glsl: check if implicitly sized arrays match explicitly sized arrays across the same...
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77 #include "ir_uniform.h"
78
79 #include "main/shaderobj.h"
80 #include "main/enums.h"
81
82
83 void linker_error(gl_shader_program *, const char *, ...);
84
85 namespace {
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 foreach_two_lists(formal_node, &ir->callee->parameters,
113 actual_node, &ir->actual_parameters) {
114 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
115 ir_variable *sig_param = (ir_variable *) formal_node;
116
117 if (sig_param->data.mode == ir_var_function_out ||
118 sig_param->data.mode == ir_var_function_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 }
126
127 if (ir->return_deref != NULL) {
128 ir_variable *const var = ir->return_deref->variable_referenced();
129
130 if (strcmp(name, var->name) == 0) {
131 found = true;
132 return visit_stop;
133 }
134 }
135
136 return visit_continue_with_parent;
137 }
138
139 bool variable_found()
140 {
141 return found;
142 }
143
144 private:
145 const char *name; /**< Find writes to a variable with this name. */
146 bool found; /**< Was a write to the variable found? */
147 };
148
149
150 /**
151 * Visitor that determines whether or not a variable is ever read.
152 */
153 class find_deref_visitor : public ir_hierarchical_visitor {
154 public:
155 find_deref_visitor(const char *name)
156 : name(name), found(false)
157 {
158 /* empty */
159 }
160
161 virtual ir_visitor_status visit(ir_dereference_variable *ir)
162 {
163 if (strcmp(this->name, ir->var->name) == 0) {
164 this->found = true;
165 return visit_stop;
166 }
167
168 return visit_continue;
169 }
170
171 bool variable_found() const
172 {
173 return this->found;
174 }
175
176 private:
177 const char *name; /**< Find writes to a variable with this name. */
178 bool found; /**< Was a write to the variable found? */
179 };
180
181
182 class geom_array_resize_visitor : public ir_hierarchical_visitor {
183 public:
184 unsigned num_vertices;
185 gl_shader_program *prog;
186
187 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
188 {
189 this->num_vertices = num_vertices;
190 this->prog = prog;
191 }
192
193 virtual ~geom_array_resize_visitor()
194 {
195 /* empty */
196 }
197
198 virtual ir_visitor_status visit(ir_variable *var)
199 {
200 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
201 return visit_continue;
202
203 unsigned size = var->type->length;
204
205 /* Generate a link error if the shader has declared this array with an
206 * incorrect size.
207 */
208 if (size && size != this->num_vertices) {
209 linker_error(this->prog, "size of array %s declared as %u, "
210 "but number of input vertices is %u\n",
211 var->name, size, this->num_vertices);
212 return visit_continue;
213 }
214
215 /* Generate a link error if the shader attempts to access an input
216 * array using an index too large for its actual size assigned at link
217 * time.
218 */
219 if (var->data.max_array_access >= this->num_vertices) {
220 linker_error(this->prog, "geometry shader accesses element %i of "
221 "%s, but only %i input vertices\n",
222 var->data.max_array_access, var->name, this->num_vertices);
223 return visit_continue;
224 }
225
226 var->type = glsl_type::get_array_instance(var->type->element_type(),
227 this->num_vertices);
228 var->data.max_array_access = this->num_vertices - 1;
229
230 return visit_continue;
231 }
232
233 /* Dereferences of input variables need to be updated so that their type
234 * matches the newly assigned type of the variable they are accessing. */
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 /* Dereferences of 2D input arrays need to be updated so that their type
242 * matches the newly assigned type of the array they are accessing. */
243 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
244 {
245 const glsl_type *const vt = ir->array->type;
246 if (vt->is_array())
247 ir->type = vt->element_type();
248 return visit_continue;
249 }
250 };
251
252 /**
253 * Visitor that determines the highest stream id to which a (geometry) shader
254 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
255 */
256 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
257 public:
258 find_emit_vertex_visitor(int max_allowed)
259 : max_stream_allowed(max_allowed),
260 invalid_stream_id(0),
261 invalid_stream_id_from_emit_vertex(false),
262 end_primitive_found(false),
263 uses_non_zero_stream(false)
264 {
265 /* empty */
266 }
267
268 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
269 {
270 int stream_id = ir->stream_id();
271
272 if (stream_id < 0) {
273 invalid_stream_id = stream_id;
274 invalid_stream_id_from_emit_vertex = true;
275 return visit_stop;
276 }
277
278 if (stream_id > max_stream_allowed) {
279 invalid_stream_id = stream_id;
280 invalid_stream_id_from_emit_vertex = true;
281 return visit_stop;
282 }
283
284 if (stream_id != 0)
285 uses_non_zero_stream = true;
286
287 return visit_continue;
288 }
289
290 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
291 {
292 end_primitive_found = true;
293
294 int stream_id = ir->stream_id();
295
296 if (stream_id < 0) {
297 invalid_stream_id = stream_id;
298 invalid_stream_id_from_emit_vertex = false;
299 return visit_stop;
300 }
301
302 if (stream_id > max_stream_allowed) {
303 invalid_stream_id = stream_id;
304 invalid_stream_id_from_emit_vertex = false;
305 return visit_stop;
306 }
307
308 if (stream_id != 0)
309 uses_non_zero_stream = true;
310
311 return visit_continue;
312 }
313
314 bool error()
315 {
316 return invalid_stream_id != 0;
317 }
318
319 const char *error_func()
320 {
321 return invalid_stream_id_from_emit_vertex ?
322 "EmitStreamVertex" : "EndStreamPrimitive";
323 }
324
325 int error_stream()
326 {
327 return invalid_stream_id;
328 }
329
330 bool uses_streams()
331 {
332 return uses_non_zero_stream;
333 }
334
335 bool uses_end_primitive()
336 {
337 return end_primitive_found;
338 }
339
340 private:
341 int max_stream_allowed;
342 int invalid_stream_id;
343 bool invalid_stream_id_from_emit_vertex;
344 bool end_primitive_found;
345 bool uses_non_zero_stream;
346 };
347
348 } /* anonymous namespace */
349
350 void
351 linker_error(gl_shader_program *prog, const char *fmt, ...)
352 {
353 va_list ap;
354
355 ralloc_strcat(&prog->InfoLog, "error: ");
356 va_start(ap, fmt);
357 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
358 va_end(ap);
359
360 prog->LinkStatus = false;
361 }
362
363
364 void
365 linker_warning(gl_shader_program *prog, const char *fmt, ...)
366 {
367 va_list ap;
368
369 ralloc_strcat(&prog->InfoLog, "warning: ");
370 va_start(ap, fmt);
371 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
372 va_end(ap);
373
374 }
375
376
377 /**
378 * Given a string identifying a program resource, break it into a base name
379 * and an optional array index in square brackets.
380 *
381 * If an array index is present, \c out_base_name_end is set to point to the
382 * "[" that precedes the array index, and the array index itself is returned
383 * as a long.
384 *
385 * If no array index is present (or if the array index is negative or
386 * mal-formed), \c out_base_name_end, is set to point to the null terminator
387 * at the end of the input string, and -1 is returned.
388 *
389 * Only the final array index is parsed; if the string contains other array
390 * indices (or structure field accesses), they are left in the base name.
391 *
392 * No attempt is made to check that the base name is properly formed;
393 * typically the caller will look up the base name in a hash table, so
394 * ill-formed base names simply turn into hash table lookup failures.
395 */
396 long
397 parse_program_resource_name(const GLchar *name,
398 const GLchar **out_base_name_end)
399 {
400 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
401 *
402 * "When an integer array element or block instance number is part of
403 * the name string, it will be specified in decimal form without a "+"
404 * or "-" sign or any extra leading zeroes. Additionally, the name
405 * string will not include white space anywhere in the string."
406 */
407
408 const size_t len = strlen(name);
409 *out_base_name_end = name + len;
410
411 if (len == 0 || name[len-1] != ']')
412 return -1;
413
414 /* Walk backwards over the string looking for a non-digit character. This
415 * had better be the opening bracket for an array index.
416 *
417 * Initially, i specifies the location of the ']'. Since the string may
418 * contain only the ']' charcater, walk backwards very carefully.
419 */
420 unsigned i;
421 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
422 /* empty */ ;
423
424 if ((i == 0) || name[i-1] != '[')
425 return -1;
426
427 long array_index = strtol(&name[i], NULL, 10);
428 if (array_index < 0)
429 return -1;
430
431 *out_base_name_end = name + (i - 1);
432 return array_index;
433 }
434
435
436 void
437 link_invalidate_variable_locations(exec_list *ir)
438 {
439 foreach_in_list(ir_instruction, node, ir) {
440 ir_variable *const var = node->as_variable();
441
442 if (var == NULL)
443 continue;
444
445 /* Only assign locations for variables that lack an explicit location.
446 * Explicit locations are set for all built-in variables, generic vertex
447 * shader inputs (via layout(location=...)), and generic fragment shader
448 * outputs (also via layout(location=...)).
449 */
450 if (!var->data.explicit_location) {
451 var->data.location = -1;
452 var->data.location_frac = 0;
453 }
454
455 /* ir_variable::is_unmatched_generic_inout is used by the linker while
456 * connecting outputs from one stage to inputs of the next stage.
457 *
458 * There are two implicit assumptions here. First, we assume that any
459 * built-in variable (i.e., non-generic in or out) will have
460 * explicit_location set. Second, we assume that any generic in or out
461 * will not have explicit_location set.
462 *
463 * This second assumption will only be valid until
464 * GL_ARB_separate_shader_objects is supported. When that extension is
465 * implemented, this function will need some modifications.
466 */
467 if (!var->data.explicit_location) {
468 var->data.is_unmatched_generic_inout = 1;
469 } else {
470 var->data.is_unmatched_generic_inout = 0;
471 }
472 }
473 }
474
475
476 /**
477 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
478 *
479 * Also check for errors based on incorrect usage of gl_ClipVertex and
480 * gl_ClipDistance.
481 *
482 * Return false if an error was reported.
483 */
484 static void
485 analyze_clip_usage(struct gl_shader_program *prog,
486 struct gl_shader *shader, GLboolean *UsesClipDistance,
487 GLuint *ClipDistanceArraySize)
488 {
489 *ClipDistanceArraySize = 0;
490
491 if (!prog->IsES && prog->Version >= 130) {
492 /* From section 7.1 (Vertex Shader Special Variables) of the
493 * GLSL 1.30 spec:
494 *
495 * "It is an error for a shader to statically write both
496 * gl_ClipVertex and gl_ClipDistance."
497 *
498 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
499 * gl_ClipVertex nor gl_ClipDistance.
500 */
501 find_assignment_visitor clip_vertex("gl_ClipVertex");
502 find_assignment_visitor clip_distance("gl_ClipDistance");
503
504 clip_vertex.run(shader->ir);
505 clip_distance.run(shader->ir);
506 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
507 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
508 "and `gl_ClipDistance'\n",
509 _mesa_shader_stage_to_string(shader->Stage));
510 return;
511 }
512 *UsesClipDistance = clip_distance.variable_found();
513 ir_variable *clip_distance_var =
514 shader->symbols->get_variable("gl_ClipDistance");
515 if (clip_distance_var)
516 *ClipDistanceArraySize = clip_distance_var->type->length;
517 } else {
518 *UsesClipDistance = false;
519 }
520 }
521
522
523 /**
524 * Verify that a vertex shader executable meets all semantic requirements.
525 *
526 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
527 * as a side effect.
528 *
529 * \param shader Vertex shader executable to be verified
530 */
531 void
532 validate_vertex_shader_executable(struct gl_shader_program *prog,
533 struct gl_shader *shader)
534 {
535 if (shader == NULL)
536 return;
537
538 /* From the GLSL 1.10 spec, page 48:
539 *
540 * "The variable gl_Position is available only in the vertex
541 * language and is intended for writing the homogeneous vertex
542 * position. All executions of a well-formed vertex shader
543 * executable must write a value into this variable. [...] The
544 * variable gl_Position is available only in the vertex
545 * language and is intended for writing the homogeneous vertex
546 * position. All executions of a well-formed vertex shader
547 * executable must write a value into this variable."
548 *
549 * while in GLSL 1.40 this text is changed to:
550 *
551 * "The variable gl_Position is available only in the vertex
552 * language and is intended for writing the homogeneous vertex
553 * position. It can be written at any time during shader
554 * execution. It may also be read back by a vertex shader
555 * after being written. This value will be used by primitive
556 * assembly, clipping, culling, and other fixed functionality
557 * operations, if present, that operate on primitives after
558 * vertex processing has occurred. Its value is undefined if
559 * the vertex shader executable does not write gl_Position."
560 *
561 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
562 * gl_Position is not an error.
563 */
564 if (prog->Version < (prog->IsES ? 300 : 140)) {
565 find_assignment_visitor find("gl_Position");
566 find.run(shader->ir);
567 if (!find.variable_found()) {
568 if (prog->IsES) {
569 linker_warning(prog,
570 "vertex shader does not write to `gl_Position'."
571 "It's value is undefined. \n");
572 } else {
573 linker_error(prog,
574 "vertex shader does not write to `gl_Position'. \n");
575 }
576 return;
577 }
578 }
579
580 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
581 &prog->Vert.ClipDistanceArraySize);
582 }
583
584
585 /**
586 * Verify that a fragment shader executable meets all semantic requirements
587 *
588 * \param shader Fragment shader executable to be verified
589 */
590 void
591 validate_fragment_shader_executable(struct gl_shader_program *prog,
592 struct gl_shader *shader)
593 {
594 if (shader == NULL)
595 return;
596
597 find_assignment_visitor frag_color("gl_FragColor");
598 find_assignment_visitor frag_data("gl_FragData");
599
600 frag_color.run(shader->ir);
601 frag_data.run(shader->ir);
602
603 if (frag_color.variable_found() && frag_data.variable_found()) {
604 linker_error(prog, "fragment shader writes to both "
605 "`gl_FragColor' and `gl_FragData'\n");
606 }
607 }
608
609 /**
610 * Verify that a geometry shader executable meets all semantic requirements
611 *
612 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
613 * prog->Geom.ClipDistanceArraySize as a side effect.
614 *
615 * \param shader Geometry shader executable to be verified
616 */
617 void
618 validate_geometry_shader_executable(struct gl_shader_program *prog,
619 struct gl_shader *shader)
620 {
621 if (shader == NULL)
622 return;
623
624 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
625 prog->Geom.VerticesIn = num_vertices;
626
627 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
628 &prog->Geom.ClipDistanceArraySize);
629 }
630
631 /**
632 * Check if geometry shaders emit to non-zero streams and do corresponding
633 * validations.
634 */
635 static void
636 validate_geometry_shader_emissions(struct gl_context *ctx,
637 struct gl_shader_program *prog)
638 {
639 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
640 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
641 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
642 if (emit_vertex.error()) {
643 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
644 "stream parameter are in the range [0, %d].\n",
645 emit_vertex.error_func(),
646 emit_vertex.error_stream(),
647 ctx->Const.MaxVertexStreams - 1);
648 }
649 prog->Geom.UsesStreams = emit_vertex.uses_streams();
650 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
651
652 /* From the ARB_gpu_shader5 spec:
653 *
654 * "Multiple vertex streams are supported only if the output primitive
655 * type is declared to be "points". A program will fail to link if it
656 * contains a geometry shader calling EmitStreamVertex() or
657 * EndStreamPrimitive() if its output primitive type is not "points".
658 *
659 * However, in the same spec:
660 *
661 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
662 * with <stream> set to zero."
663 *
664 * And:
665 *
666 * "The function EndPrimitive() is equivalent to calling
667 * EndStreamPrimitive() with <stream> set to zero."
668 *
669 * Since we can call EmitVertex() and EndPrimitive() when we output
670 * primitives other than points, calling EmitStreamVertex(0) or
671 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
672 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
673 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
674 * stream.
675 */
676 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
677 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
678 "with n>0 requires point output\n");
679 }
680 }
681 }
682
683
684 /**
685 * Perform validation of global variables used across multiple shaders
686 */
687 void
688 cross_validate_globals(struct gl_shader_program *prog,
689 struct gl_shader **shader_list,
690 unsigned num_shaders,
691 bool uniforms_only)
692 {
693 /* Examine all of the uniforms in all of the shaders and cross validate
694 * them.
695 */
696 glsl_symbol_table variables;
697 for (unsigned i = 0; i < num_shaders; i++) {
698 if (shader_list[i] == NULL)
699 continue;
700
701 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
702 ir_variable *const var = node->as_variable();
703
704 if (var == NULL)
705 continue;
706
707 if (uniforms_only && (var->data.mode != ir_var_uniform))
708 continue;
709
710 /* Don't cross validate temporaries that are at global scope. These
711 * will eventually get pulled into the shaders 'main'.
712 */
713 if (var->data.mode == ir_var_temporary)
714 continue;
715
716 /* If a global with this name has already been seen, verify that the
717 * new instance has the same type. In addition, if the globals have
718 * initializers, the values of the initializers must be the same.
719 */
720 ir_variable *const existing = variables.get_variable(var->name);
721 if (existing != NULL) {
722 if (var->type != existing->type) {
723 /* Consider the types to be "the same" if both types are arrays
724 * of the same type and one of the arrays is implicitly sized.
725 * In addition, set the type of the linked variable to the
726 * explicitly sized array.
727 */
728 if (var->type->is_array()
729 && existing->type->is_array()
730 && (var->type->fields.array == existing->type->fields.array)
731 && ((var->type->length == 0)
732 || (existing->type->length == 0))) {
733 if (var->type->length != 0) {
734 if (var->type->length <= existing->data.max_array_access) {
735 linker_error(prog, "%s `%s' declared as type "
736 "`%s' but outermost dimension has an index"
737 " of `%i'\n",
738 mode_string(var),
739 var->name, var->type->name,
740 existing->data.max_array_access);
741 return;
742 }
743 existing->type = var->type;
744 } else if (existing->type->length != 0
745 && existing->type->length <=
746 var->data.max_array_access) {
747 linker_error(prog, "%s `%s' declared as type "
748 "`%s' but outermost dimension has an index"
749 " of `%i'\n",
750 mode_string(var),
751 var->name, existing->type->name,
752 var->data.max_array_access);
753 return;
754 }
755 } else if (var->type->is_record()
756 && existing->type->is_record()
757 && existing->type->record_compare(var->type)) {
758 existing->type = var->type;
759 } else {
760 linker_error(prog, "%s `%s' declared as type "
761 "`%s' and type `%s'\n",
762 mode_string(var),
763 var->name, var->type->name,
764 existing->type->name);
765 return;
766 }
767 }
768
769 if (var->data.explicit_location) {
770 if (existing->data.explicit_location
771 && (var->data.location != existing->data.location)) {
772 linker_error(prog, "explicit locations for %s "
773 "`%s' have differing values\n",
774 mode_string(var), var->name);
775 return;
776 }
777
778 existing->data.location = var->data.location;
779 existing->data.explicit_location = true;
780 }
781
782 /* From the GLSL 4.20 specification:
783 * "A link error will result if two compilation units in a program
784 * specify different integer-constant bindings for the same
785 * opaque-uniform name. However, it is not an error to specify a
786 * binding on some but not all declarations for the same name"
787 */
788 if (var->data.explicit_binding) {
789 if (existing->data.explicit_binding &&
790 var->data.binding != existing->data.binding) {
791 linker_error(prog, "explicit bindings for %s "
792 "`%s' have differing values\n",
793 mode_string(var), var->name);
794 return;
795 }
796
797 existing->data.binding = var->data.binding;
798 existing->data.explicit_binding = true;
799 }
800
801 if (var->type->contains_atomic() &&
802 var->data.atomic.offset != existing->data.atomic.offset) {
803 linker_error(prog, "offset specifications for %s "
804 "`%s' have differing values\n",
805 mode_string(var), var->name);
806 return;
807 }
808
809 /* Validate layout qualifiers for gl_FragDepth.
810 *
811 * From the AMD/ARB_conservative_depth specs:
812 *
813 * "If gl_FragDepth is redeclared in any fragment shader in a
814 * program, it must be redeclared in all fragment shaders in
815 * that program that have static assignments to
816 * gl_FragDepth. All redeclarations of gl_FragDepth in all
817 * fragment shaders in a single program must have the same set
818 * of qualifiers."
819 */
820 if (strcmp(var->name, "gl_FragDepth") == 0) {
821 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
822 bool layout_differs =
823 var->data.depth_layout != existing->data.depth_layout;
824
825 if (layout_declared && layout_differs) {
826 linker_error(prog,
827 "All redeclarations of gl_FragDepth in all "
828 "fragment shaders in a single program must have "
829 "the same set of qualifiers.\n");
830 }
831
832 if (var->data.used && layout_differs) {
833 linker_error(prog,
834 "If gl_FragDepth is redeclared with a layout "
835 "qualifier in any fragment shader, it must be "
836 "redeclared with the same layout qualifier in "
837 "all fragment shaders that have assignments to "
838 "gl_FragDepth\n");
839 }
840 }
841
842 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
843 *
844 * "If a shared global has multiple initializers, the
845 * initializers must all be constant expressions, and they
846 * must all have the same value. Otherwise, a link error will
847 * result. (A shared global having only one initializer does
848 * not require that initializer to be a constant expression.)"
849 *
850 * Previous to 4.20 the GLSL spec simply said that initializers
851 * must have the same value. In this case of non-constant
852 * initializers, this was impossible to determine. As a result,
853 * no vendor actually implemented that behavior. The 4.20
854 * behavior matches the implemented behavior of at least one other
855 * vendor, so we'll implement that for all GLSL versions.
856 */
857 if (var->constant_initializer != NULL) {
858 if (existing->constant_initializer != NULL) {
859 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
860 linker_error(prog, "initializers for %s "
861 "`%s' have differing values\n",
862 mode_string(var), var->name);
863 return;
864 }
865 } else {
866 /* If the first-seen instance of a particular uniform did not
867 * have an initializer but a later instance does, copy the
868 * initializer to the version stored in the symbol table.
869 */
870 /* FINISHME: This is wrong. The constant_value field should
871 * FINISHME: not be modified! Imagine a case where a shader
872 * FINISHME: without an initializer is linked in two different
873 * FINISHME: programs with shaders that have differing
874 * FINISHME: initializers. Linking with the first will
875 * FINISHME: modify the shader, and linking with the second
876 * FINISHME: will fail.
877 */
878 existing->constant_initializer =
879 var->constant_initializer->clone(ralloc_parent(existing),
880 NULL);
881 }
882 }
883
884 if (var->data.has_initializer) {
885 if (existing->data.has_initializer
886 && (var->constant_initializer == NULL
887 || existing->constant_initializer == NULL)) {
888 linker_error(prog,
889 "shared global variable `%s' has multiple "
890 "non-constant initializers.\n",
891 var->name);
892 return;
893 }
894
895 /* Some instance had an initializer, so keep track of that. In
896 * this location, all sorts of initializers (constant or
897 * otherwise) will propagate the existence to the variable
898 * stored in the symbol table.
899 */
900 existing->data.has_initializer = true;
901 }
902
903 if (existing->data.invariant != var->data.invariant) {
904 linker_error(prog, "declarations for %s `%s' have "
905 "mismatching invariant qualifiers\n",
906 mode_string(var), var->name);
907 return;
908 }
909 if (existing->data.centroid != var->data.centroid) {
910 linker_error(prog, "declarations for %s `%s' have "
911 "mismatching centroid qualifiers\n",
912 mode_string(var), var->name);
913 return;
914 }
915 if (existing->data.sample != var->data.sample) {
916 linker_error(prog, "declarations for %s `%s` have "
917 "mismatching sample qualifiers\n",
918 mode_string(var), var->name);
919 return;
920 }
921 } else
922 variables.add_variable(var);
923 }
924 }
925 }
926
927
928 /**
929 * Perform validation of uniforms used across multiple shader stages
930 */
931 void
932 cross_validate_uniforms(struct gl_shader_program *prog)
933 {
934 cross_validate_globals(prog, prog->_LinkedShaders,
935 MESA_SHADER_STAGES, true);
936 }
937
938 /**
939 * Accumulates the array of prog->UniformBlocks and checks that all
940 * definitons of blocks agree on their contents.
941 */
942 static bool
943 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
944 {
945 unsigned max_num_uniform_blocks = 0;
946 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
947 if (prog->_LinkedShaders[i])
948 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
949 }
950
951 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
952 struct gl_shader *sh = prog->_LinkedShaders[i];
953
954 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
955 max_num_uniform_blocks);
956 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
957 prog->UniformBlockStageIndex[i][j] = -1;
958
959 if (sh == NULL)
960 continue;
961
962 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
963 int index = link_cross_validate_uniform_block(prog,
964 &prog->UniformBlocks,
965 &prog->NumUniformBlocks,
966 &sh->UniformBlocks[j]);
967
968 if (index == -1) {
969 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
970 sh->UniformBlocks[j].Name);
971 return false;
972 }
973
974 prog->UniformBlockStageIndex[i][index] = j;
975 }
976 }
977
978 return true;
979 }
980
981
982 /**
983 * Populates a shaders symbol table with all global declarations
984 */
985 static void
986 populate_symbol_table(gl_shader *sh)
987 {
988 sh->symbols = new(sh) glsl_symbol_table;
989
990 foreach_in_list(ir_instruction, inst, sh->ir) {
991 ir_variable *var;
992 ir_function *func;
993
994 if ((func = inst->as_function()) != NULL) {
995 sh->symbols->add_function(func);
996 } else if ((var = inst->as_variable()) != NULL) {
997 if (var->data.mode != ir_var_temporary)
998 sh->symbols->add_variable(var);
999 }
1000 }
1001 }
1002
1003
1004 /**
1005 * Remap variables referenced in an instruction tree
1006 *
1007 * This is used when instruction trees are cloned from one shader and placed in
1008 * another. These trees will contain references to \c ir_variable nodes that
1009 * do not exist in the target shader. This function finds these \c ir_variable
1010 * references and replaces the references with matching variables in the target
1011 * shader.
1012 *
1013 * If there is no matching variable in the target shader, a clone of the
1014 * \c ir_variable is made and added to the target shader. The new variable is
1015 * added to \b both the instruction stream and the symbol table.
1016 *
1017 * \param inst IR tree that is to be processed.
1018 * \param symbols Symbol table containing global scope symbols in the
1019 * linked shader.
1020 * \param instructions Instruction stream where new variable declarations
1021 * should be added.
1022 */
1023 void
1024 remap_variables(ir_instruction *inst, struct gl_shader *target,
1025 hash_table *temps)
1026 {
1027 class remap_visitor : public ir_hierarchical_visitor {
1028 public:
1029 remap_visitor(struct gl_shader *target,
1030 hash_table *temps)
1031 {
1032 this->target = target;
1033 this->symbols = target->symbols;
1034 this->instructions = target->ir;
1035 this->temps = temps;
1036 }
1037
1038 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1039 {
1040 if (ir->var->data.mode == ir_var_temporary) {
1041 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1042
1043 assert(var != NULL);
1044 ir->var = var;
1045 return visit_continue;
1046 }
1047
1048 ir_variable *const existing =
1049 this->symbols->get_variable(ir->var->name);
1050 if (existing != NULL)
1051 ir->var = existing;
1052 else {
1053 ir_variable *copy = ir->var->clone(this->target, NULL);
1054
1055 this->symbols->add_variable(copy);
1056 this->instructions->push_head(copy);
1057 ir->var = copy;
1058 }
1059
1060 return visit_continue;
1061 }
1062
1063 private:
1064 struct gl_shader *target;
1065 glsl_symbol_table *symbols;
1066 exec_list *instructions;
1067 hash_table *temps;
1068 };
1069
1070 remap_visitor v(target, temps);
1071
1072 inst->accept(&v);
1073 }
1074
1075
1076 /**
1077 * Move non-declarations from one instruction stream to another
1078 *
1079 * The intended usage pattern of this function is to pass the pointer to the
1080 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1081 * pointer) for \c last and \c false for \c make_copies on the first
1082 * call. Successive calls pass the return value of the previous call for
1083 * \c last and \c true for \c make_copies.
1084 *
1085 * \param instructions Source instruction stream
1086 * \param last Instruction after which new instructions should be
1087 * inserted in the target instruction stream
1088 * \param make_copies Flag selecting whether instructions in \c instructions
1089 * should be copied (via \c ir_instruction::clone) into the
1090 * target list or moved.
1091 *
1092 * \return
1093 * The new "last" instruction in the target instruction stream. This pointer
1094 * is suitable for use as the \c last parameter of a later call to this
1095 * function.
1096 */
1097 exec_node *
1098 move_non_declarations(exec_list *instructions, exec_node *last,
1099 bool make_copies, gl_shader *target)
1100 {
1101 hash_table *temps = NULL;
1102
1103 if (make_copies)
1104 temps = hash_table_ctor(0, hash_table_pointer_hash,
1105 hash_table_pointer_compare);
1106
1107 foreach_in_list_safe(ir_instruction, inst, instructions) {
1108 if (inst->as_function())
1109 continue;
1110
1111 ir_variable *var = inst->as_variable();
1112 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1113 continue;
1114
1115 assert(inst->as_assignment()
1116 || inst->as_call()
1117 || inst->as_if() /* for initializers with the ?: operator */
1118 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1119
1120 if (make_copies) {
1121 inst = inst->clone(target, NULL);
1122
1123 if (var != NULL)
1124 hash_table_insert(temps, inst, var);
1125 else
1126 remap_variables(inst, target, temps);
1127 } else {
1128 inst->remove();
1129 }
1130
1131 last->insert_after(inst);
1132 last = inst;
1133 }
1134
1135 if (make_copies)
1136 hash_table_dtor(temps);
1137
1138 return last;
1139 }
1140
1141 /**
1142 * Get the function signature for main from a shader
1143 */
1144 ir_function_signature *
1145 link_get_main_function_signature(gl_shader *sh)
1146 {
1147 ir_function *const f = sh->symbols->get_function("main");
1148 if (f != NULL) {
1149 exec_list void_parameters;
1150
1151 /* Look for the 'void main()' signature and ensure that it's defined.
1152 * This keeps the linker from accidentally pick a shader that just
1153 * contains a prototype for main.
1154 *
1155 * We don't have to check for multiple definitions of main (in multiple
1156 * shaders) because that would have already been caught above.
1157 */
1158 ir_function_signature *sig =
1159 f->matching_signature(NULL, &void_parameters, false);
1160 if ((sig != NULL) && sig->is_defined) {
1161 return sig;
1162 }
1163 }
1164
1165 return NULL;
1166 }
1167
1168
1169 /**
1170 * This class is only used in link_intrastage_shaders() below but declaring
1171 * it inside that function leads to compiler warnings with some versions of
1172 * gcc.
1173 */
1174 class array_sizing_visitor : public ir_hierarchical_visitor {
1175 public:
1176 array_sizing_visitor()
1177 : mem_ctx(ralloc_context(NULL)),
1178 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1179 hash_table_pointer_compare))
1180 {
1181 }
1182
1183 ~array_sizing_visitor()
1184 {
1185 hash_table_dtor(this->unnamed_interfaces);
1186 ralloc_free(this->mem_ctx);
1187 }
1188
1189 virtual ir_visitor_status visit(ir_variable *var)
1190 {
1191 fixup_type(&var->type, var->data.max_array_access);
1192 if (var->type->is_interface()) {
1193 if (interface_contains_unsized_arrays(var->type)) {
1194 const glsl_type *new_type =
1195 resize_interface_members(var->type,
1196 var->get_max_ifc_array_access());
1197 var->type = new_type;
1198 var->change_interface_type(new_type);
1199 }
1200 } else if (var->type->is_array() &&
1201 var->type->fields.array->is_interface()) {
1202 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1203 const glsl_type *new_type =
1204 resize_interface_members(var->type->fields.array,
1205 var->get_max_ifc_array_access());
1206 var->change_interface_type(new_type);
1207 var->type =
1208 glsl_type::get_array_instance(new_type, var->type->length);
1209 }
1210 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1211 /* Store a pointer to the variable in the unnamed_interfaces
1212 * hashtable.
1213 */
1214 ir_variable **interface_vars = (ir_variable **)
1215 hash_table_find(this->unnamed_interfaces, ifc_type);
1216 if (interface_vars == NULL) {
1217 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1218 ifc_type->length);
1219 hash_table_insert(this->unnamed_interfaces, interface_vars,
1220 ifc_type);
1221 }
1222 unsigned index = ifc_type->field_index(var->name);
1223 assert(index < ifc_type->length);
1224 assert(interface_vars[index] == NULL);
1225 interface_vars[index] = var;
1226 }
1227 return visit_continue;
1228 }
1229
1230 /**
1231 * For each unnamed interface block that was discovered while running the
1232 * visitor, adjust the interface type to reflect the newly assigned array
1233 * sizes, and fix up the ir_variable nodes to point to the new interface
1234 * type.
1235 */
1236 void fixup_unnamed_interface_types()
1237 {
1238 hash_table_call_foreach(this->unnamed_interfaces,
1239 fixup_unnamed_interface_type, NULL);
1240 }
1241
1242 private:
1243 /**
1244 * If the type pointed to by \c type represents an unsized array, replace
1245 * it with a sized array whose size is determined by max_array_access.
1246 */
1247 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1248 {
1249 if ((*type)->is_unsized_array()) {
1250 *type = glsl_type::get_array_instance((*type)->fields.array,
1251 max_array_access + 1);
1252 assert(*type != NULL);
1253 }
1254 }
1255
1256 /**
1257 * Determine whether the given interface type contains unsized arrays (if
1258 * it doesn't, array_sizing_visitor doesn't need to process it).
1259 */
1260 static bool interface_contains_unsized_arrays(const glsl_type *type)
1261 {
1262 for (unsigned i = 0; i < type->length; i++) {
1263 const glsl_type *elem_type = type->fields.structure[i].type;
1264 if (elem_type->is_unsized_array())
1265 return true;
1266 }
1267 return false;
1268 }
1269
1270 /**
1271 * Create a new interface type based on the given type, with unsized arrays
1272 * replaced by sized arrays whose size is determined by
1273 * max_ifc_array_access.
1274 */
1275 static const glsl_type *
1276 resize_interface_members(const glsl_type *type,
1277 const unsigned *max_ifc_array_access)
1278 {
1279 unsigned num_fields = type->length;
1280 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1281 memcpy(fields, type->fields.structure,
1282 num_fields * sizeof(*fields));
1283 for (unsigned i = 0; i < num_fields; i++) {
1284 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1285 }
1286 glsl_interface_packing packing =
1287 (glsl_interface_packing) type->interface_packing;
1288 const glsl_type *new_ifc_type =
1289 glsl_type::get_interface_instance(fields, num_fields,
1290 packing, type->name);
1291 delete [] fields;
1292 return new_ifc_type;
1293 }
1294
1295 static void fixup_unnamed_interface_type(const void *key, void *data,
1296 void *)
1297 {
1298 const glsl_type *ifc_type = (const glsl_type *) key;
1299 ir_variable **interface_vars = (ir_variable **) data;
1300 unsigned num_fields = ifc_type->length;
1301 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1302 memcpy(fields, ifc_type->fields.structure,
1303 num_fields * sizeof(*fields));
1304 bool interface_type_changed = false;
1305 for (unsigned i = 0; i < num_fields; i++) {
1306 if (interface_vars[i] != NULL &&
1307 fields[i].type != interface_vars[i]->type) {
1308 fields[i].type = interface_vars[i]->type;
1309 interface_type_changed = true;
1310 }
1311 }
1312 if (!interface_type_changed) {
1313 delete [] fields;
1314 return;
1315 }
1316 glsl_interface_packing packing =
1317 (glsl_interface_packing) ifc_type->interface_packing;
1318 const glsl_type *new_ifc_type =
1319 glsl_type::get_interface_instance(fields, num_fields, packing,
1320 ifc_type->name);
1321 delete [] fields;
1322 for (unsigned i = 0; i < num_fields; i++) {
1323 if (interface_vars[i] != NULL)
1324 interface_vars[i]->change_interface_type(new_ifc_type);
1325 }
1326 }
1327
1328 /**
1329 * Memory context used to allocate the data in \c unnamed_interfaces.
1330 */
1331 void *mem_ctx;
1332
1333 /**
1334 * Hash table from const glsl_type * to an array of ir_variable *'s
1335 * pointing to the ir_variables constituting each unnamed interface block.
1336 */
1337 hash_table *unnamed_interfaces;
1338 };
1339
1340 /**
1341 * Performs the cross-validation of layout qualifiers specified in
1342 * redeclaration of gl_FragCoord for the attached fragment shaders,
1343 * and propagates them to the linked FS and linked shader program.
1344 */
1345 static void
1346 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1347 struct gl_shader *linked_shader,
1348 struct gl_shader **shader_list,
1349 unsigned num_shaders)
1350 {
1351 linked_shader->redeclares_gl_fragcoord = false;
1352 linked_shader->uses_gl_fragcoord = false;
1353 linked_shader->origin_upper_left = false;
1354 linked_shader->pixel_center_integer = false;
1355
1356 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1357 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1358 return;
1359
1360 for (unsigned i = 0; i < num_shaders; i++) {
1361 struct gl_shader *shader = shader_list[i];
1362 /* From the GLSL 1.50 spec, page 39:
1363 *
1364 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1365 * it must be redeclared in all the fragment shaders in that program
1366 * that have a static use gl_FragCoord."
1367 *
1368 * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
1369 * gl_FragCoord with no layout qualifiers but the other one doesn't
1370 * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
1371 * should be a link error. But, generating link error for this case will
1372 * be a wrong behaviour which spec didn't intend to do and it could also
1373 * break some applications.
1374 */
1375 if ((linked_shader->redeclares_gl_fragcoord
1376 && !shader->redeclares_gl_fragcoord
1377 && shader->uses_gl_fragcoord
1378 && (linked_shader->origin_upper_left
1379 || linked_shader->pixel_center_integer))
1380 || (shader->redeclares_gl_fragcoord
1381 && !linked_shader->redeclares_gl_fragcoord
1382 && linked_shader->uses_gl_fragcoord
1383 && (shader->origin_upper_left
1384 || shader->pixel_center_integer))) {
1385 linker_error(prog, "fragment shader defined with conflicting "
1386 "layout qualifiers for gl_FragCoord\n");
1387 }
1388
1389 /* From the GLSL 1.50 spec, page 39:
1390 *
1391 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1392 * single program must have the same set of qualifiers."
1393 */
1394 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1395 && (shader->origin_upper_left != linked_shader->origin_upper_left
1396 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1397 linker_error(prog, "fragment shader defined with conflicting "
1398 "layout qualifiers for gl_FragCoord\n");
1399 }
1400
1401 /* Update the linked shader state.  Note that uses_gl_fragcoord should
1402 * accumulate the results.  The other values should replace.  If there
1403 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1404 * are already known to be the same.
1405 */
1406 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1407 linked_shader->redeclares_gl_fragcoord =
1408 shader->redeclares_gl_fragcoord;
1409 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1410 || shader->uses_gl_fragcoord;
1411 linked_shader->origin_upper_left = shader->origin_upper_left;
1412 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1413 }
1414 }
1415 }
1416
1417 /**
1418 * Performs the cross-validation of geometry shader max_vertices and
1419 * primitive type layout qualifiers for the attached geometry shaders,
1420 * and propagates them to the linked GS and linked shader program.
1421 */
1422 static void
1423 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1424 struct gl_shader *linked_shader,
1425 struct gl_shader **shader_list,
1426 unsigned num_shaders)
1427 {
1428 linked_shader->Geom.VerticesOut = 0;
1429 linked_shader->Geom.Invocations = 0;
1430 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1431 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1432
1433 /* No in/out qualifiers defined for anything but GLSL 1.50+
1434 * geometry shaders so far.
1435 */
1436 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1437 return;
1438
1439 /* From the GLSL 1.50 spec, page 46:
1440 *
1441 * "All geometry shader output layout declarations in a program
1442 * must declare the same layout and same value for
1443 * max_vertices. There must be at least one geometry output
1444 * layout declaration somewhere in a program, but not all
1445 * geometry shaders (compilation units) are required to
1446 * declare it."
1447 */
1448
1449 for (unsigned i = 0; i < num_shaders; i++) {
1450 struct gl_shader *shader = shader_list[i];
1451
1452 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1453 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1454 linked_shader->Geom.InputType != shader->Geom.InputType) {
1455 linker_error(prog, "geometry shader defined with conflicting "
1456 "input types\n");
1457 return;
1458 }
1459 linked_shader->Geom.InputType = shader->Geom.InputType;
1460 }
1461
1462 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1463 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1464 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1465 linker_error(prog, "geometry shader defined with conflicting "
1466 "output types\n");
1467 return;
1468 }
1469 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1470 }
1471
1472 if (shader->Geom.VerticesOut != 0) {
1473 if (linked_shader->Geom.VerticesOut != 0 &&
1474 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1475 linker_error(prog, "geometry shader defined with conflicting "
1476 "output vertex count (%d and %d)\n",
1477 linked_shader->Geom.VerticesOut,
1478 shader->Geom.VerticesOut);
1479 return;
1480 }
1481 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1482 }
1483
1484 if (shader->Geom.Invocations != 0) {
1485 if (linked_shader->Geom.Invocations != 0 &&
1486 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1487 linker_error(prog, "geometry shader defined with conflicting "
1488 "invocation count (%d and %d)\n",
1489 linked_shader->Geom.Invocations,
1490 shader->Geom.Invocations);
1491 return;
1492 }
1493 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1494 }
1495 }
1496
1497 /* Just do the intrastage -> interstage propagation right now,
1498 * since we already know we're in the right type of shader program
1499 * for doing it.
1500 */
1501 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1502 linker_error(prog,
1503 "geometry shader didn't declare primitive input type\n");
1504 return;
1505 }
1506 prog->Geom.InputType = linked_shader->Geom.InputType;
1507
1508 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1509 linker_error(prog,
1510 "geometry shader didn't declare primitive output type\n");
1511 return;
1512 }
1513 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1514
1515 if (linked_shader->Geom.VerticesOut == 0) {
1516 linker_error(prog,
1517 "geometry shader didn't declare max_vertices\n");
1518 return;
1519 }
1520 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1521
1522 if (linked_shader->Geom.Invocations == 0)
1523 linked_shader->Geom.Invocations = 1;
1524
1525 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1526 }
1527
1528
1529 /**
1530 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1531 * qualifiers for the attached compute shaders, and propagate them to the
1532 * linked CS and linked shader program.
1533 */
1534 static void
1535 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1536 struct gl_shader *linked_shader,
1537 struct gl_shader **shader_list,
1538 unsigned num_shaders)
1539 {
1540 for (int i = 0; i < 3; i++)
1541 linked_shader->Comp.LocalSize[i] = 0;
1542
1543 /* This function is called for all shader stages, but it only has an effect
1544 * for compute shaders.
1545 */
1546 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1547 return;
1548
1549 /* From the ARB_compute_shader spec, in the section describing local size
1550 * declarations:
1551 *
1552 * If multiple compute shaders attached to a single program object
1553 * declare local work-group size, the declarations must be identical;
1554 * otherwise a link-time error results. Furthermore, if a program
1555 * object contains any compute shaders, at least one must contain an
1556 * input layout qualifier specifying the local work sizes of the
1557 * program, or a link-time error will occur.
1558 */
1559 for (unsigned sh = 0; sh < num_shaders; sh++) {
1560 struct gl_shader *shader = shader_list[sh];
1561
1562 if (shader->Comp.LocalSize[0] != 0) {
1563 if (linked_shader->Comp.LocalSize[0] != 0) {
1564 for (int i = 0; i < 3; i++) {
1565 if (linked_shader->Comp.LocalSize[i] !=
1566 shader->Comp.LocalSize[i]) {
1567 linker_error(prog, "compute shader defined with conflicting "
1568 "local sizes\n");
1569 return;
1570 }
1571 }
1572 }
1573 for (int i = 0; i < 3; i++)
1574 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1575 }
1576 }
1577
1578 /* Just do the intrastage -> interstage propagation right now,
1579 * since we already know we're in the right type of shader program
1580 * for doing it.
1581 */
1582 if (linked_shader->Comp.LocalSize[0] == 0) {
1583 linker_error(prog, "compute shader didn't declare local size\n");
1584 return;
1585 }
1586 for (int i = 0; i < 3; i++)
1587 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1588 }
1589
1590
1591 /**
1592 * Combine a group of shaders for a single stage to generate a linked shader
1593 *
1594 * \note
1595 * If this function is supplied a single shader, it is cloned, and the new
1596 * shader is returned.
1597 */
1598 static struct gl_shader *
1599 link_intrastage_shaders(void *mem_ctx,
1600 struct gl_context *ctx,
1601 struct gl_shader_program *prog,
1602 struct gl_shader **shader_list,
1603 unsigned num_shaders)
1604 {
1605 struct gl_uniform_block *uniform_blocks = NULL;
1606
1607 /* Check that global variables defined in multiple shaders are consistent.
1608 */
1609 cross_validate_globals(prog, shader_list, num_shaders, false);
1610 if (!prog->LinkStatus)
1611 return NULL;
1612
1613 /* Check that interface blocks defined in multiple shaders are consistent.
1614 */
1615 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1616 num_shaders);
1617 if (!prog->LinkStatus)
1618 return NULL;
1619
1620 /* Link up uniform blocks defined within this stage. */
1621 const unsigned num_uniform_blocks =
1622 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1623 &uniform_blocks);
1624 if (!prog->LinkStatus)
1625 return NULL;
1626
1627 /* Check that there is only a single definition of each function signature
1628 * across all shaders.
1629 */
1630 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1631 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1632 ir_function *const f = node->as_function();
1633
1634 if (f == NULL)
1635 continue;
1636
1637 for (unsigned j = i + 1; j < num_shaders; j++) {
1638 ir_function *const other =
1639 shader_list[j]->symbols->get_function(f->name);
1640
1641 /* If the other shader has no function (and therefore no function
1642 * signatures) with the same name, skip to the next shader.
1643 */
1644 if (other == NULL)
1645 continue;
1646
1647 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1648 if (!sig->is_defined || sig->is_builtin())
1649 continue;
1650
1651 ir_function_signature *other_sig =
1652 other->exact_matching_signature(NULL, &sig->parameters);
1653
1654 if ((other_sig != NULL) && other_sig->is_defined
1655 && !other_sig->is_builtin()) {
1656 linker_error(prog, "function `%s' is multiply defined\n",
1657 f->name);
1658 return NULL;
1659 }
1660 }
1661 }
1662 }
1663 }
1664
1665 /* Find the shader that defines main, and make a clone of it.
1666 *
1667 * Starting with the clone, search for undefined references. If one is
1668 * found, find the shader that defines it. Clone the reference and add
1669 * it to the shader. Repeat until there are no undefined references or
1670 * until a reference cannot be resolved.
1671 */
1672 gl_shader *main = NULL;
1673 for (unsigned i = 0; i < num_shaders; i++) {
1674 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1675 main = shader_list[i];
1676 break;
1677 }
1678 }
1679
1680 if (main == NULL) {
1681 linker_error(prog, "%s shader lacks `main'\n",
1682 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1683 return NULL;
1684 }
1685
1686 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1687 linked->ir = new(linked) exec_list;
1688 clone_ir_list(mem_ctx, linked->ir, main->ir);
1689
1690 linked->UniformBlocks = uniform_blocks;
1691 linked->NumUniformBlocks = num_uniform_blocks;
1692 ralloc_steal(linked, linked->UniformBlocks);
1693
1694 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1695 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1696 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1697
1698 populate_symbol_table(linked);
1699
1700 /* The pointer to the main function in the final linked shader (i.e., the
1701 * copy of the original shader that contained the main function).
1702 */
1703 ir_function_signature *const main_sig =
1704 link_get_main_function_signature(linked);
1705
1706 /* Move any instructions other than variable declarations or function
1707 * declarations into main.
1708 */
1709 exec_node *insertion_point =
1710 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1711 linked);
1712
1713 for (unsigned i = 0; i < num_shaders; i++) {
1714 if (shader_list[i] == main)
1715 continue;
1716
1717 insertion_point = move_non_declarations(shader_list[i]->ir,
1718 insertion_point, true, linked);
1719 }
1720
1721 /* Check if any shader needs built-in functions. */
1722 bool need_builtins = false;
1723 for (unsigned i = 0; i < num_shaders; i++) {
1724 if (shader_list[i]->uses_builtin_functions) {
1725 need_builtins = true;
1726 break;
1727 }
1728 }
1729
1730 bool ok;
1731 if (need_builtins) {
1732 /* Make a temporary array one larger than shader_list, which will hold
1733 * the built-in function shader as well.
1734 */
1735 gl_shader **linking_shaders = (gl_shader **)
1736 calloc(num_shaders + 1, sizeof(gl_shader *));
1737
1738 ok = linking_shaders != NULL;
1739
1740 if (ok) {
1741 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1742 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1743
1744 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1745
1746 free(linking_shaders);
1747 } else {
1748 _mesa_error_no_memory(__func__);
1749 }
1750 } else {
1751 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1752 }
1753
1754
1755 if (!ok) {
1756 ctx->Driver.DeleteShader(ctx, linked);
1757 return NULL;
1758 }
1759
1760 /* At this point linked should contain all of the linked IR, so
1761 * validate it to make sure nothing went wrong.
1762 */
1763 validate_ir_tree(linked->ir);
1764
1765 /* Set the size of geometry shader input arrays */
1766 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1767 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1768 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1769 foreach_in_list(ir_instruction, ir, linked->ir) {
1770 ir->accept(&input_resize_visitor);
1771 }
1772 }
1773
1774 if (ctx->Const.VertexID_is_zero_based)
1775 lower_vertex_id(linked);
1776
1777 /* Make a pass over all variable declarations to ensure that arrays with
1778 * unspecified sizes have a size specified. The size is inferred from the
1779 * max_array_access field.
1780 */
1781 array_sizing_visitor v;
1782 v.run(linked->ir);
1783 v.fixup_unnamed_interface_types();
1784
1785 return linked;
1786 }
1787
1788 /**
1789 * Update the sizes of linked shader uniform arrays to the maximum
1790 * array index used.
1791 *
1792 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1793 *
1794 * If one or more elements of an array are active,
1795 * GetActiveUniform will return the name of the array in name,
1796 * subject to the restrictions listed above. The type of the array
1797 * is returned in type. The size parameter contains the highest
1798 * array element index used, plus one. The compiler or linker
1799 * determines the highest index used. There will be only one
1800 * active uniform reported by the GL per uniform array.
1801
1802 */
1803 static void
1804 update_array_sizes(struct gl_shader_program *prog)
1805 {
1806 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1807 if (prog->_LinkedShaders[i] == NULL)
1808 continue;
1809
1810 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1811 ir_variable *const var = node->as_variable();
1812
1813 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1814 !var->type->is_array())
1815 continue;
1816
1817 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1818 * will not be eliminated. Since we always do std140, just
1819 * don't resize arrays in UBOs.
1820 *
1821 * Atomic counters are supposed to get deterministic
1822 * locations assigned based on the declaration ordering and
1823 * sizes, array compaction would mess that up.
1824 */
1825 if (var->is_in_uniform_block() || var->type->contains_atomic())
1826 continue;
1827
1828 unsigned int size = var->data.max_array_access;
1829 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1830 if (prog->_LinkedShaders[j] == NULL)
1831 continue;
1832
1833 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1834 ir_variable *other_var = node2->as_variable();
1835 if (!other_var)
1836 continue;
1837
1838 if (strcmp(var->name, other_var->name) == 0 &&
1839 other_var->data.max_array_access > size) {
1840 size = other_var->data.max_array_access;
1841 }
1842 }
1843 }
1844
1845 if (size + 1 != var->type->length) {
1846 /* If this is a built-in uniform (i.e., it's backed by some
1847 * fixed-function state), adjust the number of state slots to
1848 * match the new array size. The number of slots per array entry
1849 * is not known. It seems safe to assume that the total number of
1850 * slots is an integer multiple of the number of array elements.
1851 * Determine the number of slots per array element by dividing by
1852 * the old (total) size.
1853 */
1854 const unsigned num_slots = var->get_num_state_slots();
1855 if (num_slots > 0) {
1856 var->set_num_state_slots((size + 1)
1857 * (num_slots / var->type->length));
1858 }
1859
1860 var->type = glsl_type::get_array_instance(var->type->fields.array,
1861 size + 1);
1862 /* FINISHME: We should update the types of array
1863 * dereferences of this variable now.
1864 */
1865 }
1866 }
1867 }
1868 }
1869
1870 /**
1871 * Find a contiguous set of available bits in a bitmask.
1872 *
1873 * \param used_mask Bits representing used (1) and unused (0) locations
1874 * \param needed_count Number of contiguous bits needed.
1875 *
1876 * \return
1877 * Base location of the available bits on success or -1 on failure.
1878 */
1879 int
1880 find_available_slots(unsigned used_mask, unsigned needed_count)
1881 {
1882 unsigned needed_mask = (1 << needed_count) - 1;
1883 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1884
1885 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1886 * cannot optimize possibly infinite loops" for the loop below.
1887 */
1888 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1889 return -1;
1890
1891 for (int i = 0; i <= max_bit_to_test; i++) {
1892 if ((needed_mask & ~used_mask) == needed_mask)
1893 return i;
1894
1895 needed_mask <<= 1;
1896 }
1897
1898 return -1;
1899 }
1900
1901
1902 /**
1903 * Assign locations for either VS inputs or FS outputs
1904 *
1905 * \param prog Shader program whose variables need locations assigned
1906 * \param target_index Selector for the program target to receive location
1907 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1908 * \c MESA_SHADER_FRAGMENT.
1909 * \param max_index Maximum number of generic locations. This corresponds
1910 * to either the maximum number of draw buffers or the
1911 * maximum number of generic attributes.
1912 *
1913 * \return
1914 * If locations are successfully assigned, true is returned. Otherwise an
1915 * error is emitted to the shader link log and false is returned.
1916 */
1917 bool
1918 assign_attribute_or_color_locations(gl_shader_program *prog,
1919 unsigned target_index,
1920 unsigned max_index)
1921 {
1922 /* Mark invalid locations as being used.
1923 */
1924 unsigned used_locations = (max_index >= 32)
1925 ? ~0 : ~((1 << max_index) - 1);
1926
1927 assert((target_index == MESA_SHADER_VERTEX)
1928 || (target_index == MESA_SHADER_FRAGMENT));
1929
1930 gl_shader *const sh = prog->_LinkedShaders[target_index];
1931 if (sh == NULL)
1932 return true;
1933
1934 /* Operate in a total of four passes.
1935 *
1936 * 1. Invalidate the location assignments for all vertex shader inputs.
1937 *
1938 * 2. Assign locations for inputs that have user-defined (via
1939 * glBindVertexAttribLocation) locations and outputs that have
1940 * user-defined locations (via glBindFragDataLocation).
1941 *
1942 * 3. Sort the attributes without assigned locations by number of slots
1943 * required in decreasing order. Fragmentation caused by attribute
1944 * locations assigned by the application may prevent large attributes
1945 * from having enough contiguous space.
1946 *
1947 * 4. Assign locations to any inputs without assigned locations.
1948 */
1949
1950 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1951 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1952
1953 const enum ir_variable_mode direction =
1954 (target_index == MESA_SHADER_VERTEX)
1955 ? ir_var_shader_in : ir_var_shader_out;
1956
1957
1958 /* Temporary storage for the set of attributes that need locations assigned.
1959 */
1960 struct temp_attr {
1961 unsigned slots;
1962 ir_variable *var;
1963
1964 /* Used below in the call to qsort. */
1965 static int compare(const void *a, const void *b)
1966 {
1967 const temp_attr *const l = (const temp_attr *) a;
1968 const temp_attr *const r = (const temp_attr *) b;
1969
1970 /* Reversed because we want a descending order sort below. */
1971 return r->slots - l->slots;
1972 }
1973 } to_assign[16];
1974
1975 unsigned num_attr = 0;
1976
1977 foreach_in_list(ir_instruction, node, sh->ir) {
1978 ir_variable *const var = node->as_variable();
1979
1980 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1981 continue;
1982
1983 if (var->data.explicit_location) {
1984 if ((var->data.location >= (int)(max_index + generic_base))
1985 || (var->data.location < 0)) {
1986 linker_error(prog,
1987 "invalid explicit location %d specified for `%s'\n",
1988 (var->data.location < 0)
1989 ? var->data.location
1990 : var->data.location - generic_base,
1991 var->name);
1992 return false;
1993 }
1994 } else if (target_index == MESA_SHADER_VERTEX) {
1995 unsigned binding;
1996
1997 if (prog->AttributeBindings->get(binding, var->name)) {
1998 assert(binding >= VERT_ATTRIB_GENERIC0);
1999 var->data.location = binding;
2000 var->data.is_unmatched_generic_inout = 0;
2001 }
2002 } else if (target_index == MESA_SHADER_FRAGMENT) {
2003 unsigned binding;
2004 unsigned index;
2005
2006 if (prog->FragDataBindings->get(binding, var->name)) {
2007 assert(binding >= FRAG_RESULT_DATA0);
2008 var->data.location = binding;
2009 var->data.is_unmatched_generic_inout = 0;
2010
2011 if (prog->FragDataIndexBindings->get(index, var->name)) {
2012 var->data.index = index;
2013 }
2014 }
2015 }
2016
2017 /* If the variable is not a built-in and has a location statically
2018 * assigned in the shader (presumably via a layout qualifier), make sure
2019 * that it doesn't collide with other assigned locations. Otherwise,
2020 * add it to the list of variables that need linker-assigned locations.
2021 */
2022 const unsigned slots = var->type->count_attribute_slots();
2023 if (var->data.location != -1) {
2024 if (var->data.location >= generic_base && var->data.index < 1) {
2025 /* From page 61 of the OpenGL 4.0 spec:
2026 *
2027 * "LinkProgram will fail if the attribute bindings assigned
2028 * by BindAttribLocation do not leave not enough space to
2029 * assign a location for an active matrix attribute or an
2030 * active attribute array, both of which require multiple
2031 * contiguous generic attributes."
2032 *
2033 * I think above text prohibits the aliasing of explicit and
2034 * automatic assignments. But, aliasing is allowed in manual
2035 * assignments of attribute locations. See below comments for
2036 * the details.
2037 *
2038 * From OpenGL 4.0 spec, page 61:
2039 *
2040 * "It is possible for an application to bind more than one
2041 * attribute name to the same location. This is referred to as
2042 * aliasing. This will only work if only one of the aliased
2043 * attributes is active in the executable program, or if no
2044 * path through the shader consumes more than one attribute of
2045 * a set of attributes aliased to the same location. A link
2046 * error can occur if the linker determines that every path
2047 * through the shader consumes multiple aliased attributes,
2048 * but implementations are not required to generate an error
2049 * in this case."
2050 *
2051 * From GLSL 4.30 spec, page 54:
2052 *
2053 * "A program will fail to link if any two non-vertex shader
2054 * input variables are assigned to the same location. For
2055 * vertex shaders, multiple input variables may be assigned
2056 * to the same location using either layout qualifiers or via
2057 * the OpenGL API. However, such aliasing is intended only to
2058 * support vertex shaders where each execution path accesses
2059 * at most one input per each location. Implementations are
2060 * permitted, but not required, to generate link-time errors
2061 * if they detect that every path through the vertex shader
2062 * executable accesses multiple inputs assigned to any single
2063 * location. For all shader types, a program will fail to link
2064 * if explicit location assignments leave the linker unable
2065 * to find space for other variables without explicit
2066 * assignments."
2067 *
2068 * From OpenGL ES 3.0 spec, page 56:
2069 *
2070 * "Binding more than one attribute name to the same location
2071 * is referred to as aliasing, and is not permitted in OpenGL
2072 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2073 * fail when this condition exists. However, aliasing is
2074 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2075 * This will only work if only one of the aliased attributes
2076 * is active in the executable program, or if no path through
2077 * the shader consumes more than one attribute of a set of
2078 * attributes aliased to the same location. A link error can
2079 * occur if the linker determines that every path through the
2080 * shader consumes multiple aliased attributes, but implemen-
2081 * tations are not required to generate an error in this case."
2082 *
2083 * After looking at above references from OpenGL, OpenGL ES and
2084 * GLSL specifications, we allow aliasing of vertex input variables
2085 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2086 *
2087 * NOTE: This is not required by the spec but its worth mentioning
2088 * here that we're not doing anything to make sure that no path
2089 * through the vertex shader executable accesses multiple inputs
2090 * assigned to any single location.
2091 */
2092
2093 /* Mask representing the contiguous slots that will be used by
2094 * this attribute.
2095 */
2096 const unsigned attr = var->data.location - generic_base;
2097 const unsigned use_mask = (1 << slots) - 1;
2098 const char *const string = (target_index == MESA_SHADER_VERTEX)
2099 ? "vertex shader input" : "fragment shader output";
2100
2101 /* Generate a link error if the requested locations for this
2102 * attribute exceed the maximum allowed attribute location.
2103 */
2104 if (attr + slots > max_index) {
2105 linker_error(prog,
2106 "insufficient contiguous locations "
2107 "available for %s `%s' %d %d %d\n", string,
2108 var->name, used_locations, use_mask, attr);
2109 return false;
2110 }
2111
2112 /* Generate a link error if the set of bits requested for this
2113 * attribute overlaps any previously allocated bits.
2114 */
2115 if ((~(use_mask << attr) & used_locations) != used_locations) {
2116 if (target_index == MESA_SHADER_FRAGMENT ||
2117 (prog->IsES && prog->Version >= 300)) {
2118 linker_error(prog,
2119 "overlapping location is assigned "
2120 "to %s `%s' %d %d %d\n", string,
2121 var->name, used_locations, use_mask, attr);
2122 return false;
2123 } else {
2124 linker_warning(prog,
2125 "overlapping location is assigned "
2126 "to %s `%s' %d %d %d\n", string,
2127 var->name, used_locations, use_mask, attr);
2128 }
2129 }
2130
2131 used_locations |= (use_mask << attr);
2132 }
2133
2134 continue;
2135 }
2136
2137 to_assign[num_attr].slots = slots;
2138 to_assign[num_attr].var = var;
2139 num_attr++;
2140 }
2141
2142 /* If all of the attributes were assigned locations by the application (or
2143 * are built-in attributes with fixed locations), return early. This should
2144 * be the common case.
2145 */
2146 if (num_attr == 0)
2147 return true;
2148
2149 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2150
2151 if (target_index == MESA_SHADER_VERTEX) {
2152 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2153 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2154 * reserved to prevent it from being automatically allocated below.
2155 */
2156 find_deref_visitor find("gl_Vertex");
2157 find.run(sh->ir);
2158 if (find.variable_found())
2159 used_locations |= (1 << 0);
2160 }
2161
2162 for (unsigned i = 0; i < num_attr; i++) {
2163 /* Mask representing the contiguous slots that will be used by this
2164 * attribute.
2165 */
2166 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2167
2168 int location = find_available_slots(used_locations, to_assign[i].slots);
2169
2170 if (location < 0) {
2171 const char *const string = (target_index == MESA_SHADER_VERTEX)
2172 ? "vertex shader input" : "fragment shader output";
2173
2174 linker_error(prog,
2175 "insufficient contiguous locations "
2176 "available for %s `%s'\n",
2177 string, to_assign[i].var->name);
2178 return false;
2179 }
2180
2181 to_assign[i].var->data.location = generic_base + location;
2182 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2183 used_locations |= (use_mask << location);
2184 }
2185
2186 return true;
2187 }
2188
2189
2190 /**
2191 * Demote shader inputs and outputs that are not used in other stages
2192 */
2193 void
2194 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2195 {
2196 foreach_in_list(ir_instruction, node, sh->ir) {
2197 ir_variable *const var = node->as_variable();
2198
2199 if ((var == NULL) || (var->data.mode != int(mode)))
2200 continue;
2201
2202 /* A shader 'in' or 'out' variable is only really an input or output if
2203 * its value is used by other shader stages. This will cause the variable
2204 * to have a location assigned.
2205 */
2206 if (var->data.is_unmatched_generic_inout) {
2207 assert(var->data.mode != ir_var_temporary);
2208 var->data.mode = ir_var_auto;
2209 }
2210 }
2211 }
2212
2213
2214 /**
2215 * Store the gl_FragDepth layout in the gl_shader_program struct.
2216 */
2217 static void
2218 store_fragdepth_layout(struct gl_shader_program *prog)
2219 {
2220 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2221 return;
2222 }
2223
2224 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2225
2226 /* We don't look up the gl_FragDepth symbol directly because if
2227 * gl_FragDepth is not used in the shader, it's removed from the IR.
2228 * However, the symbol won't be removed from the symbol table.
2229 *
2230 * We're only interested in the cases where the variable is NOT removed
2231 * from the IR.
2232 */
2233 foreach_in_list(ir_instruction, node, ir) {
2234 ir_variable *const var = node->as_variable();
2235
2236 if (var == NULL || var->data.mode != ir_var_shader_out) {
2237 continue;
2238 }
2239
2240 if (strcmp(var->name, "gl_FragDepth") == 0) {
2241 switch (var->data.depth_layout) {
2242 case ir_depth_layout_none:
2243 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2244 return;
2245 case ir_depth_layout_any:
2246 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2247 return;
2248 case ir_depth_layout_greater:
2249 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2250 return;
2251 case ir_depth_layout_less:
2252 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2253 return;
2254 case ir_depth_layout_unchanged:
2255 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2256 return;
2257 default:
2258 assert(0);
2259 return;
2260 }
2261 }
2262 }
2263 }
2264
2265 /**
2266 * Validate the resources used by a program versus the implementation limits
2267 */
2268 static void
2269 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2270 {
2271 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2272 struct gl_shader *sh = prog->_LinkedShaders[i];
2273
2274 if (sh == NULL)
2275 continue;
2276
2277 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2278 linker_error(prog, "Too many %s shader texture samplers\n",
2279 _mesa_shader_stage_to_string(i));
2280 }
2281
2282 if (sh->num_uniform_components >
2283 ctx->Const.Program[i].MaxUniformComponents) {
2284 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2285 linker_warning(prog, "Too many %s shader default uniform block "
2286 "components, but the driver will try to optimize "
2287 "them out; this is non-portable out-of-spec "
2288 "behavior\n",
2289 _mesa_shader_stage_to_string(i));
2290 } else {
2291 linker_error(prog, "Too many %s shader default uniform block "
2292 "components\n",
2293 _mesa_shader_stage_to_string(i));
2294 }
2295 }
2296
2297 if (sh->num_combined_uniform_components >
2298 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2299 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2300 linker_warning(prog, "Too many %s shader uniform components, "
2301 "but the driver will try to optimize them out; "
2302 "this is non-portable out-of-spec behavior\n",
2303 _mesa_shader_stage_to_string(i));
2304 } else {
2305 linker_error(prog, "Too many %s shader uniform components\n",
2306 _mesa_shader_stage_to_string(i));
2307 }
2308 }
2309 }
2310
2311 unsigned blocks[MESA_SHADER_STAGES] = {0};
2312 unsigned total_uniform_blocks = 0;
2313
2314 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2315 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2316 if (prog->UniformBlockStageIndex[j][i] != -1) {
2317 blocks[j]++;
2318 total_uniform_blocks++;
2319 }
2320 }
2321
2322 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2323 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2324 prog->NumUniformBlocks,
2325 ctx->Const.MaxCombinedUniformBlocks);
2326 } else {
2327 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2328 const unsigned max_uniform_blocks =
2329 ctx->Const.Program[i].MaxUniformBlocks;
2330 if (blocks[i] > max_uniform_blocks) {
2331 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2332 _mesa_shader_stage_to_string(i),
2333 blocks[i],
2334 max_uniform_blocks);
2335 break;
2336 }
2337 }
2338 }
2339 }
2340 }
2341
2342 /**
2343 * Validate shader image resources.
2344 */
2345 static void
2346 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2347 {
2348 unsigned total_image_units = 0;
2349 unsigned fragment_outputs = 0;
2350
2351 if (!ctx->Extensions.ARB_shader_image_load_store)
2352 return;
2353
2354 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2355 struct gl_shader *sh = prog->_LinkedShaders[i];
2356
2357 if (sh) {
2358 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2359 linker_error(prog, "Too many %s shader image uniforms\n",
2360 _mesa_shader_stage_to_string(i));
2361
2362 total_image_units += sh->NumImages;
2363
2364 if (i == MESA_SHADER_FRAGMENT) {
2365 foreach_in_list(ir_instruction, node, sh->ir) {
2366 ir_variable *var = node->as_variable();
2367 if (var && var->data.mode == ir_var_shader_out)
2368 fragment_outputs += var->type->count_attribute_slots();
2369 }
2370 }
2371 }
2372 }
2373
2374 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2375 linker_error(prog, "Too many combined image uniforms\n");
2376
2377 if (total_image_units + fragment_outputs >
2378 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2379 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2380 }
2381
2382
2383 /**
2384 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2385 * for a variable, checks for overlaps between other uniforms using explicit
2386 * locations.
2387 */
2388 static bool
2389 reserve_explicit_locations(struct gl_shader_program *prog,
2390 string_to_uint_map *map, ir_variable *var)
2391 {
2392 unsigned slots = var->type->uniform_locations();
2393 unsigned max_loc = var->data.location + slots - 1;
2394
2395 /* Resize remap table if locations do not fit in the current one. */
2396 if (max_loc + 1 > prog->NumUniformRemapTable) {
2397 prog->UniformRemapTable =
2398 reralloc(prog, prog->UniformRemapTable,
2399 gl_uniform_storage *,
2400 max_loc + 1);
2401
2402 if (!prog->UniformRemapTable) {
2403 linker_error(prog, "Out of memory during linking.\n");
2404 return false;
2405 }
2406
2407 /* Initialize allocated space. */
2408 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2409 prog->UniformRemapTable[i] = NULL;
2410
2411 prog->NumUniformRemapTable = max_loc + 1;
2412 }
2413
2414 for (unsigned i = 0; i < slots; i++) {
2415 unsigned loc = var->data.location + i;
2416
2417 /* Check if location is already used. */
2418 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2419
2420 /* Possibly same uniform from a different stage, this is ok. */
2421 unsigned hash_loc;
2422 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2423 continue;
2424
2425 /* ARB_explicit_uniform_location specification states:
2426 *
2427 * "No two default-block uniform variables in the program can have
2428 * the same location, even if they are unused, otherwise a compiler
2429 * or linker error will be generated."
2430 */
2431 linker_error(prog,
2432 "location qualifier for uniform %s overlaps "
2433 "previously used location\n",
2434 var->name);
2435 return false;
2436 }
2437
2438 /* Initialize location as inactive before optimization
2439 * rounds and location assignment.
2440 */
2441 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2442 }
2443
2444 /* Note, base location used for arrays. */
2445 map->put(var->data.location, var->name);
2446
2447 return true;
2448 }
2449
2450 /**
2451 * Check and reserve all explicit uniform locations, called before
2452 * any optimizations happen to handle also inactive uniforms and
2453 * inactive array elements that may get trimmed away.
2454 */
2455 static void
2456 check_explicit_uniform_locations(struct gl_context *ctx,
2457 struct gl_shader_program *prog)
2458 {
2459 if (!ctx->Extensions.ARB_explicit_uniform_location)
2460 return;
2461
2462 /* This map is used to detect if overlapping explicit locations
2463 * occur with the same uniform (from different stage) or a different one.
2464 */
2465 string_to_uint_map *uniform_map = new string_to_uint_map;
2466
2467 if (!uniform_map) {
2468 linker_error(prog, "Out of memory during linking.\n");
2469 return;
2470 }
2471
2472 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2473 struct gl_shader *sh = prog->_LinkedShaders[i];
2474
2475 if (!sh)
2476 continue;
2477
2478 foreach_in_list(ir_instruction, node, sh->ir) {
2479 ir_variable *var = node->as_variable();
2480 if ((var && var->data.mode == ir_var_uniform) &&
2481 var->data.explicit_location) {
2482 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2483 delete uniform_map;
2484 return;
2485 }
2486 }
2487 }
2488 }
2489
2490 delete uniform_map;
2491 }
2492
2493 void
2494 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2495 {
2496 tfeedback_decl *tfeedback_decls = NULL;
2497 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2498
2499 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2500
2501 prog->LinkStatus = true; /* All error paths will set this to false */
2502 prog->Validated = false;
2503 prog->_Used = false;
2504
2505 prog->ARB_fragment_coord_conventions_enable = false;
2506
2507 /* Separate the shaders into groups based on their type.
2508 */
2509 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2510 unsigned num_shaders[MESA_SHADER_STAGES];
2511
2512 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2513 shader_list[i] = (struct gl_shader **)
2514 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2515 num_shaders[i] = 0;
2516 }
2517
2518 unsigned min_version = UINT_MAX;
2519 unsigned max_version = 0;
2520 const bool is_es_prog =
2521 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2522 for (unsigned i = 0; i < prog->NumShaders; i++) {
2523 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2524 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2525
2526 if (prog->Shaders[i]->IsES != is_es_prog) {
2527 linker_error(prog, "all shaders must use same shading "
2528 "language version\n");
2529 goto done;
2530 }
2531
2532 prog->ARB_fragment_coord_conventions_enable |=
2533 prog->Shaders[i]->ARB_fragment_coord_conventions_enable;
2534
2535 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2536 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2537 num_shaders[shader_type]++;
2538 }
2539
2540 /* In desktop GLSL, different shader versions may be linked together. In
2541 * GLSL ES, all shader versions must be the same.
2542 */
2543 if (is_es_prog && min_version != max_version) {
2544 linker_error(prog, "all shaders must use same shading "
2545 "language version\n");
2546 goto done;
2547 }
2548
2549 prog->Version = max_version;
2550 prog->IsES = is_es_prog;
2551
2552 /* Geometry shaders have to be linked with vertex shaders.
2553 */
2554 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2555 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2556 !prog->SeparateShader) {
2557 linker_error(prog, "Geometry shader must be linked with "
2558 "vertex shader\n");
2559 goto done;
2560 }
2561
2562 /* Compute shaders have additional restrictions. */
2563 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2564 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2565 linker_error(prog, "Compute shaders may not be linked with any other "
2566 "type of shader\n");
2567 }
2568
2569 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2570 if (prog->_LinkedShaders[i] != NULL)
2571 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2572
2573 prog->_LinkedShaders[i] = NULL;
2574 }
2575
2576 /* Link all shaders for a particular stage and validate the result.
2577 */
2578 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2579 if (num_shaders[stage] > 0) {
2580 gl_shader *const sh =
2581 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2582 num_shaders[stage]);
2583
2584 if (!prog->LinkStatus)
2585 goto done;
2586
2587 switch (stage) {
2588 case MESA_SHADER_VERTEX:
2589 validate_vertex_shader_executable(prog, sh);
2590 break;
2591 case MESA_SHADER_GEOMETRY:
2592 validate_geometry_shader_executable(prog, sh);
2593 break;
2594 case MESA_SHADER_FRAGMENT:
2595 validate_fragment_shader_executable(prog, sh);
2596 break;
2597 }
2598 if (!prog->LinkStatus)
2599 goto done;
2600
2601 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2602 }
2603 }
2604
2605 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2606 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2607 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2608 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2609 else
2610 prog->LastClipDistanceArraySize = 0; /* Not used */
2611
2612 /* Here begins the inter-stage linking phase. Some initial validation is
2613 * performed, then locations are assigned for uniforms, attributes, and
2614 * varyings.
2615 */
2616 cross_validate_uniforms(prog);
2617 if (!prog->LinkStatus)
2618 goto done;
2619
2620 unsigned prev;
2621
2622 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2623 if (prog->_LinkedShaders[prev] != NULL)
2624 break;
2625 }
2626
2627 check_explicit_uniform_locations(ctx, prog);
2628 if (!prog->LinkStatus)
2629 goto done;
2630
2631 /* Validate the inputs of each stage with the output of the preceding
2632 * stage.
2633 */
2634 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2635 if (prog->_LinkedShaders[i] == NULL)
2636 continue;
2637
2638 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2639 prog->_LinkedShaders[i]);
2640 if (!prog->LinkStatus)
2641 goto done;
2642
2643 cross_validate_outputs_to_inputs(prog,
2644 prog->_LinkedShaders[prev],
2645 prog->_LinkedShaders[i]);
2646 if (!prog->LinkStatus)
2647 goto done;
2648
2649 prev = i;
2650 }
2651
2652 /* Cross-validate uniform blocks between shader stages */
2653 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2654 MESA_SHADER_STAGES);
2655 if (!prog->LinkStatus)
2656 goto done;
2657
2658 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2659 if (prog->_LinkedShaders[i] != NULL)
2660 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2661 }
2662
2663 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2664 * it before optimization because we want most of the checks to get
2665 * dropped thanks to constant propagation.
2666 *
2667 * This rule also applies to GLSL ES 3.00.
2668 */
2669 if (max_version >= (is_es_prog ? 300 : 130)) {
2670 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2671 if (sh) {
2672 lower_discard_flow(sh->ir);
2673 }
2674 }
2675
2676 if (!interstage_cross_validate_uniform_blocks(prog))
2677 goto done;
2678
2679 /* Do common optimization before assigning storage for attributes,
2680 * uniforms, and varyings. Later optimization could possibly make
2681 * some of that unused.
2682 */
2683 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2684 if (prog->_LinkedShaders[i] == NULL)
2685 continue;
2686
2687 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2688 if (!prog->LinkStatus)
2689 goto done;
2690
2691 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
2692 lower_clip_distance(prog->_LinkedShaders[i]);
2693 }
2694
2695 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2696 &ctx->Const.ShaderCompilerOptions[i],
2697 ctx->Const.NativeIntegers))
2698 ;
2699
2700 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
2701 }
2702
2703 /* Check and validate stream emissions in geometry shaders */
2704 validate_geometry_shader_emissions(ctx, prog);
2705
2706 /* Mark all generic shader inputs and outputs as unpaired. */
2707 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2708 if (prog->_LinkedShaders[i] != NULL) {
2709 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2710 }
2711 }
2712
2713 /* FINISHME: The value of the max_attribute_index parameter is
2714 * FINISHME: implementation dependent based on the value of
2715 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2716 * FINISHME: at least 16, so hardcode 16 for now.
2717 */
2718 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2719 goto done;
2720 }
2721
2722 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2723 goto done;
2724 }
2725
2726 unsigned first;
2727 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2728 if (prog->_LinkedShaders[first] != NULL)
2729 break;
2730 }
2731
2732 if (num_tfeedback_decls != 0) {
2733 /* From GL_EXT_transform_feedback:
2734 * A program will fail to link if:
2735 *
2736 * * the <count> specified by TransformFeedbackVaryingsEXT is
2737 * non-zero, but the program object has no vertex or geometry
2738 * shader;
2739 */
2740 if (first == MESA_SHADER_FRAGMENT) {
2741 linker_error(prog, "Transform feedback varyings specified, but "
2742 "no vertex or geometry shader is present.\n");
2743 goto done;
2744 }
2745
2746 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2747 prog->TransformFeedback.NumVarying);
2748 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2749 prog->TransformFeedback.VaryingNames,
2750 tfeedback_decls))
2751 goto done;
2752 }
2753
2754 /* Linking the stages in the opposite order (from fragment to vertex)
2755 * ensures that inter-shader outputs written to in an earlier stage are
2756 * eliminated if they are (transitively) not used in a later stage.
2757 */
2758 int last, next;
2759 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2760 if (prog->_LinkedShaders[last] != NULL)
2761 break;
2762 }
2763
2764 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2765 gl_shader *const sh = prog->_LinkedShaders[last];
2766
2767 if (first == MESA_SHADER_GEOMETRY) {
2768 /* There was no vertex shader, but we still have to assign varying
2769 * locations for use by geometry shader inputs in SSO.
2770 *
2771 * If the shader is not separable (i.e., prog->SeparateShader is
2772 * false), linking will have already failed when first is
2773 * MESA_SHADER_GEOMETRY.
2774 */
2775 if (!assign_varying_locations(ctx, mem_ctx, prog,
2776 NULL, sh,
2777 num_tfeedback_decls, tfeedback_decls,
2778 prog->Geom.VerticesIn))
2779 goto done;
2780 }
2781
2782 if (num_tfeedback_decls != 0 || prog->SeparateShader) {
2783 /* There was no fragment shader, but we still have to assign varying
2784 * locations for use by transform feedback.
2785 */
2786 if (!assign_varying_locations(ctx, mem_ctx, prog,
2787 sh, NULL,
2788 num_tfeedback_decls, tfeedback_decls,
2789 0))
2790 goto done;
2791 }
2792
2793 do_dead_builtin_varyings(ctx, sh, NULL,
2794 num_tfeedback_decls, tfeedback_decls);
2795
2796 if (!prog->SeparateShader)
2797 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2798
2799 /* Eliminate code that is now dead due to unused outputs being demoted.
2800 */
2801 while (do_dead_code(sh->ir, false))
2802 ;
2803 }
2804 else if (first == MESA_SHADER_FRAGMENT) {
2805 /* If the program only contains a fragment shader...
2806 */
2807 gl_shader *const sh = prog->_LinkedShaders[first];
2808
2809 do_dead_builtin_varyings(ctx, NULL, sh,
2810 num_tfeedback_decls, tfeedback_decls);
2811
2812 if (prog->SeparateShader) {
2813 if (!assign_varying_locations(ctx, mem_ctx, prog,
2814 NULL /* producer */,
2815 sh /* consumer */,
2816 0 /* num_tfeedback_decls */,
2817 NULL /* tfeedback_decls */,
2818 0 /* gs_input_vertices */))
2819 goto done;
2820 } else
2821 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2822
2823 while (do_dead_code(sh->ir, false))
2824 ;
2825 }
2826
2827 next = last;
2828 for (int i = next - 1; i >= 0; i--) {
2829 if (prog->_LinkedShaders[i] == NULL)
2830 continue;
2831
2832 gl_shader *const sh_i = prog->_LinkedShaders[i];
2833 gl_shader *const sh_next = prog->_LinkedShaders[next];
2834 unsigned gs_input_vertices =
2835 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2836
2837 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2838 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2839 tfeedback_decls, gs_input_vertices))
2840 goto done;
2841
2842 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2843 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2844 tfeedback_decls);
2845
2846 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2847 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2848
2849 /* Eliminate code that is now dead due to unused outputs being demoted.
2850 */
2851 while (do_dead_code(sh_i->ir, false))
2852 ;
2853 while (do_dead_code(sh_next->ir, false))
2854 ;
2855
2856 /* This must be done after all dead varyings are eliminated. */
2857 if (!check_against_output_limit(ctx, prog, sh_i))
2858 goto done;
2859 if (!check_against_input_limit(ctx, prog, sh_next))
2860 goto done;
2861
2862 next = i;
2863 }
2864
2865 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2866 goto done;
2867
2868 update_array_sizes(prog);
2869 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
2870 link_assign_atomic_counter_resources(ctx, prog);
2871 store_fragdepth_layout(prog);
2872
2873 check_resources(ctx, prog);
2874 check_image_resources(ctx, prog);
2875 link_check_atomic_counter_resources(ctx, prog);
2876
2877 if (!prog->LinkStatus)
2878 goto done;
2879
2880 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2881 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2882 * anything about shader linking when one of the shaders (vertex or
2883 * fragment shader) is absent. So, the extension shouldn't change the
2884 * behavior specified in GLSL specification.
2885 */
2886 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
2887 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2888 linker_error(prog, "program lacks a vertex shader\n");
2889 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2890 linker_error(prog, "program lacks a fragment shader\n");
2891 }
2892 }
2893
2894 /* FINISHME: Assign fragment shader output locations. */
2895
2896 done:
2897 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2898 free(shader_list[i]);
2899 if (prog->_LinkedShaders[i] == NULL)
2900 continue;
2901
2902 /* Do a final validation step to make sure that the IR wasn't
2903 * invalidated by any modifications performed after intrastage linking.
2904 */
2905 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2906
2907 /* Retain any live IR, but trash the rest. */
2908 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2909
2910 /* The symbol table in the linked shaders may contain references to
2911 * variables that were removed (e.g., unused uniforms). Since it may
2912 * contain junk, there is no possible valid use. Delete it and set the
2913 * pointer to NULL.
2914 */
2915 delete prog->_LinkedShaders[i]->symbols;
2916 prog->_LinkedShaders[i]->symbols = NULL;
2917 }
2918
2919 ralloc_free(mem_ctx);
2920 }