glsl/build: Build libglcpp and libglslcore in builtin_compiler
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "link_varyings.h"
74 #include "ir_optimization.h"
75
76 extern "C" {
77 #include "main/shaderobj.h"
78 }
79
80 /**
81 * Visitor that determines whether or not a variable is ever written.
82 */
83 class find_assignment_visitor : public ir_hierarchical_visitor {
84 public:
85 find_assignment_visitor(const char *name)
86 : name(name), found(false)
87 {
88 /* empty */
89 }
90
91 virtual ir_visitor_status visit_enter(ir_assignment *ir)
92 {
93 ir_variable *const var = ir->lhs->variable_referenced();
94
95 if (strcmp(name, var->name) == 0) {
96 found = true;
97 return visit_stop;
98 }
99
100 return visit_continue_with_parent;
101 }
102
103 virtual ir_visitor_status visit_enter(ir_call *ir)
104 {
105 exec_list_iterator sig_iter = ir->callee->parameters.iterator();
106 foreach_iter(exec_list_iterator, iter, *ir) {
107 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
108 ir_variable *sig_param = (ir_variable *)sig_iter.get();
109
110 if (sig_param->mode == ir_var_out ||
111 sig_param->mode == ir_var_inout) {
112 ir_variable *var = param_rval->variable_referenced();
113 if (var && strcmp(name, var->name) == 0) {
114 found = true;
115 return visit_stop;
116 }
117 }
118 sig_iter.next();
119 }
120
121 if (ir->return_deref != NULL) {
122 ir_variable *const var = ir->return_deref->variable_referenced();
123
124 if (strcmp(name, var->name) == 0) {
125 found = true;
126 return visit_stop;
127 }
128 }
129
130 return visit_continue_with_parent;
131 }
132
133 bool variable_found()
134 {
135 return found;
136 }
137
138 private:
139 const char *name; /**< Find writes to a variable with this name. */
140 bool found; /**< Was a write to the variable found? */
141 };
142
143
144 /**
145 * Visitor that determines whether or not a variable is ever read.
146 */
147 class find_deref_visitor : public ir_hierarchical_visitor {
148 public:
149 find_deref_visitor(const char *name)
150 : name(name), found(false)
151 {
152 /* empty */
153 }
154
155 virtual ir_visitor_status visit(ir_dereference_variable *ir)
156 {
157 if (strcmp(this->name, ir->var->name) == 0) {
158 this->found = true;
159 return visit_stop;
160 }
161
162 return visit_continue;
163 }
164
165 bool variable_found() const
166 {
167 return this->found;
168 }
169
170 private:
171 const char *name; /**< Find writes to a variable with this name. */
172 bool found; /**< Was a write to the variable found? */
173 };
174
175
176 void
177 linker_error(gl_shader_program *prog, const char *fmt, ...)
178 {
179 va_list ap;
180
181 ralloc_strcat(&prog->InfoLog, "error: ");
182 va_start(ap, fmt);
183 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
184 va_end(ap);
185
186 prog->LinkStatus = false;
187 }
188
189
190 void
191 linker_warning(gl_shader_program *prog, const char *fmt, ...)
192 {
193 va_list ap;
194
195 ralloc_strcat(&prog->InfoLog, "error: ");
196 va_start(ap, fmt);
197 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
198 va_end(ap);
199
200 }
201
202
203 void
204 link_invalidate_variable_locations(gl_shader *sh, int input_base,
205 int output_base)
206 {
207 foreach_list(node, sh->ir) {
208 ir_variable *const var = ((ir_instruction *) node)->as_variable();
209
210 if (var == NULL)
211 continue;
212
213 int base;
214 switch (var->mode) {
215 case ir_var_in:
216 base = input_base;
217 break;
218 case ir_var_out:
219 base = output_base;
220 break;
221 default:
222 continue;
223 }
224
225 /* Only assign locations for generic attributes / varyings / etc.
226 */
227 if ((var->location >= base) && !var->explicit_location)
228 var->location = -1;
229
230 if ((var->location == -1) && !var->explicit_location) {
231 var->is_unmatched_generic_inout = 1;
232 var->location_frac = 0;
233 } else {
234 var->is_unmatched_generic_inout = 0;
235 }
236 }
237 }
238
239
240 /**
241 * Determine the number of attribute slots required for a particular type
242 *
243 * This code is here because it implements the language rules of a specific
244 * GLSL version. Since it's a property of the language and not a property of
245 * types in general, it doesn't really belong in glsl_type.
246 */
247 unsigned
248 count_attribute_slots(const glsl_type *t)
249 {
250 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
251 *
252 * "A scalar input counts the same amount against this limit as a vec4,
253 * so applications may want to consider packing groups of four
254 * unrelated float inputs together into a vector to better utilize the
255 * capabilities of the underlying hardware. A matrix input will use up
256 * multiple locations. The number of locations used will equal the
257 * number of columns in the matrix."
258 *
259 * The spec does not explicitly say how arrays are counted. However, it
260 * should be safe to assume the total number of slots consumed by an array
261 * is the number of entries in the array multiplied by the number of slots
262 * consumed by a single element of the array.
263 */
264
265 if (t->is_array())
266 return t->array_size() * count_attribute_slots(t->element_type());
267
268 if (t->is_matrix())
269 return t->matrix_columns;
270
271 return 1;
272 }
273
274
275 /**
276 * Verify that a vertex shader executable meets all semantic requirements.
277 *
278 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
279 * as a side effect.
280 *
281 * \param shader Vertex shader executable to be verified
282 */
283 bool
284 validate_vertex_shader_executable(struct gl_shader_program *prog,
285 struct gl_shader *shader)
286 {
287 if (shader == NULL)
288 return true;
289
290 /* From the GLSL 1.10 spec, page 48:
291 *
292 * "The variable gl_Position is available only in the vertex
293 * language and is intended for writing the homogeneous vertex
294 * position. All executions of a well-formed vertex shader
295 * executable must write a value into this variable. [...] The
296 * variable gl_Position is available only in the vertex
297 * language and is intended for writing the homogeneous vertex
298 * position. All executions of a well-formed vertex shader
299 * executable must write a value into this variable."
300 *
301 * while in GLSL 1.40 this text is changed to:
302 *
303 * "The variable gl_Position is available only in the vertex
304 * language and is intended for writing the homogeneous vertex
305 * position. It can be written at any time during shader
306 * execution. It may also be read back by a vertex shader
307 * after being written. This value will be used by primitive
308 * assembly, clipping, culling, and other fixed functionality
309 * operations, if present, that operate on primitives after
310 * vertex processing has occurred. Its value is undefined if
311 * the vertex shader executable does not write gl_Position."
312 *
313 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
314 * not an error.
315 */
316 if (prog->Version < (prog->IsES ? 300 : 140)) {
317 find_assignment_visitor find("gl_Position");
318 find.run(shader->ir);
319 if (!find.variable_found()) {
320 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
321 return false;
322 }
323 }
324
325 prog->Vert.ClipDistanceArraySize = 0;
326
327 if (!prog->IsES && prog->Version >= 130) {
328 /* From section 7.1 (Vertex Shader Special Variables) of the
329 * GLSL 1.30 spec:
330 *
331 * "It is an error for a shader to statically write both
332 * gl_ClipVertex and gl_ClipDistance."
333 *
334 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
335 * gl_ClipVertex nor gl_ClipDistance.
336 */
337 find_assignment_visitor clip_vertex("gl_ClipVertex");
338 find_assignment_visitor clip_distance("gl_ClipDistance");
339
340 clip_vertex.run(shader->ir);
341 clip_distance.run(shader->ir);
342 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
343 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
344 "and `gl_ClipDistance'\n");
345 return false;
346 }
347 prog->Vert.UsesClipDistance = clip_distance.variable_found();
348 ir_variable *clip_distance_var =
349 shader->symbols->get_variable("gl_ClipDistance");
350 if (clip_distance_var)
351 prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length;
352 }
353
354 return true;
355 }
356
357
358 /**
359 * Verify that a fragment shader executable meets all semantic requirements
360 *
361 * \param shader Fragment shader executable to be verified
362 */
363 bool
364 validate_fragment_shader_executable(struct gl_shader_program *prog,
365 struct gl_shader *shader)
366 {
367 if (shader == NULL)
368 return true;
369
370 find_assignment_visitor frag_color("gl_FragColor");
371 find_assignment_visitor frag_data("gl_FragData");
372
373 frag_color.run(shader->ir);
374 frag_data.run(shader->ir);
375
376 if (frag_color.variable_found() && frag_data.variable_found()) {
377 linker_error(prog, "fragment shader writes to both "
378 "`gl_FragColor' and `gl_FragData'\n");
379 return false;
380 }
381
382 return true;
383 }
384
385
386 /**
387 * Generate a string describing the mode of a variable
388 */
389 static const char *
390 mode_string(const ir_variable *var)
391 {
392 switch (var->mode) {
393 case ir_var_auto:
394 return (var->read_only) ? "global constant" : "global variable";
395
396 case ir_var_uniform: return "uniform";
397 case ir_var_in: return "shader input";
398 case ir_var_out: return "shader output";
399 case ir_var_inout: return "shader inout";
400
401 case ir_var_const_in:
402 case ir_var_temporary:
403 default:
404 assert(!"Should not get here.");
405 return "invalid variable";
406 }
407 }
408
409
410 /**
411 * Perform validation of global variables used across multiple shaders
412 */
413 bool
414 cross_validate_globals(struct gl_shader_program *prog,
415 struct gl_shader **shader_list,
416 unsigned num_shaders,
417 bool uniforms_only)
418 {
419 /* Examine all of the uniforms in all of the shaders and cross validate
420 * them.
421 */
422 glsl_symbol_table variables;
423 for (unsigned i = 0; i < num_shaders; i++) {
424 if (shader_list[i] == NULL)
425 continue;
426
427 foreach_list(node, shader_list[i]->ir) {
428 ir_variable *const var = ((ir_instruction *) node)->as_variable();
429
430 if (var == NULL)
431 continue;
432
433 if (uniforms_only && (var->mode != ir_var_uniform))
434 continue;
435
436 /* Don't cross validate temporaries that are at global scope. These
437 * will eventually get pulled into the shaders 'main'.
438 */
439 if (var->mode == ir_var_temporary)
440 continue;
441
442 /* If a global with this name has already been seen, verify that the
443 * new instance has the same type. In addition, if the globals have
444 * initializers, the values of the initializers must be the same.
445 */
446 ir_variable *const existing = variables.get_variable(var->name);
447 if (existing != NULL) {
448 if (var->type != existing->type) {
449 /* Consider the types to be "the same" if both types are arrays
450 * of the same type and one of the arrays is implicitly sized.
451 * In addition, set the type of the linked variable to the
452 * explicitly sized array.
453 */
454 if (var->type->is_array()
455 && existing->type->is_array()
456 && (var->type->fields.array == existing->type->fields.array)
457 && ((var->type->length == 0)
458 || (existing->type->length == 0))) {
459 if (var->type->length != 0) {
460 existing->type = var->type;
461 }
462 } else {
463 linker_error(prog, "%s `%s' declared as type "
464 "`%s' and type `%s'\n",
465 mode_string(var),
466 var->name, var->type->name,
467 existing->type->name);
468 return false;
469 }
470 }
471
472 if (var->explicit_location) {
473 if (existing->explicit_location
474 && (var->location != existing->location)) {
475 linker_error(prog, "explicit locations for %s "
476 "`%s' have differing values\n",
477 mode_string(var), var->name);
478 return false;
479 }
480
481 existing->location = var->location;
482 existing->explicit_location = true;
483 }
484
485 /* Validate layout qualifiers for gl_FragDepth.
486 *
487 * From the AMD/ARB_conservative_depth specs:
488 *
489 * "If gl_FragDepth is redeclared in any fragment shader in a
490 * program, it must be redeclared in all fragment shaders in
491 * that program that have static assignments to
492 * gl_FragDepth. All redeclarations of gl_FragDepth in all
493 * fragment shaders in a single program must have the same set
494 * of qualifiers."
495 */
496 if (strcmp(var->name, "gl_FragDepth") == 0) {
497 bool layout_declared = var->depth_layout != ir_depth_layout_none;
498 bool layout_differs =
499 var->depth_layout != existing->depth_layout;
500
501 if (layout_declared && layout_differs) {
502 linker_error(prog,
503 "All redeclarations of gl_FragDepth in all "
504 "fragment shaders in a single program must have "
505 "the same set of qualifiers.");
506 }
507
508 if (var->used && layout_differs) {
509 linker_error(prog,
510 "If gl_FragDepth is redeclared with a layout "
511 "qualifier in any fragment shader, it must be "
512 "redeclared with the same layout qualifier in "
513 "all fragment shaders that have assignments to "
514 "gl_FragDepth");
515 }
516 }
517
518 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
519 *
520 * "If a shared global has multiple initializers, the
521 * initializers must all be constant expressions, and they
522 * must all have the same value. Otherwise, a link error will
523 * result. (A shared global having only one initializer does
524 * not require that initializer to be a constant expression.)"
525 *
526 * Previous to 4.20 the GLSL spec simply said that initializers
527 * must have the same value. In this case of non-constant
528 * initializers, this was impossible to determine. As a result,
529 * no vendor actually implemented that behavior. The 4.20
530 * behavior matches the implemented behavior of at least one other
531 * vendor, so we'll implement that for all GLSL versions.
532 */
533 if (var->constant_initializer != NULL) {
534 if (existing->constant_initializer != NULL) {
535 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
536 linker_error(prog, "initializers for %s "
537 "`%s' have differing values\n",
538 mode_string(var), var->name);
539 return false;
540 }
541 } else {
542 /* If the first-seen instance of a particular uniform did not
543 * have an initializer but a later instance does, copy the
544 * initializer to the version stored in the symbol table.
545 */
546 /* FINISHME: This is wrong. The constant_value field should
547 * FINISHME: not be modified! Imagine a case where a shader
548 * FINISHME: without an initializer is linked in two different
549 * FINISHME: programs with shaders that have differing
550 * FINISHME: initializers. Linking with the first will
551 * FINISHME: modify the shader, and linking with the second
552 * FINISHME: will fail.
553 */
554 existing->constant_initializer =
555 var->constant_initializer->clone(ralloc_parent(existing),
556 NULL);
557 }
558 }
559
560 if (var->has_initializer) {
561 if (existing->has_initializer
562 && (var->constant_initializer == NULL
563 || existing->constant_initializer == NULL)) {
564 linker_error(prog,
565 "shared global variable `%s' has multiple "
566 "non-constant initializers.\n",
567 var->name);
568 return false;
569 }
570
571 /* Some instance had an initializer, so keep track of that. In
572 * this location, all sorts of initializers (constant or
573 * otherwise) will propagate the existence to the variable
574 * stored in the symbol table.
575 */
576 existing->has_initializer = true;
577 }
578
579 if (existing->invariant != var->invariant) {
580 linker_error(prog, "declarations for %s `%s' have "
581 "mismatching invariant qualifiers\n",
582 mode_string(var), var->name);
583 return false;
584 }
585 if (existing->centroid != var->centroid) {
586 linker_error(prog, "declarations for %s `%s' have "
587 "mismatching centroid qualifiers\n",
588 mode_string(var), var->name);
589 return false;
590 }
591 } else
592 variables.add_variable(var);
593 }
594 }
595
596 return true;
597 }
598
599
600 /**
601 * Perform validation of uniforms used across multiple shader stages
602 */
603 bool
604 cross_validate_uniforms(struct gl_shader_program *prog)
605 {
606 return cross_validate_globals(prog, prog->_LinkedShaders,
607 MESA_SHADER_TYPES, true);
608 }
609
610 /**
611 * Accumulates the array of prog->UniformBlocks and checks that all
612 * definitons of blocks agree on their contents.
613 */
614 static bool
615 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
616 {
617 unsigned max_num_uniform_blocks = 0;
618 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
619 if (prog->_LinkedShaders[i])
620 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
621 }
622
623 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
624 struct gl_shader *sh = prog->_LinkedShaders[i];
625
626 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
627 max_num_uniform_blocks);
628 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
629 prog->UniformBlockStageIndex[i][j] = -1;
630
631 if (sh == NULL)
632 continue;
633
634 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
635 int index = link_cross_validate_uniform_block(prog,
636 &prog->UniformBlocks,
637 &prog->NumUniformBlocks,
638 &sh->UniformBlocks[j]);
639
640 if (index == -1) {
641 linker_error(prog, "uniform block `%s' has mismatching definitions",
642 sh->UniformBlocks[j].Name);
643 return false;
644 }
645
646 prog->UniformBlockStageIndex[i][index] = j;
647 }
648 }
649
650 return true;
651 }
652
653
654 /**
655 * Populates a shaders symbol table with all global declarations
656 */
657 static void
658 populate_symbol_table(gl_shader *sh)
659 {
660 sh->symbols = new(sh) glsl_symbol_table;
661
662 foreach_list(node, sh->ir) {
663 ir_instruction *const inst = (ir_instruction *) node;
664 ir_variable *var;
665 ir_function *func;
666
667 if ((func = inst->as_function()) != NULL) {
668 sh->symbols->add_function(func);
669 } else if ((var = inst->as_variable()) != NULL) {
670 sh->symbols->add_variable(var);
671 }
672 }
673 }
674
675
676 /**
677 * Remap variables referenced in an instruction tree
678 *
679 * This is used when instruction trees are cloned from one shader and placed in
680 * another. These trees will contain references to \c ir_variable nodes that
681 * do not exist in the target shader. This function finds these \c ir_variable
682 * references and replaces the references with matching variables in the target
683 * shader.
684 *
685 * If there is no matching variable in the target shader, a clone of the
686 * \c ir_variable is made and added to the target shader. The new variable is
687 * added to \b both the instruction stream and the symbol table.
688 *
689 * \param inst IR tree that is to be processed.
690 * \param symbols Symbol table containing global scope symbols in the
691 * linked shader.
692 * \param instructions Instruction stream where new variable declarations
693 * should be added.
694 */
695 void
696 remap_variables(ir_instruction *inst, struct gl_shader *target,
697 hash_table *temps)
698 {
699 class remap_visitor : public ir_hierarchical_visitor {
700 public:
701 remap_visitor(struct gl_shader *target,
702 hash_table *temps)
703 {
704 this->target = target;
705 this->symbols = target->symbols;
706 this->instructions = target->ir;
707 this->temps = temps;
708 }
709
710 virtual ir_visitor_status visit(ir_dereference_variable *ir)
711 {
712 if (ir->var->mode == ir_var_temporary) {
713 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
714
715 assert(var != NULL);
716 ir->var = var;
717 return visit_continue;
718 }
719
720 ir_variable *const existing =
721 this->symbols->get_variable(ir->var->name);
722 if (existing != NULL)
723 ir->var = existing;
724 else {
725 ir_variable *copy = ir->var->clone(this->target, NULL);
726
727 this->symbols->add_variable(copy);
728 this->instructions->push_head(copy);
729 ir->var = copy;
730 }
731
732 return visit_continue;
733 }
734
735 private:
736 struct gl_shader *target;
737 glsl_symbol_table *symbols;
738 exec_list *instructions;
739 hash_table *temps;
740 };
741
742 remap_visitor v(target, temps);
743
744 inst->accept(&v);
745 }
746
747
748 /**
749 * Move non-declarations from one instruction stream to another
750 *
751 * The intended usage pattern of this function is to pass the pointer to the
752 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
753 * pointer) for \c last and \c false for \c make_copies on the first
754 * call. Successive calls pass the return value of the previous call for
755 * \c last and \c true for \c make_copies.
756 *
757 * \param instructions Source instruction stream
758 * \param last Instruction after which new instructions should be
759 * inserted in the target instruction stream
760 * \param make_copies Flag selecting whether instructions in \c instructions
761 * should be copied (via \c ir_instruction::clone) into the
762 * target list or moved.
763 *
764 * \return
765 * The new "last" instruction in the target instruction stream. This pointer
766 * is suitable for use as the \c last parameter of a later call to this
767 * function.
768 */
769 exec_node *
770 move_non_declarations(exec_list *instructions, exec_node *last,
771 bool make_copies, gl_shader *target)
772 {
773 hash_table *temps = NULL;
774
775 if (make_copies)
776 temps = hash_table_ctor(0, hash_table_pointer_hash,
777 hash_table_pointer_compare);
778
779 foreach_list_safe(node, instructions) {
780 ir_instruction *inst = (ir_instruction *) node;
781
782 if (inst->as_function())
783 continue;
784
785 ir_variable *var = inst->as_variable();
786 if ((var != NULL) && (var->mode != ir_var_temporary))
787 continue;
788
789 assert(inst->as_assignment()
790 || inst->as_call()
791 || inst->as_if() /* for initializers with the ?: operator */
792 || ((var != NULL) && (var->mode == ir_var_temporary)));
793
794 if (make_copies) {
795 inst = inst->clone(target, NULL);
796
797 if (var != NULL)
798 hash_table_insert(temps, inst, var);
799 else
800 remap_variables(inst, target, temps);
801 } else {
802 inst->remove();
803 }
804
805 last->insert_after(inst);
806 last = inst;
807 }
808
809 if (make_copies)
810 hash_table_dtor(temps);
811
812 return last;
813 }
814
815 /**
816 * Get the function signature for main from a shader
817 */
818 static ir_function_signature *
819 get_main_function_signature(gl_shader *sh)
820 {
821 ir_function *const f = sh->symbols->get_function("main");
822 if (f != NULL) {
823 exec_list void_parameters;
824
825 /* Look for the 'void main()' signature and ensure that it's defined.
826 * This keeps the linker from accidentally pick a shader that just
827 * contains a prototype for main.
828 *
829 * We don't have to check for multiple definitions of main (in multiple
830 * shaders) because that would have already been caught above.
831 */
832 ir_function_signature *sig = f->matching_signature(&void_parameters);
833 if ((sig != NULL) && sig->is_defined) {
834 return sig;
835 }
836 }
837
838 return NULL;
839 }
840
841
842 /**
843 * This class is only used in link_intrastage_shaders() below but declaring
844 * it inside that function leads to compiler warnings with some versions of
845 * gcc.
846 */
847 class array_sizing_visitor : public ir_hierarchical_visitor {
848 public:
849 virtual ir_visitor_status visit(ir_variable *var)
850 {
851 if (var->type->is_array() && (var->type->length == 0)) {
852 const glsl_type *type =
853 glsl_type::get_array_instance(var->type->fields.array,
854 var->max_array_access + 1);
855 assert(type != NULL);
856 var->type = type;
857 }
858 return visit_continue;
859 }
860 };
861
862 /**
863 * Combine a group of shaders for a single stage to generate a linked shader
864 *
865 * \note
866 * If this function is supplied a single shader, it is cloned, and the new
867 * shader is returned.
868 */
869 static struct gl_shader *
870 link_intrastage_shaders(void *mem_ctx,
871 struct gl_context *ctx,
872 struct gl_shader_program *prog,
873 struct gl_shader **shader_list,
874 unsigned num_shaders)
875 {
876 struct gl_uniform_block *uniform_blocks = NULL;
877 unsigned num_uniform_blocks = 0;
878
879 /* Check that global variables defined in multiple shaders are consistent.
880 */
881 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
882 return NULL;
883
884 /* Check that uniform blocks between shaders for a stage agree. */
885 for (unsigned i = 0; i < num_shaders; i++) {
886 struct gl_shader *sh = shader_list[i];
887
888 for (unsigned j = 0; j < sh->NumUniformBlocks; j++) {
889 link_assign_uniform_block_offsets(sh);
890
891 int index = link_cross_validate_uniform_block(mem_ctx,
892 &uniform_blocks,
893 &num_uniform_blocks,
894 &sh->UniformBlocks[j]);
895 if (index == -1) {
896 linker_error(prog, "uniform block `%s' has mismatching definitions",
897 sh->UniformBlocks[j].Name);
898 return NULL;
899 }
900 }
901 }
902
903 /* Check that there is only a single definition of each function signature
904 * across all shaders.
905 */
906 for (unsigned i = 0; i < (num_shaders - 1); i++) {
907 foreach_list(node, shader_list[i]->ir) {
908 ir_function *const f = ((ir_instruction *) node)->as_function();
909
910 if (f == NULL)
911 continue;
912
913 for (unsigned j = i + 1; j < num_shaders; j++) {
914 ir_function *const other =
915 shader_list[j]->symbols->get_function(f->name);
916
917 /* If the other shader has no function (and therefore no function
918 * signatures) with the same name, skip to the next shader.
919 */
920 if (other == NULL)
921 continue;
922
923 foreach_iter (exec_list_iterator, iter, *f) {
924 ir_function_signature *sig =
925 (ir_function_signature *) iter.get();
926
927 if (!sig->is_defined || sig->is_builtin)
928 continue;
929
930 ir_function_signature *other_sig =
931 other->exact_matching_signature(& sig->parameters);
932
933 if ((other_sig != NULL) && other_sig->is_defined
934 && !other_sig->is_builtin) {
935 linker_error(prog, "function `%s' is multiply defined",
936 f->name);
937 return NULL;
938 }
939 }
940 }
941 }
942 }
943
944 /* Find the shader that defines main, and make a clone of it.
945 *
946 * Starting with the clone, search for undefined references. If one is
947 * found, find the shader that defines it. Clone the reference and add
948 * it to the shader. Repeat until there are no undefined references or
949 * until a reference cannot be resolved.
950 */
951 gl_shader *main = NULL;
952 for (unsigned i = 0; i < num_shaders; i++) {
953 if (get_main_function_signature(shader_list[i]) != NULL) {
954 main = shader_list[i];
955 break;
956 }
957 }
958
959 if (main == NULL) {
960 linker_error(prog, "%s shader lacks `main'\n",
961 (shader_list[0]->Type == GL_VERTEX_SHADER)
962 ? "vertex" : "fragment");
963 return NULL;
964 }
965
966 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
967 linked->ir = new(linked) exec_list;
968 clone_ir_list(mem_ctx, linked->ir, main->ir);
969
970 linked->UniformBlocks = uniform_blocks;
971 linked->NumUniformBlocks = num_uniform_blocks;
972 ralloc_steal(linked, linked->UniformBlocks);
973
974 populate_symbol_table(linked);
975
976 /* The a pointer to the main function in the final linked shader (i.e., the
977 * copy of the original shader that contained the main function).
978 */
979 ir_function_signature *const main_sig = get_main_function_signature(linked);
980
981 /* Move any instructions other than variable declarations or function
982 * declarations into main.
983 */
984 exec_node *insertion_point =
985 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
986 linked);
987
988 for (unsigned i = 0; i < num_shaders; i++) {
989 if (shader_list[i] == main)
990 continue;
991
992 insertion_point = move_non_declarations(shader_list[i]->ir,
993 insertion_point, true, linked);
994 }
995
996 /* Resolve initializers for global variables in the linked shader.
997 */
998 unsigned num_linking_shaders = num_shaders;
999 for (unsigned i = 0; i < num_shaders; i++)
1000 num_linking_shaders += shader_list[i]->num_builtins_to_link;
1001
1002 gl_shader **linking_shaders =
1003 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
1004
1005 memcpy(linking_shaders, shader_list,
1006 sizeof(linking_shaders[0]) * num_shaders);
1007
1008 unsigned idx = num_shaders;
1009 for (unsigned i = 0; i < num_shaders; i++) {
1010 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
1011 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
1012 idx += shader_list[i]->num_builtins_to_link;
1013 }
1014
1015 assert(idx == num_linking_shaders);
1016
1017 if (!link_function_calls(prog, linked, linking_shaders,
1018 num_linking_shaders)) {
1019 ctx->Driver.DeleteShader(ctx, linked);
1020 linked = NULL;
1021 }
1022
1023 free(linking_shaders);
1024
1025 #ifdef DEBUG
1026 /* At this point linked should contain all of the linked IR, so
1027 * validate it to make sure nothing went wrong.
1028 */
1029 if (linked)
1030 validate_ir_tree(linked->ir);
1031 #endif
1032
1033 /* Make a pass over all variable declarations to ensure that arrays with
1034 * unspecified sizes have a size specified. The size is inferred from the
1035 * max_array_access field.
1036 */
1037 if (linked != NULL) {
1038 array_sizing_visitor v;
1039
1040 v.run(linked->ir);
1041 }
1042
1043 return linked;
1044 }
1045
1046 /**
1047 * Update the sizes of linked shader uniform arrays to the maximum
1048 * array index used.
1049 *
1050 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1051 *
1052 * If one or more elements of an array are active,
1053 * GetActiveUniform will return the name of the array in name,
1054 * subject to the restrictions listed above. The type of the array
1055 * is returned in type. The size parameter contains the highest
1056 * array element index used, plus one. The compiler or linker
1057 * determines the highest index used. There will be only one
1058 * active uniform reported by the GL per uniform array.
1059
1060 */
1061 static void
1062 update_array_sizes(struct gl_shader_program *prog)
1063 {
1064 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1065 if (prog->_LinkedShaders[i] == NULL)
1066 continue;
1067
1068 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1069 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1070
1071 if ((var == NULL) || (var->mode != ir_var_uniform &&
1072 var->mode != ir_var_in &&
1073 var->mode != ir_var_out) ||
1074 !var->type->is_array())
1075 continue;
1076
1077 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1078 * will not be eliminated. Since we always do std140, just
1079 * don't resize arrays in UBOs.
1080 */
1081 if (var->uniform_block != -1)
1082 continue;
1083
1084 unsigned int size = var->max_array_access;
1085 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1086 if (prog->_LinkedShaders[j] == NULL)
1087 continue;
1088
1089 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1090 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1091 if (!other_var)
1092 continue;
1093
1094 if (strcmp(var->name, other_var->name) == 0 &&
1095 other_var->max_array_access > size) {
1096 size = other_var->max_array_access;
1097 }
1098 }
1099 }
1100
1101 if (size + 1 != var->type->fields.array->length) {
1102 /* If this is a built-in uniform (i.e., it's backed by some
1103 * fixed-function state), adjust the number of state slots to
1104 * match the new array size. The number of slots per array entry
1105 * is not known. It seems safe to assume that the total number of
1106 * slots is an integer multiple of the number of array elements.
1107 * Determine the number of slots per array element by dividing by
1108 * the old (total) size.
1109 */
1110 if (var->num_state_slots > 0) {
1111 var->num_state_slots = (size + 1)
1112 * (var->num_state_slots / var->type->length);
1113 }
1114
1115 var->type = glsl_type::get_array_instance(var->type->fields.array,
1116 size + 1);
1117 /* FINISHME: We should update the types of array
1118 * dereferences of this variable now.
1119 */
1120 }
1121 }
1122 }
1123 }
1124
1125 /**
1126 * Find a contiguous set of available bits in a bitmask.
1127 *
1128 * \param used_mask Bits representing used (1) and unused (0) locations
1129 * \param needed_count Number of contiguous bits needed.
1130 *
1131 * \return
1132 * Base location of the available bits on success or -1 on failure.
1133 */
1134 int
1135 find_available_slots(unsigned used_mask, unsigned needed_count)
1136 {
1137 unsigned needed_mask = (1 << needed_count) - 1;
1138 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1139
1140 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1141 * cannot optimize possibly infinite loops" for the loop below.
1142 */
1143 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1144 return -1;
1145
1146 for (int i = 0; i <= max_bit_to_test; i++) {
1147 if ((needed_mask & ~used_mask) == needed_mask)
1148 return i;
1149
1150 needed_mask <<= 1;
1151 }
1152
1153 return -1;
1154 }
1155
1156
1157 /**
1158 * Assign locations for either VS inputs for FS outputs
1159 *
1160 * \param prog Shader program whose variables need locations assigned
1161 * \param target_index Selector for the program target to receive location
1162 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1163 * \c MESA_SHADER_FRAGMENT.
1164 * \param max_index Maximum number of generic locations. This corresponds
1165 * to either the maximum number of draw buffers or the
1166 * maximum number of generic attributes.
1167 *
1168 * \return
1169 * If locations are successfully assigned, true is returned. Otherwise an
1170 * error is emitted to the shader link log and false is returned.
1171 */
1172 bool
1173 assign_attribute_or_color_locations(gl_shader_program *prog,
1174 unsigned target_index,
1175 unsigned max_index)
1176 {
1177 /* Mark invalid locations as being used.
1178 */
1179 unsigned used_locations = (max_index >= 32)
1180 ? ~0 : ~((1 << max_index) - 1);
1181
1182 assert((target_index == MESA_SHADER_VERTEX)
1183 || (target_index == MESA_SHADER_FRAGMENT));
1184
1185 gl_shader *const sh = prog->_LinkedShaders[target_index];
1186 if (sh == NULL)
1187 return true;
1188
1189 /* Operate in a total of four passes.
1190 *
1191 * 1. Invalidate the location assignments for all vertex shader inputs.
1192 *
1193 * 2. Assign locations for inputs that have user-defined (via
1194 * glBindVertexAttribLocation) locations and outputs that have
1195 * user-defined locations (via glBindFragDataLocation).
1196 *
1197 * 3. Sort the attributes without assigned locations by number of slots
1198 * required in decreasing order. Fragmentation caused by attribute
1199 * locations assigned by the application may prevent large attributes
1200 * from having enough contiguous space.
1201 *
1202 * 4. Assign locations to any inputs without assigned locations.
1203 */
1204
1205 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1206 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1207
1208 const enum ir_variable_mode direction =
1209 (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1210
1211
1212 /* Temporary storage for the set of attributes that need locations assigned.
1213 */
1214 struct temp_attr {
1215 unsigned slots;
1216 ir_variable *var;
1217
1218 /* Used below in the call to qsort. */
1219 static int compare(const void *a, const void *b)
1220 {
1221 const temp_attr *const l = (const temp_attr *) a;
1222 const temp_attr *const r = (const temp_attr *) b;
1223
1224 /* Reversed because we want a descending order sort below. */
1225 return r->slots - l->slots;
1226 }
1227 } to_assign[16];
1228
1229 unsigned num_attr = 0;
1230
1231 foreach_list(node, sh->ir) {
1232 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1233
1234 if ((var == NULL) || (var->mode != (unsigned) direction))
1235 continue;
1236
1237 if (var->explicit_location) {
1238 if ((var->location >= (int)(max_index + generic_base))
1239 || (var->location < 0)) {
1240 linker_error(prog,
1241 "invalid explicit location %d specified for `%s'\n",
1242 (var->location < 0)
1243 ? var->location : var->location - generic_base,
1244 var->name);
1245 return false;
1246 }
1247 } else if (target_index == MESA_SHADER_VERTEX) {
1248 unsigned binding;
1249
1250 if (prog->AttributeBindings->get(binding, var->name)) {
1251 assert(binding >= VERT_ATTRIB_GENERIC0);
1252 var->location = binding;
1253 var->is_unmatched_generic_inout = 0;
1254 }
1255 } else if (target_index == MESA_SHADER_FRAGMENT) {
1256 unsigned binding;
1257 unsigned index;
1258
1259 if (prog->FragDataBindings->get(binding, var->name)) {
1260 assert(binding >= FRAG_RESULT_DATA0);
1261 var->location = binding;
1262 var->is_unmatched_generic_inout = 0;
1263
1264 if (prog->FragDataIndexBindings->get(index, var->name)) {
1265 var->index = index;
1266 }
1267 }
1268 }
1269
1270 /* If the variable is not a built-in and has a location statically
1271 * assigned in the shader (presumably via a layout qualifier), make sure
1272 * that it doesn't collide with other assigned locations. Otherwise,
1273 * add it to the list of variables that need linker-assigned locations.
1274 */
1275 const unsigned slots = count_attribute_slots(var->type);
1276 if (var->location != -1) {
1277 if (var->location >= generic_base && var->index < 1) {
1278 /* From page 61 of the OpenGL 4.0 spec:
1279 *
1280 * "LinkProgram will fail if the attribute bindings assigned
1281 * by BindAttribLocation do not leave not enough space to
1282 * assign a location for an active matrix attribute or an
1283 * active attribute array, both of which require multiple
1284 * contiguous generic attributes."
1285 *
1286 * Previous versions of the spec contain similar language but omit
1287 * the bit about attribute arrays.
1288 *
1289 * Page 61 of the OpenGL 4.0 spec also says:
1290 *
1291 * "It is possible for an application to bind more than one
1292 * attribute name to the same location. This is referred to as
1293 * aliasing. This will only work if only one of the aliased
1294 * attributes is active in the executable program, or if no
1295 * path through the shader consumes more than one attribute of
1296 * a set of attributes aliased to the same location. A link
1297 * error can occur if the linker determines that every path
1298 * through the shader consumes multiple aliased attributes,
1299 * but implementations are not required to generate an error
1300 * in this case."
1301 *
1302 * These two paragraphs are either somewhat contradictory, or I
1303 * don't fully understand one or both of them.
1304 */
1305 /* FINISHME: The code as currently written does not support
1306 * FINISHME: attribute location aliasing (see comment above).
1307 */
1308 /* Mask representing the contiguous slots that will be used by
1309 * this attribute.
1310 */
1311 const unsigned attr = var->location - generic_base;
1312 const unsigned use_mask = (1 << slots) - 1;
1313
1314 /* Generate a link error if the set of bits requested for this
1315 * attribute overlaps any previously allocated bits.
1316 */
1317 if ((~(use_mask << attr) & used_locations) != used_locations) {
1318 const char *const string = (target_index == MESA_SHADER_VERTEX)
1319 ? "vertex shader input" : "fragment shader output";
1320 linker_error(prog,
1321 "insufficient contiguous locations "
1322 "available for %s `%s' %d %d %d", string,
1323 var->name, used_locations, use_mask, attr);
1324 return false;
1325 }
1326
1327 used_locations |= (use_mask << attr);
1328 }
1329
1330 continue;
1331 }
1332
1333 to_assign[num_attr].slots = slots;
1334 to_assign[num_attr].var = var;
1335 num_attr++;
1336 }
1337
1338 /* If all of the attributes were assigned locations by the application (or
1339 * are built-in attributes with fixed locations), return early. This should
1340 * be the common case.
1341 */
1342 if (num_attr == 0)
1343 return true;
1344
1345 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1346
1347 if (target_index == MESA_SHADER_VERTEX) {
1348 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1349 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1350 * reserved to prevent it from being automatically allocated below.
1351 */
1352 find_deref_visitor find("gl_Vertex");
1353 find.run(sh->ir);
1354 if (find.variable_found())
1355 used_locations |= (1 << 0);
1356 }
1357
1358 for (unsigned i = 0; i < num_attr; i++) {
1359 /* Mask representing the contiguous slots that will be used by this
1360 * attribute.
1361 */
1362 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1363
1364 int location = find_available_slots(used_locations, to_assign[i].slots);
1365
1366 if (location < 0) {
1367 const char *const string = (target_index == MESA_SHADER_VERTEX)
1368 ? "vertex shader input" : "fragment shader output";
1369
1370 linker_error(prog,
1371 "insufficient contiguous locations "
1372 "available for %s `%s'",
1373 string, to_assign[i].var->name);
1374 return false;
1375 }
1376
1377 to_assign[i].var->location = generic_base + location;
1378 to_assign[i].var->is_unmatched_generic_inout = 0;
1379 used_locations |= (use_mask << location);
1380 }
1381
1382 return true;
1383 }
1384
1385
1386 /**
1387 * Demote shader inputs and outputs that are not used in other stages
1388 */
1389 void
1390 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1391 {
1392 foreach_list(node, sh->ir) {
1393 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1394
1395 if ((var == NULL) || (var->mode != int(mode)))
1396 continue;
1397
1398 /* A shader 'in' or 'out' variable is only really an input or output if
1399 * its value is used by other shader stages. This will cause the variable
1400 * to have a location assigned.
1401 */
1402 if (var->is_unmatched_generic_inout) {
1403 var->mode = ir_var_auto;
1404 }
1405 }
1406 }
1407
1408
1409 /**
1410 * Store the gl_FragDepth layout in the gl_shader_program struct.
1411 */
1412 static void
1413 store_fragdepth_layout(struct gl_shader_program *prog)
1414 {
1415 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1416 return;
1417 }
1418
1419 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1420
1421 /* We don't look up the gl_FragDepth symbol directly because if
1422 * gl_FragDepth is not used in the shader, it's removed from the IR.
1423 * However, the symbol won't be removed from the symbol table.
1424 *
1425 * We're only interested in the cases where the variable is NOT removed
1426 * from the IR.
1427 */
1428 foreach_list(node, ir) {
1429 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1430
1431 if (var == NULL || var->mode != ir_var_out) {
1432 continue;
1433 }
1434
1435 if (strcmp(var->name, "gl_FragDepth") == 0) {
1436 switch (var->depth_layout) {
1437 case ir_depth_layout_none:
1438 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1439 return;
1440 case ir_depth_layout_any:
1441 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1442 return;
1443 case ir_depth_layout_greater:
1444 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1445 return;
1446 case ir_depth_layout_less:
1447 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1448 return;
1449 case ir_depth_layout_unchanged:
1450 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1451 return;
1452 default:
1453 assert(0);
1454 return;
1455 }
1456 }
1457 }
1458 }
1459
1460 /**
1461 * Validate the resources used by a program versus the implementation limits
1462 */
1463 static bool
1464 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1465 {
1466 static const char *const shader_names[MESA_SHADER_TYPES] = {
1467 "vertex", "fragment", "geometry"
1468 };
1469
1470 const unsigned max_samplers[MESA_SHADER_TYPES] = {
1471 ctx->Const.MaxVertexTextureImageUnits,
1472 ctx->Const.MaxTextureImageUnits,
1473 ctx->Const.MaxGeometryTextureImageUnits
1474 };
1475
1476 const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
1477 ctx->Const.VertexProgram.MaxUniformComponents,
1478 ctx->Const.FragmentProgram.MaxUniformComponents,
1479 0 /* FINISHME: Geometry shaders. */
1480 };
1481
1482 const unsigned max_uniform_blocks[MESA_SHADER_TYPES] = {
1483 ctx->Const.VertexProgram.MaxUniformBlocks,
1484 ctx->Const.FragmentProgram.MaxUniformBlocks,
1485 ctx->Const.GeometryProgram.MaxUniformBlocks,
1486 };
1487
1488 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1489 struct gl_shader *sh = prog->_LinkedShaders[i];
1490
1491 if (sh == NULL)
1492 continue;
1493
1494 if (sh->num_samplers > max_samplers[i]) {
1495 linker_error(prog, "Too many %s shader texture samplers",
1496 shader_names[i]);
1497 }
1498
1499 if (sh->num_uniform_components > max_uniform_components[i]) {
1500 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1501 linker_warning(prog, "Too many %s shader uniform components, "
1502 "but the driver will try to optimize them out; "
1503 "this is non-portable out-of-spec behavior\n",
1504 shader_names[i]);
1505 } else {
1506 linker_error(prog, "Too many %s shader uniform components",
1507 shader_names[i]);
1508 }
1509 }
1510 }
1511
1512 unsigned blocks[MESA_SHADER_TYPES] = {0};
1513 unsigned total_uniform_blocks = 0;
1514
1515 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
1516 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1517 if (prog->UniformBlockStageIndex[j][i] != -1) {
1518 blocks[j]++;
1519 total_uniform_blocks++;
1520 }
1521 }
1522
1523 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
1524 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
1525 prog->NumUniformBlocks,
1526 ctx->Const.MaxCombinedUniformBlocks);
1527 } else {
1528 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1529 if (blocks[i] > max_uniform_blocks[i]) {
1530 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
1531 shader_names[i],
1532 blocks[i],
1533 max_uniform_blocks[i]);
1534 break;
1535 }
1536 }
1537 }
1538 }
1539
1540 return prog->LinkStatus;
1541 }
1542
1543 void
1544 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1545 {
1546 tfeedback_decl *tfeedback_decls = NULL;
1547 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
1548
1549 void *mem_ctx = ralloc_context(NULL); // temporary linker context
1550
1551 prog->LinkStatus = false;
1552 prog->Validated = false;
1553 prog->_Used = false;
1554
1555 ralloc_free(prog->InfoLog);
1556 prog->InfoLog = ralloc_strdup(NULL, "");
1557
1558 ralloc_free(prog->UniformBlocks);
1559 prog->UniformBlocks = NULL;
1560 prog->NumUniformBlocks = 0;
1561 for (int i = 0; i < MESA_SHADER_TYPES; i++) {
1562 ralloc_free(prog->UniformBlockStageIndex[i]);
1563 prog->UniformBlockStageIndex[i] = NULL;
1564 }
1565
1566 /* Separate the shaders into groups based on their type.
1567 */
1568 struct gl_shader **vert_shader_list;
1569 unsigned num_vert_shaders = 0;
1570 struct gl_shader **frag_shader_list;
1571 unsigned num_frag_shaders = 0;
1572
1573 vert_shader_list = (struct gl_shader **)
1574 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1575 frag_shader_list = &vert_shader_list[prog->NumShaders];
1576
1577 unsigned min_version = UINT_MAX;
1578 unsigned max_version = 0;
1579 const bool is_es_prog =
1580 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
1581 for (unsigned i = 0; i < prog->NumShaders; i++) {
1582 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1583 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1584
1585 if (prog->Shaders[i]->IsES != is_es_prog) {
1586 linker_error(prog, "all shaders must use same shading "
1587 "language version\n");
1588 goto done;
1589 }
1590
1591 switch (prog->Shaders[i]->Type) {
1592 case GL_VERTEX_SHADER:
1593 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1594 num_vert_shaders++;
1595 break;
1596 case GL_FRAGMENT_SHADER:
1597 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1598 num_frag_shaders++;
1599 break;
1600 case GL_GEOMETRY_SHADER:
1601 /* FINISHME: Support geometry shaders. */
1602 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1603 break;
1604 }
1605 }
1606
1607 /* Previous to GLSL version 1.30, different compilation units could mix and
1608 * match shading language versions. With GLSL 1.30 and later, the versions
1609 * of all shaders must match.
1610 *
1611 * GLSL ES has never allowed mixing of shading language versions.
1612 */
1613 if ((is_es_prog || max_version >= 130)
1614 && min_version != max_version) {
1615 linker_error(prog, "all shaders must use same shading "
1616 "language version\n");
1617 goto done;
1618 }
1619
1620 prog->Version = max_version;
1621 prog->IsES = is_es_prog;
1622
1623 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1624 if (prog->_LinkedShaders[i] != NULL)
1625 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1626
1627 prog->_LinkedShaders[i] = NULL;
1628 }
1629
1630 /* Link all shaders for a particular stage and validate the result.
1631 */
1632 if (num_vert_shaders > 0) {
1633 gl_shader *const sh =
1634 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1635 num_vert_shaders);
1636
1637 if (sh == NULL)
1638 goto done;
1639
1640 if (!validate_vertex_shader_executable(prog, sh))
1641 goto done;
1642
1643 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1644 sh);
1645 }
1646
1647 if (num_frag_shaders > 0) {
1648 gl_shader *const sh =
1649 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1650 num_frag_shaders);
1651
1652 if (sh == NULL)
1653 goto done;
1654
1655 if (!validate_fragment_shader_executable(prog, sh))
1656 goto done;
1657
1658 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1659 sh);
1660 }
1661
1662 /* Here begins the inter-stage linking phase. Some initial validation is
1663 * performed, then locations are assigned for uniforms, attributes, and
1664 * varyings.
1665 */
1666 if (cross_validate_uniforms(prog)) {
1667 unsigned prev;
1668
1669 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1670 if (prog->_LinkedShaders[prev] != NULL)
1671 break;
1672 }
1673
1674 /* Validate the inputs of each stage with the output of the preceding
1675 * stage.
1676 */
1677 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1678 if (prog->_LinkedShaders[i] == NULL)
1679 continue;
1680
1681 if (!cross_validate_outputs_to_inputs(prog,
1682 prog->_LinkedShaders[prev],
1683 prog->_LinkedShaders[i]))
1684 goto done;
1685
1686 prev = i;
1687 }
1688
1689 prog->LinkStatus = true;
1690 }
1691
1692 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
1693 * it before optimization because we want most of the checks to get
1694 * dropped thanks to constant propagation.
1695 *
1696 * This rule also applies to GLSL ES 3.00.
1697 */
1698 if (max_version >= (is_es_prog ? 300 : 130)) {
1699 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1700 if (sh) {
1701 lower_discard_flow(sh->ir);
1702 }
1703 }
1704
1705 if (!interstage_cross_validate_uniform_blocks(prog))
1706 goto done;
1707
1708 /* Do common optimization before assigning storage for attributes,
1709 * uniforms, and varyings. Later optimization could possibly make
1710 * some of that unused.
1711 */
1712 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1713 if (prog->_LinkedShaders[i] == NULL)
1714 continue;
1715
1716 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
1717 if (!prog->LinkStatus)
1718 goto done;
1719
1720 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
1721 lower_clip_distance(prog->_LinkedShaders[i]);
1722 }
1723
1724 unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
1725
1726 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll))
1727 ;
1728 }
1729
1730 /* Mark all generic shader inputs and outputs as unpaired. */
1731 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1732 link_invalidate_variable_locations(
1733 prog->_LinkedShaders[MESA_SHADER_VERTEX],
1734 VERT_ATTRIB_GENERIC0, VERT_RESULT_VAR0);
1735 }
1736 /* FINISHME: Geometry shaders not implemented yet */
1737 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1738 link_invalidate_variable_locations(
1739 prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1740 FRAG_ATTRIB_VAR0, FRAG_RESULT_DATA0);
1741 }
1742
1743 /* FINISHME: The value of the max_attribute_index parameter is
1744 * FINISHME: implementation dependent based on the value of
1745 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1746 * FINISHME: at least 16, so hardcode 16 for now.
1747 */
1748 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
1749 goto done;
1750 }
1751
1752 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
1753 goto done;
1754 }
1755
1756 unsigned prev;
1757 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1758 if (prog->_LinkedShaders[prev] != NULL)
1759 break;
1760 }
1761
1762 if (num_tfeedback_decls != 0) {
1763 /* From GL_EXT_transform_feedback:
1764 * A program will fail to link if:
1765 *
1766 * * the <count> specified by TransformFeedbackVaryingsEXT is
1767 * non-zero, but the program object has no vertex or geometry
1768 * shader;
1769 */
1770 if (prev >= MESA_SHADER_FRAGMENT) {
1771 linker_error(prog, "Transform feedback varyings specified, but "
1772 "no vertex or geometry shader is present.");
1773 goto done;
1774 }
1775
1776 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
1777 prog->TransformFeedback.NumVarying);
1778 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
1779 prog->TransformFeedback.VaryingNames,
1780 tfeedback_decls))
1781 goto done;
1782 }
1783
1784 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1785 if (prog->_LinkedShaders[i] == NULL)
1786 continue;
1787
1788 if (!assign_varying_locations(
1789 ctx, mem_ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
1790 i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
1791 tfeedback_decls))
1792 goto done;
1793
1794 prev = i;
1795 }
1796
1797 if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
1798 /* There was no fragment shader, but we still have to assign varying
1799 * locations for use by transform feedback.
1800 */
1801 if (!assign_varying_locations(
1802 ctx, mem_ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
1803 tfeedback_decls))
1804 goto done;
1805 }
1806
1807 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
1808 goto done;
1809
1810 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1811 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1812 ir_var_out);
1813
1814 /* Eliminate code that is now dead due to unused vertex outputs being
1815 * demoted.
1816 */
1817 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
1818 ;
1819 }
1820
1821 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1822 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1823
1824 demote_shader_inputs_and_outputs(sh, ir_var_in);
1825 demote_shader_inputs_and_outputs(sh, ir_var_inout);
1826 demote_shader_inputs_and_outputs(sh, ir_var_out);
1827
1828 /* Eliminate code that is now dead due to unused geometry outputs being
1829 * demoted.
1830 */
1831 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
1832 ;
1833 }
1834
1835 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1836 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1837
1838 demote_shader_inputs_and_outputs(sh, ir_var_in);
1839
1840 /* Eliminate code that is now dead due to unused fragment inputs being
1841 * demoted. This shouldn't actually do anything other than remove
1842 * declarations of the (now unused) global variables.
1843 */
1844 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
1845 ;
1846 }
1847
1848 update_array_sizes(prog);
1849 link_assign_uniform_locations(prog);
1850 store_fragdepth_layout(prog);
1851
1852 if (!check_resources(ctx, prog))
1853 goto done;
1854
1855 /* OpenGL ES requires that a vertex shader and a fragment shader both be
1856 * present in a linked program. By checking prog->IsES, we also
1857 * catch the GL_ARB_ES2_compatibility case.
1858 */
1859 if (!prog->InternalSeparateShader &&
1860 (ctx->API == API_OPENGLES2 || prog->IsES)) {
1861 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
1862 linker_error(prog, "program lacks a vertex shader\n");
1863 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1864 linker_error(prog, "program lacks a fragment shader\n");
1865 }
1866 }
1867
1868 /* FINISHME: Assign fragment shader output locations. */
1869
1870 done:
1871 free(vert_shader_list);
1872
1873 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1874 if (prog->_LinkedShaders[i] == NULL)
1875 continue;
1876
1877 /* Retain any live IR, but trash the rest. */
1878 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1879
1880 /* The symbol table in the linked shaders may contain references to
1881 * variables that were removed (e.g., unused uniforms). Since it may
1882 * contain junk, there is no possible valid use. Delete it and set the
1883 * pointer to NULL.
1884 */
1885 delete prog->_LinkedShaders[i]->symbols;
1886 prog->_LinkedShaders[i]->symbols = NULL;
1887 }
1888
1889 ralloc_free(mem_ctx);
1890 }