Convert everything from the talloc API to the ralloc API.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66 #include <cstdlib>
67 #include <cstdio>
68 #include <cstdarg>
69 #include <climits>
70
71 #include "main/core.h"
72 #include "glsl_symbol_table.h"
73 #include "ir.h"
74 #include "program.h"
75 #include "program/hash_table.h"
76 #include "linker.h"
77 #include "ir_optimization.h"
78
79 extern "C" {
80 #include "main/shaderobj.h"
81 }
82
83 /**
84 * Visitor that determines whether or not a variable is ever written.
85 */
86 class find_assignment_visitor : public ir_hierarchical_visitor {
87 public:
88 find_assignment_visitor(const char *name)
89 : name(name), found(false)
90 {
91 /* empty */
92 }
93
94 virtual ir_visitor_status visit_enter(ir_assignment *ir)
95 {
96 ir_variable *const var = ir->lhs->variable_referenced();
97
98 if (strcmp(name, var->name) == 0) {
99 found = true;
100 return visit_stop;
101 }
102
103 return visit_continue_with_parent;
104 }
105
106 virtual ir_visitor_status visit_enter(ir_call *ir)
107 {
108 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
109 foreach_iter(exec_list_iterator, iter, *ir) {
110 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
111 ir_variable *sig_param = (ir_variable *)sig_iter.get();
112
113 if (sig_param->mode == ir_var_out ||
114 sig_param->mode == ir_var_inout) {
115 ir_variable *var = param_rval->variable_referenced();
116 if (var && strcmp(name, var->name) == 0) {
117 found = true;
118 return visit_stop;
119 }
120 }
121 sig_iter.next();
122 }
123
124 return visit_continue_with_parent;
125 }
126
127 bool variable_found()
128 {
129 return found;
130 }
131
132 private:
133 const char *name; /**< Find writes to a variable with this name. */
134 bool found; /**< Was a write to the variable found? */
135 };
136
137
138 /**
139 * Visitor that determines whether or not a variable is ever read.
140 */
141 class find_deref_visitor : public ir_hierarchical_visitor {
142 public:
143 find_deref_visitor(const char *name)
144 : name(name), found(false)
145 {
146 /* empty */
147 }
148
149 virtual ir_visitor_status visit(ir_dereference_variable *ir)
150 {
151 if (strcmp(this->name, ir->var->name) == 0) {
152 this->found = true;
153 return visit_stop;
154 }
155
156 return visit_continue;
157 }
158
159 bool variable_found() const
160 {
161 return this->found;
162 }
163
164 private:
165 const char *name; /**< Find writes to a variable with this name. */
166 bool found; /**< Was a write to the variable found? */
167 };
168
169
170 void
171 linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
172 {
173 va_list ap;
174
175 ralloc_strcat(&prog->InfoLog, "error: ");
176 va_start(ap, fmt);
177 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
178 va_end(ap);
179 }
180
181
182 void
183 invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
184 int generic_base)
185 {
186 foreach_list(node, sh->ir) {
187 ir_variable *const var = ((ir_instruction *) node)->as_variable();
188
189 if ((var == NULL) || (var->mode != (unsigned) mode))
190 continue;
191
192 /* Only assign locations for generic attributes / varyings / etc.
193 */
194 if ((var->location >= generic_base) && !var->explicit_location)
195 var->location = -1;
196 }
197 }
198
199
200 /**
201 * Determine the number of attribute slots required for a particular type
202 *
203 * This code is here because it implements the language rules of a specific
204 * GLSL version. Since it's a property of the language and not a property of
205 * types in general, it doesn't really belong in glsl_type.
206 */
207 unsigned
208 count_attribute_slots(const glsl_type *t)
209 {
210 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
211 *
212 * "A scalar input counts the same amount against this limit as a vec4,
213 * so applications may want to consider packing groups of four
214 * unrelated float inputs together into a vector to better utilize the
215 * capabilities of the underlying hardware. A matrix input will use up
216 * multiple locations. The number of locations used will equal the
217 * number of columns in the matrix."
218 *
219 * The spec does not explicitly say how arrays are counted. However, it
220 * should be safe to assume the total number of slots consumed by an array
221 * is the number of entries in the array multiplied by the number of slots
222 * consumed by a single element of the array.
223 */
224
225 if (t->is_array())
226 return t->array_size() * count_attribute_slots(t->element_type());
227
228 if (t->is_matrix())
229 return t->matrix_columns;
230
231 return 1;
232 }
233
234
235 /**
236 * Verify that a vertex shader executable meets all semantic requirements
237 *
238 * \param shader Vertex shader executable to be verified
239 */
240 bool
241 validate_vertex_shader_executable(struct gl_shader_program *prog,
242 struct gl_shader *shader)
243 {
244 if (shader == NULL)
245 return true;
246
247 find_assignment_visitor find("gl_Position");
248 find.run(shader->ir);
249 if (!find.variable_found()) {
250 linker_error_printf(prog,
251 "vertex shader does not write to `gl_Position'\n");
252 return false;
253 }
254
255 return true;
256 }
257
258
259 /**
260 * Verify that a fragment shader executable meets all semantic requirements
261 *
262 * \param shader Fragment shader executable to be verified
263 */
264 bool
265 validate_fragment_shader_executable(struct gl_shader_program *prog,
266 struct gl_shader *shader)
267 {
268 if (shader == NULL)
269 return true;
270
271 find_assignment_visitor frag_color("gl_FragColor");
272 find_assignment_visitor frag_data("gl_FragData");
273
274 frag_color.run(shader->ir);
275 frag_data.run(shader->ir);
276
277 if (frag_color.variable_found() && frag_data.variable_found()) {
278 linker_error_printf(prog, "fragment shader writes to both "
279 "`gl_FragColor' and `gl_FragData'\n");
280 return false;
281 }
282
283 return true;
284 }
285
286
287 /**
288 * Generate a string describing the mode of a variable
289 */
290 static const char *
291 mode_string(const ir_variable *var)
292 {
293 switch (var->mode) {
294 case ir_var_auto:
295 return (var->read_only) ? "global constant" : "global variable";
296
297 case ir_var_uniform: return "uniform";
298 case ir_var_in: return "shader input";
299 case ir_var_out: return "shader output";
300 case ir_var_inout: return "shader inout";
301
302 case ir_var_temporary:
303 default:
304 assert(!"Should not get here.");
305 return "invalid variable";
306 }
307 }
308
309
310 /**
311 * Perform validation of global variables used across multiple shaders
312 */
313 bool
314 cross_validate_globals(struct gl_shader_program *prog,
315 struct gl_shader **shader_list,
316 unsigned num_shaders,
317 bool uniforms_only)
318 {
319 /* Examine all of the uniforms in all of the shaders and cross validate
320 * them.
321 */
322 glsl_symbol_table variables;
323 for (unsigned i = 0; i < num_shaders; i++) {
324 if (shader_list[i] == NULL)
325 continue;
326
327 foreach_list(node, shader_list[i]->ir) {
328 ir_variable *const var = ((ir_instruction *) node)->as_variable();
329
330 if (var == NULL)
331 continue;
332
333 if (uniforms_only && (var->mode != ir_var_uniform))
334 continue;
335
336 /* Don't cross validate temporaries that are at global scope. These
337 * will eventually get pulled into the shaders 'main'.
338 */
339 if (var->mode == ir_var_temporary)
340 continue;
341
342 /* If a global with this name has already been seen, verify that the
343 * new instance has the same type. In addition, if the globals have
344 * initializers, the values of the initializers must be the same.
345 */
346 ir_variable *const existing = variables.get_variable(var->name);
347 if (existing != NULL) {
348 if (var->type != existing->type) {
349 /* Consider the types to be "the same" if both types are arrays
350 * of the same type and one of the arrays is implicitly sized.
351 * In addition, set the type of the linked variable to the
352 * explicitly sized array.
353 */
354 if (var->type->is_array()
355 && existing->type->is_array()
356 && (var->type->fields.array == existing->type->fields.array)
357 && ((var->type->length == 0)
358 || (existing->type->length == 0))) {
359 if (var->type->length != 0) {
360 existing->type = var->type;
361 }
362 } else {
363 linker_error_printf(prog, "%s `%s' declared as type "
364 "`%s' and type `%s'\n",
365 mode_string(var),
366 var->name, var->type->name,
367 existing->type->name);
368 return false;
369 }
370 }
371
372 if (var->explicit_location) {
373 if (existing->explicit_location
374 && (var->location != existing->location)) {
375 linker_error_printf(prog, "explicit locations for %s "
376 "`%s' have differing values\n",
377 mode_string(var), var->name);
378 return false;
379 }
380
381 existing->location = var->location;
382 existing->explicit_location = true;
383 }
384
385 /* Validate layout qualifiers for gl_FragDepth.
386 *
387 * From the AMD_conservative_depth spec:
388 * "If gl_FragDepth is redeclared in any fragment shader in
389 * a program, it must be redeclared in all fragment shaders in that
390 * program that have static assignments to gl_FragDepth. All
391 * redeclarations of gl_FragDepth in all fragment shaders in
392 * a single program must have the same set of qualifiers."
393 */
394 if (strcmp(var->name, "gl_FragDepth") == 0) {
395 bool layout_declared = var->depth_layout != ir_depth_layout_none;
396 bool layout_differs = var->depth_layout != existing->depth_layout;
397 if (layout_declared && layout_differs) {
398 linker_error_printf(prog,
399 "All redeclarations of gl_FragDepth in all fragment shaders "
400 "in a single program must have the same set of qualifiers.");
401 }
402 if (var->used && layout_differs) {
403 linker_error_printf(prog,
404 "If gl_FragDepth is redeclared with a layout qualifier in"
405 "any fragment shader, it must be redeclared with the same"
406 "layout qualifier in all fragment shaders that have"
407 "assignments to gl_FragDepth");
408 }
409 }
410
411 /* FINISHME: Handle non-constant initializers.
412 */
413 if (var->constant_value != NULL) {
414 if (existing->constant_value != NULL) {
415 if (!var->constant_value->has_value(existing->constant_value)) {
416 linker_error_printf(prog, "initializers for %s "
417 "`%s' have differing values\n",
418 mode_string(var), var->name);
419 return false;
420 }
421 } else
422 /* If the first-seen instance of a particular uniform did not
423 * have an initializer but a later instance does, copy the
424 * initializer to the version stored in the symbol table.
425 */
426 /* FINISHME: This is wrong. The constant_value field should
427 * FINISHME: not be modified! Imagine a case where a shader
428 * FINISHME: without an initializer is linked in two different
429 * FINISHME: programs with shaders that have differing
430 * FINISHME: initializers. Linking with the first will
431 * FINISHME: modify the shader, and linking with the second
432 * FINISHME: will fail.
433 */
434 existing->constant_value =
435 var->constant_value->clone(ralloc_parent(existing), NULL);
436 }
437
438 if (existing->invariant != var->invariant) {
439 linker_error_printf(prog, "declarations for %s `%s' have "
440 "mismatching invariant qualifiers\n",
441 mode_string(var), var->name);
442 return false;
443 }
444 if (existing->centroid != var->centroid) {
445 linker_error_printf(prog, "declarations for %s `%s' have "
446 "mismatching centroid qualifiers\n",
447 mode_string(var), var->name);
448 return false;
449 }
450 } else
451 variables.add_variable(var);
452 }
453 }
454
455 return true;
456 }
457
458
459 /**
460 * Perform validation of uniforms used across multiple shader stages
461 */
462 bool
463 cross_validate_uniforms(struct gl_shader_program *prog)
464 {
465 return cross_validate_globals(prog, prog->_LinkedShaders,
466 MESA_SHADER_TYPES, true);
467 }
468
469
470 /**
471 * Validate that outputs from one stage match inputs of another
472 */
473 bool
474 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
475 gl_shader *producer, gl_shader *consumer)
476 {
477 glsl_symbol_table parameters;
478 /* FINISHME: Figure these out dynamically. */
479 const char *const producer_stage = "vertex";
480 const char *const consumer_stage = "fragment";
481
482 /* Find all shader outputs in the "producer" stage.
483 */
484 foreach_list(node, producer->ir) {
485 ir_variable *const var = ((ir_instruction *) node)->as_variable();
486
487 /* FINISHME: For geometry shaders, this should also look for inout
488 * FINISHME: variables.
489 */
490 if ((var == NULL) || (var->mode != ir_var_out))
491 continue;
492
493 parameters.add_variable(var);
494 }
495
496
497 /* Find all shader inputs in the "consumer" stage. Any variables that have
498 * matching outputs already in the symbol table must have the same type and
499 * qualifiers.
500 */
501 foreach_list(node, consumer->ir) {
502 ir_variable *const input = ((ir_instruction *) node)->as_variable();
503
504 /* FINISHME: For geometry shaders, this should also look for inout
505 * FINISHME: variables.
506 */
507 if ((input == NULL) || (input->mode != ir_var_in))
508 continue;
509
510 ir_variable *const output = parameters.get_variable(input->name);
511 if (output != NULL) {
512 /* Check that the types match between stages.
513 */
514 if (input->type != output->type) {
515 /* There is a bit of a special case for gl_TexCoord. This
516 * built-in is unsized by default. Appliations that variable
517 * access it must redeclare it with a size. There is some
518 * language in the GLSL spec that implies the fragment shader
519 * and vertex shader do not have to agree on this size. Other
520 * driver behave this way, and one or two applications seem to
521 * rely on it.
522 *
523 * Neither declaration needs to be modified here because the array
524 * sizes are fixed later when update_array_sizes is called.
525 *
526 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
527 *
528 * "Unlike user-defined varying variables, the built-in
529 * varying variables don't have a strict one-to-one
530 * correspondence between the vertex language and the
531 * fragment language."
532 */
533 if (!output->type->is_array()
534 || (strncmp("gl_", output->name, 3) != 0)) {
535 linker_error_printf(prog,
536 "%s shader output `%s' declared as "
537 "type `%s', but %s shader input declared "
538 "as type `%s'\n",
539 producer_stage, output->name,
540 output->type->name,
541 consumer_stage, input->type->name);
542 return false;
543 }
544 }
545
546 /* Check that all of the qualifiers match between stages.
547 */
548 if (input->centroid != output->centroid) {
549 linker_error_printf(prog,
550 "%s shader output `%s' %s centroid qualifier, "
551 "but %s shader input %s centroid qualifier\n",
552 producer_stage,
553 output->name,
554 (output->centroid) ? "has" : "lacks",
555 consumer_stage,
556 (input->centroid) ? "has" : "lacks");
557 return false;
558 }
559
560 if (input->invariant != output->invariant) {
561 linker_error_printf(prog,
562 "%s shader output `%s' %s invariant qualifier, "
563 "but %s shader input %s invariant qualifier\n",
564 producer_stage,
565 output->name,
566 (output->invariant) ? "has" : "lacks",
567 consumer_stage,
568 (input->invariant) ? "has" : "lacks");
569 return false;
570 }
571
572 if (input->interpolation != output->interpolation) {
573 linker_error_printf(prog,
574 "%s shader output `%s' specifies %s "
575 "interpolation qualifier, "
576 "but %s shader input specifies %s "
577 "interpolation qualifier\n",
578 producer_stage,
579 output->name,
580 output->interpolation_string(),
581 consumer_stage,
582 input->interpolation_string());
583 return false;
584 }
585 }
586 }
587
588 return true;
589 }
590
591
592 /**
593 * Populates a shaders symbol table with all global declarations
594 */
595 static void
596 populate_symbol_table(gl_shader *sh)
597 {
598 sh->symbols = new(sh) glsl_symbol_table;
599
600 foreach_list(node, sh->ir) {
601 ir_instruction *const inst = (ir_instruction *) node;
602 ir_variable *var;
603 ir_function *func;
604
605 if ((func = inst->as_function()) != NULL) {
606 sh->symbols->add_function(func);
607 } else if ((var = inst->as_variable()) != NULL) {
608 sh->symbols->add_variable(var);
609 }
610 }
611 }
612
613
614 /**
615 * Remap variables referenced in an instruction tree
616 *
617 * This is used when instruction trees are cloned from one shader and placed in
618 * another. These trees will contain references to \c ir_variable nodes that
619 * do not exist in the target shader. This function finds these \c ir_variable
620 * references and replaces the references with matching variables in the target
621 * shader.
622 *
623 * If there is no matching variable in the target shader, a clone of the
624 * \c ir_variable is made and added to the target shader. The new variable is
625 * added to \b both the instruction stream and the symbol table.
626 *
627 * \param inst IR tree that is to be processed.
628 * \param symbols Symbol table containing global scope symbols in the
629 * linked shader.
630 * \param instructions Instruction stream where new variable declarations
631 * should be added.
632 */
633 void
634 remap_variables(ir_instruction *inst, struct gl_shader *target,
635 hash_table *temps)
636 {
637 class remap_visitor : public ir_hierarchical_visitor {
638 public:
639 remap_visitor(struct gl_shader *target,
640 hash_table *temps)
641 {
642 this->target = target;
643 this->symbols = target->symbols;
644 this->instructions = target->ir;
645 this->temps = temps;
646 }
647
648 virtual ir_visitor_status visit(ir_dereference_variable *ir)
649 {
650 if (ir->var->mode == ir_var_temporary) {
651 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
652
653 assert(var != NULL);
654 ir->var = var;
655 return visit_continue;
656 }
657
658 ir_variable *const existing =
659 this->symbols->get_variable(ir->var->name);
660 if (existing != NULL)
661 ir->var = existing;
662 else {
663 ir_variable *copy = ir->var->clone(this->target, NULL);
664
665 this->symbols->add_variable(copy);
666 this->instructions->push_head(copy);
667 ir->var = copy;
668 }
669
670 return visit_continue;
671 }
672
673 private:
674 struct gl_shader *target;
675 glsl_symbol_table *symbols;
676 exec_list *instructions;
677 hash_table *temps;
678 };
679
680 remap_visitor v(target, temps);
681
682 inst->accept(&v);
683 }
684
685
686 /**
687 * Move non-declarations from one instruction stream to another
688 *
689 * The intended usage pattern of this function is to pass the pointer to the
690 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
691 * pointer) for \c last and \c false for \c make_copies on the first
692 * call. Successive calls pass the return value of the previous call for
693 * \c last and \c true for \c make_copies.
694 *
695 * \param instructions Source instruction stream
696 * \param last Instruction after which new instructions should be
697 * inserted in the target instruction stream
698 * \param make_copies Flag selecting whether instructions in \c instructions
699 * should be copied (via \c ir_instruction::clone) into the
700 * target list or moved.
701 *
702 * \return
703 * The new "last" instruction in the target instruction stream. This pointer
704 * is suitable for use as the \c last parameter of a later call to this
705 * function.
706 */
707 exec_node *
708 move_non_declarations(exec_list *instructions, exec_node *last,
709 bool make_copies, gl_shader *target)
710 {
711 hash_table *temps = NULL;
712
713 if (make_copies)
714 temps = hash_table_ctor(0, hash_table_pointer_hash,
715 hash_table_pointer_compare);
716
717 foreach_list_safe(node, instructions) {
718 ir_instruction *inst = (ir_instruction *) node;
719
720 if (inst->as_function())
721 continue;
722
723 ir_variable *var = inst->as_variable();
724 if ((var != NULL) && (var->mode != ir_var_temporary))
725 continue;
726
727 assert(inst->as_assignment()
728 || ((var != NULL) && (var->mode == ir_var_temporary)));
729
730 if (make_copies) {
731 inst = inst->clone(target, NULL);
732
733 if (var != NULL)
734 hash_table_insert(temps, inst, var);
735 else
736 remap_variables(inst, target, temps);
737 } else {
738 inst->remove();
739 }
740
741 last->insert_after(inst);
742 last = inst;
743 }
744
745 if (make_copies)
746 hash_table_dtor(temps);
747
748 return last;
749 }
750
751 /**
752 * Get the function signature for main from a shader
753 */
754 static ir_function_signature *
755 get_main_function_signature(gl_shader *sh)
756 {
757 ir_function *const f = sh->symbols->get_function("main");
758 if (f != NULL) {
759 exec_list void_parameters;
760
761 /* Look for the 'void main()' signature and ensure that it's defined.
762 * This keeps the linker from accidentally pick a shader that just
763 * contains a prototype for main.
764 *
765 * We don't have to check for multiple definitions of main (in multiple
766 * shaders) because that would have already been caught above.
767 */
768 ir_function_signature *sig = f->matching_signature(&void_parameters);
769 if ((sig != NULL) && sig->is_defined) {
770 return sig;
771 }
772 }
773
774 return NULL;
775 }
776
777
778 /**
779 * Combine a group of shaders for a single stage to generate a linked shader
780 *
781 * \note
782 * If this function is supplied a single shader, it is cloned, and the new
783 * shader is returned.
784 */
785 static struct gl_shader *
786 link_intrastage_shaders(void *mem_ctx,
787 struct gl_context *ctx,
788 struct gl_shader_program *prog,
789 struct gl_shader **shader_list,
790 unsigned num_shaders)
791 {
792 /* Check that global variables defined in multiple shaders are consistent.
793 */
794 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
795 return NULL;
796
797 /* Check that there is only a single definition of each function signature
798 * across all shaders.
799 */
800 for (unsigned i = 0; i < (num_shaders - 1); i++) {
801 foreach_list(node, shader_list[i]->ir) {
802 ir_function *const f = ((ir_instruction *) node)->as_function();
803
804 if (f == NULL)
805 continue;
806
807 for (unsigned j = i + 1; j < num_shaders; j++) {
808 ir_function *const other =
809 shader_list[j]->symbols->get_function(f->name);
810
811 /* If the other shader has no function (and therefore no function
812 * signatures) with the same name, skip to the next shader.
813 */
814 if (other == NULL)
815 continue;
816
817 foreach_iter (exec_list_iterator, iter, *f) {
818 ir_function_signature *sig =
819 (ir_function_signature *) iter.get();
820
821 if (!sig->is_defined || sig->is_builtin)
822 continue;
823
824 ir_function_signature *other_sig =
825 other->exact_matching_signature(& sig->parameters);
826
827 if ((other_sig != NULL) && other_sig->is_defined
828 && !other_sig->is_builtin) {
829 linker_error_printf(prog,
830 "function `%s' is multiply defined",
831 f->name);
832 return NULL;
833 }
834 }
835 }
836 }
837 }
838
839 /* Find the shader that defines main, and make a clone of it.
840 *
841 * Starting with the clone, search for undefined references. If one is
842 * found, find the shader that defines it. Clone the reference and add
843 * it to the shader. Repeat until there are no undefined references or
844 * until a reference cannot be resolved.
845 */
846 gl_shader *main = NULL;
847 for (unsigned i = 0; i < num_shaders; i++) {
848 if (get_main_function_signature(shader_list[i]) != NULL) {
849 main = shader_list[i];
850 break;
851 }
852 }
853
854 if (main == NULL) {
855 linker_error_printf(prog, "%s shader lacks `main'\n",
856 (shader_list[0]->Type == GL_VERTEX_SHADER)
857 ? "vertex" : "fragment");
858 return NULL;
859 }
860
861 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
862 linked->ir = new(linked) exec_list;
863 clone_ir_list(mem_ctx, linked->ir, main->ir);
864
865 populate_symbol_table(linked);
866
867 /* The a pointer to the main function in the final linked shader (i.e., the
868 * copy of the original shader that contained the main function).
869 */
870 ir_function_signature *const main_sig = get_main_function_signature(linked);
871
872 /* Move any instructions other than variable declarations or function
873 * declarations into main.
874 */
875 exec_node *insertion_point =
876 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
877 linked);
878
879 for (unsigned i = 0; i < num_shaders; i++) {
880 if (shader_list[i] == main)
881 continue;
882
883 insertion_point = move_non_declarations(shader_list[i]->ir,
884 insertion_point, true, linked);
885 }
886
887 /* Resolve initializers for global variables in the linked shader.
888 */
889 unsigned num_linking_shaders = num_shaders;
890 for (unsigned i = 0; i < num_shaders; i++)
891 num_linking_shaders += shader_list[i]->num_builtins_to_link;
892
893 gl_shader **linking_shaders =
894 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
895
896 memcpy(linking_shaders, shader_list,
897 sizeof(linking_shaders[0]) * num_shaders);
898
899 unsigned idx = num_shaders;
900 for (unsigned i = 0; i < num_shaders; i++) {
901 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
902 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
903 idx += shader_list[i]->num_builtins_to_link;
904 }
905
906 assert(idx == num_linking_shaders);
907
908 if (!link_function_calls(prog, linked, linking_shaders,
909 num_linking_shaders)) {
910 ctx->Driver.DeleteShader(ctx, linked);
911 linked = NULL;
912 }
913
914 free(linking_shaders);
915
916 /* Make a pass over all variable declarations to ensure that arrays with
917 * unspecified sizes have a size specified. The size is inferred from the
918 * max_array_access field.
919 */
920 if (linked != NULL) {
921 class array_sizing_visitor : public ir_hierarchical_visitor {
922 public:
923 virtual ir_visitor_status visit(ir_variable *var)
924 {
925 if (var->type->is_array() && (var->type->length == 0)) {
926 const glsl_type *type =
927 glsl_type::get_array_instance(var->type->fields.array,
928 var->max_array_access);
929
930 assert(type != NULL);
931 var->type = type;
932 }
933
934 return visit_continue;
935 }
936 } v;
937
938 v.run(linked->ir);
939 }
940
941 return linked;
942 }
943
944
945 struct uniform_node {
946 exec_node link;
947 struct gl_uniform *u;
948 unsigned slots;
949 };
950
951 /**
952 * Update the sizes of linked shader uniform arrays to the maximum
953 * array index used.
954 *
955 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
956 *
957 * If one or more elements of an array are active,
958 * GetActiveUniform will return the name of the array in name,
959 * subject to the restrictions listed above. The type of the array
960 * is returned in type. The size parameter contains the highest
961 * array element index used, plus one. The compiler or linker
962 * determines the highest index used. There will be only one
963 * active uniform reported by the GL per uniform array.
964
965 */
966 static void
967 update_array_sizes(struct gl_shader_program *prog)
968 {
969 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
970 if (prog->_LinkedShaders[i] == NULL)
971 continue;
972
973 foreach_list(node, prog->_LinkedShaders[i]->ir) {
974 ir_variable *const var = ((ir_instruction *) node)->as_variable();
975
976 if ((var == NULL) || (var->mode != ir_var_uniform &&
977 var->mode != ir_var_in &&
978 var->mode != ir_var_out) ||
979 !var->type->is_array())
980 continue;
981
982 unsigned int size = var->max_array_access;
983 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
984 if (prog->_LinkedShaders[j] == NULL)
985 continue;
986
987 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
988 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
989 if (!other_var)
990 continue;
991
992 if (strcmp(var->name, other_var->name) == 0 &&
993 other_var->max_array_access > size) {
994 size = other_var->max_array_access;
995 }
996 }
997 }
998
999 if (size + 1 != var->type->fields.array->length) {
1000 var->type = glsl_type::get_array_instance(var->type->fields.array,
1001 size + 1);
1002 /* FINISHME: We should update the types of array
1003 * dereferences of this variable now.
1004 */
1005 }
1006 }
1007 }
1008 }
1009
1010 static void
1011 add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
1012 const char *name, const glsl_type *type, GLenum shader_type,
1013 unsigned *next_shader_pos, unsigned *total_uniforms)
1014 {
1015 if (type->is_record()) {
1016 for (unsigned int i = 0; i < type->length; i++) {
1017 const glsl_type *field_type = type->fields.structure[i].type;
1018 char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
1019 type->fields.structure[i].name);
1020
1021 add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
1022 shader_type, next_shader_pos, total_uniforms);
1023 }
1024 } else {
1025 uniform_node *n = (uniform_node *) hash_table_find(ht, name);
1026 unsigned int vec4_slots;
1027 const glsl_type *array_elem_type = NULL;
1028
1029 if (type->is_array()) {
1030 array_elem_type = type->fields.array;
1031 /* Array of structures. */
1032 if (array_elem_type->is_record()) {
1033 for (unsigned int i = 0; i < type->length; i++) {
1034 char *elem_name = ralloc_asprintf(mem_ctx, "%s[%d]", name, i);
1035 add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
1036 shader_type, next_shader_pos, total_uniforms);
1037 }
1038 return;
1039 }
1040 }
1041
1042 /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
1043 * vectors to vec4 slots.
1044 */
1045 if (type->is_array()) {
1046 if (array_elem_type->is_sampler())
1047 vec4_slots = type->length;
1048 else
1049 vec4_slots = type->length * array_elem_type->matrix_columns;
1050 } else if (type->is_sampler()) {
1051 vec4_slots = 1;
1052 } else {
1053 vec4_slots = type->matrix_columns;
1054 }
1055
1056 if (n == NULL) {
1057 n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
1058 n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
1059 n->slots = vec4_slots;
1060
1061 n->u->Name = strdup(name);
1062 n->u->Type = type;
1063 n->u->VertPos = -1;
1064 n->u->FragPos = -1;
1065 n->u->GeomPos = -1;
1066 (*total_uniforms)++;
1067
1068 hash_table_insert(ht, n, name);
1069 uniforms->push_tail(& n->link);
1070 }
1071
1072 switch (shader_type) {
1073 case GL_VERTEX_SHADER:
1074 n->u->VertPos = *next_shader_pos;
1075 break;
1076 case GL_FRAGMENT_SHADER:
1077 n->u->FragPos = *next_shader_pos;
1078 break;
1079 case GL_GEOMETRY_SHADER:
1080 n->u->GeomPos = *next_shader_pos;
1081 break;
1082 }
1083
1084 (*next_shader_pos) += vec4_slots;
1085 }
1086 }
1087
1088 void
1089 assign_uniform_locations(struct gl_shader_program *prog)
1090 {
1091 /* */
1092 exec_list uniforms;
1093 unsigned total_uniforms = 0;
1094 hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
1095 hash_table_string_compare);
1096 void *mem_ctx = ralloc_context(NULL);
1097
1098 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1099 if (prog->_LinkedShaders[i] == NULL)
1100 continue;
1101
1102 unsigned next_position = 0;
1103
1104 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1105 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1106
1107 if ((var == NULL) || (var->mode != ir_var_uniform))
1108 continue;
1109
1110 if (strncmp(var->name, "gl_", 3) == 0) {
1111 /* At the moment, we don't allocate uniform locations for
1112 * builtin uniforms. It's permitted by spec, and we'll
1113 * likely switch to doing that at some point, but not yet.
1114 */
1115 continue;
1116 }
1117
1118 var->location = next_position;
1119 add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
1120 prog->_LinkedShaders[i]->Type,
1121 &next_position, &total_uniforms);
1122 }
1123 }
1124
1125 ralloc_free(mem_ctx);
1126
1127 gl_uniform_list *ul = (gl_uniform_list *)
1128 calloc(1, sizeof(gl_uniform_list));
1129
1130 ul->Size = total_uniforms;
1131 ul->NumUniforms = total_uniforms;
1132 ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
1133
1134 unsigned idx = 0;
1135 uniform_node *next;
1136 for (uniform_node *node = (uniform_node *) uniforms.head
1137 ; node->link.next != NULL
1138 ; node = next) {
1139 next = (uniform_node *) node->link.next;
1140
1141 node->link.remove();
1142 memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
1143 idx++;
1144
1145 free(node->u);
1146 free(node);
1147 }
1148
1149 hash_table_dtor(ht);
1150
1151 prog->Uniforms = ul;
1152 }
1153
1154
1155 /**
1156 * Find a contiguous set of available bits in a bitmask
1157 *
1158 * \param used_mask Bits representing used (1) and unused (0) locations
1159 * \param needed_count Number of contiguous bits needed.
1160 *
1161 * \return
1162 * Base location of the available bits on success or -1 on failure.
1163 */
1164 int
1165 find_available_slots(unsigned used_mask, unsigned needed_count)
1166 {
1167 unsigned needed_mask = (1 << needed_count) - 1;
1168 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1169
1170 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1171 * cannot optimize possibly infinite loops" for the loop below.
1172 */
1173 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1174 return -1;
1175
1176 for (int i = 0; i <= max_bit_to_test; i++) {
1177 if ((needed_mask & ~used_mask) == needed_mask)
1178 return i;
1179
1180 needed_mask <<= 1;
1181 }
1182
1183 return -1;
1184 }
1185
1186
1187 bool
1188 assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
1189 {
1190 /* Mark invalid attribute locations as being used.
1191 */
1192 unsigned used_locations = (max_attribute_index >= 32)
1193 ? ~0 : ~((1 << max_attribute_index) - 1);
1194
1195 gl_shader *const sh = prog->_LinkedShaders[0];
1196 assert(sh->Type == GL_VERTEX_SHADER);
1197
1198 /* Operate in a total of four passes.
1199 *
1200 * 1. Invalidate the location assignments for all vertex shader inputs.
1201 *
1202 * 2. Assign locations for inputs that have user-defined (via
1203 * glBindVertexAttribLocation) locatoins.
1204 *
1205 * 3. Sort the attributes without assigned locations by number of slots
1206 * required in decreasing order. Fragmentation caused by attribute
1207 * locations assigned by the application may prevent large attributes
1208 * from having enough contiguous space.
1209 *
1210 * 4. Assign locations to any inputs without assigned locations.
1211 */
1212
1213 invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
1214
1215 if (prog->Attributes != NULL) {
1216 for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
1217 ir_variable *const var =
1218 sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
1219
1220 /* Note: attributes that occupy multiple slots, such as arrays or
1221 * matrices, may appear in the attrib array multiple times.
1222 */
1223 if ((var == NULL) || (var->location != -1))
1224 continue;
1225
1226 /* From page 61 of the OpenGL 4.0 spec:
1227 *
1228 * "LinkProgram will fail if the attribute bindings assigned by
1229 * BindAttribLocation do not leave not enough space to assign a
1230 * location for an active matrix attribute or an active attribute
1231 * array, both of which require multiple contiguous generic
1232 * attributes."
1233 *
1234 * Previous versions of the spec contain similar language but omit the
1235 * bit about attribute arrays.
1236 *
1237 * Page 61 of the OpenGL 4.0 spec also says:
1238 *
1239 * "It is possible for an application to bind more than one
1240 * attribute name to the same location. This is referred to as
1241 * aliasing. This will only work if only one of the aliased
1242 * attributes is active in the executable program, or if no path
1243 * through the shader consumes more than one attribute of a set
1244 * of attributes aliased to the same location. A link error can
1245 * occur if the linker determines that every path through the
1246 * shader consumes multiple aliased attributes, but
1247 * implementations are not required to generate an error in this
1248 * case."
1249 *
1250 * These two paragraphs are either somewhat contradictory, or I don't
1251 * fully understand one or both of them.
1252 */
1253 /* FINISHME: The code as currently written does not support attribute
1254 * FINISHME: location aliasing (see comment above).
1255 */
1256 const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
1257 const unsigned slots = count_attribute_slots(var->type);
1258
1259 /* Mask representing the contiguous slots that will be used by this
1260 * attribute.
1261 */
1262 const unsigned use_mask = (1 << slots) - 1;
1263
1264 /* Generate a link error if the set of bits requested for this
1265 * attribute overlaps any previously allocated bits.
1266 */
1267 if ((~(use_mask << attr) & used_locations) != used_locations) {
1268 linker_error_printf(prog,
1269 "insufficient contiguous attribute locations "
1270 "available for vertex shader input `%s'",
1271 var->name);
1272 return false;
1273 }
1274
1275 var->location = VERT_ATTRIB_GENERIC0 + attr;
1276 used_locations |= (use_mask << attr);
1277 }
1278 }
1279
1280 /* Temporary storage for the set of attributes that need locations assigned.
1281 */
1282 struct temp_attr {
1283 unsigned slots;
1284 ir_variable *var;
1285
1286 /* Used below in the call to qsort. */
1287 static int compare(const void *a, const void *b)
1288 {
1289 const temp_attr *const l = (const temp_attr *) a;
1290 const temp_attr *const r = (const temp_attr *) b;
1291
1292 /* Reversed because we want a descending order sort below. */
1293 return r->slots - l->slots;
1294 }
1295 } to_assign[16];
1296
1297 unsigned num_attr = 0;
1298
1299 foreach_list(node, sh->ir) {
1300 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1301
1302 if ((var == NULL) || (var->mode != ir_var_in))
1303 continue;
1304
1305 if (var->explicit_location) {
1306 const unsigned slots = count_attribute_slots(var->type);
1307 const unsigned use_mask = (1 << slots) - 1;
1308 const int attr = var->location - VERT_ATTRIB_GENERIC0;
1309
1310 if ((var->location >= (int)(max_attribute_index + VERT_ATTRIB_GENERIC0))
1311 || (var->location < 0)) {
1312 linker_error_printf(prog,
1313 "invalid explicit location %d specified for "
1314 "`%s'\n",
1315 (var->location < 0) ? var->location : attr,
1316 var->name);
1317 return false;
1318 } else if (var->location >= VERT_ATTRIB_GENERIC0) {
1319 used_locations |= (use_mask << attr);
1320 }
1321 }
1322
1323 /* The location was explicitly assigned, nothing to do here.
1324 */
1325 if (var->location != -1)
1326 continue;
1327
1328 to_assign[num_attr].slots = count_attribute_slots(var->type);
1329 to_assign[num_attr].var = var;
1330 num_attr++;
1331 }
1332
1333 /* If all of the attributes were assigned locations by the application (or
1334 * are built-in attributes with fixed locations), return early. This should
1335 * be the common case.
1336 */
1337 if (num_attr == 0)
1338 return true;
1339
1340 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1341
1342 /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only
1343 * be explicitly assigned by via glBindAttribLocation. Mark it as reserved
1344 * to prevent it from being automatically allocated below.
1345 */
1346 find_deref_visitor find("gl_Vertex");
1347 find.run(sh->ir);
1348 if (find.variable_found())
1349 used_locations |= (1 << 0);
1350
1351 for (unsigned i = 0; i < num_attr; i++) {
1352 /* Mask representing the contiguous slots that will be used by this
1353 * attribute.
1354 */
1355 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1356
1357 int location = find_available_slots(used_locations, to_assign[i].slots);
1358
1359 if (location < 0) {
1360 linker_error_printf(prog,
1361 "insufficient contiguous attribute locations "
1362 "available for vertex shader input `%s'",
1363 to_assign[i].var->name);
1364 return false;
1365 }
1366
1367 to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location;
1368 used_locations |= (use_mask << location);
1369 }
1370
1371 return true;
1372 }
1373
1374
1375 /**
1376 * Demote shader inputs and outputs that are not used in other stages
1377 */
1378 void
1379 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1380 {
1381 foreach_list(node, sh->ir) {
1382 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1383
1384 if ((var == NULL) || (var->mode != int(mode)))
1385 continue;
1386
1387 /* A shader 'in' or 'out' variable is only really an input or output if
1388 * its value is used by other shader stages. This will cause the variable
1389 * to have a location assigned.
1390 */
1391 if (var->location == -1) {
1392 var->mode = ir_var_auto;
1393 }
1394 }
1395 }
1396
1397
1398 void
1399 assign_varying_locations(struct gl_shader_program *prog,
1400 gl_shader *producer, gl_shader *consumer)
1401 {
1402 /* FINISHME: Set dynamically when geometry shader support is added. */
1403 unsigned output_index = VERT_RESULT_VAR0;
1404 unsigned input_index = FRAG_ATTRIB_VAR0;
1405
1406 /* Operate in a total of three passes.
1407 *
1408 * 1. Assign locations for any matching inputs and outputs.
1409 *
1410 * 2. Mark output variables in the producer that do not have locations as
1411 * not being outputs. This lets the optimizer eliminate them.
1412 *
1413 * 3. Mark input variables in the consumer that do not have locations as
1414 * not being inputs. This lets the optimizer eliminate them.
1415 */
1416
1417 invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1418 invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1419
1420 foreach_list(node, producer->ir) {
1421 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1422
1423 if ((output_var == NULL) || (output_var->mode != ir_var_out)
1424 || (output_var->location != -1))
1425 continue;
1426
1427 ir_variable *const input_var =
1428 consumer->symbols->get_variable(output_var->name);
1429
1430 if ((input_var == NULL) || (input_var->mode != ir_var_in))
1431 continue;
1432
1433 assert(input_var->location == -1);
1434
1435 output_var->location = output_index;
1436 input_var->location = input_index;
1437
1438 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1439 assert(!output_var->type->is_record());
1440
1441 if (output_var->type->is_array()) {
1442 const unsigned slots = output_var->type->length
1443 * output_var->type->fields.array->matrix_columns;
1444
1445 output_index += slots;
1446 input_index += slots;
1447 } else {
1448 const unsigned slots = output_var->type->matrix_columns;
1449
1450 output_index += slots;
1451 input_index += slots;
1452 }
1453 }
1454
1455 foreach_list(node, consumer->ir) {
1456 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1457
1458 if ((var == NULL) || (var->mode != ir_var_in))
1459 continue;
1460
1461 if (var->location == -1) {
1462 if (prog->Version <= 120) {
1463 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1464 *
1465 * Only those varying variables used (i.e. read) in
1466 * the fragment shader executable must be written to
1467 * by the vertex shader executable; declaring
1468 * superfluous varying variables in a vertex shader is
1469 * permissible.
1470 *
1471 * We interpret this text as meaning that the VS must
1472 * write the variable for the FS to read it. See
1473 * "glsl1-varying read but not written" in piglit.
1474 */
1475
1476 linker_error_printf(prog, "fragment shader varying %s not written "
1477 "by vertex shader\n.", var->name);
1478 prog->LinkStatus = false;
1479 }
1480
1481 /* An 'in' variable is only really a shader input if its
1482 * value is written by the previous stage.
1483 */
1484 var->mode = ir_var_auto;
1485 }
1486 }
1487 }
1488
1489
1490 void
1491 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1492 {
1493 void *mem_ctx = ralloc_context(NULL); // temporary linker context
1494
1495 prog->LinkStatus = false;
1496 prog->Validated = false;
1497 prog->_Used = false;
1498
1499 if (prog->InfoLog != NULL)
1500 ralloc_free(prog->InfoLog);
1501
1502 prog->InfoLog = ralloc_strdup(NULL, "");
1503
1504 /* Separate the shaders into groups based on their type.
1505 */
1506 struct gl_shader **vert_shader_list;
1507 unsigned num_vert_shaders = 0;
1508 struct gl_shader **frag_shader_list;
1509 unsigned num_frag_shaders = 0;
1510
1511 vert_shader_list = (struct gl_shader **)
1512 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1513 frag_shader_list = &vert_shader_list[prog->NumShaders];
1514
1515 unsigned min_version = UINT_MAX;
1516 unsigned max_version = 0;
1517 for (unsigned i = 0; i < prog->NumShaders; i++) {
1518 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1519 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1520
1521 switch (prog->Shaders[i]->Type) {
1522 case GL_VERTEX_SHADER:
1523 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1524 num_vert_shaders++;
1525 break;
1526 case GL_FRAGMENT_SHADER:
1527 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1528 num_frag_shaders++;
1529 break;
1530 case GL_GEOMETRY_SHADER:
1531 /* FINISHME: Support geometry shaders. */
1532 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1533 break;
1534 }
1535 }
1536
1537 /* Previous to GLSL version 1.30, different compilation units could mix and
1538 * match shading language versions. With GLSL 1.30 and later, the versions
1539 * of all shaders must match.
1540 */
1541 assert(min_version >= 100);
1542 assert(max_version <= 130);
1543 if ((max_version >= 130 || min_version == 100)
1544 && min_version != max_version) {
1545 linker_error_printf(prog, "all shaders must use same shading "
1546 "language version\n");
1547 goto done;
1548 }
1549
1550 prog->Version = max_version;
1551
1552 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1553 if (prog->_LinkedShaders[i] != NULL)
1554 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1555
1556 prog->_LinkedShaders[i] = NULL;
1557 }
1558
1559 /* Link all shaders for a particular stage and validate the result.
1560 */
1561 if (num_vert_shaders > 0) {
1562 gl_shader *const sh =
1563 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1564 num_vert_shaders);
1565
1566 if (sh == NULL)
1567 goto done;
1568
1569 if (!validate_vertex_shader_executable(prog, sh))
1570 goto done;
1571
1572 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1573 sh);
1574 }
1575
1576 if (num_frag_shaders > 0) {
1577 gl_shader *const sh =
1578 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1579 num_frag_shaders);
1580
1581 if (sh == NULL)
1582 goto done;
1583
1584 if (!validate_fragment_shader_executable(prog, sh))
1585 goto done;
1586
1587 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1588 sh);
1589 }
1590
1591 /* Here begins the inter-stage linking phase. Some initial validation is
1592 * performed, then locations are assigned for uniforms, attributes, and
1593 * varyings.
1594 */
1595 if (cross_validate_uniforms(prog)) {
1596 unsigned prev;
1597
1598 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1599 if (prog->_LinkedShaders[prev] != NULL)
1600 break;
1601 }
1602
1603 /* Validate the inputs of each stage with the output of the preceeding
1604 * stage.
1605 */
1606 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1607 if (prog->_LinkedShaders[i] == NULL)
1608 continue;
1609
1610 if (!cross_validate_outputs_to_inputs(prog,
1611 prog->_LinkedShaders[prev],
1612 prog->_LinkedShaders[i]))
1613 goto done;
1614
1615 prev = i;
1616 }
1617
1618 prog->LinkStatus = true;
1619 }
1620
1621 /* Do common optimization before assigning storage for attributes,
1622 * uniforms, and varyings. Later optimization could possibly make
1623 * some of that unused.
1624 */
1625 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1626 if (prog->_LinkedShaders[i] == NULL)
1627 continue;
1628
1629 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
1630 ;
1631 }
1632
1633 update_array_sizes(prog);
1634
1635 assign_uniform_locations(prog);
1636
1637 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1638 /* FINISHME: The value of the max_attribute_index parameter is
1639 * FINISHME: implementation dependent based on the value of
1640 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1641 * FINISHME: at least 16, so hardcode 16 for now.
1642 */
1643 if (!assign_attribute_locations(prog, 16)) {
1644 prog->LinkStatus = false;
1645 goto done;
1646 }
1647 }
1648
1649 unsigned prev;
1650 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1651 if (prog->_LinkedShaders[prev] != NULL)
1652 break;
1653 }
1654
1655 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1656 if (prog->_LinkedShaders[i] == NULL)
1657 continue;
1658
1659 assign_varying_locations(prog,
1660 prog->_LinkedShaders[prev],
1661 prog->_LinkedShaders[i]);
1662 prev = i;
1663 }
1664
1665 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1666 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1667 ir_var_out);
1668 }
1669
1670 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1671 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1672
1673 demote_shader_inputs_and_outputs(sh, ir_var_in);
1674 demote_shader_inputs_and_outputs(sh, ir_var_inout);
1675 demote_shader_inputs_and_outputs(sh, ir_var_out);
1676 }
1677
1678 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1679 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1680
1681 demote_shader_inputs_and_outputs(sh, ir_var_in);
1682 }
1683
1684 /* FINISHME: Assign fragment shader output locations. */
1685
1686 done:
1687 free(vert_shader_list);
1688
1689 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1690 if (prog->_LinkedShaders[i] == NULL)
1691 continue;
1692
1693 /* Retain any live IR, but trash the rest. */
1694 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1695 }
1696
1697 ralloc_free(mem_ctx);
1698 }