glsl: Avoid GLboolean vs bool arithmetic MSVC warnings.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->element_type(),
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->element_type();
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 } /* anonymous namespace */
350
351 void
352 linker_error(gl_shader_program *prog, const char *fmt, ...)
353 {
354 va_list ap;
355
356 ralloc_strcat(&prog->InfoLog, "error: ");
357 va_start(ap, fmt);
358 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
359 va_end(ap);
360
361 prog->LinkStatus = false;
362 }
363
364
365 void
366 linker_warning(gl_shader_program *prog, const char *fmt, ...)
367 {
368 va_list ap;
369
370 ralloc_strcat(&prog->InfoLog, "warning: ");
371 va_start(ap, fmt);
372 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
373 va_end(ap);
374
375 }
376
377
378 /**
379 * Given a string identifying a program resource, break it into a base name
380 * and an optional array index in square brackets.
381 *
382 * If an array index is present, \c out_base_name_end is set to point to the
383 * "[" that precedes the array index, and the array index itself is returned
384 * as a long.
385 *
386 * If no array index is present (or if the array index is negative or
387 * mal-formed), \c out_base_name_end, is set to point to the null terminator
388 * at the end of the input string, and -1 is returned.
389 *
390 * Only the final array index is parsed; if the string contains other array
391 * indices (or structure field accesses), they are left in the base name.
392 *
393 * No attempt is made to check that the base name is properly formed;
394 * typically the caller will look up the base name in a hash table, so
395 * ill-formed base names simply turn into hash table lookup failures.
396 */
397 long
398 parse_program_resource_name(const GLchar *name,
399 const GLchar **out_base_name_end)
400 {
401 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
402 *
403 * "When an integer array element or block instance number is part of
404 * the name string, it will be specified in decimal form without a "+"
405 * or "-" sign or any extra leading zeroes. Additionally, the name
406 * string will not include white space anywhere in the string."
407 */
408
409 const size_t len = strlen(name);
410 *out_base_name_end = name + len;
411
412 if (len == 0 || name[len-1] != ']')
413 return -1;
414
415 /* Walk backwards over the string looking for a non-digit character. This
416 * had better be the opening bracket for an array index.
417 *
418 * Initially, i specifies the location of the ']'. Since the string may
419 * contain only the ']' charcater, walk backwards very carefully.
420 */
421 unsigned i;
422 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
423 /* empty */ ;
424
425 if ((i == 0) || name[i-1] != '[')
426 return -1;
427
428 long array_index = strtol(&name[i], NULL, 10);
429 if (array_index < 0)
430 return -1;
431
432 *out_base_name_end = name + (i - 1);
433 return array_index;
434 }
435
436
437 void
438 link_invalidate_variable_locations(exec_list *ir)
439 {
440 foreach_in_list(ir_instruction, node, ir) {
441 ir_variable *const var = node->as_variable();
442
443 if (var == NULL)
444 continue;
445
446 /* Only assign locations for variables that lack an explicit location.
447 * Explicit locations are set for all built-in variables, generic vertex
448 * shader inputs (via layout(location=...)), and generic fragment shader
449 * outputs (also via layout(location=...)).
450 */
451 if (!var->data.explicit_location) {
452 var->data.location = -1;
453 var->data.location_frac = 0;
454 }
455
456 /* ir_variable::is_unmatched_generic_inout is used by the linker while
457 * connecting outputs from one stage to inputs of the next stage.
458 *
459 * There are two implicit assumptions here. First, we assume that any
460 * built-in variable (i.e., non-generic in or out) will have
461 * explicit_location set. Second, we assume that any generic in or out
462 * will not have explicit_location set.
463 *
464 * This second assumption will only be valid until
465 * GL_ARB_separate_shader_objects is supported. When that extension is
466 * implemented, this function will need some modifications.
467 */
468 if (!var->data.explicit_location) {
469 var->data.is_unmatched_generic_inout = 1;
470 } else {
471 var->data.is_unmatched_generic_inout = 0;
472 }
473 }
474 }
475
476
477 /**
478 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
479 *
480 * Also check for errors based on incorrect usage of gl_ClipVertex and
481 * gl_ClipDistance.
482 *
483 * Return false if an error was reported.
484 */
485 static void
486 analyze_clip_usage(struct gl_shader_program *prog,
487 struct gl_shader *shader, GLboolean *UsesClipDistance,
488 GLuint *ClipDistanceArraySize)
489 {
490 *ClipDistanceArraySize = 0;
491
492 if (!prog->IsES && prog->Version >= 130) {
493 /* From section 7.1 (Vertex Shader Special Variables) of the
494 * GLSL 1.30 spec:
495 *
496 * "It is an error for a shader to statically write both
497 * gl_ClipVertex and gl_ClipDistance."
498 *
499 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
500 * gl_ClipVertex nor gl_ClipDistance.
501 */
502 find_assignment_visitor clip_vertex("gl_ClipVertex");
503 find_assignment_visitor clip_distance("gl_ClipDistance");
504
505 clip_vertex.run(shader->ir);
506 clip_distance.run(shader->ir);
507 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
508 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
509 "and `gl_ClipDistance'\n",
510 _mesa_shader_stage_to_string(shader->Stage));
511 return;
512 }
513 *UsesClipDistance = clip_distance.variable_found();
514 ir_variable *clip_distance_var =
515 shader->symbols->get_variable("gl_ClipDistance");
516 if (clip_distance_var)
517 *ClipDistanceArraySize = clip_distance_var->type->length;
518 } else {
519 *UsesClipDistance = false;
520 }
521 }
522
523
524 /**
525 * Verify that a vertex shader executable meets all semantic requirements.
526 *
527 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
528 * as a side effect.
529 *
530 * \param shader Vertex shader executable to be verified
531 */
532 void
533 validate_vertex_shader_executable(struct gl_shader_program *prog,
534 struct gl_shader *shader)
535 {
536 if (shader == NULL)
537 return;
538
539 /* From the GLSL 1.10 spec, page 48:
540 *
541 * "The variable gl_Position is available only in the vertex
542 * language and is intended for writing the homogeneous vertex
543 * position. All executions of a well-formed vertex shader
544 * executable must write a value into this variable. [...] The
545 * variable gl_Position is available only in the vertex
546 * language and is intended for writing the homogeneous vertex
547 * position. All executions of a well-formed vertex shader
548 * executable must write a value into this variable."
549 *
550 * while in GLSL 1.40 this text is changed to:
551 *
552 * "The variable gl_Position is available only in the vertex
553 * language and is intended for writing the homogeneous vertex
554 * position. It can be written at any time during shader
555 * execution. It may also be read back by a vertex shader
556 * after being written. This value will be used by primitive
557 * assembly, clipping, culling, and other fixed functionality
558 * operations, if present, that operate on primitives after
559 * vertex processing has occurred. Its value is undefined if
560 * the vertex shader executable does not write gl_Position."
561 *
562 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
563 * gl_Position is not an error.
564 */
565 if (prog->Version < (prog->IsES ? 300 : 140)) {
566 find_assignment_visitor find("gl_Position");
567 find.run(shader->ir);
568 if (!find.variable_found()) {
569 if (prog->IsES) {
570 linker_warning(prog,
571 "vertex shader does not write to `gl_Position'."
572 "It's value is undefined. \n");
573 } else {
574 linker_error(prog,
575 "vertex shader does not write to `gl_Position'. \n");
576 }
577 return;
578 }
579 }
580
581 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
582 &prog->Vert.ClipDistanceArraySize);
583 }
584
585
586 /**
587 * Verify that a fragment shader executable meets all semantic requirements
588 *
589 * \param shader Fragment shader executable to be verified
590 */
591 void
592 validate_fragment_shader_executable(struct gl_shader_program *prog,
593 struct gl_shader *shader)
594 {
595 if (shader == NULL)
596 return;
597
598 find_assignment_visitor frag_color("gl_FragColor");
599 find_assignment_visitor frag_data("gl_FragData");
600
601 frag_color.run(shader->ir);
602 frag_data.run(shader->ir);
603
604 if (frag_color.variable_found() && frag_data.variable_found()) {
605 linker_error(prog, "fragment shader writes to both "
606 "`gl_FragColor' and `gl_FragData'\n");
607 }
608 }
609
610 /**
611 * Verify that a geometry shader executable meets all semantic requirements
612 *
613 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
614 * prog->Geom.ClipDistanceArraySize as a side effect.
615 *
616 * \param shader Geometry shader executable to be verified
617 */
618 void
619 validate_geometry_shader_executable(struct gl_shader_program *prog,
620 struct gl_shader *shader)
621 {
622 if (shader == NULL)
623 return;
624
625 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
626 prog->Geom.VerticesIn = num_vertices;
627
628 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
629 &prog->Geom.ClipDistanceArraySize);
630 }
631
632 /**
633 * Check if geometry shaders emit to non-zero streams and do corresponding
634 * validations.
635 */
636 static void
637 validate_geometry_shader_emissions(struct gl_context *ctx,
638 struct gl_shader_program *prog)
639 {
640 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
641 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
642 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
643 if (emit_vertex.error()) {
644 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
645 "stream parameter are in the range [0, %d].\n",
646 emit_vertex.error_func(),
647 emit_vertex.error_stream(),
648 ctx->Const.MaxVertexStreams - 1);
649 }
650 prog->Geom.UsesStreams = emit_vertex.uses_streams();
651 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
652
653 /* From the ARB_gpu_shader5 spec:
654 *
655 * "Multiple vertex streams are supported only if the output primitive
656 * type is declared to be "points". A program will fail to link if it
657 * contains a geometry shader calling EmitStreamVertex() or
658 * EndStreamPrimitive() if its output primitive type is not "points".
659 *
660 * However, in the same spec:
661 *
662 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
663 * with <stream> set to zero."
664 *
665 * And:
666 *
667 * "The function EndPrimitive() is equivalent to calling
668 * EndStreamPrimitive() with <stream> set to zero."
669 *
670 * Since we can call EmitVertex() and EndPrimitive() when we output
671 * primitives other than points, calling EmitStreamVertex(0) or
672 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
673 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
674 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
675 * stream.
676 */
677 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
678 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
679 "with n>0 requires point output\n");
680 }
681 }
682 }
683
684 bool
685 validate_intrastage_arrays(struct gl_shader_program *prog,
686 ir_variable *const var,
687 ir_variable *const existing)
688 {
689 /* Consider the types to be "the same" if both types are arrays
690 * of the same type and one of the arrays is implicitly sized.
691 * In addition, set the type of the linked variable to the
692 * explicitly sized array.
693 */
694 if (var->type->is_array() && existing->type->is_array() &&
695 (var->type->fields.array == existing->type->fields.array) &&
696 ((var->type->length == 0)|| (existing->type->length == 0))) {
697 if (var->type->length != 0) {
698 if (var->type->length <= existing->data.max_array_access) {
699 linker_error(prog, "%s `%s' declared as type "
700 "`%s' but outermost dimension has an index"
701 " of `%i'\n",
702 mode_string(var),
703 var->name, var->type->name,
704 existing->data.max_array_access);
705 }
706 existing->type = var->type;
707 return true;
708 } else if (existing->type->length != 0) {
709 if(existing->type->length <= var->data.max_array_access) {
710 linker_error(prog, "%s `%s' declared as type "
711 "`%s' but outermost dimension has an index"
712 " of `%i'\n",
713 mode_string(var),
714 var->name, existing->type->name,
715 var->data.max_array_access);
716 }
717 return true;
718 }
719 }
720 return false;
721 }
722
723
724 /**
725 * Perform validation of global variables used across multiple shaders
726 */
727 void
728 cross_validate_globals(struct gl_shader_program *prog,
729 struct gl_shader **shader_list,
730 unsigned num_shaders,
731 bool uniforms_only)
732 {
733 /* Examine all of the uniforms in all of the shaders and cross validate
734 * them.
735 */
736 glsl_symbol_table variables;
737 for (unsigned i = 0; i < num_shaders; i++) {
738 if (shader_list[i] == NULL)
739 continue;
740
741 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
742 ir_variable *const var = node->as_variable();
743
744 if (var == NULL)
745 continue;
746
747 if (uniforms_only && (var->data.mode != ir_var_uniform))
748 continue;
749
750 /* Don't cross validate temporaries that are at global scope. These
751 * will eventually get pulled into the shaders 'main'.
752 */
753 if (var->data.mode == ir_var_temporary)
754 continue;
755
756 /* If a global with this name has already been seen, verify that the
757 * new instance has the same type. In addition, if the globals have
758 * initializers, the values of the initializers must be the same.
759 */
760 ir_variable *const existing = variables.get_variable(var->name);
761 if (existing != NULL) {
762 /* Check if types match. Interface blocks have some special
763 * rules so we handle those elsewhere.
764 */
765 if (var->type != existing->type &&
766 !var->is_interface_instance()) {
767 if (!validate_intrastage_arrays(prog, var, existing)) {
768 if (var->type->is_record() && existing->type->is_record()
769 && existing->type->record_compare(var->type)) {
770 existing->type = var->type;
771 } else {
772 linker_error(prog, "%s `%s' declared as type "
773 "`%s' and type `%s'\n",
774 mode_string(var),
775 var->name, var->type->name,
776 existing->type->name);
777 return;
778 }
779 }
780 }
781
782 if (var->data.explicit_location) {
783 if (existing->data.explicit_location
784 && (var->data.location != existing->data.location)) {
785 linker_error(prog, "explicit locations for %s "
786 "`%s' have differing values\n",
787 mode_string(var), var->name);
788 return;
789 }
790
791 existing->data.location = var->data.location;
792 existing->data.explicit_location = true;
793 }
794
795 /* From the GLSL 4.20 specification:
796 * "A link error will result if two compilation units in a program
797 * specify different integer-constant bindings for the same
798 * opaque-uniform name. However, it is not an error to specify a
799 * binding on some but not all declarations for the same name"
800 */
801 if (var->data.explicit_binding) {
802 if (existing->data.explicit_binding &&
803 var->data.binding != existing->data.binding) {
804 linker_error(prog, "explicit bindings for %s "
805 "`%s' have differing values\n",
806 mode_string(var), var->name);
807 return;
808 }
809
810 existing->data.binding = var->data.binding;
811 existing->data.explicit_binding = true;
812 }
813
814 if (var->type->contains_atomic() &&
815 var->data.atomic.offset != existing->data.atomic.offset) {
816 linker_error(prog, "offset specifications for %s "
817 "`%s' have differing values\n",
818 mode_string(var), var->name);
819 return;
820 }
821
822 /* Validate layout qualifiers for gl_FragDepth.
823 *
824 * From the AMD/ARB_conservative_depth specs:
825 *
826 * "If gl_FragDepth is redeclared in any fragment shader in a
827 * program, it must be redeclared in all fragment shaders in
828 * that program that have static assignments to
829 * gl_FragDepth. All redeclarations of gl_FragDepth in all
830 * fragment shaders in a single program must have the same set
831 * of qualifiers."
832 */
833 if (strcmp(var->name, "gl_FragDepth") == 0) {
834 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
835 bool layout_differs =
836 var->data.depth_layout != existing->data.depth_layout;
837
838 if (layout_declared && layout_differs) {
839 linker_error(prog,
840 "All redeclarations of gl_FragDepth in all "
841 "fragment shaders in a single program must have "
842 "the same set of qualifiers.\n");
843 }
844
845 if (var->data.used && layout_differs) {
846 linker_error(prog,
847 "If gl_FragDepth is redeclared with a layout "
848 "qualifier in any fragment shader, it must be "
849 "redeclared with the same layout qualifier in "
850 "all fragment shaders that have assignments to "
851 "gl_FragDepth\n");
852 }
853 }
854
855 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
856 *
857 * "If a shared global has multiple initializers, the
858 * initializers must all be constant expressions, and they
859 * must all have the same value. Otherwise, a link error will
860 * result. (A shared global having only one initializer does
861 * not require that initializer to be a constant expression.)"
862 *
863 * Previous to 4.20 the GLSL spec simply said that initializers
864 * must have the same value. In this case of non-constant
865 * initializers, this was impossible to determine. As a result,
866 * no vendor actually implemented that behavior. The 4.20
867 * behavior matches the implemented behavior of at least one other
868 * vendor, so we'll implement that for all GLSL versions.
869 */
870 if (var->constant_initializer != NULL) {
871 if (existing->constant_initializer != NULL) {
872 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
873 linker_error(prog, "initializers for %s "
874 "`%s' have differing values\n",
875 mode_string(var), var->name);
876 return;
877 }
878 } else {
879 /* If the first-seen instance of a particular uniform did not
880 * have an initializer but a later instance does, copy the
881 * initializer to the version stored in the symbol table.
882 */
883 /* FINISHME: This is wrong. The constant_value field should
884 * FINISHME: not be modified! Imagine a case where a shader
885 * FINISHME: without an initializer is linked in two different
886 * FINISHME: programs with shaders that have differing
887 * FINISHME: initializers. Linking with the first will
888 * FINISHME: modify the shader, and linking with the second
889 * FINISHME: will fail.
890 */
891 existing->constant_initializer =
892 var->constant_initializer->clone(ralloc_parent(existing),
893 NULL);
894 }
895 }
896
897 if (var->data.has_initializer) {
898 if (existing->data.has_initializer
899 && (var->constant_initializer == NULL
900 || existing->constant_initializer == NULL)) {
901 linker_error(prog,
902 "shared global variable `%s' has multiple "
903 "non-constant initializers.\n",
904 var->name);
905 return;
906 }
907
908 /* Some instance had an initializer, so keep track of that. In
909 * this location, all sorts of initializers (constant or
910 * otherwise) will propagate the existence to the variable
911 * stored in the symbol table.
912 */
913 existing->data.has_initializer = true;
914 }
915
916 if (existing->data.invariant != var->data.invariant) {
917 linker_error(prog, "declarations for %s `%s' have "
918 "mismatching invariant qualifiers\n",
919 mode_string(var), var->name);
920 return;
921 }
922 if (existing->data.centroid != var->data.centroid) {
923 linker_error(prog, "declarations for %s `%s' have "
924 "mismatching centroid qualifiers\n",
925 mode_string(var), var->name);
926 return;
927 }
928 if (existing->data.sample != var->data.sample) {
929 linker_error(prog, "declarations for %s `%s` have "
930 "mismatching sample qualifiers\n",
931 mode_string(var), var->name);
932 return;
933 }
934 } else
935 variables.add_variable(var);
936 }
937 }
938 }
939
940
941 /**
942 * Perform validation of uniforms used across multiple shader stages
943 */
944 void
945 cross_validate_uniforms(struct gl_shader_program *prog)
946 {
947 cross_validate_globals(prog, prog->_LinkedShaders,
948 MESA_SHADER_STAGES, true);
949 }
950
951 /**
952 * Accumulates the array of prog->UniformBlocks and checks that all
953 * definitons of blocks agree on their contents.
954 */
955 static bool
956 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
957 {
958 unsigned max_num_uniform_blocks = 0;
959 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
960 if (prog->_LinkedShaders[i])
961 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
962 }
963
964 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
965 struct gl_shader *sh = prog->_LinkedShaders[i];
966
967 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
968 max_num_uniform_blocks);
969 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
970 prog->UniformBlockStageIndex[i][j] = -1;
971
972 if (sh == NULL)
973 continue;
974
975 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
976 int index = link_cross_validate_uniform_block(prog,
977 &prog->UniformBlocks,
978 &prog->NumUniformBlocks,
979 &sh->UniformBlocks[j]);
980
981 if (index == -1) {
982 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
983 sh->UniformBlocks[j].Name);
984 return false;
985 }
986
987 prog->UniformBlockStageIndex[i][index] = j;
988 }
989 }
990
991 return true;
992 }
993
994
995 /**
996 * Populates a shaders symbol table with all global declarations
997 */
998 static void
999 populate_symbol_table(gl_shader *sh)
1000 {
1001 sh->symbols = new(sh) glsl_symbol_table;
1002
1003 foreach_in_list(ir_instruction, inst, sh->ir) {
1004 ir_variable *var;
1005 ir_function *func;
1006
1007 if ((func = inst->as_function()) != NULL) {
1008 sh->symbols->add_function(func);
1009 } else if ((var = inst->as_variable()) != NULL) {
1010 if (var->data.mode != ir_var_temporary)
1011 sh->symbols->add_variable(var);
1012 }
1013 }
1014 }
1015
1016
1017 /**
1018 * Remap variables referenced in an instruction tree
1019 *
1020 * This is used when instruction trees are cloned from one shader and placed in
1021 * another. These trees will contain references to \c ir_variable nodes that
1022 * do not exist in the target shader. This function finds these \c ir_variable
1023 * references and replaces the references with matching variables in the target
1024 * shader.
1025 *
1026 * If there is no matching variable in the target shader, a clone of the
1027 * \c ir_variable is made and added to the target shader. The new variable is
1028 * added to \b both the instruction stream and the symbol table.
1029 *
1030 * \param inst IR tree that is to be processed.
1031 * \param symbols Symbol table containing global scope symbols in the
1032 * linked shader.
1033 * \param instructions Instruction stream where new variable declarations
1034 * should be added.
1035 */
1036 void
1037 remap_variables(ir_instruction *inst, struct gl_shader *target,
1038 hash_table *temps)
1039 {
1040 class remap_visitor : public ir_hierarchical_visitor {
1041 public:
1042 remap_visitor(struct gl_shader *target,
1043 hash_table *temps)
1044 {
1045 this->target = target;
1046 this->symbols = target->symbols;
1047 this->instructions = target->ir;
1048 this->temps = temps;
1049 }
1050
1051 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1052 {
1053 if (ir->var->data.mode == ir_var_temporary) {
1054 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1055
1056 assert(var != NULL);
1057 ir->var = var;
1058 return visit_continue;
1059 }
1060
1061 ir_variable *const existing =
1062 this->symbols->get_variable(ir->var->name);
1063 if (existing != NULL)
1064 ir->var = existing;
1065 else {
1066 ir_variable *copy = ir->var->clone(this->target, NULL);
1067
1068 this->symbols->add_variable(copy);
1069 this->instructions->push_head(copy);
1070 ir->var = copy;
1071 }
1072
1073 return visit_continue;
1074 }
1075
1076 private:
1077 struct gl_shader *target;
1078 glsl_symbol_table *symbols;
1079 exec_list *instructions;
1080 hash_table *temps;
1081 };
1082
1083 remap_visitor v(target, temps);
1084
1085 inst->accept(&v);
1086 }
1087
1088
1089 /**
1090 * Move non-declarations from one instruction stream to another
1091 *
1092 * The intended usage pattern of this function is to pass the pointer to the
1093 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1094 * pointer) for \c last and \c false for \c make_copies on the first
1095 * call. Successive calls pass the return value of the previous call for
1096 * \c last and \c true for \c make_copies.
1097 *
1098 * \param instructions Source instruction stream
1099 * \param last Instruction after which new instructions should be
1100 * inserted in the target instruction stream
1101 * \param make_copies Flag selecting whether instructions in \c instructions
1102 * should be copied (via \c ir_instruction::clone) into the
1103 * target list or moved.
1104 *
1105 * \return
1106 * The new "last" instruction in the target instruction stream. This pointer
1107 * is suitable for use as the \c last parameter of a later call to this
1108 * function.
1109 */
1110 exec_node *
1111 move_non_declarations(exec_list *instructions, exec_node *last,
1112 bool make_copies, gl_shader *target)
1113 {
1114 hash_table *temps = NULL;
1115
1116 if (make_copies)
1117 temps = hash_table_ctor(0, hash_table_pointer_hash,
1118 hash_table_pointer_compare);
1119
1120 foreach_in_list_safe(ir_instruction, inst, instructions) {
1121 if (inst->as_function())
1122 continue;
1123
1124 ir_variable *var = inst->as_variable();
1125 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1126 continue;
1127
1128 assert(inst->as_assignment()
1129 || inst->as_call()
1130 || inst->as_if() /* for initializers with the ?: operator */
1131 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1132
1133 if (make_copies) {
1134 inst = inst->clone(target, NULL);
1135
1136 if (var != NULL)
1137 hash_table_insert(temps, inst, var);
1138 else
1139 remap_variables(inst, target, temps);
1140 } else {
1141 inst->remove();
1142 }
1143
1144 last->insert_after(inst);
1145 last = inst;
1146 }
1147
1148 if (make_copies)
1149 hash_table_dtor(temps);
1150
1151 return last;
1152 }
1153
1154 /**
1155 * Get the function signature for main from a shader
1156 */
1157 ir_function_signature *
1158 link_get_main_function_signature(gl_shader *sh)
1159 {
1160 ir_function *const f = sh->symbols->get_function("main");
1161 if (f != NULL) {
1162 exec_list void_parameters;
1163
1164 /* Look for the 'void main()' signature and ensure that it's defined.
1165 * This keeps the linker from accidentally pick a shader that just
1166 * contains a prototype for main.
1167 *
1168 * We don't have to check for multiple definitions of main (in multiple
1169 * shaders) because that would have already been caught above.
1170 */
1171 ir_function_signature *sig =
1172 f->matching_signature(NULL, &void_parameters, false);
1173 if ((sig != NULL) && sig->is_defined) {
1174 return sig;
1175 }
1176 }
1177
1178 return NULL;
1179 }
1180
1181
1182 /**
1183 * This class is only used in link_intrastage_shaders() below but declaring
1184 * it inside that function leads to compiler warnings with some versions of
1185 * gcc.
1186 */
1187 class array_sizing_visitor : public ir_hierarchical_visitor {
1188 public:
1189 array_sizing_visitor()
1190 : mem_ctx(ralloc_context(NULL)),
1191 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1192 hash_table_pointer_compare))
1193 {
1194 }
1195
1196 ~array_sizing_visitor()
1197 {
1198 hash_table_dtor(this->unnamed_interfaces);
1199 ralloc_free(this->mem_ctx);
1200 }
1201
1202 virtual ir_visitor_status visit(ir_variable *var)
1203 {
1204 fixup_type(&var->type, var->data.max_array_access);
1205 if (var->type->is_interface()) {
1206 if (interface_contains_unsized_arrays(var->type)) {
1207 const glsl_type *new_type =
1208 resize_interface_members(var->type,
1209 var->get_max_ifc_array_access());
1210 var->type = new_type;
1211 var->change_interface_type(new_type);
1212 }
1213 } else if (var->type->is_array() &&
1214 var->type->fields.array->is_interface()) {
1215 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1216 const glsl_type *new_type =
1217 resize_interface_members(var->type->fields.array,
1218 var->get_max_ifc_array_access());
1219 var->change_interface_type(new_type);
1220 var->type =
1221 glsl_type::get_array_instance(new_type, var->type->length);
1222 }
1223 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1224 /* Store a pointer to the variable in the unnamed_interfaces
1225 * hashtable.
1226 */
1227 ir_variable **interface_vars = (ir_variable **)
1228 hash_table_find(this->unnamed_interfaces, ifc_type);
1229 if (interface_vars == NULL) {
1230 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1231 ifc_type->length);
1232 hash_table_insert(this->unnamed_interfaces, interface_vars,
1233 ifc_type);
1234 }
1235 unsigned index = ifc_type->field_index(var->name);
1236 assert(index < ifc_type->length);
1237 assert(interface_vars[index] == NULL);
1238 interface_vars[index] = var;
1239 }
1240 return visit_continue;
1241 }
1242
1243 /**
1244 * For each unnamed interface block that was discovered while running the
1245 * visitor, adjust the interface type to reflect the newly assigned array
1246 * sizes, and fix up the ir_variable nodes to point to the new interface
1247 * type.
1248 */
1249 void fixup_unnamed_interface_types()
1250 {
1251 hash_table_call_foreach(this->unnamed_interfaces,
1252 fixup_unnamed_interface_type, NULL);
1253 }
1254
1255 private:
1256 /**
1257 * If the type pointed to by \c type represents an unsized array, replace
1258 * it with a sized array whose size is determined by max_array_access.
1259 */
1260 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1261 {
1262 if ((*type)->is_unsized_array()) {
1263 *type = glsl_type::get_array_instance((*type)->fields.array,
1264 max_array_access + 1);
1265 assert(*type != NULL);
1266 }
1267 }
1268
1269 /**
1270 * Determine whether the given interface type contains unsized arrays (if
1271 * it doesn't, array_sizing_visitor doesn't need to process it).
1272 */
1273 static bool interface_contains_unsized_arrays(const glsl_type *type)
1274 {
1275 for (unsigned i = 0; i < type->length; i++) {
1276 const glsl_type *elem_type = type->fields.structure[i].type;
1277 if (elem_type->is_unsized_array())
1278 return true;
1279 }
1280 return false;
1281 }
1282
1283 /**
1284 * Create a new interface type based on the given type, with unsized arrays
1285 * replaced by sized arrays whose size is determined by
1286 * max_ifc_array_access.
1287 */
1288 static const glsl_type *
1289 resize_interface_members(const glsl_type *type,
1290 const unsigned *max_ifc_array_access)
1291 {
1292 unsigned num_fields = type->length;
1293 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1294 memcpy(fields, type->fields.structure,
1295 num_fields * sizeof(*fields));
1296 for (unsigned i = 0; i < num_fields; i++) {
1297 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1298 }
1299 glsl_interface_packing packing =
1300 (glsl_interface_packing) type->interface_packing;
1301 const glsl_type *new_ifc_type =
1302 glsl_type::get_interface_instance(fields, num_fields,
1303 packing, type->name);
1304 delete [] fields;
1305 return new_ifc_type;
1306 }
1307
1308 static void fixup_unnamed_interface_type(const void *key, void *data,
1309 void *)
1310 {
1311 const glsl_type *ifc_type = (const glsl_type *) key;
1312 ir_variable **interface_vars = (ir_variable **) data;
1313 unsigned num_fields = ifc_type->length;
1314 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1315 memcpy(fields, ifc_type->fields.structure,
1316 num_fields * sizeof(*fields));
1317 bool interface_type_changed = false;
1318 for (unsigned i = 0; i < num_fields; i++) {
1319 if (interface_vars[i] != NULL &&
1320 fields[i].type != interface_vars[i]->type) {
1321 fields[i].type = interface_vars[i]->type;
1322 interface_type_changed = true;
1323 }
1324 }
1325 if (!interface_type_changed) {
1326 delete [] fields;
1327 return;
1328 }
1329 glsl_interface_packing packing =
1330 (glsl_interface_packing) ifc_type->interface_packing;
1331 const glsl_type *new_ifc_type =
1332 glsl_type::get_interface_instance(fields, num_fields, packing,
1333 ifc_type->name);
1334 delete [] fields;
1335 for (unsigned i = 0; i < num_fields; i++) {
1336 if (interface_vars[i] != NULL)
1337 interface_vars[i]->change_interface_type(new_ifc_type);
1338 }
1339 }
1340
1341 /**
1342 * Memory context used to allocate the data in \c unnamed_interfaces.
1343 */
1344 void *mem_ctx;
1345
1346 /**
1347 * Hash table from const glsl_type * to an array of ir_variable *'s
1348 * pointing to the ir_variables constituting each unnamed interface block.
1349 */
1350 hash_table *unnamed_interfaces;
1351 };
1352
1353 /**
1354 * Performs the cross-validation of layout qualifiers specified in
1355 * redeclaration of gl_FragCoord for the attached fragment shaders,
1356 * and propagates them to the linked FS and linked shader program.
1357 */
1358 static void
1359 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1360 struct gl_shader *linked_shader,
1361 struct gl_shader **shader_list,
1362 unsigned num_shaders)
1363 {
1364 linked_shader->redeclares_gl_fragcoord = false;
1365 linked_shader->uses_gl_fragcoord = false;
1366 linked_shader->origin_upper_left = false;
1367 linked_shader->pixel_center_integer = false;
1368
1369 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1370 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1371 return;
1372
1373 for (unsigned i = 0; i < num_shaders; i++) {
1374 struct gl_shader *shader = shader_list[i];
1375 /* From the GLSL 1.50 spec, page 39:
1376 *
1377 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1378 * it must be redeclared in all the fragment shaders in that program
1379 * that have a static use gl_FragCoord."
1380 *
1381 * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
1382 * gl_FragCoord with no layout qualifiers but the other one doesn't
1383 * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
1384 * should be a link error. But, generating link error for this case will
1385 * be a wrong behaviour which spec didn't intend to do and it could also
1386 * break some applications.
1387 */
1388 if ((linked_shader->redeclares_gl_fragcoord
1389 && !shader->redeclares_gl_fragcoord
1390 && shader->uses_gl_fragcoord
1391 && (linked_shader->origin_upper_left
1392 || linked_shader->pixel_center_integer))
1393 || (shader->redeclares_gl_fragcoord
1394 && !linked_shader->redeclares_gl_fragcoord
1395 && linked_shader->uses_gl_fragcoord
1396 && (shader->origin_upper_left
1397 || shader->pixel_center_integer))) {
1398 linker_error(prog, "fragment shader defined with conflicting "
1399 "layout qualifiers for gl_FragCoord\n");
1400 }
1401
1402 /* From the GLSL 1.50 spec, page 39:
1403 *
1404 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1405 * single program must have the same set of qualifiers."
1406 */
1407 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1408 && (shader->origin_upper_left != linked_shader->origin_upper_left
1409 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1410 linker_error(prog, "fragment shader defined with conflicting "
1411 "layout qualifiers for gl_FragCoord\n");
1412 }
1413
1414 /* Update the linked shader state.  Note that uses_gl_fragcoord should
1415 * accumulate the results.  The other values should replace.  If there
1416 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1417 * are already known to be the same.
1418 */
1419 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1420 linked_shader->redeclares_gl_fragcoord =
1421 shader->redeclares_gl_fragcoord;
1422 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1423 || shader->uses_gl_fragcoord;
1424 linked_shader->origin_upper_left = shader->origin_upper_left;
1425 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1426 }
1427 }
1428 }
1429
1430 /**
1431 * Performs the cross-validation of geometry shader max_vertices and
1432 * primitive type layout qualifiers for the attached geometry shaders,
1433 * and propagates them to the linked GS and linked shader program.
1434 */
1435 static void
1436 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1437 struct gl_shader *linked_shader,
1438 struct gl_shader **shader_list,
1439 unsigned num_shaders)
1440 {
1441 linked_shader->Geom.VerticesOut = 0;
1442 linked_shader->Geom.Invocations = 0;
1443 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1444 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1445
1446 /* No in/out qualifiers defined for anything but GLSL 1.50+
1447 * geometry shaders so far.
1448 */
1449 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1450 return;
1451
1452 /* From the GLSL 1.50 spec, page 46:
1453 *
1454 * "All geometry shader output layout declarations in a program
1455 * must declare the same layout and same value for
1456 * max_vertices. There must be at least one geometry output
1457 * layout declaration somewhere in a program, but not all
1458 * geometry shaders (compilation units) are required to
1459 * declare it."
1460 */
1461
1462 for (unsigned i = 0; i < num_shaders; i++) {
1463 struct gl_shader *shader = shader_list[i];
1464
1465 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1466 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1467 linked_shader->Geom.InputType != shader->Geom.InputType) {
1468 linker_error(prog, "geometry shader defined with conflicting "
1469 "input types\n");
1470 return;
1471 }
1472 linked_shader->Geom.InputType = shader->Geom.InputType;
1473 }
1474
1475 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1476 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1477 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1478 linker_error(prog, "geometry shader defined with conflicting "
1479 "output types\n");
1480 return;
1481 }
1482 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1483 }
1484
1485 if (shader->Geom.VerticesOut != 0) {
1486 if (linked_shader->Geom.VerticesOut != 0 &&
1487 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1488 linker_error(prog, "geometry shader defined with conflicting "
1489 "output vertex count (%d and %d)\n",
1490 linked_shader->Geom.VerticesOut,
1491 shader->Geom.VerticesOut);
1492 return;
1493 }
1494 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1495 }
1496
1497 if (shader->Geom.Invocations != 0) {
1498 if (linked_shader->Geom.Invocations != 0 &&
1499 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1500 linker_error(prog, "geometry shader defined with conflicting "
1501 "invocation count (%d and %d)\n",
1502 linked_shader->Geom.Invocations,
1503 shader->Geom.Invocations);
1504 return;
1505 }
1506 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1507 }
1508 }
1509
1510 /* Just do the intrastage -> interstage propagation right now,
1511 * since we already know we're in the right type of shader program
1512 * for doing it.
1513 */
1514 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1515 linker_error(prog,
1516 "geometry shader didn't declare primitive input type\n");
1517 return;
1518 }
1519 prog->Geom.InputType = linked_shader->Geom.InputType;
1520
1521 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1522 linker_error(prog,
1523 "geometry shader didn't declare primitive output type\n");
1524 return;
1525 }
1526 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1527
1528 if (linked_shader->Geom.VerticesOut == 0) {
1529 linker_error(prog,
1530 "geometry shader didn't declare max_vertices\n");
1531 return;
1532 }
1533 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1534
1535 if (linked_shader->Geom.Invocations == 0)
1536 linked_shader->Geom.Invocations = 1;
1537
1538 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1539 }
1540
1541
1542 /**
1543 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1544 * qualifiers for the attached compute shaders, and propagate them to the
1545 * linked CS and linked shader program.
1546 */
1547 static void
1548 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1549 struct gl_shader *linked_shader,
1550 struct gl_shader **shader_list,
1551 unsigned num_shaders)
1552 {
1553 for (int i = 0; i < 3; i++)
1554 linked_shader->Comp.LocalSize[i] = 0;
1555
1556 /* This function is called for all shader stages, but it only has an effect
1557 * for compute shaders.
1558 */
1559 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1560 return;
1561
1562 /* From the ARB_compute_shader spec, in the section describing local size
1563 * declarations:
1564 *
1565 * If multiple compute shaders attached to a single program object
1566 * declare local work-group size, the declarations must be identical;
1567 * otherwise a link-time error results. Furthermore, if a program
1568 * object contains any compute shaders, at least one must contain an
1569 * input layout qualifier specifying the local work sizes of the
1570 * program, or a link-time error will occur.
1571 */
1572 for (unsigned sh = 0; sh < num_shaders; sh++) {
1573 struct gl_shader *shader = shader_list[sh];
1574
1575 if (shader->Comp.LocalSize[0] != 0) {
1576 if (linked_shader->Comp.LocalSize[0] != 0) {
1577 for (int i = 0; i < 3; i++) {
1578 if (linked_shader->Comp.LocalSize[i] !=
1579 shader->Comp.LocalSize[i]) {
1580 linker_error(prog, "compute shader defined with conflicting "
1581 "local sizes\n");
1582 return;
1583 }
1584 }
1585 }
1586 for (int i = 0; i < 3; i++)
1587 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1588 }
1589 }
1590
1591 /* Just do the intrastage -> interstage propagation right now,
1592 * since we already know we're in the right type of shader program
1593 * for doing it.
1594 */
1595 if (linked_shader->Comp.LocalSize[0] == 0) {
1596 linker_error(prog, "compute shader didn't declare local size\n");
1597 return;
1598 }
1599 for (int i = 0; i < 3; i++)
1600 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1601 }
1602
1603
1604 /**
1605 * Combine a group of shaders for a single stage to generate a linked shader
1606 *
1607 * \note
1608 * If this function is supplied a single shader, it is cloned, and the new
1609 * shader is returned.
1610 */
1611 static struct gl_shader *
1612 link_intrastage_shaders(void *mem_ctx,
1613 struct gl_context *ctx,
1614 struct gl_shader_program *prog,
1615 struct gl_shader **shader_list,
1616 unsigned num_shaders)
1617 {
1618 struct gl_uniform_block *uniform_blocks = NULL;
1619
1620 /* Check that global variables defined in multiple shaders are consistent.
1621 */
1622 cross_validate_globals(prog, shader_list, num_shaders, false);
1623 if (!prog->LinkStatus)
1624 return NULL;
1625
1626 /* Check that interface blocks defined in multiple shaders are consistent.
1627 */
1628 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1629 num_shaders);
1630 if (!prog->LinkStatus)
1631 return NULL;
1632
1633 /* Link up uniform blocks defined within this stage. */
1634 const unsigned num_uniform_blocks =
1635 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1636 &uniform_blocks);
1637 if (!prog->LinkStatus)
1638 return NULL;
1639
1640 /* Check that there is only a single definition of each function signature
1641 * across all shaders.
1642 */
1643 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1644 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1645 ir_function *const f = node->as_function();
1646
1647 if (f == NULL)
1648 continue;
1649
1650 for (unsigned j = i + 1; j < num_shaders; j++) {
1651 ir_function *const other =
1652 shader_list[j]->symbols->get_function(f->name);
1653
1654 /* If the other shader has no function (and therefore no function
1655 * signatures) with the same name, skip to the next shader.
1656 */
1657 if (other == NULL)
1658 continue;
1659
1660 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1661 if (!sig->is_defined || sig->is_builtin())
1662 continue;
1663
1664 ir_function_signature *other_sig =
1665 other->exact_matching_signature(NULL, &sig->parameters);
1666
1667 if ((other_sig != NULL) && other_sig->is_defined
1668 && !other_sig->is_builtin()) {
1669 linker_error(prog, "function `%s' is multiply defined\n",
1670 f->name);
1671 return NULL;
1672 }
1673 }
1674 }
1675 }
1676 }
1677
1678 /* Find the shader that defines main, and make a clone of it.
1679 *
1680 * Starting with the clone, search for undefined references. If one is
1681 * found, find the shader that defines it. Clone the reference and add
1682 * it to the shader. Repeat until there are no undefined references or
1683 * until a reference cannot be resolved.
1684 */
1685 gl_shader *main = NULL;
1686 for (unsigned i = 0; i < num_shaders; i++) {
1687 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1688 main = shader_list[i];
1689 break;
1690 }
1691 }
1692
1693 if (main == NULL) {
1694 linker_error(prog, "%s shader lacks `main'\n",
1695 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1696 return NULL;
1697 }
1698
1699 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1700 linked->ir = new(linked) exec_list;
1701 clone_ir_list(mem_ctx, linked->ir, main->ir);
1702
1703 linked->UniformBlocks = uniform_blocks;
1704 linked->NumUniformBlocks = num_uniform_blocks;
1705 ralloc_steal(linked, linked->UniformBlocks);
1706
1707 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1708 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1709 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1710
1711 populate_symbol_table(linked);
1712
1713 /* The pointer to the main function in the final linked shader (i.e., the
1714 * copy of the original shader that contained the main function).
1715 */
1716 ir_function_signature *const main_sig =
1717 link_get_main_function_signature(linked);
1718
1719 /* Move any instructions other than variable declarations or function
1720 * declarations into main.
1721 */
1722 exec_node *insertion_point =
1723 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1724 linked);
1725
1726 for (unsigned i = 0; i < num_shaders; i++) {
1727 if (shader_list[i] == main)
1728 continue;
1729
1730 insertion_point = move_non_declarations(shader_list[i]->ir,
1731 insertion_point, true, linked);
1732 }
1733
1734 /* Check if any shader needs built-in functions. */
1735 bool need_builtins = false;
1736 for (unsigned i = 0; i < num_shaders; i++) {
1737 if (shader_list[i]->uses_builtin_functions) {
1738 need_builtins = true;
1739 break;
1740 }
1741 }
1742
1743 bool ok;
1744 if (need_builtins) {
1745 /* Make a temporary array one larger than shader_list, which will hold
1746 * the built-in function shader as well.
1747 */
1748 gl_shader **linking_shaders = (gl_shader **)
1749 calloc(num_shaders + 1, sizeof(gl_shader *));
1750
1751 ok = linking_shaders != NULL;
1752
1753 if (ok) {
1754 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1755 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1756
1757 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1758
1759 free(linking_shaders);
1760 } else {
1761 _mesa_error_no_memory(__func__);
1762 }
1763 } else {
1764 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1765 }
1766
1767
1768 if (!ok) {
1769 ctx->Driver.DeleteShader(ctx, linked);
1770 return NULL;
1771 }
1772
1773 /* At this point linked should contain all of the linked IR, so
1774 * validate it to make sure nothing went wrong.
1775 */
1776 validate_ir_tree(linked->ir);
1777
1778 /* Set the size of geometry shader input arrays */
1779 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1780 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1781 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1782 foreach_in_list(ir_instruction, ir, linked->ir) {
1783 ir->accept(&input_resize_visitor);
1784 }
1785 }
1786
1787 if (ctx->Const.VertexID_is_zero_based)
1788 lower_vertex_id(linked);
1789
1790 /* Make a pass over all variable declarations to ensure that arrays with
1791 * unspecified sizes have a size specified. The size is inferred from the
1792 * max_array_access field.
1793 */
1794 array_sizing_visitor v;
1795 v.run(linked->ir);
1796 v.fixup_unnamed_interface_types();
1797
1798 return linked;
1799 }
1800
1801 /**
1802 * Update the sizes of linked shader uniform arrays to the maximum
1803 * array index used.
1804 *
1805 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1806 *
1807 * If one or more elements of an array are active,
1808 * GetActiveUniform will return the name of the array in name,
1809 * subject to the restrictions listed above. The type of the array
1810 * is returned in type. The size parameter contains the highest
1811 * array element index used, plus one. The compiler or linker
1812 * determines the highest index used. There will be only one
1813 * active uniform reported by the GL per uniform array.
1814
1815 */
1816 static void
1817 update_array_sizes(struct gl_shader_program *prog)
1818 {
1819 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1820 if (prog->_LinkedShaders[i] == NULL)
1821 continue;
1822
1823 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1824 ir_variable *const var = node->as_variable();
1825
1826 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1827 !var->type->is_array())
1828 continue;
1829
1830 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1831 * will not be eliminated. Since we always do std140, just
1832 * don't resize arrays in UBOs.
1833 *
1834 * Atomic counters are supposed to get deterministic
1835 * locations assigned based on the declaration ordering and
1836 * sizes, array compaction would mess that up.
1837 */
1838 if (var->is_in_uniform_block() || var->type->contains_atomic())
1839 continue;
1840
1841 unsigned int size = var->data.max_array_access;
1842 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1843 if (prog->_LinkedShaders[j] == NULL)
1844 continue;
1845
1846 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1847 ir_variable *other_var = node2->as_variable();
1848 if (!other_var)
1849 continue;
1850
1851 if (strcmp(var->name, other_var->name) == 0 &&
1852 other_var->data.max_array_access > size) {
1853 size = other_var->data.max_array_access;
1854 }
1855 }
1856 }
1857
1858 if (size + 1 != var->type->length) {
1859 /* If this is a built-in uniform (i.e., it's backed by some
1860 * fixed-function state), adjust the number of state slots to
1861 * match the new array size. The number of slots per array entry
1862 * is not known. It seems safe to assume that the total number of
1863 * slots is an integer multiple of the number of array elements.
1864 * Determine the number of slots per array element by dividing by
1865 * the old (total) size.
1866 */
1867 const unsigned num_slots = var->get_num_state_slots();
1868 if (num_slots > 0) {
1869 var->set_num_state_slots((size + 1)
1870 * (num_slots / var->type->length));
1871 }
1872
1873 var->type = glsl_type::get_array_instance(var->type->fields.array,
1874 size + 1);
1875 /* FINISHME: We should update the types of array
1876 * dereferences of this variable now.
1877 */
1878 }
1879 }
1880 }
1881 }
1882
1883 /**
1884 * Find a contiguous set of available bits in a bitmask.
1885 *
1886 * \param used_mask Bits representing used (1) and unused (0) locations
1887 * \param needed_count Number of contiguous bits needed.
1888 *
1889 * \return
1890 * Base location of the available bits on success or -1 on failure.
1891 */
1892 int
1893 find_available_slots(unsigned used_mask, unsigned needed_count)
1894 {
1895 unsigned needed_mask = (1 << needed_count) - 1;
1896 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1897
1898 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1899 * cannot optimize possibly infinite loops" for the loop below.
1900 */
1901 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1902 return -1;
1903
1904 for (int i = 0; i <= max_bit_to_test; i++) {
1905 if ((needed_mask & ~used_mask) == needed_mask)
1906 return i;
1907
1908 needed_mask <<= 1;
1909 }
1910
1911 return -1;
1912 }
1913
1914
1915 /**
1916 * Assign locations for either VS inputs or FS outputs
1917 *
1918 * \param prog Shader program whose variables need locations assigned
1919 * \param target_index Selector for the program target to receive location
1920 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1921 * \c MESA_SHADER_FRAGMENT.
1922 * \param max_index Maximum number of generic locations. This corresponds
1923 * to either the maximum number of draw buffers or the
1924 * maximum number of generic attributes.
1925 *
1926 * \return
1927 * If locations are successfully assigned, true is returned. Otherwise an
1928 * error is emitted to the shader link log and false is returned.
1929 */
1930 bool
1931 assign_attribute_or_color_locations(gl_shader_program *prog,
1932 unsigned target_index,
1933 unsigned max_index)
1934 {
1935 /* Mark invalid locations as being used.
1936 */
1937 unsigned used_locations = (max_index >= 32)
1938 ? ~0 : ~((1 << max_index) - 1);
1939
1940 assert((target_index == MESA_SHADER_VERTEX)
1941 || (target_index == MESA_SHADER_FRAGMENT));
1942
1943 gl_shader *const sh = prog->_LinkedShaders[target_index];
1944 if (sh == NULL)
1945 return true;
1946
1947 /* Operate in a total of four passes.
1948 *
1949 * 1. Invalidate the location assignments for all vertex shader inputs.
1950 *
1951 * 2. Assign locations for inputs that have user-defined (via
1952 * glBindVertexAttribLocation) locations and outputs that have
1953 * user-defined locations (via glBindFragDataLocation).
1954 *
1955 * 3. Sort the attributes without assigned locations by number of slots
1956 * required in decreasing order. Fragmentation caused by attribute
1957 * locations assigned by the application may prevent large attributes
1958 * from having enough contiguous space.
1959 *
1960 * 4. Assign locations to any inputs without assigned locations.
1961 */
1962
1963 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1964 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1965
1966 const enum ir_variable_mode direction =
1967 (target_index == MESA_SHADER_VERTEX)
1968 ? ir_var_shader_in : ir_var_shader_out;
1969
1970
1971 /* Temporary storage for the set of attributes that need locations assigned.
1972 */
1973 struct temp_attr {
1974 unsigned slots;
1975 ir_variable *var;
1976
1977 /* Used below in the call to qsort. */
1978 static int compare(const void *a, const void *b)
1979 {
1980 const temp_attr *const l = (const temp_attr *) a;
1981 const temp_attr *const r = (const temp_attr *) b;
1982
1983 /* Reversed because we want a descending order sort below. */
1984 return r->slots - l->slots;
1985 }
1986 } to_assign[16];
1987
1988 unsigned num_attr = 0;
1989
1990 foreach_in_list(ir_instruction, node, sh->ir) {
1991 ir_variable *const var = node->as_variable();
1992
1993 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1994 continue;
1995
1996 if (var->data.explicit_location) {
1997 if ((var->data.location >= (int)(max_index + generic_base))
1998 || (var->data.location < 0)) {
1999 linker_error(prog,
2000 "invalid explicit location %d specified for `%s'\n",
2001 (var->data.location < 0)
2002 ? var->data.location
2003 : var->data.location - generic_base,
2004 var->name);
2005 return false;
2006 }
2007 } else if (target_index == MESA_SHADER_VERTEX) {
2008 unsigned binding;
2009
2010 if (prog->AttributeBindings->get(binding, var->name)) {
2011 assert(binding >= VERT_ATTRIB_GENERIC0);
2012 var->data.location = binding;
2013 var->data.is_unmatched_generic_inout = 0;
2014 }
2015 } else if (target_index == MESA_SHADER_FRAGMENT) {
2016 unsigned binding;
2017 unsigned index;
2018
2019 if (prog->FragDataBindings->get(binding, var->name)) {
2020 assert(binding >= FRAG_RESULT_DATA0);
2021 var->data.location = binding;
2022 var->data.is_unmatched_generic_inout = 0;
2023
2024 if (prog->FragDataIndexBindings->get(index, var->name)) {
2025 var->data.index = index;
2026 }
2027 }
2028 }
2029
2030 /* If the variable is not a built-in and has a location statically
2031 * assigned in the shader (presumably via a layout qualifier), make sure
2032 * that it doesn't collide with other assigned locations. Otherwise,
2033 * add it to the list of variables that need linker-assigned locations.
2034 */
2035 const unsigned slots = var->type->count_attribute_slots();
2036 if (var->data.location != -1) {
2037 if (var->data.location >= generic_base && var->data.index < 1) {
2038 /* From page 61 of the OpenGL 4.0 spec:
2039 *
2040 * "LinkProgram will fail if the attribute bindings assigned
2041 * by BindAttribLocation do not leave not enough space to
2042 * assign a location for an active matrix attribute or an
2043 * active attribute array, both of which require multiple
2044 * contiguous generic attributes."
2045 *
2046 * I think above text prohibits the aliasing of explicit and
2047 * automatic assignments. But, aliasing is allowed in manual
2048 * assignments of attribute locations. See below comments for
2049 * the details.
2050 *
2051 * From OpenGL 4.0 spec, page 61:
2052 *
2053 * "It is possible for an application to bind more than one
2054 * attribute name to the same location. This is referred to as
2055 * aliasing. This will only work if only one of the aliased
2056 * attributes is active in the executable program, or if no
2057 * path through the shader consumes more than one attribute of
2058 * a set of attributes aliased to the same location. A link
2059 * error can occur if the linker determines that every path
2060 * through the shader consumes multiple aliased attributes,
2061 * but implementations are not required to generate an error
2062 * in this case."
2063 *
2064 * From GLSL 4.30 spec, page 54:
2065 *
2066 * "A program will fail to link if any two non-vertex shader
2067 * input variables are assigned to the same location. For
2068 * vertex shaders, multiple input variables may be assigned
2069 * to the same location using either layout qualifiers or via
2070 * the OpenGL API. However, such aliasing is intended only to
2071 * support vertex shaders where each execution path accesses
2072 * at most one input per each location. Implementations are
2073 * permitted, but not required, to generate link-time errors
2074 * if they detect that every path through the vertex shader
2075 * executable accesses multiple inputs assigned to any single
2076 * location. For all shader types, a program will fail to link
2077 * if explicit location assignments leave the linker unable
2078 * to find space for other variables without explicit
2079 * assignments."
2080 *
2081 * From OpenGL ES 3.0 spec, page 56:
2082 *
2083 * "Binding more than one attribute name to the same location
2084 * is referred to as aliasing, and is not permitted in OpenGL
2085 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2086 * fail when this condition exists. However, aliasing is
2087 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2088 * This will only work if only one of the aliased attributes
2089 * is active in the executable program, or if no path through
2090 * the shader consumes more than one attribute of a set of
2091 * attributes aliased to the same location. A link error can
2092 * occur if the linker determines that every path through the
2093 * shader consumes multiple aliased attributes, but implemen-
2094 * tations are not required to generate an error in this case."
2095 *
2096 * After looking at above references from OpenGL, OpenGL ES and
2097 * GLSL specifications, we allow aliasing of vertex input variables
2098 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2099 *
2100 * NOTE: This is not required by the spec but its worth mentioning
2101 * here that we're not doing anything to make sure that no path
2102 * through the vertex shader executable accesses multiple inputs
2103 * assigned to any single location.
2104 */
2105
2106 /* Mask representing the contiguous slots that will be used by
2107 * this attribute.
2108 */
2109 const unsigned attr = var->data.location - generic_base;
2110 const unsigned use_mask = (1 << slots) - 1;
2111 const char *const string = (target_index == MESA_SHADER_VERTEX)
2112 ? "vertex shader input" : "fragment shader output";
2113
2114 /* Generate a link error if the requested locations for this
2115 * attribute exceed the maximum allowed attribute location.
2116 */
2117 if (attr + slots > max_index) {
2118 linker_error(prog,
2119 "insufficient contiguous locations "
2120 "available for %s `%s' %d %d %d\n", string,
2121 var->name, used_locations, use_mask, attr);
2122 return false;
2123 }
2124
2125 /* Generate a link error if the set of bits requested for this
2126 * attribute overlaps any previously allocated bits.
2127 */
2128 if ((~(use_mask << attr) & used_locations) != used_locations) {
2129 if (target_index == MESA_SHADER_FRAGMENT ||
2130 (prog->IsES && prog->Version >= 300)) {
2131 linker_error(prog,
2132 "overlapping location is assigned "
2133 "to %s `%s' %d %d %d\n", string,
2134 var->name, used_locations, use_mask, attr);
2135 return false;
2136 } else {
2137 linker_warning(prog,
2138 "overlapping location is assigned "
2139 "to %s `%s' %d %d %d\n", string,
2140 var->name, used_locations, use_mask, attr);
2141 }
2142 }
2143
2144 used_locations |= (use_mask << attr);
2145 }
2146
2147 continue;
2148 }
2149
2150 to_assign[num_attr].slots = slots;
2151 to_assign[num_attr].var = var;
2152 num_attr++;
2153 }
2154
2155 /* If all of the attributes were assigned locations by the application (or
2156 * are built-in attributes with fixed locations), return early. This should
2157 * be the common case.
2158 */
2159 if (num_attr == 0)
2160 return true;
2161
2162 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2163
2164 if (target_index == MESA_SHADER_VERTEX) {
2165 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2166 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2167 * reserved to prevent it from being automatically allocated below.
2168 */
2169 find_deref_visitor find("gl_Vertex");
2170 find.run(sh->ir);
2171 if (find.variable_found())
2172 used_locations |= (1 << 0);
2173 }
2174
2175 for (unsigned i = 0; i < num_attr; i++) {
2176 /* Mask representing the contiguous slots that will be used by this
2177 * attribute.
2178 */
2179 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2180
2181 int location = find_available_slots(used_locations, to_assign[i].slots);
2182
2183 if (location < 0) {
2184 const char *const string = (target_index == MESA_SHADER_VERTEX)
2185 ? "vertex shader input" : "fragment shader output";
2186
2187 linker_error(prog,
2188 "insufficient contiguous locations "
2189 "available for %s `%s'\n",
2190 string, to_assign[i].var->name);
2191 return false;
2192 }
2193
2194 to_assign[i].var->data.location = generic_base + location;
2195 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2196 used_locations |= (use_mask << location);
2197 }
2198
2199 return true;
2200 }
2201
2202
2203 /**
2204 * Demote shader inputs and outputs that are not used in other stages
2205 */
2206 void
2207 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2208 {
2209 foreach_in_list(ir_instruction, node, sh->ir) {
2210 ir_variable *const var = node->as_variable();
2211
2212 if ((var == NULL) || (var->data.mode != int(mode)))
2213 continue;
2214
2215 /* A shader 'in' or 'out' variable is only really an input or output if
2216 * its value is used by other shader stages. This will cause the variable
2217 * to have a location assigned.
2218 */
2219 if (var->data.is_unmatched_generic_inout) {
2220 assert(var->data.mode != ir_var_temporary);
2221 var->data.mode = ir_var_auto;
2222 }
2223 }
2224 }
2225
2226
2227 /**
2228 * Store the gl_FragDepth layout in the gl_shader_program struct.
2229 */
2230 static void
2231 store_fragdepth_layout(struct gl_shader_program *prog)
2232 {
2233 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2234 return;
2235 }
2236
2237 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2238
2239 /* We don't look up the gl_FragDepth symbol directly because if
2240 * gl_FragDepth is not used in the shader, it's removed from the IR.
2241 * However, the symbol won't be removed from the symbol table.
2242 *
2243 * We're only interested in the cases where the variable is NOT removed
2244 * from the IR.
2245 */
2246 foreach_in_list(ir_instruction, node, ir) {
2247 ir_variable *const var = node->as_variable();
2248
2249 if (var == NULL || var->data.mode != ir_var_shader_out) {
2250 continue;
2251 }
2252
2253 if (strcmp(var->name, "gl_FragDepth") == 0) {
2254 switch (var->data.depth_layout) {
2255 case ir_depth_layout_none:
2256 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2257 return;
2258 case ir_depth_layout_any:
2259 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2260 return;
2261 case ir_depth_layout_greater:
2262 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2263 return;
2264 case ir_depth_layout_less:
2265 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2266 return;
2267 case ir_depth_layout_unchanged:
2268 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2269 return;
2270 default:
2271 assert(0);
2272 return;
2273 }
2274 }
2275 }
2276 }
2277
2278 /**
2279 * Validate the resources used by a program versus the implementation limits
2280 */
2281 static void
2282 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2283 {
2284 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2285 struct gl_shader *sh = prog->_LinkedShaders[i];
2286
2287 if (sh == NULL)
2288 continue;
2289
2290 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2291 linker_error(prog, "Too many %s shader texture samplers\n",
2292 _mesa_shader_stage_to_string(i));
2293 }
2294
2295 if (sh->num_uniform_components >
2296 ctx->Const.Program[i].MaxUniformComponents) {
2297 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2298 linker_warning(prog, "Too many %s shader default uniform block "
2299 "components, but the driver will try to optimize "
2300 "them out; this is non-portable out-of-spec "
2301 "behavior\n",
2302 _mesa_shader_stage_to_string(i));
2303 } else {
2304 linker_error(prog, "Too many %s shader default uniform block "
2305 "components\n",
2306 _mesa_shader_stage_to_string(i));
2307 }
2308 }
2309
2310 if (sh->num_combined_uniform_components >
2311 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2312 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2313 linker_warning(prog, "Too many %s shader uniform components, "
2314 "but the driver will try to optimize them out; "
2315 "this is non-portable out-of-spec behavior\n",
2316 _mesa_shader_stage_to_string(i));
2317 } else {
2318 linker_error(prog, "Too many %s shader uniform components\n",
2319 _mesa_shader_stage_to_string(i));
2320 }
2321 }
2322 }
2323
2324 unsigned blocks[MESA_SHADER_STAGES] = {0};
2325 unsigned total_uniform_blocks = 0;
2326
2327 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2328 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2329 if (prog->UniformBlockStageIndex[j][i] != -1) {
2330 blocks[j]++;
2331 total_uniform_blocks++;
2332 }
2333 }
2334
2335 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2336 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2337 prog->NumUniformBlocks,
2338 ctx->Const.MaxCombinedUniformBlocks);
2339 } else {
2340 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2341 const unsigned max_uniform_blocks =
2342 ctx->Const.Program[i].MaxUniformBlocks;
2343 if (blocks[i] > max_uniform_blocks) {
2344 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2345 _mesa_shader_stage_to_string(i),
2346 blocks[i],
2347 max_uniform_blocks);
2348 break;
2349 }
2350 }
2351 }
2352 }
2353 }
2354
2355 /**
2356 * Validate shader image resources.
2357 */
2358 static void
2359 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2360 {
2361 unsigned total_image_units = 0;
2362 unsigned fragment_outputs = 0;
2363
2364 if (!ctx->Extensions.ARB_shader_image_load_store)
2365 return;
2366
2367 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2368 struct gl_shader *sh = prog->_LinkedShaders[i];
2369
2370 if (sh) {
2371 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2372 linker_error(prog, "Too many %s shader image uniforms\n",
2373 _mesa_shader_stage_to_string(i));
2374
2375 total_image_units += sh->NumImages;
2376
2377 if (i == MESA_SHADER_FRAGMENT) {
2378 foreach_in_list(ir_instruction, node, sh->ir) {
2379 ir_variable *var = node->as_variable();
2380 if (var && var->data.mode == ir_var_shader_out)
2381 fragment_outputs += var->type->count_attribute_slots();
2382 }
2383 }
2384 }
2385 }
2386
2387 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2388 linker_error(prog, "Too many combined image uniforms\n");
2389
2390 if (total_image_units + fragment_outputs >
2391 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2392 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2393 }
2394
2395
2396 /**
2397 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2398 * for a variable, checks for overlaps between other uniforms using explicit
2399 * locations.
2400 */
2401 static bool
2402 reserve_explicit_locations(struct gl_shader_program *prog,
2403 string_to_uint_map *map, ir_variable *var)
2404 {
2405 unsigned slots = var->type->uniform_locations();
2406 unsigned max_loc = var->data.location + slots - 1;
2407
2408 /* Resize remap table if locations do not fit in the current one. */
2409 if (max_loc + 1 > prog->NumUniformRemapTable) {
2410 prog->UniformRemapTable =
2411 reralloc(prog, prog->UniformRemapTable,
2412 gl_uniform_storage *,
2413 max_loc + 1);
2414
2415 if (!prog->UniformRemapTable) {
2416 linker_error(prog, "Out of memory during linking.\n");
2417 return false;
2418 }
2419
2420 /* Initialize allocated space. */
2421 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2422 prog->UniformRemapTable[i] = NULL;
2423
2424 prog->NumUniformRemapTable = max_loc + 1;
2425 }
2426
2427 for (unsigned i = 0; i < slots; i++) {
2428 unsigned loc = var->data.location + i;
2429
2430 /* Check if location is already used. */
2431 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2432
2433 /* Possibly same uniform from a different stage, this is ok. */
2434 unsigned hash_loc;
2435 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2436 continue;
2437
2438 /* ARB_explicit_uniform_location specification states:
2439 *
2440 * "No two default-block uniform variables in the program can have
2441 * the same location, even if they are unused, otherwise a compiler
2442 * or linker error will be generated."
2443 */
2444 linker_error(prog,
2445 "location qualifier for uniform %s overlaps "
2446 "previously used location\n",
2447 var->name);
2448 return false;
2449 }
2450
2451 /* Initialize location as inactive before optimization
2452 * rounds and location assignment.
2453 */
2454 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2455 }
2456
2457 /* Note, base location used for arrays. */
2458 map->put(var->data.location, var->name);
2459
2460 return true;
2461 }
2462
2463 /**
2464 * Check and reserve all explicit uniform locations, called before
2465 * any optimizations happen to handle also inactive uniforms and
2466 * inactive array elements that may get trimmed away.
2467 */
2468 static void
2469 check_explicit_uniform_locations(struct gl_context *ctx,
2470 struct gl_shader_program *prog)
2471 {
2472 if (!ctx->Extensions.ARB_explicit_uniform_location)
2473 return;
2474
2475 /* This map is used to detect if overlapping explicit locations
2476 * occur with the same uniform (from different stage) or a different one.
2477 */
2478 string_to_uint_map *uniform_map = new string_to_uint_map;
2479
2480 if (!uniform_map) {
2481 linker_error(prog, "Out of memory during linking.\n");
2482 return;
2483 }
2484
2485 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2486 struct gl_shader *sh = prog->_LinkedShaders[i];
2487
2488 if (!sh)
2489 continue;
2490
2491 foreach_in_list(ir_instruction, node, sh->ir) {
2492 ir_variable *var = node->as_variable();
2493 if ((var && var->data.mode == ir_var_uniform) &&
2494 var->data.explicit_location) {
2495 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2496 delete uniform_map;
2497 return;
2498 }
2499 }
2500 }
2501 }
2502
2503 delete uniform_map;
2504 }
2505
2506 void
2507 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2508 {
2509 tfeedback_decl *tfeedback_decls = NULL;
2510 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2511
2512 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2513
2514 prog->LinkStatus = true; /* All error paths will set this to false */
2515 prog->Validated = false;
2516 prog->_Used = false;
2517
2518 prog->ARB_fragment_coord_conventions_enable = false;
2519
2520 /* Separate the shaders into groups based on their type.
2521 */
2522 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2523 unsigned num_shaders[MESA_SHADER_STAGES];
2524
2525 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2526 shader_list[i] = (struct gl_shader **)
2527 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2528 num_shaders[i] = 0;
2529 }
2530
2531 unsigned min_version = UINT_MAX;
2532 unsigned max_version = 0;
2533 const bool is_es_prog =
2534 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2535 for (unsigned i = 0; i < prog->NumShaders; i++) {
2536 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2537 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2538
2539 if (prog->Shaders[i]->IsES != is_es_prog) {
2540 linker_error(prog, "all shaders must use same shading "
2541 "language version\n");
2542 goto done;
2543 }
2544
2545 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
2546 prog->ARB_fragment_coord_conventions_enable = true;
2547 }
2548
2549 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2550 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2551 num_shaders[shader_type]++;
2552 }
2553
2554 /* In desktop GLSL, different shader versions may be linked together. In
2555 * GLSL ES, all shader versions must be the same.
2556 */
2557 if (is_es_prog && min_version != max_version) {
2558 linker_error(prog, "all shaders must use same shading "
2559 "language version\n");
2560 goto done;
2561 }
2562
2563 prog->Version = max_version;
2564 prog->IsES = is_es_prog;
2565
2566 /* Geometry shaders have to be linked with vertex shaders.
2567 */
2568 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2569 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2570 !prog->SeparateShader) {
2571 linker_error(prog, "Geometry shader must be linked with "
2572 "vertex shader\n");
2573 goto done;
2574 }
2575
2576 /* Compute shaders have additional restrictions. */
2577 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2578 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2579 linker_error(prog, "Compute shaders may not be linked with any other "
2580 "type of shader\n");
2581 }
2582
2583 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2584 if (prog->_LinkedShaders[i] != NULL)
2585 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2586
2587 prog->_LinkedShaders[i] = NULL;
2588 }
2589
2590 /* Link all shaders for a particular stage and validate the result.
2591 */
2592 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2593 if (num_shaders[stage] > 0) {
2594 gl_shader *const sh =
2595 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2596 num_shaders[stage]);
2597
2598 if (!prog->LinkStatus)
2599 goto done;
2600
2601 switch (stage) {
2602 case MESA_SHADER_VERTEX:
2603 validate_vertex_shader_executable(prog, sh);
2604 break;
2605 case MESA_SHADER_GEOMETRY:
2606 validate_geometry_shader_executable(prog, sh);
2607 break;
2608 case MESA_SHADER_FRAGMENT:
2609 validate_fragment_shader_executable(prog, sh);
2610 break;
2611 }
2612 if (!prog->LinkStatus)
2613 goto done;
2614
2615 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2616 }
2617 }
2618
2619 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2620 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2621 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2622 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2623 else
2624 prog->LastClipDistanceArraySize = 0; /* Not used */
2625
2626 /* Here begins the inter-stage linking phase. Some initial validation is
2627 * performed, then locations are assigned for uniforms, attributes, and
2628 * varyings.
2629 */
2630 cross_validate_uniforms(prog);
2631 if (!prog->LinkStatus)
2632 goto done;
2633
2634 unsigned prev;
2635
2636 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2637 if (prog->_LinkedShaders[prev] != NULL)
2638 break;
2639 }
2640
2641 check_explicit_uniform_locations(ctx, prog);
2642 if (!prog->LinkStatus)
2643 goto done;
2644
2645 /* Validate the inputs of each stage with the output of the preceding
2646 * stage.
2647 */
2648 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2649 if (prog->_LinkedShaders[i] == NULL)
2650 continue;
2651
2652 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2653 prog->_LinkedShaders[i]);
2654 if (!prog->LinkStatus)
2655 goto done;
2656
2657 cross_validate_outputs_to_inputs(prog,
2658 prog->_LinkedShaders[prev],
2659 prog->_LinkedShaders[i]);
2660 if (!prog->LinkStatus)
2661 goto done;
2662
2663 prev = i;
2664 }
2665
2666 /* Cross-validate uniform blocks between shader stages */
2667 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2668 MESA_SHADER_STAGES);
2669 if (!prog->LinkStatus)
2670 goto done;
2671
2672 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2673 if (prog->_LinkedShaders[i] != NULL)
2674 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2675 }
2676
2677 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2678 * it before optimization because we want most of the checks to get
2679 * dropped thanks to constant propagation.
2680 *
2681 * This rule also applies to GLSL ES 3.00.
2682 */
2683 if (max_version >= (is_es_prog ? 300 : 130)) {
2684 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2685 if (sh) {
2686 lower_discard_flow(sh->ir);
2687 }
2688 }
2689
2690 if (!interstage_cross_validate_uniform_blocks(prog))
2691 goto done;
2692
2693 /* Do common optimization before assigning storage for attributes,
2694 * uniforms, and varyings. Later optimization could possibly make
2695 * some of that unused.
2696 */
2697 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2698 if (prog->_LinkedShaders[i] == NULL)
2699 continue;
2700
2701 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2702 if (!prog->LinkStatus)
2703 goto done;
2704
2705 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
2706 lower_clip_distance(prog->_LinkedShaders[i]);
2707 }
2708
2709 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2710 &ctx->Const.ShaderCompilerOptions[i],
2711 ctx->Const.NativeIntegers))
2712 ;
2713
2714 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
2715 }
2716
2717 /* Check and validate stream emissions in geometry shaders */
2718 validate_geometry_shader_emissions(ctx, prog);
2719
2720 /* Mark all generic shader inputs and outputs as unpaired. */
2721 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2722 if (prog->_LinkedShaders[i] != NULL) {
2723 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2724 }
2725 }
2726
2727 /* FINISHME: The value of the max_attribute_index parameter is
2728 * FINISHME: implementation dependent based on the value of
2729 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2730 * FINISHME: at least 16, so hardcode 16 for now.
2731 */
2732 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2733 goto done;
2734 }
2735
2736 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2737 goto done;
2738 }
2739
2740 unsigned first;
2741 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2742 if (prog->_LinkedShaders[first] != NULL)
2743 break;
2744 }
2745
2746 if (num_tfeedback_decls != 0) {
2747 /* From GL_EXT_transform_feedback:
2748 * A program will fail to link if:
2749 *
2750 * * the <count> specified by TransformFeedbackVaryingsEXT is
2751 * non-zero, but the program object has no vertex or geometry
2752 * shader;
2753 */
2754 if (first == MESA_SHADER_FRAGMENT) {
2755 linker_error(prog, "Transform feedback varyings specified, but "
2756 "no vertex or geometry shader is present.\n");
2757 goto done;
2758 }
2759
2760 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2761 prog->TransformFeedback.NumVarying);
2762 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2763 prog->TransformFeedback.VaryingNames,
2764 tfeedback_decls))
2765 goto done;
2766 }
2767
2768 /* Linking the stages in the opposite order (from fragment to vertex)
2769 * ensures that inter-shader outputs written to in an earlier stage are
2770 * eliminated if they are (transitively) not used in a later stage.
2771 */
2772 int last, next;
2773 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2774 if (prog->_LinkedShaders[last] != NULL)
2775 break;
2776 }
2777
2778 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2779 gl_shader *const sh = prog->_LinkedShaders[last];
2780
2781 if (first == MESA_SHADER_GEOMETRY) {
2782 /* There was no vertex shader, but we still have to assign varying
2783 * locations for use by geometry shader inputs in SSO.
2784 *
2785 * If the shader is not separable (i.e., prog->SeparateShader is
2786 * false), linking will have already failed when first is
2787 * MESA_SHADER_GEOMETRY.
2788 */
2789 if (!assign_varying_locations(ctx, mem_ctx, prog,
2790 NULL, sh,
2791 num_tfeedback_decls, tfeedback_decls,
2792 prog->Geom.VerticesIn))
2793 goto done;
2794 }
2795
2796 if (num_tfeedback_decls != 0 || prog->SeparateShader) {
2797 /* There was no fragment shader, but we still have to assign varying
2798 * locations for use by transform feedback.
2799 */
2800 if (!assign_varying_locations(ctx, mem_ctx, prog,
2801 sh, NULL,
2802 num_tfeedback_decls, tfeedback_decls,
2803 0))
2804 goto done;
2805 }
2806
2807 do_dead_builtin_varyings(ctx, sh, NULL,
2808 num_tfeedback_decls, tfeedback_decls);
2809
2810 if (!prog->SeparateShader)
2811 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2812
2813 /* Eliminate code that is now dead due to unused outputs being demoted.
2814 */
2815 while (do_dead_code(sh->ir, false))
2816 ;
2817 }
2818 else if (first == MESA_SHADER_FRAGMENT) {
2819 /* If the program only contains a fragment shader...
2820 */
2821 gl_shader *const sh = prog->_LinkedShaders[first];
2822
2823 do_dead_builtin_varyings(ctx, NULL, sh,
2824 num_tfeedback_decls, tfeedback_decls);
2825
2826 if (prog->SeparateShader) {
2827 if (!assign_varying_locations(ctx, mem_ctx, prog,
2828 NULL /* producer */,
2829 sh /* consumer */,
2830 0 /* num_tfeedback_decls */,
2831 NULL /* tfeedback_decls */,
2832 0 /* gs_input_vertices */))
2833 goto done;
2834 } else
2835 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2836
2837 while (do_dead_code(sh->ir, false))
2838 ;
2839 }
2840
2841 next = last;
2842 for (int i = next - 1; i >= 0; i--) {
2843 if (prog->_LinkedShaders[i] == NULL)
2844 continue;
2845
2846 gl_shader *const sh_i = prog->_LinkedShaders[i];
2847 gl_shader *const sh_next = prog->_LinkedShaders[next];
2848 unsigned gs_input_vertices =
2849 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2850
2851 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2852 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2853 tfeedback_decls, gs_input_vertices))
2854 goto done;
2855
2856 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2857 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2858 tfeedback_decls);
2859
2860 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2861 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2862
2863 /* Eliminate code that is now dead due to unused outputs being demoted.
2864 */
2865 while (do_dead_code(sh_i->ir, false))
2866 ;
2867 while (do_dead_code(sh_next->ir, false))
2868 ;
2869
2870 /* This must be done after all dead varyings are eliminated. */
2871 if (!check_against_output_limit(ctx, prog, sh_i))
2872 goto done;
2873 if (!check_against_input_limit(ctx, prog, sh_next))
2874 goto done;
2875
2876 next = i;
2877 }
2878
2879 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2880 goto done;
2881
2882 update_array_sizes(prog);
2883 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
2884 link_assign_atomic_counter_resources(ctx, prog);
2885 store_fragdepth_layout(prog);
2886
2887 check_resources(ctx, prog);
2888 check_image_resources(ctx, prog);
2889 link_check_atomic_counter_resources(ctx, prog);
2890
2891 if (!prog->LinkStatus)
2892 goto done;
2893
2894 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2895 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2896 * anything about shader linking when one of the shaders (vertex or
2897 * fragment shader) is absent. So, the extension shouldn't change the
2898 * behavior specified in GLSL specification.
2899 */
2900 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
2901 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2902 linker_error(prog, "program lacks a vertex shader\n");
2903 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2904 linker_error(prog, "program lacks a fragment shader\n");
2905 }
2906 }
2907
2908 /* FINISHME: Assign fragment shader output locations. */
2909
2910 done:
2911 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2912 free(shader_list[i]);
2913 if (prog->_LinkedShaders[i] == NULL)
2914 continue;
2915
2916 /* Do a final validation step to make sure that the IR wasn't
2917 * invalidated by any modifications performed after intrastage linking.
2918 */
2919 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2920
2921 /* Retain any live IR, but trash the rest. */
2922 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2923
2924 /* The symbol table in the linked shaders may contain references to
2925 * variables that were removed (e.g., unused uniforms). Since it may
2926 * contain junk, there is no possible valid use. Delete it and set the
2927 * pointer to NULL.
2928 */
2929 delete prog->_LinkedShaders[i]->symbols;
2930 prog->_LinkedShaders[i]->symbols = NULL;
2931 }
2932
2933 ralloc_free(mem_ctx);
2934 }