428 && !linker::populate_consumer_input_sets(mem_ctx,
1429 consumer->ir,
1430 consumer_inputs,
1431 consumer_interface_inputs,
1432 consumer_inputs_with_locations)) {
1433 assert(!"populate_consumer_input_sets failed");
1434 hash_table_dtor(tfeedback_candidates);
1435 hash_table_dtor(consumer_inputs);
1436 hash_table_dtor(consumer_interface_inputs);
1437 return false;
1438 }
1439
1440 if (producer) {
1441 foreach_in_list(ir_instruction, node, producer->ir) {
1442 ir_variable *const output_var = node->as_variable();
1443
1444 if ((output_var == NULL) ||
1445 (output_var->data.mode != ir_var_shader_out))
1446 continue;
1447
1448 /* Only geometry shaders can use non-zero streams */
1449 assert(output_var->data.stream == 0 ||
1450 (output_var->data.stream < MAX_VERTEX_STREAMS &&
1451 producer->Stage == MESA_SHADER_GEOMETRY));
1452
1453 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates);
1454 g.process(output_var);
1455
1456 ir_variable *const input_var =
1457 linker::get_matching_input(mem_ctx, output_var, consumer_inputs,
1458 consumer_interface_inputs,
1459 consumer_inputs_with_locations);
1460
1461 /* If a matching input variable was found, add this ouptut (and the
1462 * input) to the set. If this is a separable program and there is no
1463 * consumer stage, add the output.
1464 *
1465 * Always add TCS outputs. They are shared by all invocations
1466 * within a patch and can be used as shared memory.
1467 */
1468 if (input_var || (prog->SeparateShader && consumer == NULL) ||
1469 producer->Type == GL_TESS_CONTROL_SHADER) {
1470 matches.record(output_var, input_var);
1471 }
1472
1473 /* Only stream 0 outputs can be consumed in the next stage */
1474 if (input_var && output_var->data.stream != 0) {
1475 linker_error(prog, "output %s is assigned to stream=%d but "
1476 "is linked to an input, which requires stream=0",
1477 output_var->name, output_var->data.stream);
1478 return false;
1479 }
1480 }
1481 } else {
1482 /* If there's no producer stage, then this must be a separable program.
1483 * For example, we may have a program that has just a fragment shader.
1484 * Later this program will be used with some arbitrary vertex (or
1485 * geometry) shader program. This means that locations must be assigned
1486 * for all the inputs.
1487 */
1488 foreach_in_list(ir_instruction, node, consumer->ir) {
1489 ir_variable *const input_var = node->as_variable();
1490
1491 if ((input_var == NULL) ||
1492 (input_var->data.mode != ir_var_shader_in))
1493 continue;
1494
1495 matches.record(NULL, input_var);
1496 }
1497 }
1498
1499 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1500 if (!tfeedback_decls[i].is_varying())
1501 continue;
1502
1503 const tfeedback_candidate *matched_candidate
1504 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates);
1505
1506 if (matched_candidate == NULL) {
1507 hash_table_dtor(tfeedback_candidates);
1508 hash_table_dtor(consumer_inputs);
1509 hash_table_dtor(consumer_interface_inputs);
1510 return false;
1511 }
1512
1513 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout)
1514 matches.record(matched_candidate->toplevel_var, NULL);
1515 }
1516
1517 const unsigned slots_used = matches.assign_locations();
1518 matches.store_locations();
1519
1520 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1521 if (!tfeedback_decls[i].is_varying())
1522 continue;
1523
1524 if (!tfeedback_decls[i].assign_location(ctx, prog)) {
1525 hash_table_dtor(tfeedback_candidates);
1526 hash_table_dtor(consumer_inputs);
1527 hash_table_dtor(consumer_interface_inputs);
1528 return false;
1529 }
1530 }
1531
1532 hash_table_dtor(tfeedback_candidates);
1533 hash_table_dtor(consumer_inputs);
1534 hash_table_dtor(consumer_interface_inputs);
1535
1536 if (!disable_varying_packing) {
1537 if (producer) {
1538 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_out,
1539 0, producer);
1540 }
1541 if (consumer) {
1542 lower_packed_varyings(mem_ctx, slots_used, ir_var_shader_in,
1543 consumer_vertices, consumer);
1544 }
1545 }
1546
1547 if (consumer && producer) {
1548 foreach_in_list(ir_instruction, node, consumer->ir) {
1549 ir_variable *const var = node->as_variable();
1550
1551 if (var && var->data.mode == ir_var_shader_in &&
1552 var->data.is_unmatched_generic_inout) {
1553 if (prog->IsES) {
1554 /*
1555 * On Page 91 (Page 97 of the PDF) of the GLSL ES 1.0 spec:
1556 *
1557 * If the vertex shader declares but doesn't write to a
1558 * varying and the fragment shader declares and reads it,
1559 * is this an error?
1560 *
1561 * RESOLUTION: No.
1562 */
1563 linker_warning(prog, "%s shader varying %s not written "
1564 "by %s shader\n.",
1565 _mesa_shader_stage_to_string(consumer->Stage),
1566 var->name,
1567 _mesa_shader_stage_to_string(producer->Stage));
1568 } else if (prog->Version <= 120) {
1569 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1570 *
1571 * Only those varying variables used (i.e. read) in
1572 * the fragment shader executable must be written to
1573 * by the vertex shader executable; declaring
1574 * superfluous varying variables in a vertex shader is
1575 * permissible.
1576 *
1577 * We interpret this text as meaning that the VS must
1578 * write the variable for the FS to read it. See
1579 * "glsl1-varying read but not written" in piglit.
1580 */
1581 linker_error(prog, "%s shader varying %s not written "
1582 "by %s shader\n.",
1583 _mesa_shader_stage_to_string(consumer->Stage),
1584 var->name,
1585 _mesa_shader_stage_to_string(producer->Stage));
1586 }
1587
1588 /* An 'in' variable is only really a shader input if its
1589 * value is written by the previous stage.
1590 */
1591 var->data.mode = ir_var_auto;
1592 }
1593 }
1594 }
1595
1596 return true;
1597 }
1598
1599 bool
1600 check_against_output_limit(struct gl_context *ctx,
1601 struct gl_shader_program *prog,
1602 gl_shader *producer)
1603 {
1604 unsigned output_vectors = 0;
1605
1606 foreach_in_list(ir_instruction, node, producer->ir) {
1607 ir_variable *const var = node->as_variable();
1608
1609 if (var && var->data.mode == ir_var_shader_out &&
1610 var_counts_against_varying_limit(producer->Stage, var)) {
1611 output_vectors += var->type->count_attribute_slots();
1612 }
1613 }
1614
1615 assert(producer->Stage != MESA_SHADER_FRAGMENT);
1616 unsigned max_output_components =
1617 ctx->Const.Program[producer->Stage].MaxOutputComponents;
1618
1619 const unsigned output_components = output_vectors * 4;
1620 if (output_components > max_output_components) {
1621 if (ctx->API == API_OPENGLES2 || prog->IsES)
1622 linker_error(prog, "%s shader uses too many output vectors "
1623 "(%u > %u)\n",
1624 _mesa_shader_stage_to_string(producer->Stage),
1625 output_vectors,
1626 max_output_components / 4);
1627 else
1628 linker_error(prog, "%s shader uses too many output components "
1629 "(%u > %u)\n",
1630 _mesa_shader_stage_to_string(producer->Stage),
1631 output_components,
1632 max_output_components);
1633
1634 return false;
1635 }
1636
1637 return true;
1638 }
1639
1640 bool
1641 check_against_input_limit(struct gl_context *ctx,
1642 struct gl_shader_program *prog,
1643 gl_shader *consumer)
1644 {
1645 unsigned input_vectors = 0;
1646
1647 foreach_in_list(ir_instruction, node, consumer->ir) {
1648 ir_variable *const var = node->as_variable();
1649
1650 if (var && var->data.mode == ir_var_shader_in &&
1651 var_counts_against_varying_limit(consumer->Stage, var)) {
1652 input_vectors += var->type->count_attribute_slots();
1653 }
1654 }
1655
1656 assert(consumer->Stage != MESA_SHADER_VERTEX);
1657 unsigned max_input_components =
1658 ctx->Const.Program[consumer->Stage].MaxInputComponents;
1659
1660 const unsigned input_components = input_vectors * 4;
1661 if (input_components > max_input_components) {
1662 if (ctx->API == API_OPENGLES2 || prog->IsES)
1663 linker_error(prog, "%s shader uses too many input vectors "
1664 "(%u > %u)\n",
1665 _mesa_shader_stage_to_string(consumer->Stage),
1666 input_vectors,
1667 max_input_components / 4);
1668 else
1669 linker_error(prog, "%s shader uses too many input components "
1670 "(%u > %u)\n",
1671 _mesa_shader_stage_to_string(consumer->Stage),
1672 input_components,
1673 max_input_components);
1674
1675 return false;
1676 }
1677
1678 return true;
1679 }