58dd9fbfdae743e36e8eb776bbd427623330df5d
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->fields.array,
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->fields.array;
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 /* Class that finds array derefs and check if indexes are dynamic. */
350 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
351 {
352 public:
353 dynamic_sampler_array_indexing_visitor() :
354 dynamic_sampler_array_indexing(false)
355 {
356 }
357
358 ir_visitor_status visit_enter(ir_dereference_array *ir)
359 {
360 if (!ir->variable_referenced())
361 return visit_continue;
362
363 if (!ir->variable_referenced()->type->contains_sampler())
364 return visit_continue;
365
366 if (!ir->array_index->constant_expression_value()) {
367 dynamic_sampler_array_indexing = true;
368 return visit_stop;
369 }
370 return visit_continue;
371 }
372
373 bool uses_dynamic_sampler_array_indexing()
374 {
375 return dynamic_sampler_array_indexing;
376 }
377
378 private:
379 bool dynamic_sampler_array_indexing;
380 };
381
382 } /* anonymous namespace */
383
384 void
385 linker_error(gl_shader_program *prog, const char *fmt, ...)
386 {
387 va_list ap;
388
389 ralloc_strcat(&prog->InfoLog, "error: ");
390 va_start(ap, fmt);
391 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
392 va_end(ap);
393
394 prog->LinkStatus = false;
395 }
396
397
398 void
399 linker_warning(gl_shader_program *prog, const char *fmt, ...)
400 {
401 va_list ap;
402
403 ralloc_strcat(&prog->InfoLog, "warning: ");
404 va_start(ap, fmt);
405 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
406 va_end(ap);
407
408 }
409
410
411 /**
412 * Given a string identifying a program resource, break it into a base name
413 * and an optional array index in square brackets.
414 *
415 * If an array index is present, \c out_base_name_end is set to point to the
416 * "[" that precedes the array index, and the array index itself is returned
417 * as a long.
418 *
419 * If no array index is present (or if the array index is negative or
420 * mal-formed), \c out_base_name_end, is set to point to the null terminator
421 * at the end of the input string, and -1 is returned.
422 *
423 * Only the final array index is parsed; if the string contains other array
424 * indices (or structure field accesses), they are left in the base name.
425 *
426 * No attempt is made to check that the base name is properly formed;
427 * typically the caller will look up the base name in a hash table, so
428 * ill-formed base names simply turn into hash table lookup failures.
429 */
430 long
431 parse_program_resource_name(const GLchar *name,
432 const GLchar **out_base_name_end)
433 {
434 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
435 *
436 * "When an integer array element or block instance number is part of
437 * the name string, it will be specified in decimal form without a "+"
438 * or "-" sign or any extra leading zeroes. Additionally, the name
439 * string will not include white space anywhere in the string."
440 */
441
442 const size_t len = strlen(name);
443 *out_base_name_end = name + len;
444
445 if (len == 0 || name[len-1] != ']')
446 return -1;
447
448 /* Walk backwards over the string looking for a non-digit character. This
449 * had better be the opening bracket for an array index.
450 *
451 * Initially, i specifies the location of the ']'. Since the string may
452 * contain only the ']' charcater, walk backwards very carefully.
453 */
454 unsigned i;
455 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
456 /* empty */ ;
457
458 if ((i == 0) || name[i-1] != '[')
459 return -1;
460
461 long array_index = strtol(&name[i], NULL, 10);
462 if (array_index < 0)
463 return -1;
464
465 /* Check for leading zero */
466 if (name[i] == '0' && name[i+1] != ']')
467 return -1;
468
469 *out_base_name_end = name + (i - 1);
470 return array_index;
471 }
472
473
474 void
475 link_invalidate_variable_locations(exec_list *ir)
476 {
477 foreach_in_list(ir_instruction, node, ir) {
478 ir_variable *const var = node->as_variable();
479
480 if (var == NULL)
481 continue;
482
483 /* Only assign locations for variables that lack an explicit location.
484 * Explicit locations are set for all built-in variables, generic vertex
485 * shader inputs (via layout(location=...)), and generic fragment shader
486 * outputs (also via layout(location=...)).
487 */
488 if (!var->data.explicit_location) {
489 var->data.location = -1;
490 var->data.location_frac = 0;
491 }
492
493 /* ir_variable::is_unmatched_generic_inout is used by the linker while
494 * connecting outputs from one stage to inputs of the next stage.
495 *
496 * There are two implicit assumptions here. First, we assume that any
497 * built-in variable (i.e., non-generic in or out) will have
498 * explicit_location set. Second, we assume that any generic in or out
499 * will not have explicit_location set.
500 *
501 * This second assumption will only be valid until
502 * GL_ARB_separate_shader_objects is supported. When that extension is
503 * implemented, this function will need some modifications.
504 */
505 if (!var->data.explicit_location) {
506 var->data.is_unmatched_generic_inout = 1;
507 } else {
508 var->data.is_unmatched_generic_inout = 0;
509 }
510 }
511 }
512
513
514 /**
515 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
516 *
517 * Also check for errors based on incorrect usage of gl_ClipVertex and
518 * gl_ClipDistance.
519 *
520 * Return false if an error was reported.
521 */
522 static void
523 analyze_clip_usage(struct gl_shader_program *prog,
524 struct gl_shader *shader, GLboolean *UsesClipDistance,
525 GLuint *ClipDistanceArraySize)
526 {
527 *ClipDistanceArraySize = 0;
528
529 if (!prog->IsES && prog->Version >= 130) {
530 /* From section 7.1 (Vertex Shader Special Variables) of the
531 * GLSL 1.30 spec:
532 *
533 * "It is an error for a shader to statically write both
534 * gl_ClipVertex and gl_ClipDistance."
535 *
536 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
537 * gl_ClipVertex nor gl_ClipDistance.
538 */
539 find_assignment_visitor clip_vertex("gl_ClipVertex");
540 find_assignment_visitor clip_distance("gl_ClipDistance");
541
542 clip_vertex.run(shader->ir);
543 clip_distance.run(shader->ir);
544 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
545 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
546 "and `gl_ClipDistance'\n",
547 _mesa_shader_stage_to_string(shader->Stage));
548 return;
549 }
550 *UsesClipDistance = clip_distance.variable_found();
551 ir_variable *clip_distance_var =
552 shader->symbols->get_variable("gl_ClipDistance");
553 if (clip_distance_var)
554 *ClipDistanceArraySize = clip_distance_var->type->length;
555 } else {
556 *UsesClipDistance = false;
557 }
558 }
559
560
561 /**
562 * Verify that a vertex shader executable meets all semantic requirements.
563 *
564 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
565 * as a side effect.
566 *
567 * \param shader Vertex shader executable to be verified
568 */
569 void
570 validate_vertex_shader_executable(struct gl_shader_program *prog,
571 struct gl_shader *shader)
572 {
573 if (shader == NULL)
574 return;
575
576 /* From the GLSL 1.10 spec, page 48:
577 *
578 * "The variable gl_Position is available only in the vertex
579 * language and is intended for writing the homogeneous vertex
580 * position. All executions of a well-formed vertex shader
581 * executable must write a value into this variable. [...] The
582 * variable gl_Position is available only in the vertex
583 * language and is intended for writing the homogeneous vertex
584 * position. All executions of a well-formed vertex shader
585 * executable must write a value into this variable."
586 *
587 * while in GLSL 1.40 this text is changed to:
588 *
589 * "The variable gl_Position is available only in the vertex
590 * language and is intended for writing the homogeneous vertex
591 * position. It can be written at any time during shader
592 * execution. It may also be read back by a vertex shader
593 * after being written. This value will be used by primitive
594 * assembly, clipping, culling, and other fixed functionality
595 * operations, if present, that operate on primitives after
596 * vertex processing has occurred. Its value is undefined if
597 * the vertex shader executable does not write gl_Position."
598 *
599 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
600 * gl_Position is not an error.
601 */
602 if (prog->Version < (prog->IsES ? 300 : 140)) {
603 find_assignment_visitor find("gl_Position");
604 find.run(shader->ir);
605 if (!find.variable_found()) {
606 if (prog->IsES) {
607 linker_warning(prog,
608 "vertex shader does not write to `gl_Position'."
609 "It's value is undefined. \n");
610 } else {
611 linker_error(prog,
612 "vertex shader does not write to `gl_Position'. \n");
613 }
614 return;
615 }
616 }
617
618 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
619 &prog->Vert.ClipDistanceArraySize);
620 }
621
622
623 /**
624 * Verify that a fragment shader executable meets all semantic requirements
625 *
626 * \param shader Fragment shader executable to be verified
627 */
628 void
629 validate_fragment_shader_executable(struct gl_shader_program *prog,
630 struct gl_shader *shader)
631 {
632 if (shader == NULL)
633 return;
634
635 find_assignment_visitor frag_color("gl_FragColor");
636 find_assignment_visitor frag_data("gl_FragData");
637
638 frag_color.run(shader->ir);
639 frag_data.run(shader->ir);
640
641 if (frag_color.variable_found() && frag_data.variable_found()) {
642 linker_error(prog, "fragment shader writes to both "
643 "`gl_FragColor' and `gl_FragData'\n");
644 }
645 }
646
647 /**
648 * Verify that a geometry shader executable meets all semantic requirements
649 *
650 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
651 * prog->Geom.ClipDistanceArraySize as a side effect.
652 *
653 * \param shader Geometry shader executable to be verified
654 */
655 void
656 validate_geometry_shader_executable(struct gl_shader_program *prog,
657 struct gl_shader *shader)
658 {
659 if (shader == NULL)
660 return;
661
662 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
663 prog->Geom.VerticesIn = num_vertices;
664
665 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
666 &prog->Geom.ClipDistanceArraySize);
667 }
668
669 /**
670 * Check if geometry shaders emit to non-zero streams and do corresponding
671 * validations.
672 */
673 static void
674 validate_geometry_shader_emissions(struct gl_context *ctx,
675 struct gl_shader_program *prog)
676 {
677 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
678 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
679 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
680 if (emit_vertex.error()) {
681 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
682 "stream parameter are in the range [0, %d].\n",
683 emit_vertex.error_func(),
684 emit_vertex.error_stream(),
685 ctx->Const.MaxVertexStreams - 1);
686 }
687 prog->Geom.UsesStreams = emit_vertex.uses_streams();
688 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
689
690 /* From the ARB_gpu_shader5 spec:
691 *
692 * "Multiple vertex streams are supported only if the output primitive
693 * type is declared to be "points". A program will fail to link if it
694 * contains a geometry shader calling EmitStreamVertex() or
695 * EndStreamPrimitive() if its output primitive type is not "points".
696 *
697 * However, in the same spec:
698 *
699 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
700 * with <stream> set to zero."
701 *
702 * And:
703 *
704 * "The function EndPrimitive() is equivalent to calling
705 * EndStreamPrimitive() with <stream> set to zero."
706 *
707 * Since we can call EmitVertex() and EndPrimitive() when we output
708 * primitives other than points, calling EmitStreamVertex(0) or
709 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
710 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
711 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
712 * stream.
713 */
714 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
715 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
716 "with n>0 requires point output\n");
717 }
718 }
719 }
720
721 bool
722 validate_intrastage_arrays(struct gl_shader_program *prog,
723 ir_variable *const var,
724 ir_variable *const existing)
725 {
726 /* Consider the types to be "the same" if both types are arrays
727 * of the same type and one of the arrays is implicitly sized.
728 * In addition, set the type of the linked variable to the
729 * explicitly sized array.
730 */
731 if (var->type->is_array() && existing->type->is_array() &&
732 (var->type->fields.array == existing->type->fields.array) &&
733 ((var->type->length == 0)|| (existing->type->length == 0))) {
734 if (var->type->length != 0) {
735 if (var->type->length <= existing->data.max_array_access) {
736 linker_error(prog, "%s `%s' declared as type "
737 "`%s' but outermost dimension has an index"
738 " of `%i'\n",
739 mode_string(var),
740 var->name, var->type->name,
741 existing->data.max_array_access);
742 }
743 existing->type = var->type;
744 return true;
745 } else if (existing->type->length != 0) {
746 if(existing->type->length <= var->data.max_array_access) {
747 linker_error(prog, "%s `%s' declared as type "
748 "`%s' but outermost dimension has an index"
749 " of `%i'\n",
750 mode_string(var),
751 var->name, existing->type->name,
752 var->data.max_array_access);
753 }
754 return true;
755 }
756 }
757 return false;
758 }
759
760
761 /**
762 * Perform validation of global variables used across multiple shaders
763 */
764 void
765 cross_validate_globals(struct gl_shader_program *prog,
766 struct gl_shader **shader_list,
767 unsigned num_shaders,
768 bool uniforms_only)
769 {
770 /* Examine all of the uniforms in all of the shaders and cross validate
771 * them.
772 */
773 glsl_symbol_table variables;
774 for (unsigned i = 0; i < num_shaders; i++) {
775 if (shader_list[i] == NULL)
776 continue;
777
778 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
779 ir_variable *const var = node->as_variable();
780
781 if (var == NULL)
782 continue;
783
784 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
785 continue;
786
787 /* Don't cross validate temporaries that are at global scope. These
788 * will eventually get pulled into the shaders 'main'.
789 */
790 if (var->data.mode == ir_var_temporary)
791 continue;
792
793 /* If a global with this name has already been seen, verify that the
794 * new instance has the same type. In addition, if the globals have
795 * initializers, the values of the initializers must be the same.
796 */
797 ir_variable *const existing = variables.get_variable(var->name);
798 if (existing != NULL) {
799 /* Check if types match. Interface blocks have some special
800 * rules so we handle those elsewhere.
801 */
802 if (var->type != existing->type &&
803 !var->is_interface_instance()) {
804 if (!validate_intrastage_arrays(prog, var, existing)) {
805 if (var->type->is_record() && existing->type->is_record()
806 && existing->type->record_compare(var->type)) {
807 existing->type = var->type;
808 } else {
809 linker_error(prog, "%s `%s' declared as type "
810 "`%s' and type `%s'\n",
811 mode_string(var),
812 var->name, var->type->name,
813 existing->type->name);
814 return;
815 }
816 }
817 }
818
819 if (var->data.explicit_location) {
820 if (existing->data.explicit_location
821 && (var->data.location != existing->data.location)) {
822 linker_error(prog, "explicit locations for %s "
823 "`%s' have differing values\n",
824 mode_string(var), var->name);
825 return;
826 }
827
828 existing->data.location = var->data.location;
829 existing->data.explicit_location = true;
830 }
831
832 /* From the GLSL 4.20 specification:
833 * "A link error will result if two compilation units in a program
834 * specify different integer-constant bindings for the same
835 * opaque-uniform name. However, it is not an error to specify a
836 * binding on some but not all declarations for the same name"
837 */
838 if (var->data.explicit_binding) {
839 if (existing->data.explicit_binding &&
840 var->data.binding != existing->data.binding) {
841 linker_error(prog, "explicit bindings for %s "
842 "`%s' have differing values\n",
843 mode_string(var), var->name);
844 return;
845 }
846
847 existing->data.binding = var->data.binding;
848 existing->data.explicit_binding = true;
849 }
850
851 if (var->type->contains_atomic() &&
852 var->data.atomic.offset != existing->data.atomic.offset) {
853 linker_error(prog, "offset specifications for %s "
854 "`%s' have differing values\n",
855 mode_string(var), var->name);
856 return;
857 }
858
859 /* Validate layout qualifiers for gl_FragDepth.
860 *
861 * From the AMD/ARB_conservative_depth specs:
862 *
863 * "If gl_FragDepth is redeclared in any fragment shader in a
864 * program, it must be redeclared in all fragment shaders in
865 * that program that have static assignments to
866 * gl_FragDepth. All redeclarations of gl_FragDepth in all
867 * fragment shaders in a single program must have the same set
868 * of qualifiers."
869 */
870 if (strcmp(var->name, "gl_FragDepth") == 0) {
871 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
872 bool layout_differs =
873 var->data.depth_layout != existing->data.depth_layout;
874
875 if (layout_declared && layout_differs) {
876 linker_error(prog,
877 "All redeclarations of gl_FragDepth in all "
878 "fragment shaders in a single program must have "
879 "the same set of qualifiers.\n");
880 }
881
882 if (var->data.used && layout_differs) {
883 linker_error(prog,
884 "If gl_FragDepth is redeclared with a layout "
885 "qualifier in any fragment shader, it must be "
886 "redeclared with the same layout qualifier in "
887 "all fragment shaders that have assignments to "
888 "gl_FragDepth\n");
889 }
890 }
891
892 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
893 *
894 * "If a shared global has multiple initializers, the
895 * initializers must all be constant expressions, and they
896 * must all have the same value. Otherwise, a link error will
897 * result. (A shared global having only one initializer does
898 * not require that initializer to be a constant expression.)"
899 *
900 * Previous to 4.20 the GLSL spec simply said that initializers
901 * must have the same value. In this case of non-constant
902 * initializers, this was impossible to determine. As a result,
903 * no vendor actually implemented that behavior. The 4.20
904 * behavior matches the implemented behavior of at least one other
905 * vendor, so we'll implement that for all GLSL versions.
906 */
907 if (var->constant_initializer != NULL) {
908 if (existing->constant_initializer != NULL) {
909 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
910 linker_error(prog, "initializers for %s "
911 "`%s' have differing values\n",
912 mode_string(var), var->name);
913 return;
914 }
915 } else {
916 /* If the first-seen instance of a particular uniform did not
917 * have an initializer but a later instance does, copy the
918 * initializer to the version stored in the symbol table.
919 */
920 /* FINISHME: This is wrong. The constant_value field should
921 * FINISHME: not be modified! Imagine a case where a shader
922 * FINISHME: without an initializer is linked in two different
923 * FINISHME: programs with shaders that have differing
924 * FINISHME: initializers. Linking with the first will
925 * FINISHME: modify the shader, and linking with the second
926 * FINISHME: will fail.
927 */
928 existing->constant_initializer =
929 var->constant_initializer->clone(ralloc_parent(existing),
930 NULL);
931 }
932 }
933
934 if (var->data.has_initializer) {
935 if (existing->data.has_initializer
936 && (var->constant_initializer == NULL
937 || existing->constant_initializer == NULL)) {
938 linker_error(prog,
939 "shared global variable `%s' has multiple "
940 "non-constant initializers.\n",
941 var->name);
942 return;
943 }
944
945 /* Some instance had an initializer, so keep track of that. In
946 * this location, all sorts of initializers (constant or
947 * otherwise) will propagate the existence to the variable
948 * stored in the symbol table.
949 */
950 existing->data.has_initializer = true;
951 }
952
953 if (existing->data.invariant != var->data.invariant) {
954 linker_error(prog, "declarations for %s `%s' have "
955 "mismatching invariant qualifiers\n",
956 mode_string(var), var->name);
957 return;
958 }
959 if (existing->data.centroid != var->data.centroid) {
960 linker_error(prog, "declarations for %s `%s' have "
961 "mismatching centroid qualifiers\n",
962 mode_string(var), var->name);
963 return;
964 }
965 if (existing->data.sample != var->data.sample) {
966 linker_error(prog, "declarations for %s `%s` have "
967 "mismatching sample qualifiers\n",
968 mode_string(var), var->name);
969 return;
970 }
971 } else
972 variables.add_variable(var);
973 }
974 }
975 }
976
977
978 /**
979 * Perform validation of uniforms used across multiple shader stages
980 */
981 void
982 cross_validate_uniforms(struct gl_shader_program *prog)
983 {
984 cross_validate_globals(prog, prog->_LinkedShaders,
985 MESA_SHADER_STAGES, true);
986 }
987
988 /**
989 * Accumulates the array of prog->UniformBlocks and checks that all
990 * definitons of blocks agree on their contents.
991 */
992 static bool
993 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
994 {
995 unsigned max_num_uniform_blocks = 0;
996 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
997 if (prog->_LinkedShaders[i])
998 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
999 }
1000
1001 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1002 struct gl_shader *sh = prog->_LinkedShaders[i];
1003
1004 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
1005 max_num_uniform_blocks);
1006 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1007 prog->UniformBlockStageIndex[i][j] = -1;
1008
1009 if (sh == NULL)
1010 continue;
1011
1012 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
1013 int index = link_cross_validate_uniform_block(prog,
1014 &prog->UniformBlocks,
1015 &prog->NumUniformBlocks,
1016 &sh->UniformBlocks[j]);
1017
1018 if (index == -1) {
1019 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1020 sh->UniformBlocks[j].Name);
1021 return false;
1022 }
1023
1024 prog->UniformBlockStageIndex[i][index] = j;
1025 }
1026 }
1027
1028 return true;
1029 }
1030
1031
1032 /**
1033 * Populates a shaders symbol table with all global declarations
1034 */
1035 static void
1036 populate_symbol_table(gl_shader *sh)
1037 {
1038 sh->symbols = new(sh) glsl_symbol_table;
1039
1040 foreach_in_list(ir_instruction, inst, sh->ir) {
1041 ir_variable *var;
1042 ir_function *func;
1043
1044 if ((func = inst->as_function()) != NULL) {
1045 sh->symbols->add_function(func);
1046 } else if ((var = inst->as_variable()) != NULL) {
1047 if (var->data.mode != ir_var_temporary)
1048 sh->symbols->add_variable(var);
1049 }
1050 }
1051 }
1052
1053
1054 /**
1055 * Remap variables referenced in an instruction tree
1056 *
1057 * This is used when instruction trees are cloned from one shader and placed in
1058 * another. These trees will contain references to \c ir_variable nodes that
1059 * do not exist in the target shader. This function finds these \c ir_variable
1060 * references and replaces the references with matching variables in the target
1061 * shader.
1062 *
1063 * If there is no matching variable in the target shader, a clone of the
1064 * \c ir_variable is made and added to the target shader. The new variable is
1065 * added to \b both the instruction stream and the symbol table.
1066 *
1067 * \param inst IR tree that is to be processed.
1068 * \param symbols Symbol table containing global scope symbols in the
1069 * linked shader.
1070 * \param instructions Instruction stream where new variable declarations
1071 * should be added.
1072 */
1073 void
1074 remap_variables(ir_instruction *inst, struct gl_shader *target,
1075 hash_table *temps)
1076 {
1077 class remap_visitor : public ir_hierarchical_visitor {
1078 public:
1079 remap_visitor(struct gl_shader *target,
1080 hash_table *temps)
1081 {
1082 this->target = target;
1083 this->symbols = target->symbols;
1084 this->instructions = target->ir;
1085 this->temps = temps;
1086 }
1087
1088 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1089 {
1090 if (ir->var->data.mode == ir_var_temporary) {
1091 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1092
1093 assert(var != NULL);
1094 ir->var = var;
1095 return visit_continue;
1096 }
1097
1098 ir_variable *const existing =
1099 this->symbols->get_variable(ir->var->name);
1100 if (existing != NULL)
1101 ir->var = existing;
1102 else {
1103 ir_variable *copy = ir->var->clone(this->target, NULL);
1104
1105 this->symbols->add_variable(copy);
1106 this->instructions->push_head(copy);
1107 ir->var = copy;
1108 }
1109
1110 return visit_continue;
1111 }
1112
1113 private:
1114 struct gl_shader *target;
1115 glsl_symbol_table *symbols;
1116 exec_list *instructions;
1117 hash_table *temps;
1118 };
1119
1120 remap_visitor v(target, temps);
1121
1122 inst->accept(&v);
1123 }
1124
1125
1126 /**
1127 * Move non-declarations from one instruction stream to another
1128 *
1129 * The intended usage pattern of this function is to pass the pointer to the
1130 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1131 * pointer) for \c last and \c false for \c make_copies on the first
1132 * call. Successive calls pass the return value of the previous call for
1133 * \c last and \c true for \c make_copies.
1134 *
1135 * \param instructions Source instruction stream
1136 * \param last Instruction after which new instructions should be
1137 * inserted in the target instruction stream
1138 * \param make_copies Flag selecting whether instructions in \c instructions
1139 * should be copied (via \c ir_instruction::clone) into the
1140 * target list or moved.
1141 *
1142 * \return
1143 * The new "last" instruction in the target instruction stream. This pointer
1144 * is suitable for use as the \c last parameter of a later call to this
1145 * function.
1146 */
1147 exec_node *
1148 move_non_declarations(exec_list *instructions, exec_node *last,
1149 bool make_copies, gl_shader *target)
1150 {
1151 hash_table *temps = NULL;
1152
1153 if (make_copies)
1154 temps = hash_table_ctor(0, hash_table_pointer_hash,
1155 hash_table_pointer_compare);
1156
1157 foreach_in_list_safe(ir_instruction, inst, instructions) {
1158 if (inst->as_function())
1159 continue;
1160
1161 ir_variable *var = inst->as_variable();
1162 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1163 continue;
1164
1165 assert(inst->as_assignment()
1166 || inst->as_call()
1167 || inst->as_if() /* for initializers with the ?: operator */
1168 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1169
1170 if (make_copies) {
1171 inst = inst->clone(target, NULL);
1172
1173 if (var != NULL)
1174 hash_table_insert(temps, inst, var);
1175 else
1176 remap_variables(inst, target, temps);
1177 } else {
1178 inst->remove();
1179 }
1180
1181 last->insert_after(inst);
1182 last = inst;
1183 }
1184
1185 if (make_copies)
1186 hash_table_dtor(temps);
1187
1188 return last;
1189 }
1190
1191 /**
1192 * Get the function signature for main from a shader
1193 */
1194 ir_function_signature *
1195 link_get_main_function_signature(gl_shader *sh)
1196 {
1197 ir_function *const f = sh->symbols->get_function("main");
1198 if (f != NULL) {
1199 exec_list void_parameters;
1200
1201 /* Look for the 'void main()' signature and ensure that it's defined.
1202 * This keeps the linker from accidentally pick a shader that just
1203 * contains a prototype for main.
1204 *
1205 * We don't have to check for multiple definitions of main (in multiple
1206 * shaders) because that would have already been caught above.
1207 */
1208 ir_function_signature *sig =
1209 f->matching_signature(NULL, &void_parameters, false);
1210 if ((sig != NULL) && sig->is_defined) {
1211 return sig;
1212 }
1213 }
1214
1215 return NULL;
1216 }
1217
1218
1219 /**
1220 * This class is only used in link_intrastage_shaders() below but declaring
1221 * it inside that function leads to compiler warnings with some versions of
1222 * gcc.
1223 */
1224 class array_sizing_visitor : public ir_hierarchical_visitor {
1225 public:
1226 array_sizing_visitor()
1227 : mem_ctx(ralloc_context(NULL)),
1228 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1229 hash_table_pointer_compare))
1230 {
1231 }
1232
1233 ~array_sizing_visitor()
1234 {
1235 hash_table_dtor(this->unnamed_interfaces);
1236 ralloc_free(this->mem_ctx);
1237 }
1238
1239 virtual ir_visitor_status visit(ir_variable *var)
1240 {
1241 fixup_type(&var->type, var->data.max_array_access);
1242 if (var->type->is_interface()) {
1243 if (interface_contains_unsized_arrays(var->type)) {
1244 const glsl_type *new_type =
1245 resize_interface_members(var->type,
1246 var->get_max_ifc_array_access());
1247 var->type = new_type;
1248 var->change_interface_type(new_type);
1249 }
1250 } else if (var->type->is_array() &&
1251 var->type->fields.array->is_interface()) {
1252 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1253 const glsl_type *new_type =
1254 resize_interface_members(var->type->fields.array,
1255 var->get_max_ifc_array_access());
1256 var->change_interface_type(new_type);
1257 var->type = update_interface_members_array(var->type, new_type);
1258 }
1259 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1260 /* Store a pointer to the variable in the unnamed_interfaces
1261 * hashtable.
1262 */
1263 ir_variable **interface_vars = (ir_variable **)
1264 hash_table_find(this->unnamed_interfaces, ifc_type);
1265 if (interface_vars == NULL) {
1266 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1267 ifc_type->length);
1268 hash_table_insert(this->unnamed_interfaces, interface_vars,
1269 ifc_type);
1270 }
1271 unsigned index = ifc_type->field_index(var->name);
1272 assert(index < ifc_type->length);
1273 assert(interface_vars[index] == NULL);
1274 interface_vars[index] = var;
1275 }
1276 return visit_continue;
1277 }
1278
1279 /**
1280 * For each unnamed interface block that was discovered while running the
1281 * visitor, adjust the interface type to reflect the newly assigned array
1282 * sizes, and fix up the ir_variable nodes to point to the new interface
1283 * type.
1284 */
1285 void fixup_unnamed_interface_types()
1286 {
1287 hash_table_call_foreach(this->unnamed_interfaces,
1288 fixup_unnamed_interface_type, NULL);
1289 }
1290
1291 private:
1292 /**
1293 * If the type pointed to by \c type represents an unsized array, replace
1294 * it with a sized array whose size is determined by max_array_access.
1295 */
1296 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1297 {
1298 if ((*type)->is_unsized_array()) {
1299 *type = glsl_type::get_array_instance((*type)->fields.array,
1300 max_array_access + 1);
1301 assert(*type != NULL);
1302 }
1303 }
1304
1305 static const glsl_type *
1306 update_interface_members_array(const glsl_type *type,
1307 const glsl_type *new_interface_type)
1308 {
1309 const glsl_type *element_type = type->fields.array;
1310 if (element_type->is_array()) {
1311 const glsl_type *new_array_type =
1312 update_interface_members_array(element_type, new_interface_type);
1313 return glsl_type::get_array_instance(new_array_type, type->length);
1314 } else {
1315 return glsl_type::get_array_instance(new_interface_type,
1316 type->length);
1317 }
1318 }
1319
1320 /**
1321 * Determine whether the given interface type contains unsized arrays (if
1322 * it doesn't, array_sizing_visitor doesn't need to process it).
1323 */
1324 static bool interface_contains_unsized_arrays(const glsl_type *type)
1325 {
1326 for (unsigned i = 0; i < type->length; i++) {
1327 const glsl_type *elem_type = type->fields.structure[i].type;
1328 if (elem_type->is_unsized_array())
1329 return true;
1330 }
1331 return false;
1332 }
1333
1334 /**
1335 * Create a new interface type based on the given type, with unsized arrays
1336 * replaced by sized arrays whose size is determined by
1337 * max_ifc_array_access.
1338 */
1339 static const glsl_type *
1340 resize_interface_members(const glsl_type *type,
1341 const unsigned *max_ifc_array_access)
1342 {
1343 unsigned num_fields = type->length;
1344 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1345 memcpy(fields, type->fields.structure,
1346 num_fields * sizeof(*fields));
1347 for (unsigned i = 0; i < num_fields; i++) {
1348 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1349 }
1350 glsl_interface_packing packing =
1351 (glsl_interface_packing) type->interface_packing;
1352 const glsl_type *new_ifc_type =
1353 glsl_type::get_interface_instance(fields, num_fields,
1354 packing, type->name);
1355 delete [] fields;
1356 return new_ifc_type;
1357 }
1358
1359 static void fixup_unnamed_interface_type(const void *key, void *data,
1360 void *)
1361 {
1362 const glsl_type *ifc_type = (const glsl_type *) key;
1363 ir_variable **interface_vars = (ir_variable **) data;
1364 unsigned num_fields = ifc_type->length;
1365 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1366 memcpy(fields, ifc_type->fields.structure,
1367 num_fields * sizeof(*fields));
1368 bool interface_type_changed = false;
1369 for (unsigned i = 0; i < num_fields; i++) {
1370 if (interface_vars[i] != NULL &&
1371 fields[i].type != interface_vars[i]->type) {
1372 fields[i].type = interface_vars[i]->type;
1373 interface_type_changed = true;
1374 }
1375 }
1376 if (!interface_type_changed) {
1377 delete [] fields;
1378 return;
1379 }
1380 glsl_interface_packing packing =
1381 (glsl_interface_packing) ifc_type->interface_packing;
1382 const glsl_type *new_ifc_type =
1383 glsl_type::get_interface_instance(fields, num_fields, packing,
1384 ifc_type->name);
1385 delete [] fields;
1386 for (unsigned i = 0; i < num_fields; i++) {
1387 if (interface_vars[i] != NULL)
1388 interface_vars[i]->change_interface_type(new_ifc_type);
1389 }
1390 }
1391
1392 /**
1393 * Memory context used to allocate the data in \c unnamed_interfaces.
1394 */
1395 void *mem_ctx;
1396
1397 /**
1398 * Hash table from const glsl_type * to an array of ir_variable *'s
1399 * pointing to the ir_variables constituting each unnamed interface block.
1400 */
1401 hash_table *unnamed_interfaces;
1402 };
1403
1404 /**
1405 * Performs the cross-validation of layout qualifiers specified in
1406 * redeclaration of gl_FragCoord for the attached fragment shaders,
1407 * and propagates them to the linked FS and linked shader program.
1408 */
1409 static void
1410 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1411 struct gl_shader *linked_shader,
1412 struct gl_shader **shader_list,
1413 unsigned num_shaders)
1414 {
1415 linked_shader->redeclares_gl_fragcoord = false;
1416 linked_shader->uses_gl_fragcoord = false;
1417 linked_shader->origin_upper_left = false;
1418 linked_shader->pixel_center_integer = false;
1419
1420 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1421 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1422 return;
1423
1424 for (unsigned i = 0; i < num_shaders; i++) {
1425 struct gl_shader *shader = shader_list[i];
1426 /* From the GLSL 1.50 spec, page 39:
1427 *
1428 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1429 * it must be redeclared in all the fragment shaders in that program
1430 * that have a static use gl_FragCoord."
1431 */
1432 if ((linked_shader->redeclares_gl_fragcoord
1433 && !shader->redeclares_gl_fragcoord
1434 && shader->uses_gl_fragcoord)
1435 || (shader->redeclares_gl_fragcoord
1436 && !linked_shader->redeclares_gl_fragcoord
1437 && linked_shader->uses_gl_fragcoord)) {
1438 linker_error(prog, "fragment shader defined with conflicting "
1439 "layout qualifiers for gl_FragCoord\n");
1440 }
1441
1442 /* From the GLSL 1.50 spec, page 39:
1443 *
1444 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1445 * single program must have the same set of qualifiers."
1446 */
1447 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1448 && (shader->origin_upper_left != linked_shader->origin_upper_left
1449 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1450 linker_error(prog, "fragment shader defined with conflicting "
1451 "layout qualifiers for gl_FragCoord\n");
1452 }
1453
1454 /* Update the linked shader state. Note that uses_gl_fragcoord should
1455 * accumulate the results. The other values should replace. If there
1456 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1457 * are already known to be the same.
1458 */
1459 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1460 linked_shader->redeclares_gl_fragcoord =
1461 shader->redeclares_gl_fragcoord;
1462 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1463 || shader->uses_gl_fragcoord;
1464 linked_shader->origin_upper_left = shader->origin_upper_left;
1465 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1466 }
1467
1468 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1469 }
1470 }
1471
1472 /**
1473 * Performs the cross-validation of geometry shader max_vertices and
1474 * primitive type layout qualifiers for the attached geometry shaders,
1475 * and propagates them to the linked GS and linked shader program.
1476 */
1477 static void
1478 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1479 struct gl_shader *linked_shader,
1480 struct gl_shader **shader_list,
1481 unsigned num_shaders)
1482 {
1483 linked_shader->Geom.VerticesOut = 0;
1484 linked_shader->Geom.Invocations = 0;
1485 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1486 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1487
1488 /* No in/out qualifiers defined for anything but GLSL 1.50+
1489 * geometry shaders so far.
1490 */
1491 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1492 return;
1493
1494 /* From the GLSL 1.50 spec, page 46:
1495 *
1496 * "All geometry shader output layout declarations in a program
1497 * must declare the same layout and same value for
1498 * max_vertices. There must be at least one geometry output
1499 * layout declaration somewhere in a program, but not all
1500 * geometry shaders (compilation units) are required to
1501 * declare it."
1502 */
1503
1504 for (unsigned i = 0; i < num_shaders; i++) {
1505 struct gl_shader *shader = shader_list[i];
1506
1507 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1508 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1509 linked_shader->Geom.InputType != shader->Geom.InputType) {
1510 linker_error(prog, "geometry shader defined with conflicting "
1511 "input types\n");
1512 return;
1513 }
1514 linked_shader->Geom.InputType = shader->Geom.InputType;
1515 }
1516
1517 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1518 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1519 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1520 linker_error(prog, "geometry shader defined with conflicting "
1521 "output types\n");
1522 return;
1523 }
1524 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1525 }
1526
1527 if (shader->Geom.VerticesOut != 0) {
1528 if (linked_shader->Geom.VerticesOut != 0 &&
1529 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1530 linker_error(prog, "geometry shader defined with conflicting "
1531 "output vertex count (%d and %d)\n",
1532 linked_shader->Geom.VerticesOut,
1533 shader->Geom.VerticesOut);
1534 return;
1535 }
1536 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1537 }
1538
1539 if (shader->Geom.Invocations != 0) {
1540 if (linked_shader->Geom.Invocations != 0 &&
1541 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1542 linker_error(prog, "geometry shader defined with conflicting "
1543 "invocation count (%d and %d)\n",
1544 linked_shader->Geom.Invocations,
1545 shader->Geom.Invocations);
1546 return;
1547 }
1548 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1549 }
1550 }
1551
1552 /* Just do the intrastage -> interstage propagation right now,
1553 * since we already know we're in the right type of shader program
1554 * for doing it.
1555 */
1556 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1557 linker_error(prog,
1558 "geometry shader didn't declare primitive input type\n");
1559 return;
1560 }
1561 prog->Geom.InputType = linked_shader->Geom.InputType;
1562
1563 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1564 linker_error(prog,
1565 "geometry shader didn't declare primitive output type\n");
1566 return;
1567 }
1568 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1569
1570 if (linked_shader->Geom.VerticesOut == 0) {
1571 linker_error(prog,
1572 "geometry shader didn't declare max_vertices\n");
1573 return;
1574 }
1575 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1576
1577 if (linked_shader->Geom.Invocations == 0)
1578 linked_shader->Geom.Invocations = 1;
1579
1580 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1581 }
1582
1583
1584 /**
1585 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1586 * qualifiers for the attached compute shaders, and propagate them to the
1587 * linked CS and linked shader program.
1588 */
1589 static void
1590 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1591 struct gl_shader *linked_shader,
1592 struct gl_shader **shader_list,
1593 unsigned num_shaders)
1594 {
1595 for (int i = 0; i < 3; i++)
1596 linked_shader->Comp.LocalSize[i] = 0;
1597
1598 /* This function is called for all shader stages, but it only has an effect
1599 * for compute shaders.
1600 */
1601 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1602 return;
1603
1604 /* From the ARB_compute_shader spec, in the section describing local size
1605 * declarations:
1606 *
1607 * If multiple compute shaders attached to a single program object
1608 * declare local work-group size, the declarations must be identical;
1609 * otherwise a link-time error results. Furthermore, if a program
1610 * object contains any compute shaders, at least one must contain an
1611 * input layout qualifier specifying the local work sizes of the
1612 * program, or a link-time error will occur.
1613 */
1614 for (unsigned sh = 0; sh < num_shaders; sh++) {
1615 struct gl_shader *shader = shader_list[sh];
1616
1617 if (shader->Comp.LocalSize[0] != 0) {
1618 if (linked_shader->Comp.LocalSize[0] != 0) {
1619 for (int i = 0; i < 3; i++) {
1620 if (linked_shader->Comp.LocalSize[i] !=
1621 shader->Comp.LocalSize[i]) {
1622 linker_error(prog, "compute shader defined with conflicting "
1623 "local sizes\n");
1624 return;
1625 }
1626 }
1627 }
1628 for (int i = 0; i < 3; i++)
1629 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1630 }
1631 }
1632
1633 /* Just do the intrastage -> interstage propagation right now,
1634 * since we already know we're in the right type of shader program
1635 * for doing it.
1636 */
1637 if (linked_shader->Comp.LocalSize[0] == 0) {
1638 linker_error(prog, "compute shader didn't declare local size\n");
1639 return;
1640 }
1641 for (int i = 0; i < 3; i++)
1642 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1643 }
1644
1645
1646 /**
1647 * Combine a group of shaders for a single stage to generate a linked shader
1648 *
1649 * \note
1650 * If this function is supplied a single shader, it is cloned, and the new
1651 * shader is returned.
1652 */
1653 static struct gl_shader *
1654 link_intrastage_shaders(void *mem_ctx,
1655 struct gl_context *ctx,
1656 struct gl_shader_program *prog,
1657 struct gl_shader **shader_list,
1658 unsigned num_shaders)
1659 {
1660 struct gl_uniform_block *uniform_blocks = NULL;
1661
1662 /* Check that global variables defined in multiple shaders are consistent.
1663 */
1664 cross_validate_globals(prog, shader_list, num_shaders, false);
1665 if (!prog->LinkStatus)
1666 return NULL;
1667
1668 /* Check that interface blocks defined in multiple shaders are consistent.
1669 */
1670 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1671 num_shaders);
1672 if (!prog->LinkStatus)
1673 return NULL;
1674
1675 /* Link up uniform blocks defined within this stage. */
1676 const unsigned num_uniform_blocks =
1677 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1678 &uniform_blocks);
1679 if (!prog->LinkStatus)
1680 return NULL;
1681
1682 /* Check that there is only a single definition of each function signature
1683 * across all shaders.
1684 */
1685 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1686 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1687 ir_function *const f = node->as_function();
1688
1689 if (f == NULL)
1690 continue;
1691
1692 for (unsigned j = i + 1; j < num_shaders; j++) {
1693 ir_function *const other =
1694 shader_list[j]->symbols->get_function(f->name);
1695
1696 /* If the other shader has no function (and therefore no function
1697 * signatures) with the same name, skip to the next shader.
1698 */
1699 if (other == NULL)
1700 continue;
1701
1702 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1703 if (!sig->is_defined || sig->is_builtin())
1704 continue;
1705
1706 ir_function_signature *other_sig =
1707 other->exact_matching_signature(NULL, &sig->parameters);
1708
1709 if ((other_sig != NULL) && other_sig->is_defined
1710 && !other_sig->is_builtin()) {
1711 linker_error(prog, "function `%s' is multiply defined\n",
1712 f->name);
1713 return NULL;
1714 }
1715 }
1716 }
1717 }
1718 }
1719
1720 /* Find the shader that defines main, and make a clone of it.
1721 *
1722 * Starting with the clone, search for undefined references. If one is
1723 * found, find the shader that defines it. Clone the reference and add
1724 * it to the shader. Repeat until there are no undefined references or
1725 * until a reference cannot be resolved.
1726 */
1727 gl_shader *main = NULL;
1728 for (unsigned i = 0; i < num_shaders; i++) {
1729 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1730 main = shader_list[i];
1731 break;
1732 }
1733 }
1734
1735 if (main == NULL) {
1736 linker_error(prog, "%s shader lacks `main'\n",
1737 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1738 return NULL;
1739 }
1740
1741 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1742 linked->ir = new(linked) exec_list;
1743 clone_ir_list(mem_ctx, linked->ir, main->ir);
1744
1745 linked->UniformBlocks = uniform_blocks;
1746 linked->NumUniformBlocks = num_uniform_blocks;
1747 ralloc_steal(linked, linked->UniformBlocks);
1748
1749 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1750 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1751 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1752
1753 populate_symbol_table(linked);
1754
1755 /* The pointer to the main function in the final linked shader (i.e., the
1756 * copy of the original shader that contained the main function).
1757 */
1758 ir_function_signature *const main_sig =
1759 link_get_main_function_signature(linked);
1760
1761 /* Move any instructions other than variable declarations or function
1762 * declarations into main.
1763 */
1764 exec_node *insertion_point =
1765 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1766 linked);
1767
1768 for (unsigned i = 0; i < num_shaders; i++) {
1769 if (shader_list[i] == main)
1770 continue;
1771
1772 insertion_point = move_non_declarations(shader_list[i]->ir,
1773 insertion_point, true, linked);
1774 }
1775
1776 /* Check if any shader needs built-in functions. */
1777 bool need_builtins = false;
1778 for (unsigned i = 0; i < num_shaders; i++) {
1779 if (shader_list[i]->uses_builtin_functions) {
1780 need_builtins = true;
1781 break;
1782 }
1783 }
1784
1785 bool ok;
1786 if (need_builtins) {
1787 /* Make a temporary array one larger than shader_list, which will hold
1788 * the built-in function shader as well.
1789 */
1790 gl_shader **linking_shaders = (gl_shader **)
1791 calloc(num_shaders + 1, sizeof(gl_shader *));
1792
1793 ok = linking_shaders != NULL;
1794
1795 if (ok) {
1796 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1797 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1798
1799 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1800
1801 free(linking_shaders);
1802 } else {
1803 _mesa_error_no_memory(__func__);
1804 }
1805 } else {
1806 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1807 }
1808
1809
1810 if (!ok) {
1811 ctx->Driver.DeleteShader(ctx, linked);
1812 return NULL;
1813 }
1814
1815 /* At this point linked should contain all of the linked IR, so
1816 * validate it to make sure nothing went wrong.
1817 */
1818 validate_ir_tree(linked->ir);
1819
1820 /* Set the size of geometry shader input arrays */
1821 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1822 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1823 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1824 foreach_in_list(ir_instruction, ir, linked->ir) {
1825 ir->accept(&input_resize_visitor);
1826 }
1827 }
1828
1829 if (ctx->Const.VertexID_is_zero_based)
1830 lower_vertex_id(linked);
1831
1832 /* Make a pass over all variable declarations to ensure that arrays with
1833 * unspecified sizes have a size specified. The size is inferred from the
1834 * max_array_access field.
1835 */
1836 array_sizing_visitor v;
1837 v.run(linked->ir);
1838 v.fixup_unnamed_interface_types();
1839
1840 return linked;
1841 }
1842
1843 /**
1844 * Update the sizes of linked shader uniform arrays to the maximum
1845 * array index used.
1846 *
1847 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1848 *
1849 * If one or more elements of an array are active,
1850 * GetActiveUniform will return the name of the array in name,
1851 * subject to the restrictions listed above. The type of the array
1852 * is returned in type. The size parameter contains the highest
1853 * array element index used, plus one. The compiler or linker
1854 * determines the highest index used. There will be only one
1855 * active uniform reported by the GL per uniform array.
1856
1857 */
1858 static void
1859 update_array_sizes(struct gl_shader_program *prog)
1860 {
1861 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1862 if (prog->_LinkedShaders[i] == NULL)
1863 continue;
1864
1865 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1866 ir_variable *const var = node->as_variable();
1867
1868 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1869 !var->type->is_array())
1870 continue;
1871
1872 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1873 * will not be eliminated. Since we always do std140, just
1874 * don't resize arrays in UBOs.
1875 *
1876 * Atomic counters are supposed to get deterministic
1877 * locations assigned based on the declaration ordering and
1878 * sizes, array compaction would mess that up.
1879 */
1880 if (var->is_in_buffer_block() || var->type->contains_atomic())
1881 continue;
1882
1883 unsigned int size = var->data.max_array_access;
1884 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1885 if (prog->_LinkedShaders[j] == NULL)
1886 continue;
1887
1888 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1889 ir_variable *other_var = node2->as_variable();
1890 if (!other_var)
1891 continue;
1892
1893 if (strcmp(var->name, other_var->name) == 0 &&
1894 other_var->data.max_array_access > size) {
1895 size = other_var->data.max_array_access;
1896 }
1897 }
1898 }
1899
1900 if (size + 1 != var->type->length) {
1901 /* If this is a built-in uniform (i.e., it's backed by some
1902 * fixed-function state), adjust the number of state slots to
1903 * match the new array size. The number of slots per array entry
1904 * is not known. It seems safe to assume that the total number of
1905 * slots is an integer multiple of the number of array elements.
1906 * Determine the number of slots per array element by dividing by
1907 * the old (total) size.
1908 */
1909 const unsigned num_slots = var->get_num_state_slots();
1910 if (num_slots > 0) {
1911 var->set_num_state_slots((size + 1)
1912 * (num_slots / var->type->length));
1913 }
1914
1915 var->type = glsl_type::get_array_instance(var->type->fields.array,
1916 size + 1);
1917 /* FINISHME: We should update the types of array
1918 * dereferences of this variable now.
1919 */
1920 }
1921 }
1922 }
1923 }
1924
1925 /**
1926 * Find a contiguous set of available bits in a bitmask.
1927 *
1928 * \param used_mask Bits representing used (1) and unused (0) locations
1929 * \param needed_count Number of contiguous bits needed.
1930 *
1931 * \return
1932 * Base location of the available bits on success or -1 on failure.
1933 */
1934 int
1935 find_available_slots(unsigned used_mask, unsigned needed_count)
1936 {
1937 unsigned needed_mask = (1 << needed_count) - 1;
1938 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1939
1940 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1941 * cannot optimize possibly infinite loops" for the loop below.
1942 */
1943 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1944 return -1;
1945
1946 for (int i = 0; i <= max_bit_to_test; i++) {
1947 if ((needed_mask & ~used_mask) == needed_mask)
1948 return i;
1949
1950 needed_mask <<= 1;
1951 }
1952
1953 return -1;
1954 }
1955
1956
1957 /**
1958 * Assign locations for either VS inputs or FS outputs
1959 *
1960 * \param prog Shader program whose variables need locations assigned
1961 * \param target_index Selector for the program target to receive location
1962 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1963 * \c MESA_SHADER_FRAGMENT.
1964 * \param max_index Maximum number of generic locations. This corresponds
1965 * to either the maximum number of draw buffers or the
1966 * maximum number of generic attributes.
1967 *
1968 * \return
1969 * If locations are successfully assigned, true is returned. Otherwise an
1970 * error is emitted to the shader link log and false is returned.
1971 */
1972 bool
1973 assign_attribute_or_color_locations(gl_shader_program *prog,
1974 unsigned target_index,
1975 unsigned max_index)
1976 {
1977 /* Mark invalid locations as being used.
1978 */
1979 unsigned used_locations = (max_index >= 32)
1980 ? ~0 : ~((1 << max_index) - 1);
1981
1982 assert((target_index == MESA_SHADER_VERTEX)
1983 || (target_index == MESA_SHADER_FRAGMENT));
1984
1985 gl_shader *const sh = prog->_LinkedShaders[target_index];
1986 if (sh == NULL)
1987 return true;
1988
1989 /* Operate in a total of four passes.
1990 *
1991 * 1. Invalidate the location assignments for all vertex shader inputs.
1992 *
1993 * 2. Assign locations for inputs that have user-defined (via
1994 * glBindVertexAttribLocation) locations and outputs that have
1995 * user-defined locations (via glBindFragDataLocation).
1996 *
1997 * 3. Sort the attributes without assigned locations by number of slots
1998 * required in decreasing order. Fragmentation caused by attribute
1999 * locations assigned by the application may prevent large attributes
2000 * from having enough contiguous space.
2001 *
2002 * 4. Assign locations to any inputs without assigned locations.
2003 */
2004
2005 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2006 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2007
2008 const enum ir_variable_mode direction =
2009 (target_index == MESA_SHADER_VERTEX)
2010 ? ir_var_shader_in : ir_var_shader_out;
2011
2012
2013 /* Temporary storage for the set of attributes that need locations assigned.
2014 */
2015 struct temp_attr {
2016 unsigned slots;
2017 ir_variable *var;
2018
2019 /* Used below in the call to qsort. */
2020 static int compare(const void *a, const void *b)
2021 {
2022 const temp_attr *const l = (const temp_attr *) a;
2023 const temp_attr *const r = (const temp_attr *) b;
2024
2025 /* Reversed because we want a descending order sort below. */
2026 return r->slots - l->slots;
2027 }
2028 } to_assign[16];
2029
2030 unsigned num_attr = 0;
2031 unsigned total_attribs_size = 0;
2032
2033 foreach_in_list(ir_instruction, node, sh->ir) {
2034 ir_variable *const var = node->as_variable();
2035
2036 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2037 continue;
2038
2039 if (var->data.explicit_location) {
2040 if ((var->data.location >= (int)(max_index + generic_base))
2041 || (var->data.location < 0)) {
2042 linker_error(prog,
2043 "invalid explicit location %d specified for `%s'\n",
2044 (var->data.location < 0)
2045 ? var->data.location
2046 : var->data.location - generic_base,
2047 var->name);
2048 return false;
2049 }
2050 } else if (target_index == MESA_SHADER_VERTEX) {
2051 unsigned binding;
2052
2053 if (prog->AttributeBindings->get(binding, var->name)) {
2054 assert(binding >= VERT_ATTRIB_GENERIC0);
2055 var->data.location = binding;
2056 var->data.is_unmatched_generic_inout = 0;
2057 }
2058 } else if (target_index == MESA_SHADER_FRAGMENT) {
2059 unsigned binding;
2060 unsigned index;
2061
2062 if (prog->FragDataBindings->get(binding, var->name)) {
2063 assert(binding >= FRAG_RESULT_DATA0);
2064 var->data.location = binding;
2065 var->data.is_unmatched_generic_inout = 0;
2066
2067 if (prog->FragDataIndexBindings->get(index, var->name)) {
2068 var->data.index = index;
2069 }
2070 }
2071 }
2072
2073 const unsigned slots = var->type->count_attribute_slots();
2074
2075 /* From GL4.5 core spec, section 11.1.1 (Vertex Attributes):
2076 *
2077 * "A program with more than the value of MAX_VERTEX_ATTRIBS active
2078 * attribute variables may fail to link, unless device-dependent
2079 * optimizations are able to make the program fit within available
2080 * hardware resources. For the purposes of this test, attribute variables
2081 * of the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3,
2082 * and dmat4 may count as consuming twice as many attributes as equivalent
2083 * single-precision types. While these types use the same number of
2084 * generic attributes as their single-precision equivalents,
2085 * implementations are permitted to consume two single-precision vectors
2086 * of internal storage for each three- or four-component double-precision
2087 * vector."
2088 * Until someone has a good reason in Mesa, enforce that now.
2089 */
2090 if (target_index == MESA_SHADER_VERTEX) {
2091 total_attribs_size += slots;
2092 if (var->type->without_array() == glsl_type::dvec3_type ||
2093 var->type->without_array() == glsl_type::dvec4_type ||
2094 var->type->without_array() == glsl_type::dmat2x3_type ||
2095 var->type->without_array() == glsl_type::dmat2x4_type ||
2096 var->type->without_array() == glsl_type::dmat3_type ||
2097 var->type->without_array() == glsl_type::dmat3x4_type ||
2098 var->type->without_array() == glsl_type::dmat4x3_type ||
2099 var->type->without_array() == glsl_type::dmat4_type)
2100 total_attribs_size += slots;
2101 }
2102
2103 /* If the variable is not a built-in and has a location statically
2104 * assigned in the shader (presumably via a layout qualifier), make sure
2105 * that it doesn't collide with other assigned locations. Otherwise,
2106 * add it to the list of variables that need linker-assigned locations.
2107 */
2108 if (var->data.location != -1) {
2109 if (var->data.location >= generic_base && var->data.index < 1) {
2110 /* From page 61 of the OpenGL 4.0 spec:
2111 *
2112 * "LinkProgram will fail if the attribute bindings assigned
2113 * by BindAttribLocation do not leave not enough space to
2114 * assign a location for an active matrix attribute or an
2115 * active attribute array, both of which require multiple
2116 * contiguous generic attributes."
2117 *
2118 * I think above text prohibits the aliasing of explicit and
2119 * automatic assignments. But, aliasing is allowed in manual
2120 * assignments of attribute locations. See below comments for
2121 * the details.
2122 *
2123 * From OpenGL 4.0 spec, page 61:
2124 *
2125 * "It is possible for an application to bind more than one
2126 * attribute name to the same location. This is referred to as
2127 * aliasing. This will only work if only one of the aliased
2128 * attributes is active in the executable program, or if no
2129 * path through the shader consumes more than one attribute of
2130 * a set of attributes aliased to the same location. A link
2131 * error can occur if the linker determines that every path
2132 * through the shader consumes multiple aliased attributes,
2133 * but implementations are not required to generate an error
2134 * in this case."
2135 *
2136 * From GLSL 4.30 spec, page 54:
2137 *
2138 * "A program will fail to link if any two non-vertex shader
2139 * input variables are assigned to the same location. For
2140 * vertex shaders, multiple input variables may be assigned
2141 * to the same location using either layout qualifiers or via
2142 * the OpenGL API. However, such aliasing is intended only to
2143 * support vertex shaders where each execution path accesses
2144 * at most one input per each location. Implementations are
2145 * permitted, but not required, to generate link-time errors
2146 * if they detect that every path through the vertex shader
2147 * executable accesses multiple inputs assigned to any single
2148 * location. For all shader types, a program will fail to link
2149 * if explicit location assignments leave the linker unable
2150 * to find space for other variables without explicit
2151 * assignments."
2152 *
2153 * From OpenGL ES 3.0 spec, page 56:
2154 *
2155 * "Binding more than one attribute name to the same location
2156 * is referred to as aliasing, and is not permitted in OpenGL
2157 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2158 * fail when this condition exists. However, aliasing is
2159 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2160 * This will only work if only one of the aliased attributes
2161 * is active in the executable program, or if no path through
2162 * the shader consumes more than one attribute of a set of
2163 * attributes aliased to the same location. A link error can
2164 * occur if the linker determines that every path through the
2165 * shader consumes multiple aliased attributes, but implemen-
2166 * tations are not required to generate an error in this case."
2167 *
2168 * After looking at above references from OpenGL, OpenGL ES and
2169 * GLSL specifications, we allow aliasing of vertex input variables
2170 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2171 *
2172 * NOTE: This is not required by the spec but its worth mentioning
2173 * here that we're not doing anything to make sure that no path
2174 * through the vertex shader executable accesses multiple inputs
2175 * assigned to any single location.
2176 */
2177
2178 /* Mask representing the contiguous slots that will be used by
2179 * this attribute.
2180 */
2181 const unsigned attr = var->data.location - generic_base;
2182 const unsigned use_mask = (1 << slots) - 1;
2183 const char *const string = (target_index == MESA_SHADER_VERTEX)
2184 ? "vertex shader input" : "fragment shader output";
2185
2186 /* Generate a link error if the requested locations for this
2187 * attribute exceed the maximum allowed attribute location.
2188 */
2189 if (attr + slots > max_index) {
2190 linker_error(prog,
2191 "insufficient contiguous locations "
2192 "available for %s `%s' %d %d %d\n", string,
2193 var->name, used_locations, use_mask, attr);
2194 return false;
2195 }
2196
2197 /* Generate a link error if the set of bits requested for this
2198 * attribute overlaps any previously allocated bits.
2199 */
2200 if ((~(use_mask << attr) & used_locations) != used_locations) {
2201 if (target_index == MESA_SHADER_FRAGMENT ||
2202 (prog->IsES && prog->Version >= 300)) {
2203 linker_error(prog,
2204 "overlapping location is assigned "
2205 "to %s `%s' %d %d %d\n", string,
2206 var->name, used_locations, use_mask, attr);
2207 return false;
2208 } else {
2209 linker_warning(prog,
2210 "overlapping location is assigned "
2211 "to %s `%s' %d %d %d\n", string,
2212 var->name, used_locations, use_mask, attr);
2213 }
2214 }
2215
2216 used_locations |= (use_mask << attr);
2217 }
2218
2219 continue;
2220 }
2221
2222 to_assign[num_attr].slots = slots;
2223 to_assign[num_attr].var = var;
2224 num_attr++;
2225 }
2226
2227 if (target_index == MESA_SHADER_VERTEX) {
2228 if (total_attribs_size > max_index) {
2229 linker_error(prog,
2230 "attempt to use %d vertex attribute slots only %d available ",
2231 total_attribs_size, max_index);
2232 return false;
2233 }
2234 }
2235
2236 /* If all of the attributes were assigned locations by the application (or
2237 * are built-in attributes with fixed locations), return early. This should
2238 * be the common case.
2239 */
2240 if (num_attr == 0)
2241 return true;
2242
2243 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2244
2245 if (target_index == MESA_SHADER_VERTEX) {
2246 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2247 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2248 * reserved to prevent it from being automatically allocated below.
2249 */
2250 find_deref_visitor find("gl_Vertex");
2251 find.run(sh->ir);
2252 if (find.variable_found())
2253 used_locations |= (1 << 0);
2254 }
2255
2256 for (unsigned i = 0; i < num_attr; i++) {
2257 /* Mask representing the contiguous slots that will be used by this
2258 * attribute.
2259 */
2260 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2261
2262 int location = find_available_slots(used_locations, to_assign[i].slots);
2263
2264 if (location < 0) {
2265 const char *const string = (target_index == MESA_SHADER_VERTEX)
2266 ? "vertex shader input" : "fragment shader output";
2267
2268 linker_error(prog,
2269 "insufficient contiguous locations "
2270 "available for %s `%s'\n",
2271 string, to_assign[i].var->name);
2272 return false;
2273 }
2274
2275 to_assign[i].var->data.location = generic_base + location;
2276 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2277 used_locations |= (use_mask << location);
2278 }
2279
2280 return true;
2281 }
2282
2283
2284 /**
2285 * Demote shader inputs and outputs that are not used in other stages
2286 */
2287 void
2288 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2289 {
2290 foreach_in_list(ir_instruction, node, sh->ir) {
2291 ir_variable *const var = node->as_variable();
2292
2293 if ((var == NULL) || (var->data.mode != int(mode)))
2294 continue;
2295
2296 /* A shader 'in' or 'out' variable is only really an input or output if
2297 * its value is used by other shader stages. This will cause the variable
2298 * to have a location assigned.
2299 */
2300 if (var->data.is_unmatched_generic_inout) {
2301 assert(var->data.mode != ir_var_temporary);
2302 var->data.mode = ir_var_auto;
2303 }
2304 }
2305 }
2306
2307
2308 /**
2309 * Store the gl_FragDepth layout in the gl_shader_program struct.
2310 */
2311 static void
2312 store_fragdepth_layout(struct gl_shader_program *prog)
2313 {
2314 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2315 return;
2316 }
2317
2318 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2319
2320 /* We don't look up the gl_FragDepth symbol directly because if
2321 * gl_FragDepth is not used in the shader, it's removed from the IR.
2322 * However, the symbol won't be removed from the symbol table.
2323 *
2324 * We're only interested in the cases where the variable is NOT removed
2325 * from the IR.
2326 */
2327 foreach_in_list(ir_instruction, node, ir) {
2328 ir_variable *const var = node->as_variable();
2329
2330 if (var == NULL || var->data.mode != ir_var_shader_out) {
2331 continue;
2332 }
2333
2334 if (strcmp(var->name, "gl_FragDepth") == 0) {
2335 switch (var->data.depth_layout) {
2336 case ir_depth_layout_none:
2337 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2338 return;
2339 case ir_depth_layout_any:
2340 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2341 return;
2342 case ir_depth_layout_greater:
2343 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2344 return;
2345 case ir_depth_layout_less:
2346 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2347 return;
2348 case ir_depth_layout_unchanged:
2349 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2350 return;
2351 default:
2352 assert(0);
2353 return;
2354 }
2355 }
2356 }
2357 }
2358
2359 /**
2360 * Validate the resources used by a program versus the implementation limits
2361 */
2362 static void
2363 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2364 {
2365 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2366 struct gl_shader *sh = prog->_LinkedShaders[i];
2367
2368 if (sh == NULL)
2369 continue;
2370
2371 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2372 linker_error(prog, "Too many %s shader texture samplers\n",
2373 _mesa_shader_stage_to_string(i));
2374 }
2375
2376 if (sh->num_uniform_components >
2377 ctx->Const.Program[i].MaxUniformComponents) {
2378 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2379 linker_warning(prog, "Too many %s shader default uniform block "
2380 "components, but the driver will try to optimize "
2381 "them out; this is non-portable out-of-spec "
2382 "behavior\n",
2383 _mesa_shader_stage_to_string(i));
2384 } else {
2385 linker_error(prog, "Too many %s shader default uniform block "
2386 "components\n",
2387 _mesa_shader_stage_to_string(i));
2388 }
2389 }
2390
2391 if (sh->num_combined_uniform_components >
2392 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2393 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2394 linker_warning(prog, "Too many %s shader uniform components, "
2395 "but the driver will try to optimize them out; "
2396 "this is non-portable out-of-spec behavior\n",
2397 _mesa_shader_stage_to_string(i));
2398 } else {
2399 linker_error(prog, "Too many %s shader uniform components\n",
2400 _mesa_shader_stage_to_string(i));
2401 }
2402 }
2403 }
2404
2405 unsigned blocks[MESA_SHADER_STAGES] = {0};
2406 unsigned total_uniform_blocks = 0;
2407
2408 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2409 if (prog->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2410 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2411 prog->UniformBlocks[i].Name,
2412 prog->UniformBlocks[i].UniformBufferSize,
2413 ctx->Const.MaxUniformBlockSize);
2414 }
2415
2416 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2417 if (prog->UniformBlockStageIndex[j][i] != -1) {
2418 blocks[j]++;
2419 total_uniform_blocks++;
2420 }
2421 }
2422
2423 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2424 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2425 prog->NumUniformBlocks,
2426 ctx->Const.MaxCombinedUniformBlocks);
2427 } else {
2428 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2429 const unsigned max_uniform_blocks =
2430 ctx->Const.Program[i].MaxUniformBlocks;
2431 if (blocks[i] > max_uniform_blocks) {
2432 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2433 _mesa_shader_stage_to_string(i),
2434 blocks[i],
2435 max_uniform_blocks);
2436 break;
2437 }
2438 }
2439 }
2440 }
2441 }
2442
2443 /**
2444 * Validate shader image resources.
2445 */
2446 static void
2447 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2448 {
2449 unsigned total_image_units = 0;
2450 unsigned fragment_outputs = 0;
2451
2452 if (!ctx->Extensions.ARB_shader_image_load_store)
2453 return;
2454
2455 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2456 struct gl_shader *sh = prog->_LinkedShaders[i];
2457
2458 if (sh) {
2459 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2460 linker_error(prog, "Too many %s shader image uniforms\n",
2461 _mesa_shader_stage_to_string(i));
2462
2463 total_image_units += sh->NumImages;
2464
2465 if (i == MESA_SHADER_FRAGMENT) {
2466 foreach_in_list(ir_instruction, node, sh->ir) {
2467 ir_variable *var = node->as_variable();
2468 if (var && var->data.mode == ir_var_shader_out)
2469 fragment_outputs += var->type->count_attribute_slots();
2470 }
2471 }
2472 }
2473 }
2474
2475 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2476 linker_error(prog, "Too many combined image uniforms\n");
2477
2478 if (total_image_units + fragment_outputs >
2479 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2480 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2481 }
2482
2483
2484 /**
2485 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2486 * for a variable, checks for overlaps between other uniforms using explicit
2487 * locations.
2488 */
2489 static bool
2490 reserve_explicit_locations(struct gl_shader_program *prog,
2491 string_to_uint_map *map, ir_variable *var)
2492 {
2493 unsigned slots = var->type->uniform_locations();
2494 unsigned max_loc = var->data.location + slots - 1;
2495
2496 /* Resize remap table if locations do not fit in the current one. */
2497 if (max_loc + 1 > prog->NumUniformRemapTable) {
2498 prog->UniformRemapTable =
2499 reralloc(prog, prog->UniformRemapTable,
2500 gl_uniform_storage *,
2501 max_loc + 1);
2502
2503 if (!prog->UniformRemapTable) {
2504 linker_error(prog, "Out of memory during linking.\n");
2505 return false;
2506 }
2507
2508 /* Initialize allocated space. */
2509 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2510 prog->UniformRemapTable[i] = NULL;
2511
2512 prog->NumUniformRemapTable = max_loc + 1;
2513 }
2514
2515 for (unsigned i = 0; i < slots; i++) {
2516 unsigned loc = var->data.location + i;
2517
2518 /* Check if location is already used. */
2519 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2520
2521 /* Possibly same uniform from a different stage, this is ok. */
2522 unsigned hash_loc;
2523 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2524 continue;
2525
2526 /* ARB_explicit_uniform_location specification states:
2527 *
2528 * "No two default-block uniform variables in the program can have
2529 * the same location, even if they are unused, otherwise a compiler
2530 * or linker error will be generated."
2531 */
2532 linker_error(prog,
2533 "location qualifier for uniform %s overlaps "
2534 "previously used location\n",
2535 var->name);
2536 return false;
2537 }
2538
2539 /* Initialize location as inactive before optimization
2540 * rounds and location assignment.
2541 */
2542 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2543 }
2544
2545 /* Note, base location used for arrays. */
2546 map->put(var->data.location, var->name);
2547
2548 return true;
2549 }
2550
2551 /**
2552 * Check and reserve all explicit uniform locations, called before
2553 * any optimizations happen to handle also inactive uniforms and
2554 * inactive array elements that may get trimmed away.
2555 */
2556 static void
2557 check_explicit_uniform_locations(struct gl_context *ctx,
2558 struct gl_shader_program *prog)
2559 {
2560 if (!ctx->Extensions.ARB_explicit_uniform_location)
2561 return;
2562
2563 /* This map is used to detect if overlapping explicit locations
2564 * occur with the same uniform (from different stage) or a different one.
2565 */
2566 string_to_uint_map *uniform_map = new string_to_uint_map;
2567
2568 if (!uniform_map) {
2569 linker_error(prog, "Out of memory during linking.\n");
2570 return;
2571 }
2572
2573 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2574 struct gl_shader *sh = prog->_LinkedShaders[i];
2575
2576 if (!sh)
2577 continue;
2578
2579 foreach_in_list(ir_instruction, node, sh->ir) {
2580 ir_variable *var = node->as_variable();
2581 if (var && (var->data.mode == ir_var_uniform || var->data.mode == ir_var_shader_storage) &&
2582 var->data.explicit_location) {
2583 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2584 delete uniform_map;
2585 return;
2586 }
2587 }
2588 }
2589 }
2590
2591 delete uniform_map;
2592 }
2593
2594 static bool
2595 add_program_resource(struct gl_shader_program *prog, GLenum type,
2596 const void *data, uint8_t stages)
2597 {
2598 assert(data);
2599
2600 /* If resource already exists, do not add it again. */
2601 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
2602 if (prog->ProgramResourceList[i].Data == data)
2603 return true;
2604
2605 prog->ProgramResourceList =
2606 reralloc(prog,
2607 prog->ProgramResourceList,
2608 gl_program_resource,
2609 prog->NumProgramResourceList + 1);
2610
2611 if (!prog->ProgramResourceList) {
2612 linker_error(prog, "Out of memory during linking.\n");
2613 return false;
2614 }
2615
2616 struct gl_program_resource *res =
2617 &prog->ProgramResourceList[prog->NumProgramResourceList];
2618
2619 res->Type = type;
2620 res->Data = data;
2621 res->StageReferences = stages;
2622
2623 prog->NumProgramResourceList++;
2624
2625 return true;
2626 }
2627
2628 /**
2629 * Function builds a stage reference bitmask from variable name.
2630 */
2631 static uint8_t
2632 build_stageref(struct gl_shader_program *shProg, const char *name)
2633 {
2634 uint8_t stages = 0;
2635
2636 /* Note, that we assume MAX 8 stages, if there will be more stages, type
2637 * used for reference mask in gl_program_resource will need to be changed.
2638 */
2639 assert(MESA_SHADER_STAGES < 8);
2640
2641 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2642 struct gl_shader *sh = shProg->_LinkedShaders[i];
2643 if (!sh)
2644 continue;
2645
2646 /* Shader symbol table may contain variables that have
2647 * been optimized away. Search IR for the variable instead.
2648 */
2649 foreach_in_list(ir_instruction, node, sh->ir) {
2650 ir_variable *var = node->as_variable();
2651 if (var && strcmp(var->name, name) == 0) {
2652 stages |= (1 << i);
2653 break;
2654 }
2655 }
2656 }
2657 return stages;
2658 }
2659
2660 static bool
2661 add_interface_variables(struct gl_shader_program *shProg,
2662 struct gl_shader *sh, GLenum programInterface)
2663 {
2664 foreach_in_list(ir_instruction, node, sh->ir) {
2665 ir_variable *var = node->as_variable();
2666 uint8_t mask = 0;
2667
2668 if (!var)
2669 continue;
2670
2671 switch (var->data.mode) {
2672 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
2673 * "For GetActiveAttrib, all active vertex shader input variables
2674 * are enumerated, including the special built-in inputs gl_VertexID
2675 * and gl_InstanceID."
2676 */
2677 case ir_var_system_value:
2678 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
2679 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
2680 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
2681 continue;
2682 /* Mark special built-in inputs referenced by the vertex stage so
2683 * that they are considered active by the shader queries.
2684 */
2685 mask = (1 << (MESA_SHADER_VERTEX));
2686 /* FALLTHROUGH */
2687 case ir_var_shader_in:
2688 if (programInterface != GL_PROGRAM_INPUT)
2689 continue;
2690 break;
2691 case ir_var_shader_out:
2692 if (programInterface != GL_PROGRAM_OUTPUT)
2693 continue;
2694 break;
2695 default:
2696 continue;
2697 };
2698
2699 if (!add_program_resource(shProg, programInterface, var,
2700 build_stageref(shProg, var->name) | mask))
2701 return false;
2702 }
2703 return true;
2704 }
2705
2706 /**
2707 * Builds up a list of program resources that point to existing
2708 * resource data.
2709 */
2710 void
2711 build_program_resource_list(struct gl_context *ctx,
2712 struct gl_shader_program *shProg)
2713 {
2714 /* Rebuild resource list. */
2715 if (shProg->ProgramResourceList) {
2716 ralloc_free(shProg->ProgramResourceList);
2717 shProg->ProgramResourceList = NULL;
2718 shProg->NumProgramResourceList = 0;
2719 }
2720
2721 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
2722
2723 /* Determine first input and final output stage. These are used to
2724 * detect which variables should be enumerated in the resource list
2725 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
2726 */
2727 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2728 if (!shProg->_LinkedShaders[i])
2729 continue;
2730 if (input_stage == MESA_SHADER_STAGES)
2731 input_stage = i;
2732 output_stage = i;
2733 }
2734
2735 /* Empty shader, no resources. */
2736 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
2737 return;
2738
2739 /* Add inputs and outputs to the resource list. */
2740 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage],
2741 GL_PROGRAM_INPUT))
2742 return;
2743
2744 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage],
2745 GL_PROGRAM_OUTPUT))
2746 return;
2747
2748 /* Add transform feedback varyings. */
2749 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
2750 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
2751 uint8_t stageref =
2752 build_stageref(shProg,
2753 shProg->LinkedTransformFeedback.Varyings[i].Name);
2754 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
2755 &shProg->LinkedTransformFeedback.Varyings[i],
2756 stageref))
2757 return;
2758 }
2759 }
2760
2761 /* Add uniforms from uniform storage. */
2762 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
2763 /* Do not add uniforms internally used by Mesa. */
2764 if (shProg->UniformStorage[i].hidden)
2765 continue;
2766
2767 uint8_t stageref =
2768 build_stageref(shProg, shProg->UniformStorage[i].name);
2769
2770 /* Add stagereferences for uniforms in a uniform block. */
2771 int block_index = shProg->UniformStorage[i].block_index;
2772 if (block_index != -1) {
2773 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2774 if (shProg->UniformBlockStageIndex[j][block_index] != -1)
2775 stageref |= (1 << j);
2776 }
2777 }
2778
2779 if (!add_program_resource(shProg, GL_UNIFORM,
2780 &shProg->UniformStorage[i], stageref))
2781 return;
2782 }
2783
2784 /* Add program uniform blocks. */
2785 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
2786 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
2787 &shProg->UniformBlocks[i], 0))
2788 return;
2789 }
2790
2791 /* Add atomic counter buffers. */
2792 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
2793 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
2794 &shProg->AtomicBuffers[i], 0))
2795 return;
2796 }
2797
2798 /* TODO - following extensions will require more resource types:
2799 *
2800 * GL_ARB_shader_storage_buffer_object
2801 * GL_ARB_shader_subroutine
2802 */
2803 }
2804
2805 /**
2806 * This check is done to make sure we allow only constant expression
2807 * indexing and "constant-index-expression" (indexing with an expression
2808 * that includes loop induction variable).
2809 */
2810 static bool
2811 validate_sampler_array_indexing(struct gl_context *ctx,
2812 struct gl_shader_program *prog)
2813 {
2814 dynamic_sampler_array_indexing_visitor v;
2815 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2816 if (prog->_LinkedShaders[i] == NULL)
2817 continue;
2818
2819 bool no_dynamic_indexing =
2820 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
2821
2822 /* Search for array derefs in shader. */
2823 v.run(prog->_LinkedShaders[i]->ir);
2824 if (v.uses_dynamic_sampler_array_indexing()) {
2825 const char *msg = "sampler arrays indexed with non-constant "
2826 "expressions is forbidden in GLSL %s %u";
2827 /* Backend has indicated that it has no dynamic indexing support. */
2828 if (no_dynamic_indexing) {
2829 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
2830 return false;
2831 } else {
2832 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
2833 }
2834 }
2835 }
2836 return true;
2837 }
2838
2839
2840 void
2841 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2842 {
2843 tfeedback_decl *tfeedback_decls = NULL;
2844 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2845
2846 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2847
2848 prog->LinkStatus = true; /* All error paths will set this to false */
2849 prog->Validated = false;
2850 prog->_Used = false;
2851
2852 prog->ARB_fragment_coord_conventions_enable = false;
2853
2854 /* Separate the shaders into groups based on their type.
2855 */
2856 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2857 unsigned num_shaders[MESA_SHADER_STAGES];
2858
2859 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2860 shader_list[i] = (struct gl_shader **)
2861 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2862 num_shaders[i] = 0;
2863 }
2864
2865 unsigned min_version = UINT_MAX;
2866 unsigned max_version = 0;
2867 const bool is_es_prog =
2868 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2869 for (unsigned i = 0; i < prog->NumShaders; i++) {
2870 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2871 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2872
2873 if (prog->Shaders[i]->IsES != is_es_prog) {
2874 linker_error(prog, "all shaders must use same shading "
2875 "language version\n");
2876 goto done;
2877 }
2878
2879 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
2880 prog->ARB_fragment_coord_conventions_enable = true;
2881 }
2882
2883 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2884 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2885 num_shaders[shader_type]++;
2886 }
2887
2888 /* In desktop GLSL, different shader versions may be linked together. In
2889 * GLSL ES, all shader versions must be the same.
2890 */
2891 if (is_es_prog && min_version != max_version) {
2892 linker_error(prog, "all shaders must use same shading "
2893 "language version\n");
2894 goto done;
2895 }
2896
2897 prog->Version = max_version;
2898 prog->IsES = is_es_prog;
2899
2900 /* Geometry shaders have to be linked with vertex shaders.
2901 */
2902 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2903 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2904 !prog->SeparateShader) {
2905 linker_error(prog, "Geometry shader must be linked with "
2906 "vertex shader\n");
2907 goto done;
2908 }
2909
2910 /* Compute shaders have additional restrictions. */
2911 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2912 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2913 linker_error(prog, "Compute shaders may not be linked with any other "
2914 "type of shader\n");
2915 }
2916
2917 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2918 if (prog->_LinkedShaders[i] != NULL)
2919 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2920
2921 prog->_LinkedShaders[i] = NULL;
2922 }
2923
2924 /* Link all shaders for a particular stage and validate the result.
2925 */
2926 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2927 if (num_shaders[stage] > 0) {
2928 gl_shader *const sh =
2929 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2930 num_shaders[stage]);
2931
2932 if (!prog->LinkStatus) {
2933 if (sh)
2934 ctx->Driver.DeleteShader(ctx, sh);
2935 goto done;
2936 }
2937
2938 switch (stage) {
2939 case MESA_SHADER_VERTEX:
2940 validate_vertex_shader_executable(prog, sh);
2941 break;
2942 case MESA_SHADER_GEOMETRY:
2943 validate_geometry_shader_executable(prog, sh);
2944 break;
2945 case MESA_SHADER_FRAGMENT:
2946 validate_fragment_shader_executable(prog, sh);
2947 break;
2948 }
2949 if (!prog->LinkStatus) {
2950 if (sh)
2951 ctx->Driver.DeleteShader(ctx, sh);
2952 goto done;
2953 }
2954
2955 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2956 }
2957 }
2958
2959 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2960 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2961 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2962 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2963 else
2964 prog->LastClipDistanceArraySize = 0; /* Not used */
2965
2966 /* Here begins the inter-stage linking phase. Some initial validation is
2967 * performed, then locations are assigned for uniforms, attributes, and
2968 * varyings.
2969 */
2970 cross_validate_uniforms(prog);
2971 if (!prog->LinkStatus)
2972 goto done;
2973
2974 unsigned prev;
2975
2976 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2977 if (prog->_LinkedShaders[prev] != NULL)
2978 break;
2979 }
2980
2981 check_explicit_uniform_locations(ctx, prog);
2982 if (!prog->LinkStatus)
2983 goto done;
2984
2985 /* Validate the inputs of each stage with the output of the preceding
2986 * stage.
2987 */
2988 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2989 if (prog->_LinkedShaders[i] == NULL)
2990 continue;
2991
2992 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2993 prog->_LinkedShaders[i]);
2994 if (!prog->LinkStatus)
2995 goto done;
2996
2997 cross_validate_outputs_to_inputs(prog,
2998 prog->_LinkedShaders[prev],
2999 prog->_LinkedShaders[i]);
3000 if (!prog->LinkStatus)
3001 goto done;
3002
3003 prev = i;
3004 }
3005
3006 /* Cross-validate uniform blocks between shader stages */
3007 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
3008 MESA_SHADER_STAGES);
3009 if (!prog->LinkStatus)
3010 goto done;
3011
3012 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3013 if (prog->_LinkedShaders[i] != NULL)
3014 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
3015 }
3016
3017 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
3018 * it before optimization because we want most of the checks to get
3019 * dropped thanks to constant propagation.
3020 *
3021 * This rule also applies to GLSL ES 3.00.
3022 */
3023 if (max_version >= (is_es_prog ? 300 : 130)) {
3024 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3025 if (sh) {
3026 lower_discard_flow(sh->ir);
3027 }
3028 }
3029
3030 if (!interstage_cross_validate_uniform_blocks(prog))
3031 goto done;
3032
3033 /* Do common optimization before assigning storage for attributes,
3034 * uniforms, and varyings. Later optimization could possibly make
3035 * some of that unused.
3036 */
3037 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3038 if (prog->_LinkedShaders[i] == NULL)
3039 continue;
3040
3041 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
3042 if (!prog->LinkStatus)
3043 goto done;
3044
3045 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
3046 lower_clip_distance(prog->_LinkedShaders[i]);
3047 }
3048
3049 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
3050 &ctx->Const.ShaderCompilerOptions[i],
3051 ctx->Const.NativeIntegers))
3052 ;
3053
3054 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
3055 }
3056
3057 /* Validation for special cases where we allow sampler array indexing
3058 * with loop induction variable. This check emits a warning or error
3059 * depending if backend can handle dynamic indexing.
3060 */
3061 if ((!prog->IsES && prog->Version < 130) ||
3062 (prog->IsES && prog->Version < 300)) {
3063 if (!validate_sampler_array_indexing(ctx, prog))
3064 goto done;
3065 }
3066
3067 /* Check and validate stream emissions in geometry shaders */
3068 validate_geometry_shader_emissions(ctx, prog);
3069
3070 /* Mark all generic shader inputs and outputs as unpaired. */
3071 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
3072 if (prog->_LinkedShaders[i] != NULL) {
3073 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
3074 }
3075 }
3076
3077 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX,
3078 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)) {
3079 goto done;
3080 }
3081
3082 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
3083 goto done;
3084 }
3085
3086 unsigned first, last;
3087
3088 first = MESA_SHADER_STAGES;
3089 last = 0;
3090
3091 /* Determine first and last stage. */
3092 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3093 if (!prog->_LinkedShaders[i])
3094 continue;
3095 if (first == MESA_SHADER_STAGES)
3096 first = i;
3097 last = i;
3098 }
3099
3100 if (num_tfeedback_decls != 0) {
3101 /* From GL_EXT_transform_feedback:
3102 * A program will fail to link if:
3103 *
3104 * * the <count> specified by TransformFeedbackVaryingsEXT is
3105 * non-zero, but the program object has no vertex or geometry
3106 * shader;
3107 */
3108 if (first == MESA_SHADER_FRAGMENT) {
3109 linker_error(prog, "Transform feedback varyings specified, but "
3110 "no vertex or geometry shader is present.\n");
3111 goto done;
3112 }
3113
3114 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
3115 prog->TransformFeedback.NumVarying);
3116 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
3117 prog->TransformFeedback.VaryingNames,
3118 tfeedback_decls))
3119 goto done;
3120 }
3121
3122 /* Linking the stages in the opposite order (from fragment to vertex)
3123 * ensures that inter-shader outputs written to in an earlier stage are
3124 * eliminated if they are (transitively) not used in a later stage.
3125 */
3126 int next;
3127
3128 if (first < MESA_SHADER_FRAGMENT) {
3129 gl_shader *const sh = prog->_LinkedShaders[last];
3130
3131 if (first == MESA_SHADER_GEOMETRY) {
3132 /* There was no vertex shader, but we still have to assign varying
3133 * locations for use by geometry shader inputs in SSO.
3134 *
3135 * If the shader is not separable (i.e., prog->SeparateShader is
3136 * false), linking will have already failed when first is
3137 * MESA_SHADER_GEOMETRY.
3138 */
3139 if (!assign_varying_locations(ctx, mem_ctx, prog,
3140 NULL, prog->_LinkedShaders[first],
3141 num_tfeedback_decls, tfeedback_decls,
3142 prog->Geom.VerticesIn))
3143 goto done;
3144 }
3145
3146 if (last != MESA_SHADER_FRAGMENT &&
3147 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
3148 /* There was no fragment shader, but we still have to assign varying
3149 * locations for use by transform feedback.
3150 */
3151 if (!assign_varying_locations(ctx, mem_ctx, prog,
3152 sh, NULL,
3153 num_tfeedback_decls, tfeedback_decls,
3154 0))
3155 goto done;
3156 }
3157
3158 do_dead_builtin_varyings(ctx, sh, NULL,
3159 num_tfeedback_decls, tfeedback_decls);
3160
3161 if (!prog->SeparateShader)
3162 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
3163
3164 /* Eliminate code that is now dead due to unused outputs being demoted.
3165 */
3166 while (do_dead_code(sh->ir, false))
3167 ;
3168 }
3169 else if (first == MESA_SHADER_FRAGMENT) {
3170 /* If the program only contains a fragment shader...
3171 */
3172 gl_shader *const sh = prog->_LinkedShaders[first];
3173
3174 do_dead_builtin_varyings(ctx, NULL, sh,
3175 num_tfeedback_decls, tfeedback_decls);
3176
3177 if (prog->SeparateShader) {
3178 if (!assign_varying_locations(ctx, mem_ctx, prog,
3179 NULL /* producer */,
3180 sh /* consumer */,
3181 0 /* num_tfeedback_decls */,
3182 NULL /* tfeedback_decls */,
3183 0 /* gs_input_vertices */))
3184 goto done;
3185 } else
3186 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
3187
3188 while (do_dead_code(sh->ir, false))
3189 ;
3190 }
3191
3192 next = last;
3193 for (int i = next - 1; i >= 0; i--) {
3194 if (prog->_LinkedShaders[i] == NULL)
3195 continue;
3196
3197 gl_shader *const sh_i = prog->_LinkedShaders[i];
3198 gl_shader *const sh_next = prog->_LinkedShaders[next];
3199 unsigned gs_input_vertices =
3200 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
3201
3202 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3203 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3204 tfeedback_decls, gs_input_vertices))
3205 goto done;
3206
3207 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3208 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3209 tfeedback_decls);
3210
3211 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
3212 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
3213
3214 /* Eliminate code that is now dead due to unused outputs being demoted.
3215 */
3216 while (do_dead_code(sh_i->ir, false))
3217 ;
3218 while (do_dead_code(sh_next->ir, false))
3219 ;
3220
3221 /* This must be done after all dead varyings are eliminated. */
3222 if (!check_against_output_limit(ctx, prog, sh_i))
3223 goto done;
3224 if (!check_against_input_limit(ctx, prog, sh_next))
3225 goto done;
3226
3227 next = i;
3228 }
3229
3230 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
3231 goto done;
3232
3233 update_array_sizes(prog);
3234 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
3235 link_assign_atomic_counter_resources(ctx, prog);
3236 store_fragdepth_layout(prog);
3237
3238 check_resources(ctx, prog);
3239 check_image_resources(ctx, prog);
3240 link_check_atomic_counter_resources(ctx, prog);
3241
3242 if (!prog->LinkStatus)
3243 goto done;
3244
3245 /* OpenGL ES requires that a vertex shader and a fragment shader both be
3246 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
3247 * anything about shader linking when one of the shaders (vertex or
3248 * fragment shader) is absent. So, the extension shouldn't change the
3249 * behavior specified in GLSL specification.
3250 */
3251 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
3252 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
3253 linker_error(prog, "program lacks a vertex shader\n");
3254 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3255 linker_error(prog, "program lacks a fragment shader\n");
3256 }
3257 }
3258
3259 /* FINISHME: Assign fragment shader output locations. */
3260
3261 done:
3262 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3263 free(shader_list[i]);
3264 if (prog->_LinkedShaders[i] == NULL)
3265 continue;
3266
3267 /* Do a final validation step to make sure that the IR wasn't
3268 * invalidated by any modifications performed after intrastage linking.
3269 */
3270 validate_ir_tree(prog->_LinkedShaders[i]->ir);
3271
3272 /* Retain any live IR, but trash the rest. */
3273 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
3274
3275 /* The symbol table in the linked shaders may contain references to
3276 * variables that were removed (e.g., unused uniforms). Since it may
3277 * contain junk, there is no possible valid use. Delete it and set the
3278 * pointer to NULL.
3279 */
3280 delete prog->_LinkedShaders[i]->symbols;
3281 prog->_LinkedShaders[i]->symbols = NULL;
3282 }
3283
3284 ralloc_free(mem_ctx);
3285 }