mesa: Move transform feedback error check to reduce array overflow risk.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "ir_optimization.h"
74
75 extern "C" {
76 #include "main/shaderobj.h"
77 }
78
79 /**
80 * Visitor that determines whether or not a variable is ever written.
81 */
82 class find_assignment_visitor : public ir_hierarchical_visitor {
83 public:
84 find_assignment_visitor(const char *name)
85 : name(name), found(false)
86 {
87 /* empty */
88 }
89
90 virtual ir_visitor_status visit_enter(ir_assignment *ir)
91 {
92 ir_variable *const var = ir->lhs->variable_referenced();
93
94 if (strcmp(name, var->name) == 0) {
95 found = true;
96 return visit_stop;
97 }
98
99 return visit_continue_with_parent;
100 }
101
102 virtual ir_visitor_status visit_enter(ir_call *ir)
103 {
104 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
105 foreach_iter(exec_list_iterator, iter, *ir) {
106 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
107 ir_variable *sig_param = (ir_variable *)sig_iter.get();
108
109 if (sig_param->mode == ir_var_out ||
110 sig_param->mode == ir_var_inout) {
111 ir_variable *var = param_rval->variable_referenced();
112 if (var && strcmp(name, var->name) == 0) {
113 found = true;
114 return visit_stop;
115 }
116 }
117 sig_iter.next();
118 }
119
120 return visit_continue_with_parent;
121 }
122
123 bool variable_found()
124 {
125 return found;
126 }
127
128 private:
129 const char *name; /**< Find writes to a variable with this name. */
130 bool found; /**< Was a write to the variable found? */
131 };
132
133
134 /**
135 * Visitor that determines whether or not a variable is ever read.
136 */
137 class find_deref_visitor : public ir_hierarchical_visitor {
138 public:
139 find_deref_visitor(const char *name)
140 : name(name), found(false)
141 {
142 /* empty */
143 }
144
145 virtual ir_visitor_status visit(ir_dereference_variable *ir)
146 {
147 if (strcmp(this->name, ir->var->name) == 0) {
148 this->found = true;
149 return visit_stop;
150 }
151
152 return visit_continue;
153 }
154
155 bool variable_found() const
156 {
157 return this->found;
158 }
159
160 private:
161 const char *name; /**< Find writes to a variable with this name. */
162 bool found; /**< Was a write to the variable found? */
163 };
164
165
166 void
167 linker_error(gl_shader_program *prog, const char *fmt, ...)
168 {
169 va_list ap;
170
171 ralloc_strcat(&prog->InfoLog, "error: ");
172 va_start(ap, fmt);
173 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
174 va_end(ap);
175
176 prog->LinkStatus = false;
177 }
178
179
180 void
181 linker_warning(gl_shader_program *prog, const char *fmt, ...)
182 {
183 va_list ap;
184
185 ralloc_strcat(&prog->InfoLog, "error: ");
186 va_start(ap, fmt);
187 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
188 va_end(ap);
189
190 }
191
192
193 void
194 link_invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
195 int generic_base)
196 {
197 foreach_list(node, sh->ir) {
198 ir_variable *const var = ((ir_instruction *) node)->as_variable();
199
200 if ((var == NULL) || (var->mode != (unsigned) mode))
201 continue;
202
203 /* Only assign locations for generic attributes / varyings / etc.
204 */
205 if ((var->location >= generic_base) && !var->explicit_location)
206 var->location = -1;
207 }
208 }
209
210
211 /**
212 * Determine the number of attribute slots required for a particular type
213 *
214 * This code is here because it implements the language rules of a specific
215 * GLSL version. Since it's a property of the language and not a property of
216 * types in general, it doesn't really belong in glsl_type.
217 */
218 unsigned
219 count_attribute_slots(const glsl_type *t)
220 {
221 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
222 *
223 * "A scalar input counts the same amount against this limit as a vec4,
224 * so applications may want to consider packing groups of four
225 * unrelated float inputs together into a vector to better utilize the
226 * capabilities of the underlying hardware. A matrix input will use up
227 * multiple locations. The number of locations used will equal the
228 * number of columns in the matrix."
229 *
230 * The spec does not explicitly say how arrays are counted. However, it
231 * should be safe to assume the total number of slots consumed by an array
232 * is the number of entries in the array multiplied by the number of slots
233 * consumed by a single element of the array.
234 */
235
236 if (t->is_array())
237 return t->array_size() * count_attribute_slots(t->element_type());
238
239 if (t->is_matrix())
240 return t->matrix_columns;
241
242 return 1;
243 }
244
245
246 /**
247 * Verify that a vertex shader executable meets all semantic requirements.
248 *
249 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
250 * as a side effect.
251 *
252 * \param shader Vertex shader executable to be verified
253 */
254 bool
255 validate_vertex_shader_executable(struct gl_shader_program *prog,
256 struct gl_shader *shader)
257 {
258 if (shader == NULL)
259 return true;
260
261 find_assignment_visitor find("gl_Position");
262 find.run(shader->ir);
263 if (!find.variable_found()) {
264 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
265 return false;
266 }
267
268 prog->Vert.ClipDistanceArraySize = 0;
269
270 if (prog->Version >= 130) {
271 /* From section 7.1 (Vertex Shader Special Variables) of the
272 * GLSL 1.30 spec:
273 *
274 * "It is an error for a shader to statically write both
275 * gl_ClipVertex and gl_ClipDistance."
276 */
277 find_assignment_visitor clip_vertex("gl_ClipVertex");
278 find_assignment_visitor clip_distance("gl_ClipDistance");
279
280 clip_vertex.run(shader->ir);
281 clip_distance.run(shader->ir);
282 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
283 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
284 "and `gl_ClipDistance'\n");
285 return false;
286 }
287 prog->Vert.UsesClipDistance = clip_distance.variable_found();
288 ir_variable *clip_distance_var =
289 shader->symbols->get_variable("gl_ClipDistance");
290 if (clip_distance_var)
291 prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length;
292 }
293
294 return true;
295 }
296
297
298 /**
299 * Verify that a fragment shader executable meets all semantic requirements
300 *
301 * \param shader Fragment shader executable to be verified
302 */
303 bool
304 validate_fragment_shader_executable(struct gl_shader_program *prog,
305 struct gl_shader *shader)
306 {
307 if (shader == NULL)
308 return true;
309
310 find_assignment_visitor frag_color("gl_FragColor");
311 find_assignment_visitor frag_data("gl_FragData");
312
313 frag_color.run(shader->ir);
314 frag_data.run(shader->ir);
315
316 if (frag_color.variable_found() && frag_data.variable_found()) {
317 linker_error(prog, "fragment shader writes to both "
318 "`gl_FragColor' and `gl_FragData'\n");
319 return false;
320 }
321
322 return true;
323 }
324
325
326 /**
327 * Generate a string describing the mode of a variable
328 */
329 static const char *
330 mode_string(const ir_variable *var)
331 {
332 switch (var->mode) {
333 case ir_var_auto:
334 return (var->read_only) ? "global constant" : "global variable";
335
336 case ir_var_uniform: return "uniform";
337 case ir_var_in: return "shader input";
338 case ir_var_out: return "shader output";
339 case ir_var_inout: return "shader inout";
340
341 case ir_var_const_in:
342 case ir_var_temporary:
343 default:
344 assert(!"Should not get here.");
345 return "invalid variable";
346 }
347 }
348
349
350 /**
351 * Perform validation of global variables used across multiple shaders
352 */
353 bool
354 cross_validate_globals(struct gl_shader_program *prog,
355 struct gl_shader **shader_list,
356 unsigned num_shaders,
357 bool uniforms_only)
358 {
359 /* Examine all of the uniforms in all of the shaders and cross validate
360 * them.
361 */
362 glsl_symbol_table variables;
363 for (unsigned i = 0; i < num_shaders; i++) {
364 if (shader_list[i] == NULL)
365 continue;
366
367 foreach_list(node, shader_list[i]->ir) {
368 ir_variable *const var = ((ir_instruction *) node)->as_variable();
369
370 if (var == NULL)
371 continue;
372
373 if (uniforms_only && (var->mode != ir_var_uniform))
374 continue;
375
376 /* Don't cross validate temporaries that are at global scope. These
377 * will eventually get pulled into the shaders 'main'.
378 */
379 if (var->mode == ir_var_temporary)
380 continue;
381
382 /* If a global with this name has already been seen, verify that the
383 * new instance has the same type. In addition, if the globals have
384 * initializers, the values of the initializers must be the same.
385 */
386 ir_variable *const existing = variables.get_variable(var->name);
387 if (existing != NULL) {
388 if (var->type != existing->type) {
389 /* Consider the types to be "the same" if both types are arrays
390 * of the same type and one of the arrays is implicitly sized.
391 * In addition, set the type of the linked variable to the
392 * explicitly sized array.
393 */
394 if (var->type->is_array()
395 && existing->type->is_array()
396 && (var->type->fields.array == existing->type->fields.array)
397 && ((var->type->length == 0)
398 || (existing->type->length == 0))) {
399 if (var->type->length != 0) {
400 existing->type = var->type;
401 }
402 } else {
403 linker_error(prog, "%s `%s' declared as type "
404 "`%s' and type `%s'\n",
405 mode_string(var),
406 var->name, var->type->name,
407 existing->type->name);
408 return false;
409 }
410 }
411
412 if (var->explicit_location) {
413 if (existing->explicit_location
414 && (var->location != existing->location)) {
415 linker_error(prog, "explicit locations for %s "
416 "`%s' have differing values\n",
417 mode_string(var), var->name);
418 return false;
419 }
420
421 existing->location = var->location;
422 existing->explicit_location = true;
423 }
424
425 /* Validate layout qualifiers for gl_FragDepth.
426 *
427 * From the AMD/ARB_conservative_depth specs:
428 *
429 * "If gl_FragDepth is redeclared in any fragment shader in a
430 * program, it must be redeclared in all fragment shaders in
431 * that program that have static assignments to
432 * gl_FragDepth. All redeclarations of gl_FragDepth in all
433 * fragment shaders in a single program must have the same set
434 * of qualifiers."
435 */
436 if (strcmp(var->name, "gl_FragDepth") == 0) {
437 bool layout_declared = var->depth_layout != ir_depth_layout_none;
438 bool layout_differs =
439 var->depth_layout != existing->depth_layout;
440
441 if (layout_declared && layout_differs) {
442 linker_error(prog,
443 "All redeclarations of gl_FragDepth in all "
444 "fragment shaders in a single program must have "
445 "the same set of qualifiers.");
446 }
447
448 if (var->used && layout_differs) {
449 linker_error(prog,
450 "If gl_FragDepth is redeclared with a layout "
451 "qualifier in any fragment shader, it must be "
452 "redeclared with the same layout qualifier in "
453 "all fragment shaders that have assignments to "
454 "gl_FragDepth");
455 }
456 }
457
458 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
459 *
460 * "If a shared global has multiple initializers, the
461 * initializers must all be constant expressions, and they
462 * must all have the same value. Otherwise, a link error will
463 * result. (A shared global having only one initializer does
464 * not require that initializer to be a constant expression.)"
465 *
466 * Previous to 4.20 the GLSL spec simply said that initializers
467 * must have the same value. In this case of non-constant
468 * initializers, this was impossible to determine. As a result,
469 * no vendor actually implemented that behavior. The 4.20
470 * behavior matches the implemented behavior of at least one other
471 * vendor, so we'll implement that for all GLSL versions.
472 */
473 if (var->constant_initializer != NULL) {
474 if (existing->constant_initializer != NULL) {
475 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
476 linker_error(prog, "initializers for %s "
477 "`%s' have differing values\n",
478 mode_string(var), var->name);
479 return false;
480 }
481 } else {
482 /* If the first-seen instance of a particular uniform did not
483 * have an initializer but a later instance does, copy the
484 * initializer to the version stored in the symbol table.
485 */
486 /* FINISHME: This is wrong. The constant_value field should
487 * FINISHME: not be modified! Imagine a case where a shader
488 * FINISHME: without an initializer is linked in two different
489 * FINISHME: programs with shaders that have differing
490 * FINISHME: initializers. Linking with the first will
491 * FINISHME: modify the shader, and linking with the second
492 * FINISHME: will fail.
493 */
494 existing->constant_initializer =
495 var->constant_initializer->clone(ralloc_parent(existing),
496 NULL);
497 }
498 }
499
500 if (var->has_initializer) {
501 if (existing->has_initializer
502 && (var->constant_initializer == NULL
503 || existing->constant_initializer == NULL)) {
504 linker_error(prog,
505 "shared global variable `%s' has multiple "
506 "non-constant initializers.\n",
507 var->name);
508 return false;
509 }
510
511 /* Some instance had an initializer, so keep track of that. In
512 * this location, all sorts of initializers (constant or
513 * otherwise) will propagate the existence to the variable
514 * stored in the symbol table.
515 */
516 existing->has_initializer = true;
517 }
518
519 if (existing->invariant != var->invariant) {
520 linker_error(prog, "declarations for %s `%s' have "
521 "mismatching invariant qualifiers\n",
522 mode_string(var), var->name);
523 return false;
524 }
525 if (existing->centroid != var->centroid) {
526 linker_error(prog, "declarations for %s `%s' have "
527 "mismatching centroid qualifiers\n",
528 mode_string(var), var->name);
529 return false;
530 }
531 } else
532 variables.add_variable(var);
533 }
534 }
535
536 return true;
537 }
538
539
540 /**
541 * Perform validation of uniforms used across multiple shader stages
542 */
543 bool
544 cross_validate_uniforms(struct gl_shader_program *prog)
545 {
546 return cross_validate_globals(prog, prog->_LinkedShaders,
547 MESA_SHADER_TYPES, true);
548 }
549
550
551 /**
552 * Validate that outputs from one stage match inputs of another
553 */
554 bool
555 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
556 gl_shader *producer, gl_shader *consumer)
557 {
558 glsl_symbol_table parameters;
559 /* FINISHME: Figure these out dynamically. */
560 const char *const producer_stage = "vertex";
561 const char *const consumer_stage = "fragment";
562
563 /* Find all shader outputs in the "producer" stage.
564 */
565 foreach_list(node, producer->ir) {
566 ir_variable *const var = ((ir_instruction *) node)->as_variable();
567
568 /* FINISHME: For geometry shaders, this should also look for inout
569 * FINISHME: variables.
570 */
571 if ((var == NULL) || (var->mode != ir_var_out))
572 continue;
573
574 parameters.add_variable(var);
575 }
576
577
578 /* Find all shader inputs in the "consumer" stage. Any variables that have
579 * matching outputs already in the symbol table must have the same type and
580 * qualifiers.
581 */
582 foreach_list(node, consumer->ir) {
583 ir_variable *const input = ((ir_instruction *) node)->as_variable();
584
585 /* FINISHME: For geometry shaders, this should also look for inout
586 * FINISHME: variables.
587 */
588 if ((input == NULL) || (input->mode != ir_var_in))
589 continue;
590
591 ir_variable *const output = parameters.get_variable(input->name);
592 if (output != NULL) {
593 /* Check that the types match between stages.
594 */
595 if (input->type != output->type) {
596 /* There is a bit of a special case for gl_TexCoord. This
597 * built-in is unsized by default. Applications that variable
598 * access it must redeclare it with a size. There is some
599 * language in the GLSL spec that implies the fragment shader
600 * and vertex shader do not have to agree on this size. Other
601 * driver behave this way, and one or two applications seem to
602 * rely on it.
603 *
604 * Neither declaration needs to be modified here because the array
605 * sizes are fixed later when update_array_sizes is called.
606 *
607 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
608 *
609 * "Unlike user-defined varying variables, the built-in
610 * varying variables don't have a strict one-to-one
611 * correspondence between the vertex language and the
612 * fragment language."
613 */
614 if (!output->type->is_array()
615 || (strncmp("gl_", output->name, 3) != 0)) {
616 linker_error(prog,
617 "%s shader output `%s' declared as type `%s', "
618 "but %s shader input declared as type `%s'\n",
619 producer_stage, output->name,
620 output->type->name,
621 consumer_stage, input->type->name);
622 return false;
623 }
624 }
625
626 /* Check that all of the qualifiers match between stages.
627 */
628 if (input->centroid != output->centroid) {
629 linker_error(prog,
630 "%s shader output `%s' %s centroid qualifier, "
631 "but %s shader input %s centroid qualifier\n",
632 producer_stage,
633 output->name,
634 (output->centroid) ? "has" : "lacks",
635 consumer_stage,
636 (input->centroid) ? "has" : "lacks");
637 return false;
638 }
639
640 if (input->invariant != output->invariant) {
641 linker_error(prog,
642 "%s shader output `%s' %s invariant qualifier, "
643 "but %s shader input %s invariant qualifier\n",
644 producer_stage,
645 output->name,
646 (output->invariant) ? "has" : "lacks",
647 consumer_stage,
648 (input->invariant) ? "has" : "lacks");
649 return false;
650 }
651
652 if (input->interpolation != output->interpolation) {
653 linker_error(prog,
654 "%s shader output `%s' specifies %s "
655 "interpolation qualifier, "
656 "but %s shader input specifies %s "
657 "interpolation qualifier\n",
658 producer_stage,
659 output->name,
660 output->interpolation_string(),
661 consumer_stage,
662 input->interpolation_string());
663 return false;
664 }
665 }
666 }
667
668 return true;
669 }
670
671
672 /**
673 * Populates a shaders symbol table with all global declarations
674 */
675 static void
676 populate_symbol_table(gl_shader *sh)
677 {
678 sh->symbols = new(sh) glsl_symbol_table;
679
680 foreach_list(node, sh->ir) {
681 ir_instruction *const inst = (ir_instruction *) node;
682 ir_variable *var;
683 ir_function *func;
684
685 if ((func = inst->as_function()) != NULL) {
686 sh->symbols->add_function(func);
687 } else if ((var = inst->as_variable()) != NULL) {
688 sh->symbols->add_variable(var);
689 }
690 }
691 }
692
693
694 /**
695 * Remap variables referenced in an instruction tree
696 *
697 * This is used when instruction trees are cloned from one shader and placed in
698 * another. These trees will contain references to \c ir_variable nodes that
699 * do not exist in the target shader. This function finds these \c ir_variable
700 * references and replaces the references with matching variables in the target
701 * shader.
702 *
703 * If there is no matching variable in the target shader, a clone of the
704 * \c ir_variable is made and added to the target shader. The new variable is
705 * added to \b both the instruction stream and the symbol table.
706 *
707 * \param inst IR tree that is to be processed.
708 * \param symbols Symbol table containing global scope symbols in the
709 * linked shader.
710 * \param instructions Instruction stream where new variable declarations
711 * should be added.
712 */
713 void
714 remap_variables(ir_instruction *inst, struct gl_shader *target,
715 hash_table *temps)
716 {
717 class remap_visitor : public ir_hierarchical_visitor {
718 public:
719 remap_visitor(struct gl_shader *target,
720 hash_table *temps)
721 {
722 this->target = target;
723 this->symbols = target->symbols;
724 this->instructions = target->ir;
725 this->temps = temps;
726 }
727
728 virtual ir_visitor_status visit(ir_dereference_variable *ir)
729 {
730 if (ir->var->mode == ir_var_temporary) {
731 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
732
733 assert(var != NULL);
734 ir->var = var;
735 return visit_continue;
736 }
737
738 ir_variable *const existing =
739 this->symbols->get_variable(ir->var->name);
740 if (existing != NULL)
741 ir->var = existing;
742 else {
743 ir_variable *copy = ir->var->clone(this->target, NULL);
744
745 this->symbols->add_variable(copy);
746 this->instructions->push_head(copy);
747 ir->var = copy;
748 }
749
750 return visit_continue;
751 }
752
753 private:
754 struct gl_shader *target;
755 glsl_symbol_table *symbols;
756 exec_list *instructions;
757 hash_table *temps;
758 };
759
760 remap_visitor v(target, temps);
761
762 inst->accept(&v);
763 }
764
765
766 /**
767 * Move non-declarations from one instruction stream to another
768 *
769 * The intended usage pattern of this function is to pass the pointer to the
770 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
771 * pointer) for \c last and \c false for \c make_copies on the first
772 * call. Successive calls pass the return value of the previous call for
773 * \c last and \c true for \c make_copies.
774 *
775 * \param instructions Source instruction stream
776 * \param last Instruction after which new instructions should be
777 * inserted in the target instruction stream
778 * \param make_copies Flag selecting whether instructions in \c instructions
779 * should be copied (via \c ir_instruction::clone) into the
780 * target list or moved.
781 *
782 * \return
783 * The new "last" instruction in the target instruction stream. This pointer
784 * is suitable for use as the \c last parameter of a later call to this
785 * function.
786 */
787 exec_node *
788 move_non_declarations(exec_list *instructions, exec_node *last,
789 bool make_copies, gl_shader *target)
790 {
791 hash_table *temps = NULL;
792
793 if (make_copies)
794 temps = hash_table_ctor(0, hash_table_pointer_hash,
795 hash_table_pointer_compare);
796
797 foreach_list_safe(node, instructions) {
798 ir_instruction *inst = (ir_instruction *) node;
799
800 if (inst->as_function())
801 continue;
802
803 ir_variable *var = inst->as_variable();
804 if ((var != NULL) && (var->mode != ir_var_temporary))
805 continue;
806
807 assert(inst->as_assignment()
808 || ((var != NULL) && (var->mode == ir_var_temporary)));
809
810 if (make_copies) {
811 inst = inst->clone(target, NULL);
812
813 if (var != NULL)
814 hash_table_insert(temps, inst, var);
815 else
816 remap_variables(inst, target, temps);
817 } else {
818 inst->remove();
819 }
820
821 last->insert_after(inst);
822 last = inst;
823 }
824
825 if (make_copies)
826 hash_table_dtor(temps);
827
828 return last;
829 }
830
831 /**
832 * Get the function signature for main from a shader
833 */
834 static ir_function_signature *
835 get_main_function_signature(gl_shader *sh)
836 {
837 ir_function *const f = sh->symbols->get_function("main");
838 if (f != NULL) {
839 exec_list void_parameters;
840
841 /* Look for the 'void main()' signature and ensure that it's defined.
842 * This keeps the linker from accidentally pick a shader that just
843 * contains a prototype for main.
844 *
845 * We don't have to check for multiple definitions of main (in multiple
846 * shaders) because that would have already been caught above.
847 */
848 ir_function_signature *sig = f->matching_signature(&void_parameters);
849 if ((sig != NULL) && sig->is_defined) {
850 return sig;
851 }
852 }
853
854 return NULL;
855 }
856
857
858 /**
859 * Combine a group of shaders for a single stage to generate a linked shader
860 *
861 * \note
862 * If this function is supplied a single shader, it is cloned, and the new
863 * shader is returned.
864 */
865 static struct gl_shader *
866 link_intrastage_shaders(void *mem_ctx,
867 struct gl_context *ctx,
868 struct gl_shader_program *prog,
869 struct gl_shader **shader_list,
870 unsigned num_shaders)
871 {
872 /* Check that global variables defined in multiple shaders are consistent.
873 */
874 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
875 return NULL;
876
877 /* Check that there is only a single definition of each function signature
878 * across all shaders.
879 */
880 for (unsigned i = 0; i < (num_shaders - 1); i++) {
881 foreach_list(node, shader_list[i]->ir) {
882 ir_function *const f = ((ir_instruction *) node)->as_function();
883
884 if (f == NULL)
885 continue;
886
887 for (unsigned j = i + 1; j < num_shaders; j++) {
888 ir_function *const other =
889 shader_list[j]->symbols->get_function(f->name);
890
891 /* If the other shader has no function (and therefore no function
892 * signatures) with the same name, skip to the next shader.
893 */
894 if (other == NULL)
895 continue;
896
897 foreach_iter (exec_list_iterator, iter, *f) {
898 ir_function_signature *sig =
899 (ir_function_signature *) iter.get();
900
901 if (!sig->is_defined || sig->is_builtin)
902 continue;
903
904 ir_function_signature *other_sig =
905 other->exact_matching_signature(& sig->parameters);
906
907 if ((other_sig != NULL) && other_sig->is_defined
908 && !other_sig->is_builtin) {
909 linker_error(prog, "function `%s' is multiply defined",
910 f->name);
911 return NULL;
912 }
913 }
914 }
915 }
916 }
917
918 /* Find the shader that defines main, and make a clone of it.
919 *
920 * Starting with the clone, search for undefined references. If one is
921 * found, find the shader that defines it. Clone the reference and add
922 * it to the shader. Repeat until there are no undefined references or
923 * until a reference cannot be resolved.
924 */
925 gl_shader *main = NULL;
926 for (unsigned i = 0; i < num_shaders; i++) {
927 if (get_main_function_signature(shader_list[i]) != NULL) {
928 main = shader_list[i];
929 break;
930 }
931 }
932
933 if (main == NULL) {
934 linker_error(prog, "%s shader lacks `main'\n",
935 (shader_list[0]->Type == GL_VERTEX_SHADER)
936 ? "vertex" : "fragment");
937 return NULL;
938 }
939
940 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
941 linked->ir = new(linked) exec_list;
942 clone_ir_list(mem_ctx, linked->ir, main->ir);
943
944 populate_symbol_table(linked);
945
946 /* The a pointer to the main function in the final linked shader (i.e., the
947 * copy of the original shader that contained the main function).
948 */
949 ir_function_signature *const main_sig = get_main_function_signature(linked);
950
951 /* Move any instructions other than variable declarations or function
952 * declarations into main.
953 */
954 exec_node *insertion_point =
955 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
956 linked);
957
958 for (unsigned i = 0; i < num_shaders; i++) {
959 if (shader_list[i] == main)
960 continue;
961
962 insertion_point = move_non_declarations(shader_list[i]->ir,
963 insertion_point, true, linked);
964 }
965
966 /* Resolve initializers for global variables in the linked shader.
967 */
968 unsigned num_linking_shaders = num_shaders;
969 for (unsigned i = 0; i < num_shaders; i++)
970 num_linking_shaders += shader_list[i]->num_builtins_to_link;
971
972 gl_shader **linking_shaders =
973 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
974
975 memcpy(linking_shaders, shader_list,
976 sizeof(linking_shaders[0]) * num_shaders);
977
978 unsigned idx = num_shaders;
979 for (unsigned i = 0; i < num_shaders; i++) {
980 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
981 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
982 idx += shader_list[i]->num_builtins_to_link;
983 }
984
985 assert(idx == num_linking_shaders);
986
987 if (!link_function_calls(prog, linked, linking_shaders,
988 num_linking_shaders)) {
989 ctx->Driver.DeleteShader(ctx, linked);
990 linked = NULL;
991 }
992
993 free(linking_shaders);
994
995 #ifdef DEBUG
996 /* At this point linked should contain all of the linked IR, so
997 * validate it to make sure nothing went wrong.
998 */
999 if (linked)
1000 validate_ir_tree(linked->ir);
1001 #endif
1002
1003 /* Make a pass over all variable declarations to ensure that arrays with
1004 * unspecified sizes have a size specified. The size is inferred from the
1005 * max_array_access field.
1006 */
1007 if (linked != NULL) {
1008 class array_sizing_visitor : public ir_hierarchical_visitor {
1009 public:
1010 virtual ir_visitor_status visit(ir_variable *var)
1011 {
1012 if (var->type->is_array() && (var->type->length == 0)) {
1013 const glsl_type *type =
1014 glsl_type::get_array_instance(var->type->fields.array,
1015 var->max_array_access + 1);
1016
1017 assert(type != NULL);
1018 var->type = type;
1019 }
1020
1021 return visit_continue;
1022 }
1023 } v;
1024
1025 v.run(linked->ir);
1026 }
1027
1028 return linked;
1029 }
1030
1031 /**
1032 * Update the sizes of linked shader uniform arrays to the maximum
1033 * array index used.
1034 *
1035 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1036 *
1037 * If one or more elements of an array are active,
1038 * GetActiveUniform will return the name of the array in name,
1039 * subject to the restrictions listed above. The type of the array
1040 * is returned in type. The size parameter contains the highest
1041 * array element index used, plus one. The compiler or linker
1042 * determines the highest index used. There will be only one
1043 * active uniform reported by the GL per uniform array.
1044
1045 */
1046 static void
1047 update_array_sizes(struct gl_shader_program *prog)
1048 {
1049 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1050 if (prog->_LinkedShaders[i] == NULL)
1051 continue;
1052
1053 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1054 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1055
1056 if ((var == NULL) || (var->mode != ir_var_uniform &&
1057 var->mode != ir_var_in &&
1058 var->mode != ir_var_out) ||
1059 !var->type->is_array())
1060 continue;
1061
1062 unsigned int size = var->max_array_access;
1063 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1064 if (prog->_LinkedShaders[j] == NULL)
1065 continue;
1066
1067 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1068 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1069 if (!other_var)
1070 continue;
1071
1072 if (strcmp(var->name, other_var->name) == 0 &&
1073 other_var->max_array_access > size) {
1074 size = other_var->max_array_access;
1075 }
1076 }
1077 }
1078
1079 if (size + 1 != var->type->fields.array->length) {
1080 /* If this is a built-in uniform (i.e., it's backed by some
1081 * fixed-function state), adjust the number of state slots to
1082 * match the new array size. The number of slots per array entry
1083 * is not known. It seems safe to assume that the total number of
1084 * slots is an integer multiple of the number of array elements.
1085 * Determine the number of slots per array element by dividing by
1086 * the old (total) size.
1087 */
1088 if (var->num_state_slots > 0) {
1089 var->num_state_slots = (size + 1)
1090 * (var->num_state_slots / var->type->length);
1091 }
1092
1093 var->type = glsl_type::get_array_instance(var->type->fields.array,
1094 size + 1);
1095 /* FINISHME: We should update the types of array
1096 * dereferences of this variable now.
1097 */
1098 }
1099 }
1100 }
1101 }
1102
1103 /**
1104 * Find a contiguous set of available bits in a bitmask.
1105 *
1106 * \param used_mask Bits representing used (1) and unused (0) locations
1107 * \param needed_count Number of contiguous bits needed.
1108 *
1109 * \return
1110 * Base location of the available bits on success or -1 on failure.
1111 */
1112 int
1113 find_available_slots(unsigned used_mask, unsigned needed_count)
1114 {
1115 unsigned needed_mask = (1 << needed_count) - 1;
1116 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1117
1118 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1119 * cannot optimize possibly infinite loops" for the loop below.
1120 */
1121 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1122 return -1;
1123
1124 for (int i = 0; i <= max_bit_to_test; i++) {
1125 if ((needed_mask & ~used_mask) == needed_mask)
1126 return i;
1127
1128 needed_mask <<= 1;
1129 }
1130
1131 return -1;
1132 }
1133
1134
1135 /**
1136 * Assign locations for either VS inputs for FS outputs
1137 *
1138 * \param prog Shader program whose variables need locations assigned
1139 * \param target_index Selector for the program target to receive location
1140 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1141 * \c MESA_SHADER_FRAGMENT.
1142 * \param max_index Maximum number of generic locations. This corresponds
1143 * to either the maximum number of draw buffers or the
1144 * maximum number of generic attributes.
1145 *
1146 * \return
1147 * If locations are successfully assigned, true is returned. Otherwise an
1148 * error is emitted to the shader link log and false is returned.
1149 */
1150 bool
1151 assign_attribute_or_color_locations(gl_shader_program *prog,
1152 unsigned target_index,
1153 unsigned max_index)
1154 {
1155 /* Mark invalid locations as being used.
1156 */
1157 unsigned used_locations = (max_index >= 32)
1158 ? ~0 : ~((1 << max_index) - 1);
1159
1160 assert((target_index == MESA_SHADER_VERTEX)
1161 || (target_index == MESA_SHADER_FRAGMENT));
1162
1163 gl_shader *const sh = prog->_LinkedShaders[target_index];
1164 if (sh == NULL)
1165 return true;
1166
1167 /* Operate in a total of four passes.
1168 *
1169 * 1. Invalidate the location assignments for all vertex shader inputs.
1170 *
1171 * 2. Assign locations for inputs that have user-defined (via
1172 * glBindVertexAttribLocation) locations and outputs that have
1173 * user-defined locations (via glBindFragDataLocation).
1174 *
1175 * 3. Sort the attributes without assigned locations by number of slots
1176 * required in decreasing order. Fragmentation caused by attribute
1177 * locations assigned by the application may prevent large attributes
1178 * from having enough contiguous space.
1179 *
1180 * 4. Assign locations to any inputs without assigned locations.
1181 */
1182
1183 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1184 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1185
1186 const enum ir_variable_mode direction =
1187 (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1188
1189
1190 link_invalidate_variable_locations(sh, direction, generic_base);
1191
1192 /* Temporary storage for the set of attributes that need locations assigned.
1193 */
1194 struct temp_attr {
1195 unsigned slots;
1196 ir_variable *var;
1197
1198 /* Used below in the call to qsort. */
1199 static int compare(const void *a, const void *b)
1200 {
1201 const temp_attr *const l = (const temp_attr *) a;
1202 const temp_attr *const r = (const temp_attr *) b;
1203
1204 /* Reversed because we want a descending order sort below. */
1205 return r->slots - l->slots;
1206 }
1207 } to_assign[16];
1208
1209 unsigned num_attr = 0;
1210
1211 foreach_list(node, sh->ir) {
1212 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1213
1214 if ((var == NULL) || (var->mode != (unsigned) direction))
1215 continue;
1216
1217 if (var->explicit_location) {
1218 if ((var->location >= (int)(max_index + generic_base))
1219 || (var->location < 0)) {
1220 linker_error(prog,
1221 "invalid explicit location %d specified for `%s'\n",
1222 (var->location < 0)
1223 ? var->location : var->location - generic_base,
1224 var->name);
1225 return false;
1226 }
1227 } else if (target_index == MESA_SHADER_VERTEX) {
1228 unsigned binding;
1229
1230 if (prog->AttributeBindings->get(binding, var->name)) {
1231 assert(binding >= VERT_ATTRIB_GENERIC0);
1232 var->location = binding;
1233 }
1234 } else if (target_index == MESA_SHADER_FRAGMENT) {
1235 unsigned binding;
1236
1237 if (prog->FragDataBindings->get(binding, var->name)) {
1238 assert(binding >= FRAG_RESULT_DATA0);
1239 var->location = binding;
1240 }
1241 }
1242
1243 /* If the variable is not a built-in and has a location statically
1244 * assigned in the shader (presumably via a layout qualifier), make sure
1245 * that it doesn't collide with other assigned locations. Otherwise,
1246 * add it to the list of variables that need linker-assigned locations.
1247 */
1248 const unsigned slots = count_attribute_slots(var->type);
1249 if (var->location != -1) {
1250 if (var->location >= generic_base) {
1251 /* From page 61 of the OpenGL 4.0 spec:
1252 *
1253 * "LinkProgram will fail if the attribute bindings assigned
1254 * by BindAttribLocation do not leave not enough space to
1255 * assign a location for an active matrix attribute or an
1256 * active attribute array, both of which require multiple
1257 * contiguous generic attributes."
1258 *
1259 * Previous versions of the spec contain similar language but omit
1260 * the bit about attribute arrays.
1261 *
1262 * Page 61 of the OpenGL 4.0 spec also says:
1263 *
1264 * "It is possible for an application to bind more than one
1265 * attribute name to the same location. This is referred to as
1266 * aliasing. This will only work if only one of the aliased
1267 * attributes is active in the executable program, or if no
1268 * path through the shader consumes more than one attribute of
1269 * a set of attributes aliased to the same location. A link
1270 * error can occur if the linker determines that every path
1271 * through the shader consumes multiple aliased attributes,
1272 * but implementations are not required to generate an error
1273 * in this case."
1274 *
1275 * These two paragraphs are either somewhat contradictory, or I
1276 * don't fully understand one or both of them.
1277 */
1278 /* FINISHME: The code as currently written does not support
1279 * FINISHME: attribute location aliasing (see comment above).
1280 */
1281 /* Mask representing the contiguous slots that will be used by
1282 * this attribute.
1283 */
1284 const unsigned attr = var->location - generic_base;
1285 const unsigned use_mask = (1 << slots) - 1;
1286
1287 /* Generate a link error if the set of bits requested for this
1288 * attribute overlaps any previously allocated bits.
1289 */
1290 if ((~(use_mask << attr) & used_locations) != used_locations) {
1291 linker_error(prog,
1292 "insufficient contiguous attribute locations "
1293 "available for vertex shader input `%s'",
1294 var->name);
1295 return false;
1296 }
1297
1298 used_locations |= (use_mask << attr);
1299 }
1300
1301 continue;
1302 }
1303
1304 to_assign[num_attr].slots = slots;
1305 to_assign[num_attr].var = var;
1306 num_attr++;
1307 }
1308
1309 /* If all of the attributes were assigned locations by the application (or
1310 * are built-in attributes with fixed locations), return early. This should
1311 * be the common case.
1312 */
1313 if (num_attr == 0)
1314 return true;
1315
1316 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1317
1318 if (target_index == MESA_SHADER_VERTEX) {
1319 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1320 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1321 * reserved to prevent it from being automatically allocated below.
1322 */
1323 find_deref_visitor find("gl_Vertex");
1324 find.run(sh->ir);
1325 if (find.variable_found())
1326 used_locations |= (1 << 0);
1327 }
1328
1329 for (unsigned i = 0; i < num_attr; i++) {
1330 /* Mask representing the contiguous slots that will be used by this
1331 * attribute.
1332 */
1333 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1334
1335 int location = find_available_slots(used_locations, to_assign[i].slots);
1336
1337 if (location < 0) {
1338 const char *const string = (target_index == MESA_SHADER_VERTEX)
1339 ? "vertex shader input" : "fragment shader output";
1340
1341 linker_error(prog,
1342 "insufficient contiguous attribute locations "
1343 "available for %s `%s'",
1344 string, to_assign[i].var->name);
1345 return false;
1346 }
1347
1348 to_assign[i].var->location = generic_base + location;
1349 used_locations |= (use_mask << location);
1350 }
1351
1352 return true;
1353 }
1354
1355
1356 /**
1357 * Demote shader inputs and outputs that are not used in other stages
1358 */
1359 void
1360 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1361 {
1362 foreach_list(node, sh->ir) {
1363 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1364
1365 if ((var == NULL) || (var->mode != int(mode)))
1366 continue;
1367
1368 /* A shader 'in' or 'out' variable is only really an input or output if
1369 * its value is used by other shader stages. This will cause the variable
1370 * to have a location assigned.
1371 */
1372 if (var->location == -1) {
1373 var->mode = ir_var_auto;
1374 }
1375 }
1376 }
1377
1378
1379 /**
1380 * Data structure tracking information about a transform feedback declaration
1381 * during linking.
1382 */
1383 class tfeedback_decl
1384 {
1385 public:
1386 bool init(struct gl_context *ctx, struct gl_shader_program *prog,
1387 const void *mem_ctx, const char *input);
1388 static bool is_same(const tfeedback_decl &x, const tfeedback_decl &y);
1389 bool assign_location(struct gl_context *ctx, struct gl_shader_program *prog,
1390 ir_variable *output_var);
1391 bool store(struct gl_context *ctx, struct gl_shader_program *prog,
1392 struct gl_transform_feedback_info *info, unsigned buffer,
1393 unsigned varying) const;
1394
1395
1396 /**
1397 * True if assign_location() has been called for this object.
1398 */
1399 bool is_assigned() const
1400 {
1401 return this->location != -1;
1402 }
1403
1404 /**
1405 * Determine whether this object refers to the variable var.
1406 */
1407 bool matches_var(ir_variable *var) const
1408 {
1409 if (this->is_clip_distance_mesa)
1410 return strcmp(var->name, "gl_ClipDistanceMESA") == 0;
1411 else
1412 return strcmp(var->name, this->var_name) == 0;
1413 }
1414
1415 /**
1416 * The total number of varying components taken up by this variable. Only
1417 * valid if is_assigned() is true.
1418 */
1419 unsigned num_components() const
1420 {
1421 if (this->is_clip_distance_mesa)
1422 return this->size;
1423 else
1424 return this->vector_elements * this->matrix_columns * this->size;
1425 }
1426
1427 private:
1428 /**
1429 * The name that was supplied to glTransformFeedbackVaryings. Used for
1430 * error reporting and glGetTransformFeedbackVarying().
1431 */
1432 const char *orig_name;
1433
1434 /**
1435 * The name of the variable, parsed from orig_name.
1436 */
1437 const char *var_name;
1438
1439 /**
1440 * True if the declaration in orig_name represents an array.
1441 */
1442 bool is_subscripted;
1443
1444 /**
1445 * If is_subscripted is true, the subscript that was specified in orig_name.
1446 */
1447 unsigned array_subscript;
1448
1449 /**
1450 * True if the variable is gl_ClipDistance and the driver lowers
1451 * gl_ClipDistance to gl_ClipDistanceMESA.
1452 */
1453 bool is_clip_distance_mesa;
1454
1455 /**
1456 * The vertex shader output location that the linker assigned for this
1457 * variable. -1 if a location hasn't been assigned yet.
1458 */
1459 int location;
1460
1461 /**
1462 * If location != -1, the number of vector elements in this variable, or 1
1463 * if this variable is a scalar.
1464 */
1465 unsigned vector_elements;
1466
1467 /**
1468 * If location != -1, the number of matrix columns in this variable, or 1
1469 * if this variable is not a matrix.
1470 */
1471 unsigned matrix_columns;
1472
1473 /** Type of the varying returned by glGetTransformFeedbackVarying() */
1474 GLenum type;
1475
1476 /**
1477 * If location != -1, the size that should be returned by
1478 * glGetTransformFeedbackVarying().
1479 */
1480 unsigned size;
1481 };
1482
1483
1484 /**
1485 * Initialize this object based on a string that was passed to
1486 * glTransformFeedbackVaryings. If there is a parse error, the error is
1487 * reported using linker_error(), and false is returned.
1488 */
1489 bool
1490 tfeedback_decl::init(struct gl_context *ctx, struct gl_shader_program *prog,
1491 const void *mem_ctx, const char *input)
1492 {
1493 /* We don't have to be pedantic about what is a valid GLSL variable name,
1494 * because any variable with an invalid name can't exist in the IR anyway.
1495 */
1496
1497 this->location = -1;
1498 this->orig_name = input;
1499 this->is_clip_distance_mesa = false;
1500
1501 const char *bracket = strrchr(input, '[');
1502
1503 if (bracket) {
1504 this->var_name = ralloc_strndup(mem_ctx, input, bracket - input);
1505 if (sscanf(bracket, "[%u]", &this->array_subscript) != 1) {
1506 linker_error(prog, "Cannot parse transform feedback varying %s", input);
1507 return false;
1508 }
1509 this->is_subscripted = true;
1510 } else {
1511 this->var_name = ralloc_strdup(mem_ctx, input);
1512 this->is_subscripted = false;
1513 }
1514
1515 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
1516 * class must behave specially to account for the fact that gl_ClipDistance
1517 * is converted from a float[8] to a vec4[2].
1518 */
1519 if (ctx->ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
1520 strcmp(this->var_name, "gl_ClipDistance") == 0) {
1521 this->is_clip_distance_mesa = true;
1522 }
1523
1524 return true;
1525 }
1526
1527
1528 /**
1529 * Determine whether two tfeedback_decl objects refer to the same variable and
1530 * array index (if applicable).
1531 */
1532 bool
1533 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
1534 {
1535 if (strcmp(x.var_name, y.var_name) != 0)
1536 return false;
1537 if (x.is_subscripted != y.is_subscripted)
1538 return false;
1539 if (x.is_subscripted && x.array_subscript != y.array_subscript)
1540 return false;
1541 return true;
1542 }
1543
1544
1545 /**
1546 * Assign a location for this tfeedback_decl object based on the location
1547 * assignment in output_var.
1548 *
1549 * If an error occurs, the error is reported through linker_error() and false
1550 * is returned.
1551 */
1552 bool
1553 tfeedback_decl::assign_location(struct gl_context *ctx,
1554 struct gl_shader_program *prog,
1555 ir_variable *output_var)
1556 {
1557 if (output_var->type->is_array()) {
1558 /* Array variable */
1559 const unsigned matrix_cols =
1560 output_var->type->fields.array->matrix_columns;
1561 unsigned actual_array_size = this->is_clip_distance_mesa ?
1562 prog->Vert.ClipDistanceArraySize : output_var->type->array_size();
1563
1564 if (this->is_subscripted) {
1565 /* Check array bounds. */
1566 if (this->array_subscript >= actual_array_size) {
1567 linker_error(prog, "Transform feedback varying %s has index "
1568 "%i, but the array size is %u.",
1569 this->orig_name, this->array_subscript,
1570 actual_array_size);
1571 return false;
1572 }
1573 if (this->is_clip_distance_mesa) {
1574 this->location =
1575 output_var->location + this->array_subscript / 4;
1576 } else {
1577 this->location =
1578 output_var->location + this->array_subscript * matrix_cols;
1579 }
1580 this->size = 1;
1581 } else {
1582 this->location = output_var->location;
1583 this->size = actual_array_size;
1584 }
1585 this->vector_elements = output_var->type->fields.array->vector_elements;
1586 this->matrix_columns = matrix_cols;
1587 if (this->is_clip_distance_mesa)
1588 this->type = GL_FLOAT;
1589 else
1590 this->type = output_var->type->fields.array->gl_type;
1591 } else {
1592 /* Regular variable (scalar, vector, or matrix) */
1593 if (this->is_subscripted) {
1594 linker_error(prog, "Transform feedback varying %s requested, "
1595 "but %s is not an array.",
1596 this->orig_name, this->var_name);
1597 return false;
1598 }
1599 this->location = output_var->location;
1600 this->size = 1;
1601 this->vector_elements = output_var->type->vector_elements;
1602 this->matrix_columns = output_var->type->matrix_columns;
1603 this->type = output_var->type->gl_type;
1604 }
1605
1606 /* From GL_EXT_transform_feedback:
1607 * A program will fail to link if:
1608 *
1609 * * the total number of components to capture in any varying
1610 * variable in <varyings> is greater than the constant
1611 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
1612 * buffer mode is SEPARATE_ATTRIBS_EXT;
1613 */
1614 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1615 this->num_components() >
1616 ctx->Const.MaxTransformFeedbackSeparateComponents) {
1617 linker_error(prog, "Transform feedback varying %s exceeds "
1618 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
1619 this->orig_name);
1620 return false;
1621 }
1622
1623 return true;
1624 }
1625
1626
1627 /**
1628 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1629 *
1630 * If an error occurs, the error is reported through linker_error() and false
1631 * is returned.
1632 */
1633 bool
1634 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
1635 struct gl_transform_feedback_info *info,
1636 unsigned buffer, unsigned varying) const
1637 {
1638 if (!this->is_assigned()) {
1639 /* From GL_EXT_transform_feedback:
1640 * A program will fail to link if:
1641 *
1642 * * any variable name specified in the <varyings> array is not
1643 * declared as an output in the geometry shader (if present) or
1644 * the vertex shader (if no geometry shader is present);
1645 */
1646 linker_error(prog, "Transform feedback varying %s undeclared.",
1647 this->orig_name);
1648 return false;
1649 }
1650
1651 /* From GL_EXT_transform_feedback:
1652 * A program will fail to link if:
1653 *
1654 * * the total number of components to capture is greater than
1655 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1656 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
1657 */
1658 if (prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS &&
1659 info->BufferStride[buffer] + this->num_components() >
1660 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1661 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1662 "limit has been exceeded.");
1663 return false;
1664 }
1665
1666 /* Verify that the checks on MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS
1667 * and MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS are sufficient to prevent
1668 * overflow of info->Outputs[]. In worst case we generate one entry in
1669 * Outputs[] per component so a conservative check is to verify that the
1670 * size of the array is greater than or equal to both
1671 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and
1672 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.
1673 */
1674 assert(Elements(info->Outputs) >=
1675 ctx->Const.MaxTransformFeedbackInterleavedComponents);
1676 assert(Elements(info->Outputs) >=
1677 ctx->Const.MaxTransformFeedbackSeparateComponents);
1678
1679 unsigned translated_size = this->size;
1680 if (this->is_clip_distance_mesa)
1681 translated_size = (translated_size + 3) / 4;
1682 unsigned components_so_far = 0;
1683 for (unsigned index = 0; index < translated_size; ++index) {
1684 for (unsigned v = 0; v < this->matrix_columns; ++v) {
1685 unsigned num_components = this->vector_elements;
1686 info->Outputs[info->NumOutputs].ComponentOffset = 0;
1687 if (this->is_clip_distance_mesa) {
1688 if (this->is_subscripted) {
1689 num_components = 1;
1690 info->Outputs[info->NumOutputs].ComponentOffset =
1691 this->array_subscript % 4;
1692 } else {
1693 num_components = MIN2(4, this->size - components_so_far);
1694 }
1695 }
1696 info->Outputs[info->NumOutputs].OutputRegister =
1697 this->location + v + index * this->matrix_columns;
1698 info->Outputs[info->NumOutputs].NumComponents = num_components;
1699 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1700 info->Outputs[info->NumOutputs].DstOffset = info->BufferStride[buffer];
1701 ++info->NumOutputs;
1702 info->BufferStride[buffer] += num_components;
1703 components_so_far += num_components;
1704 }
1705 }
1706 assert(components_so_far == this->num_components());
1707
1708 info->Varyings[varying].Name = ralloc_strdup(prog, this->orig_name);
1709 info->Varyings[varying].Type = this->type;
1710 info->Varyings[varying].Size = this->size;
1711 info->NumVarying++;
1712
1713 return true;
1714 }
1715
1716
1717 /**
1718 * Parse all the transform feedback declarations that were passed to
1719 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1720 *
1721 * If an error occurs, the error is reported through linker_error() and false
1722 * is returned.
1723 */
1724 static bool
1725 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1726 const void *mem_ctx, unsigned num_names,
1727 char **varying_names, tfeedback_decl *decls)
1728 {
1729 for (unsigned i = 0; i < num_names; ++i) {
1730 if (!decls[i].init(ctx, prog, mem_ctx, varying_names[i]))
1731 return false;
1732 /* From GL_EXT_transform_feedback:
1733 * A program will fail to link if:
1734 *
1735 * * any two entries in the <varyings> array specify the same varying
1736 * variable;
1737 *
1738 * We interpret this to mean "any two entries in the <varyings> array
1739 * specify the same varying variable and array index", since transform
1740 * feedback of arrays would be useless otherwise.
1741 */
1742 for (unsigned j = 0; j < i; ++j) {
1743 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1744 linker_error(prog, "Transform feedback varying %s specified "
1745 "more than once.", varying_names[i]);
1746 return false;
1747 }
1748 }
1749 }
1750 return true;
1751 }
1752
1753
1754 /**
1755 * Assign a location for a variable that is produced in one pipeline stage
1756 * (the "producer") and consumed in the next stage (the "consumer").
1757 *
1758 * \param input_var is the input variable declaration in the consumer.
1759 *
1760 * \param output_var is the output variable declaration in the producer.
1761 *
1762 * \param input_index is the counter that keeps track of assigned input
1763 * locations in the consumer.
1764 *
1765 * \param output_index is the counter that keeps track of assigned output
1766 * locations in the producer.
1767 *
1768 * It is permissible for \c input_var to be NULL (this happens if a variable
1769 * is output by the producer and consumed by transform feedback, but not
1770 * consumed by the consumer).
1771 *
1772 * If the variable has already been assigned a location, this function has no
1773 * effect.
1774 */
1775 void
1776 assign_varying_location(ir_variable *input_var, ir_variable *output_var,
1777 unsigned *input_index, unsigned *output_index)
1778 {
1779 if (output_var->location != -1) {
1780 /* Location already assigned. */
1781 return;
1782 }
1783
1784 if (input_var) {
1785 assert(input_var->location == -1);
1786 input_var->location = *input_index;
1787 }
1788
1789 output_var->location = *output_index;
1790
1791 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1792 assert(!output_var->type->is_record());
1793
1794 if (output_var->type->is_array()) {
1795 const unsigned slots = output_var->type->length
1796 * output_var->type->fields.array->matrix_columns;
1797
1798 *output_index += slots;
1799 *input_index += slots;
1800 } else {
1801 const unsigned slots = output_var->type->matrix_columns;
1802
1803 *output_index += slots;
1804 *input_index += slots;
1805 }
1806 }
1807
1808
1809 /**
1810 * Assign locations for all variables that are produced in one pipeline stage
1811 * (the "producer") and consumed in the next stage (the "consumer").
1812 *
1813 * Variables produced by the producer may also be consumed by transform
1814 * feedback.
1815 *
1816 * \param num_tfeedback_decls is the number of declarations indicating
1817 * variables that may be consumed by transform feedback.
1818 *
1819 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1820 * representing the result of parsing the strings passed to
1821 * glTransformFeedbackVaryings(). assign_location() will be called for
1822 * each of these objects that matches one of the outputs of the
1823 * producer.
1824 *
1825 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1826 * be NULL. In this case, varying locations are assigned solely based on the
1827 * requirements of transform feedback.
1828 */
1829 bool
1830 assign_varying_locations(struct gl_context *ctx,
1831 struct gl_shader_program *prog,
1832 gl_shader *producer, gl_shader *consumer,
1833 unsigned num_tfeedback_decls,
1834 tfeedback_decl *tfeedback_decls)
1835 {
1836 /* FINISHME: Set dynamically when geometry shader support is added. */
1837 unsigned output_index = VERT_RESULT_VAR0;
1838 unsigned input_index = FRAG_ATTRIB_VAR0;
1839
1840 /* Operate in a total of three passes.
1841 *
1842 * 1. Assign locations for any matching inputs and outputs.
1843 *
1844 * 2. Mark output variables in the producer that do not have locations as
1845 * not being outputs. This lets the optimizer eliminate them.
1846 *
1847 * 3. Mark input variables in the consumer that do not have locations as
1848 * not being inputs. This lets the optimizer eliminate them.
1849 */
1850
1851 link_invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1852 if (consumer)
1853 link_invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1854
1855 foreach_list(node, producer->ir) {
1856 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1857
1858 if ((output_var == NULL) || (output_var->mode != ir_var_out))
1859 continue;
1860
1861 ir_variable *input_var =
1862 consumer ? consumer->symbols->get_variable(output_var->name) : NULL;
1863
1864 if (input_var && input_var->mode != ir_var_in)
1865 input_var = NULL;
1866
1867 if (input_var) {
1868 assign_varying_location(input_var, output_var, &input_index,
1869 &output_index);
1870 }
1871
1872 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1873 if (!tfeedback_decls[i].is_assigned() &&
1874 tfeedback_decls[i].matches_var(output_var)) {
1875 if (output_var->location == -1) {
1876 assign_varying_location(input_var, output_var, &input_index,
1877 &output_index);
1878 }
1879 if (!tfeedback_decls[i].assign_location(ctx, prog, output_var))
1880 return false;
1881 }
1882 }
1883 }
1884
1885 unsigned varying_vectors = 0;
1886
1887 if (consumer) {
1888 foreach_list(node, consumer->ir) {
1889 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1890
1891 if ((var == NULL) || (var->mode != ir_var_in))
1892 continue;
1893
1894 if (var->location == -1) {
1895 if (prog->Version <= 120) {
1896 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1897 *
1898 * Only those varying variables used (i.e. read) in
1899 * the fragment shader executable must be written to
1900 * by the vertex shader executable; declaring
1901 * superfluous varying variables in a vertex shader is
1902 * permissible.
1903 *
1904 * We interpret this text as meaning that the VS must
1905 * write the variable for the FS to read it. See
1906 * "glsl1-varying read but not written" in piglit.
1907 */
1908
1909 linker_error(prog, "fragment shader varying %s not written "
1910 "by vertex shader\n.", var->name);
1911 }
1912
1913 /* An 'in' variable is only really a shader input if its
1914 * value is written by the previous stage.
1915 */
1916 var->mode = ir_var_auto;
1917 } else {
1918 /* The packing rules are used for vertex shader inputs are also
1919 * used for fragment shader inputs.
1920 */
1921 varying_vectors += count_attribute_slots(var->type);
1922 }
1923 }
1924 }
1925
1926 if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
1927 if (varying_vectors > ctx->Const.MaxVarying) {
1928 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
1929 linker_warning(prog, "shader uses too many varying vectors "
1930 "(%u > %u), but the driver will try to optimize "
1931 "them out; this is non-portable out-of-spec "
1932 "behavior\n",
1933 varying_vectors, ctx->Const.MaxVarying);
1934 } else {
1935 linker_error(prog, "shader uses too many varying vectors "
1936 "(%u > %u)\n",
1937 varying_vectors, ctx->Const.MaxVarying);
1938 return false;
1939 }
1940 }
1941 } else {
1942 const unsigned float_components = varying_vectors * 4;
1943 if (float_components > ctx->Const.MaxVarying * 4) {
1944 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
1945 linker_warning(prog, "shader uses too many varying components "
1946 "(%u > %u), but the driver will try to optimize "
1947 "them out; this is non-portable out-of-spec "
1948 "behavior\n",
1949 float_components, ctx->Const.MaxVarying * 4);
1950 } else {
1951 linker_error(prog, "shader uses too many varying components "
1952 "(%u > %u)\n",
1953 float_components, ctx->Const.MaxVarying * 4);
1954 return false;
1955 }
1956 }
1957 }
1958
1959 return true;
1960 }
1961
1962
1963 /**
1964 * Store transform feedback location assignments into
1965 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1966 *
1967 * If an error occurs, the error is reported through linker_error() and false
1968 * is returned.
1969 */
1970 static bool
1971 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1972 unsigned num_tfeedback_decls,
1973 tfeedback_decl *tfeedback_decls)
1974 {
1975 bool separate_attribs_mode =
1976 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
1977
1978 ralloc_free(prog->LinkedTransformFeedback.Varyings);
1979
1980 memset(&prog->LinkedTransformFeedback, 0,
1981 sizeof(prog->LinkedTransformFeedback));
1982
1983 prog->LinkedTransformFeedback.NumBuffers =
1984 separate_attribs_mode ? num_tfeedback_decls : 1;
1985
1986 prog->LinkedTransformFeedback.Varyings =
1987 rzalloc_array(prog->LinkedTransformFeedback.Varyings,
1988 struct gl_transform_feedback_varying_info,
1989 num_tfeedback_decls);
1990
1991 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1992 unsigned buffer = separate_attribs_mode ? i : 0;
1993 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
1994 buffer, i))
1995 return false;
1996 }
1997
1998 return true;
1999 }
2000
2001 /**
2002 * Store the gl_FragDepth layout in the gl_shader_program struct.
2003 */
2004 static void
2005 store_fragdepth_layout(struct gl_shader_program *prog)
2006 {
2007 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2008 return;
2009 }
2010
2011 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2012
2013 /* We don't look up the gl_FragDepth symbol directly because if
2014 * gl_FragDepth is not used in the shader, it's removed from the IR.
2015 * However, the symbol won't be removed from the symbol table.
2016 *
2017 * We're only interested in the cases where the variable is NOT removed
2018 * from the IR.
2019 */
2020 foreach_list(node, ir) {
2021 ir_variable *const var = ((ir_instruction *) node)->as_variable();
2022
2023 if (var == NULL || var->mode != ir_var_out) {
2024 continue;
2025 }
2026
2027 if (strcmp(var->name, "gl_FragDepth") == 0) {
2028 switch (var->depth_layout) {
2029 case ir_depth_layout_none:
2030 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2031 return;
2032 case ir_depth_layout_any:
2033 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2034 return;
2035 case ir_depth_layout_greater:
2036 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2037 return;
2038 case ir_depth_layout_less:
2039 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2040 return;
2041 case ir_depth_layout_unchanged:
2042 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2043 return;
2044 default:
2045 assert(0);
2046 return;
2047 }
2048 }
2049 }
2050 }
2051
2052 /**
2053 * Validate the resources used by a program versus the implementation limits
2054 */
2055 static bool
2056 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2057 {
2058 static const char *const shader_names[MESA_SHADER_TYPES] = {
2059 "vertex", "fragment", "geometry"
2060 };
2061
2062 const unsigned max_samplers[MESA_SHADER_TYPES] = {
2063 ctx->Const.MaxVertexTextureImageUnits,
2064 ctx->Const.MaxTextureImageUnits,
2065 ctx->Const.MaxGeometryTextureImageUnits
2066 };
2067
2068 const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
2069 ctx->Const.VertexProgram.MaxUniformComponents,
2070 ctx->Const.FragmentProgram.MaxUniformComponents,
2071 0 /* FINISHME: Geometry shaders. */
2072 };
2073
2074 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2075 struct gl_shader *sh = prog->_LinkedShaders[i];
2076
2077 if (sh == NULL)
2078 continue;
2079
2080 if (sh->num_samplers > max_samplers[i]) {
2081 linker_error(prog, "Too many %s shader texture samplers",
2082 shader_names[i]);
2083 }
2084
2085 if (sh->num_uniform_components > max_uniform_components[i]) {
2086 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2087 linker_warning(prog, "Too many %s shader uniform components, "
2088 "but the driver will try to optimize them out; "
2089 "this is non-portable out-of-spec behavior\n",
2090 shader_names[i]);
2091 } else {
2092 linker_error(prog, "Too many %s shader uniform components",
2093 shader_names[i]);
2094 }
2095 }
2096 }
2097
2098 return prog->LinkStatus;
2099 }
2100
2101 void
2102 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2103 {
2104 tfeedback_decl *tfeedback_decls = NULL;
2105 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2106
2107 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2108
2109 prog->LinkStatus = false;
2110 prog->Validated = false;
2111 prog->_Used = false;
2112
2113 if (prog->InfoLog != NULL)
2114 ralloc_free(prog->InfoLog);
2115
2116 prog->InfoLog = ralloc_strdup(NULL, "");
2117
2118 /* Separate the shaders into groups based on their type.
2119 */
2120 struct gl_shader **vert_shader_list;
2121 unsigned num_vert_shaders = 0;
2122 struct gl_shader **frag_shader_list;
2123 unsigned num_frag_shaders = 0;
2124
2125 vert_shader_list = (struct gl_shader **)
2126 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
2127 frag_shader_list = &vert_shader_list[prog->NumShaders];
2128
2129 unsigned min_version = UINT_MAX;
2130 unsigned max_version = 0;
2131 for (unsigned i = 0; i < prog->NumShaders; i++) {
2132 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2133 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2134
2135 switch (prog->Shaders[i]->Type) {
2136 case GL_VERTEX_SHADER:
2137 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
2138 num_vert_shaders++;
2139 break;
2140 case GL_FRAGMENT_SHADER:
2141 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
2142 num_frag_shaders++;
2143 break;
2144 case GL_GEOMETRY_SHADER:
2145 /* FINISHME: Support geometry shaders. */
2146 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
2147 break;
2148 }
2149 }
2150
2151 /* Previous to GLSL version 1.30, different compilation units could mix and
2152 * match shading language versions. With GLSL 1.30 and later, the versions
2153 * of all shaders must match.
2154 */
2155 assert(min_version >= 100);
2156 assert(max_version <= 130);
2157 if ((max_version >= 130 || min_version == 100)
2158 && min_version != max_version) {
2159 linker_error(prog, "all shaders must use same shading "
2160 "language version\n");
2161 goto done;
2162 }
2163
2164 prog->Version = max_version;
2165
2166 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2167 if (prog->_LinkedShaders[i] != NULL)
2168 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2169
2170 prog->_LinkedShaders[i] = NULL;
2171 }
2172
2173 /* Link all shaders for a particular stage and validate the result.
2174 */
2175 if (num_vert_shaders > 0) {
2176 gl_shader *const sh =
2177 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
2178 num_vert_shaders);
2179
2180 if (sh == NULL)
2181 goto done;
2182
2183 if (!validate_vertex_shader_executable(prog, sh))
2184 goto done;
2185
2186 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
2187 sh);
2188 }
2189
2190 if (num_frag_shaders > 0) {
2191 gl_shader *const sh =
2192 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
2193 num_frag_shaders);
2194
2195 if (sh == NULL)
2196 goto done;
2197
2198 if (!validate_fragment_shader_executable(prog, sh))
2199 goto done;
2200
2201 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
2202 sh);
2203 }
2204
2205 /* Here begins the inter-stage linking phase. Some initial validation is
2206 * performed, then locations are assigned for uniforms, attributes, and
2207 * varyings.
2208 */
2209 if (cross_validate_uniforms(prog)) {
2210 unsigned prev;
2211
2212 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2213 if (prog->_LinkedShaders[prev] != NULL)
2214 break;
2215 }
2216
2217 /* Validate the inputs of each stage with the output of the preceding
2218 * stage.
2219 */
2220 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2221 if (prog->_LinkedShaders[i] == NULL)
2222 continue;
2223
2224 if (!cross_validate_outputs_to_inputs(prog,
2225 prog->_LinkedShaders[prev],
2226 prog->_LinkedShaders[i]))
2227 goto done;
2228
2229 prev = i;
2230 }
2231
2232 prog->LinkStatus = true;
2233 }
2234
2235 /* Do common optimization before assigning storage for attributes,
2236 * uniforms, and varyings. Later optimization could possibly make
2237 * some of that unused.
2238 */
2239 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2240 if (prog->_LinkedShaders[i] == NULL)
2241 continue;
2242
2243 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2244 if (!prog->LinkStatus)
2245 goto done;
2246
2247 if (ctx->ShaderCompilerOptions[i].LowerClipDistance)
2248 lower_clip_distance(prog->_LinkedShaders[i]->ir);
2249
2250 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, 32))
2251 ;
2252 }
2253
2254 /* FINISHME: The value of the max_attribute_index parameter is
2255 * FINISHME: implementation dependent based on the value of
2256 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2257 * FINISHME: at least 16, so hardcode 16 for now.
2258 */
2259 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2260 goto done;
2261 }
2262
2263 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, ctx->Const.MaxDrawBuffers)) {
2264 goto done;
2265 }
2266
2267 unsigned prev;
2268 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2269 if (prog->_LinkedShaders[prev] != NULL)
2270 break;
2271 }
2272
2273 if (num_tfeedback_decls != 0) {
2274 /* From GL_EXT_transform_feedback:
2275 * A program will fail to link if:
2276 *
2277 * * the <count> specified by TransformFeedbackVaryingsEXT is
2278 * non-zero, but the program object has no vertex or geometry
2279 * shader;
2280 */
2281 if (prev >= MESA_SHADER_FRAGMENT) {
2282 linker_error(prog, "Transform feedback varyings specified, but "
2283 "no vertex or geometry shader is present.");
2284 goto done;
2285 }
2286
2287 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2288 prog->TransformFeedback.NumVarying);
2289 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2290 prog->TransformFeedback.VaryingNames,
2291 tfeedback_decls))
2292 goto done;
2293 }
2294
2295 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2296 if (prog->_LinkedShaders[i] == NULL)
2297 continue;
2298
2299 if (!assign_varying_locations(
2300 ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
2301 i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2302 tfeedback_decls))
2303 goto done;
2304
2305 prev = i;
2306 }
2307
2308 if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
2309 /* There was no fragment shader, but we still have to assign varying
2310 * locations for use by transform feedback.
2311 */
2312 if (!assign_varying_locations(
2313 ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
2314 tfeedback_decls))
2315 goto done;
2316 }
2317
2318 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2319 goto done;
2320
2321 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2322 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
2323 ir_var_out);
2324
2325 /* Eliminate code that is now dead due to unused vertex outputs being
2326 * demoted.
2327 */
2328 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
2329 ;
2330 }
2331
2332 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2333 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
2334
2335 demote_shader_inputs_and_outputs(sh, ir_var_in);
2336 demote_shader_inputs_and_outputs(sh, ir_var_inout);
2337 demote_shader_inputs_and_outputs(sh, ir_var_out);
2338
2339 /* Eliminate code that is now dead due to unused geometry outputs being
2340 * demoted.
2341 */
2342 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
2343 ;
2344 }
2345
2346 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2347 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2348
2349 demote_shader_inputs_and_outputs(sh, ir_var_in);
2350
2351 /* Eliminate code that is now dead due to unused fragment inputs being
2352 * demoted. This shouldn't actually do anything other than remove
2353 * declarations of the (now unused) global variables.
2354 */
2355 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
2356 ;
2357 }
2358
2359 update_array_sizes(prog);
2360 link_assign_uniform_locations(prog);
2361 store_fragdepth_layout(prog);
2362
2363 if (!check_resources(ctx, prog))
2364 goto done;
2365
2366 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2367 * present in a linked program. By checking for use of shading language
2368 * version 1.00, we also catch the GL_ARB_ES2_compatibility case.
2369 */
2370 if (!prog->InternalSeparateShader &&
2371 (ctx->API == API_OPENGLES2 || prog->Version == 100)) {
2372 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2373 linker_error(prog, "program lacks a vertex shader\n");
2374 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2375 linker_error(prog, "program lacks a fragment shader\n");
2376 }
2377 }
2378
2379 /* FINISHME: Assign fragment shader output locations. */
2380
2381 done:
2382 free(vert_shader_list);
2383
2384 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2385 if (prog->_LinkedShaders[i] == NULL)
2386 continue;
2387
2388 /* Retain any live IR, but trash the rest. */
2389 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2390
2391 /* The symbol table in the linked shaders may contain references to
2392 * variables that were removed (e.g., unused uniforms). Since it may
2393 * contain junk, there is no possible valid use. Delete it and set the
2394 * pointer to NULL.
2395 */
2396 delete prog->_LinkedShaders[i]->symbols;
2397 prog->_LinkedShaders[i]->symbols = NULL;
2398 }
2399
2400 ralloc_free(mem_ctx);
2401 }