7689198b066db229d7330e122bd589ac834f2ecf
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77 #include "ir_uniform.h"
78
79 extern "C" {
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82 }
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->element_type(),
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->element_type();
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 } /* anonymous namespace */
350
351 void
352 linker_error(gl_shader_program *prog, const char *fmt, ...)
353 {
354 va_list ap;
355
356 ralloc_strcat(&prog->InfoLog, "error: ");
357 va_start(ap, fmt);
358 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
359 va_end(ap);
360
361 prog->LinkStatus = false;
362 }
363
364
365 void
366 linker_warning(gl_shader_program *prog, const char *fmt, ...)
367 {
368 va_list ap;
369
370 ralloc_strcat(&prog->InfoLog, "warning: ");
371 va_start(ap, fmt);
372 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
373 va_end(ap);
374
375 }
376
377
378 /**
379 * Given a string identifying a program resource, break it into a base name
380 * and an optional array index in square brackets.
381 *
382 * If an array index is present, \c out_base_name_end is set to point to the
383 * "[" that precedes the array index, and the array index itself is returned
384 * as a long.
385 *
386 * If no array index is present (or if the array index is negative or
387 * mal-formed), \c out_base_name_end, is set to point to the null terminator
388 * at the end of the input string, and -1 is returned.
389 *
390 * Only the final array index is parsed; if the string contains other array
391 * indices (or structure field accesses), they are left in the base name.
392 *
393 * No attempt is made to check that the base name is properly formed;
394 * typically the caller will look up the base name in a hash table, so
395 * ill-formed base names simply turn into hash table lookup failures.
396 */
397 long
398 parse_program_resource_name(const GLchar *name,
399 const GLchar **out_base_name_end)
400 {
401 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
402 *
403 * "When an integer array element or block instance number is part of
404 * the name string, it will be specified in decimal form without a "+"
405 * or "-" sign or any extra leading zeroes. Additionally, the name
406 * string will not include white space anywhere in the string."
407 */
408
409 const size_t len = strlen(name);
410 *out_base_name_end = name + len;
411
412 if (len == 0 || name[len-1] != ']')
413 return -1;
414
415 /* Walk backwards over the string looking for a non-digit character. This
416 * had better be the opening bracket for an array index.
417 *
418 * Initially, i specifies the location of the ']'. Since the string may
419 * contain only the ']' charcater, walk backwards very carefully.
420 */
421 unsigned i;
422 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
423 /* empty */ ;
424
425 if ((i == 0) || name[i-1] != '[')
426 return -1;
427
428 long array_index = strtol(&name[i], NULL, 10);
429 if (array_index < 0)
430 return -1;
431
432 *out_base_name_end = name + (i - 1);
433 return array_index;
434 }
435
436
437 void
438 link_invalidate_variable_locations(exec_list *ir)
439 {
440 foreach_in_list(ir_instruction, node, ir) {
441 ir_variable *const var = node->as_variable();
442
443 if (var == NULL)
444 continue;
445
446 /* Only assign locations for variables that lack an explicit location.
447 * Explicit locations are set for all built-in variables, generic vertex
448 * shader inputs (via layout(location=...)), and generic fragment shader
449 * outputs (also via layout(location=...)).
450 */
451 if (!var->data.explicit_location) {
452 var->data.location = -1;
453 var->data.location_frac = 0;
454 }
455
456 /* ir_variable::is_unmatched_generic_inout is used by the linker while
457 * connecting outputs from one stage to inputs of the next stage.
458 *
459 * There are two implicit assumptions here. First, we assume that any
460 * built-in variable (i.e., non-generic in or out) will have
461 * explicit_location set. Second, we assume that any generic in or out
462 * will not have explicit_location set.
463 *
464 * This second assumption will only be valid until
465 * GL_ARB_separate_shader_objects is supported. When that extension is
466 * implemented, this function will need some modifications.
467 */
468 if (!var->data.explicit_location) {
469 var->data.is_unmatched_generic_inout = 1;
470 } else {
471 var->data.is_unmatched_generic_inout = 0;
472 }
473 }
474 }
475
476
477 /**
478 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
479 *
480 * Also check for errors based on incorrect usage of gl_ClipVertex and
481 * gl_ClipDistance.
482 *
483 * Return false if an error was reported.
484 */
485 static void
486 analyze_clip_usage(struct gl_shader_program *prog,
487 struct gl_shader *shader, GLboolean *UsesClipDistance,
488 GLuint *ClipDistanceArraySize)
489 {
490 *ClipDistanceArraySize = 0;
491
492 if (!prog->IsES && prog->Version >= 130) {
493 /* From section 7.1 (Vertex Shader Special Variables) of the
494 * GLSL 1.30 spec:
495 *
496 * "It is an error for a shader to statically write both
497 * gl_ClipVertex and gl_ClipDistance."
498 *
499 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
500 * gl_ClipVertex nor gl_ClipDistance.
501 */
502 find_assignment_visitor clip_vertex("gl_ClipVertex");
503 find_assignment_visitor clip_distance("gl_ClipDistance");
504
505 clip_vertex.run(shader->ir);
506 clip_distance.run(shader->ir);
507 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
508 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
509 "and `gl_ClipDistance'\n",
510 _mesa_shader_stage_to_string(shader->Stage));
511 return;
512 }
513 *UsesClipDistance = clip_distance.variable_found();
514 ir_variable *clip_distance_var =
515 shader->symbols->get_variable("gl_ClipDistance");
516 if (clip_distance_var)
517 *ClipDistanceArraySize = clip_distance_var->type->length;
518 } else {
519 *UsesClipDistance = false;
520 }
521 }
522
523
524 /**
525 * Verify that a vertex shader executable meets all semantic requirements.
526 *
527 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
528 * as a side effect.
529 *
530 * \param shader Vertex shader executable to be verified
531 */
532 void
533 validate_vertex_shader_executable(struct gl_shader_program *prog,
534 struct gl_shader *shader)
535 {
536 if (shader == NULL)
537 return;
538
539 /* From the GLSL 1.10 spec, page 48:
540 *
541 * "The variable gl_Position is available only in the vertex
542 * language and is intended for writing the homogeneous vertex
543 * position. All executions of a well-formed vertex shader
544 * executable must write a value into this variable. [...] The
545 * variable gl_Position is available only in the vertex
546 * language and is intended for writing the homogeneous vertex
547 * position. All executions of a well-formed vertex shader
548 * executable must write a value into this variable."
549 *
550 * while in GLSL 1.40 this text is changed to:
551 *
552 * "The variable gl_Position is available only in the vertex
553 * language and is intended for writing the homogeneous vertex
554 * position. It can be written at any time during shader
555 * execution. It may also be read back by a vertex shader
556 * after being written. This value will be used by primitive
557 * assembly, clipping, culling, and other fixed functionality
558 * operations, if present, that operate on primitives after
559 * vertex processing has occurred. Its value is undefined if
560 * the vertex shader executable does not write gl_Position."
561 *
562 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
563 * gl_Position is not an error.
564 */
565 if (prog->Version < (prog->IsES ? 300 : 140)) {
566 find_assignment_visitor find("gl_Position");
567 find.run(shader->ir);
568 if (!find.variable_found()) {
569 if (prog->IsES) {
570 linker_warning(prog,
571 "vertex shader does not write to `gl_Position'."
572 "It's value is undefined. \n");
573 } else {
574 linker_error(prog,
575 "vertex shader does not write to `gl_Position'. \n");
576 }
577 return;
578 }
579 }
580
581 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
582 &prog->Vert.ClipDistanceArraySize);
583 }
584
585
586 /**
587 * Verify that a fragment shader executable meets all semantic requirements
588 *
589 * \param shader Fragment shader executable to be verified
590 */
591 void
592 validate_fragment_shader_executable(struct gl_shader_program *prog,
593 struct gl_shader *shader)
594 {
595 if (shader == NULL)
596 return;
597
598 find_assignment_visitor frag_color("gl_FragColor");
599 find_assignment_visitor frag_data("gl_FragData");
600
601 frag_color.run(shader->ir);
602 frag_data.run(shader->ir);
603
604 if (frag_color.variable_found() && frag_data.variable_found()) {
605 linker_error(prog, "fragment shader writes to both "
606 "`gl_FragColor' and `gl_FragData'\n");
607 }
608 }
609
610 /**
611 * Verify that a geometry shader executable meets all semantic requirements
612 *
613 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
614 * prog->Geom.ClipDistanceArraySize as a side effect.
615 *
616 * \param shader Geometry shader executable to be verified
617 */
618 void
619 validate_geometry_shader_executable(struct gl_shader_program *prog,
620 struct gl_shader *shader)
621 {
622 if (shader == NULL)
623 return;
624
625 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
626 prog->Geom.VerticesIn = num_vertices;
627
628 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
629 &prog->Geom.ClipDistanceArraySize);
630 }
631
632 /**
633 * Check if geometry shaders emit to non-zero streams and do corresponding
634 * validations.
635 */
636 static void
637 validate_geometry_shader_emissions(struct gl_context *ctx,
638 struct gl_shader_program *prog)
639 {
640 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
641 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
642 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
643 if (emit_vertex.error()) {
644 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
645 "stream parameter are in the range [0, %d].",
646 emit_vertex.error_func(),
647 emit_vertex.error_stream(),
648 ctx->Const.MaxVertexStreams - 1);
649 }
650 prog->Geom.UsesStreams = emit_vertex.uses_streams();
651 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
652
653 /* From the ARB_gpu_shader5 spec:
654 *
655 * "Multiple vertex streams are supported only if the output primitive
656 * type is declared to be "points". A program will fail to link if it
657 * contains a geometry shader calling EmitStreamVertex() or
658 * EndStreamPrimitive() if its output primitive type is not "points".
659 *
660 * However, in the same spec:
661 *
662 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
663 * with <stream> set to zero."
664 *
665 * And:
666 *
667 * "The function EndPrimitive() is equivalent to calling
668 * EndStreamPrimitive() with <stream> set to zero."
669 *
670 * Since we can call EmitVertex() and EndPrimitive() when we output
671 * primitives other than points, calling EmitStreamVertex(0) or
672 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
673 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
674 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
675 * stream.
676 */
677 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
678 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
679 "with n>0 requires point output");
680 }
681 }
682 }
683
684
685 /**
686 * Perform validation of global variables used across multiple shaders
687 */
688 void
689 cross_validate_globals(struct gl_shader_program *prog,
690 struct gl_shader **shader_list,
691 unsigned num_shaders,
692 bool uniforms_only)
693 {
694 /* Examine all of the uniforms in all of the shaders and cross validate
695 * them.
696 */
697 glsl_symbol_table variables;
698 for (unsigned i = 0; i < num_shaders; i++) {
699 if (shader_list[i] == NULL)
700 continue;
701
702 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
703 ir_variable *const var = node->as_variable();
704
705 if (var == NULL)
706 continue;
707
708 if (uniforms_only && (var->data.mode != ir_var_uniform))
709 continue;
710
711 /* Don't cross validate temporaries that are at global scope. These
712 * will eventually get pulled into the shaders 'main'.
713 */
714 if (var->data.mode == ir_var_temporary)
715 continue;
716
717 /* If a global with this name has already been seen, verify that the
718 * new instance has the same type. In addition, if the globals have
719 * initializers, the values of the initializers must be the same.
720 */
721 ir_variable *const existing = variables.get_variable(var->name);
722 if (existing != NULL) {
723 if (var->type != existing->type) {
724 /* Consider the types to be "the same" if both types are arrays
725 * of the same type and one of the arrays is implicitly sized.
726 * In addition, set the type of the linked variable to the
727 * explicitly sized array.
728 */
729 if (var->type->is_array()
730 && existing->type->is_array()
731 && (var->type->fields.array == existing->type->fields.array)
732 && ((var->type->length == 0)
733 || (existing->type->length == 0))) {
734 if (var->type->length != 0) {
735 existing->type = var->type;
736 }
737 } else if (var->type->is_record()
738 && existing->type->is_record()
739 && existing->type->record_compare(var->type)) {
740 existing->type = var->type;
741 } else {
742 linker_error(prog, "%s `%s' declared as type "
743 "`%s' and type `%s'\n",
744 mode_string(var),
745 var->name, var->type->name,
746 existing->type->name);
747 return;
748 }
749 }
750
751 if (var->data.explicit_location) {
752 if (existing->data.explicit_location
753 && (var->data.location != existing->data.location)) {
754 linker_error(prog, "explicit locations for %s "
755 "`%s' have differing values\n",
756 mode_string(var), var->name);
757 return;
758 }
759
760 existing->data.location = var->data.location;
761 existing->data.explicit_location = true;
762 }
763
764 /* From the GLSL 4.20 specification:
765 * "A link error will result if two compilation units in a program
766 * specify different integer-constant bindings for the same
767 * opaque-uniform name. However, it is not an error to specify a
768 * binding on some but not all declarations for the same name"
769 */
770 if (var->data.explicit_binding) {
771 if (existing->data.explicit_binding &&
772 var->data.binding != existing->data.binding) {
773 linker_error(prog, "explicit bindings for %s "
774 "`%s' have differing values\n",
775 mode_string(var), var->name);
776 return;
777 }
778
779 existing->data.binding = var->data.binding;
780 existing->data.explicit_binding = true;
781 }
782
783 if (var->type->contains_atomic() &&
784 var->data.atomic.offset != existing->data.atomic.offset) {
785 linker_error(prog, "offset specifications for %s "
786 "`%s' have differing values\n",
787 mode_string(var), var->name);
788 return;
789 }
790
791 /* Validate layout qualifiers for gl_FragDepth.
792 *
793 * From the AMD/ARB_conservative_depth specs:
794 *
795 * "If gl_FragDepth is redeclared in any fragment shader in a
796 * program, it must be redeclared in all fragment shaders in
797 * that program that have static assignments to
798 * gl_FragDepth. All redeclarations of gl_FragDepth in all
799 * fragment shaders in a single program must have the same set
800 * of qualifiers."
801 */
802 if (strcmp(var->name, "gl_FragDepth") == 0) {
803 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
804 bool layout_differs =
805 var->data.depth_layout != existing->data.depth_layout;
806
807 if (layout_declared && layout_differs) {
808 linker_error(prog,
809 "All redeclarations of gl_FragDepth in all "
810 "fragment shaders in a single program must have "
811 "the same set of qualifiers.");
812 }
813
814 if (var->data.used && layout_differs) {
815 linker_error(prog,
816 "If gl_FragDepth is redeclared with a layout "
817 "qualifier in any fragment shader, it must be "
818 "redeclared with the same layout qualifier in "
819 "all fragment shaders that have assignments to "
820 "gl_FragDepth");
821 }
822 }
823
824 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
825 *
826 * "If a shared global has multiple initializers, the
827 * initializers must all be constant expressions, and they
828 * must all have the same value. Otherwise, a link error will
829 * result. (A shared global having only one initializer does
830 * not require that initializer to be a constant expression.)"
831 *
832 * Previous to 4.20 the GLSL spec simply said that initializers
833 * must have the same value. In this case of non-constant
834 * initializers, this was impossible to determine. As a result,
835 * no vendor actually implemented that behavior. The 4.20
836 * behavior matches the implemented behavior of at least one other
837 * vendor, so we'll implement that for all GLSL versions.
838 */
839 if (var->constant_initializer != NULL) {
840 if (existing->constant_initializer != NULL) {
841 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
842 linker_error(prog, "initializers for %s "
843 "`%s' have differing values\n",
844 mode_string(var), var->name);
845 return;
846 }
847 } else {
848 /* If the first-seen instance of a particular uniform did not
849 * have an initializer but a later instance does, copy the
850 * initializer to the version stored in the symbol table.
851 */
852 /* FINISHME: This is wrong. The constant_value field should
853 * FINISHME: not be modified! Imagine a case where a shader
854 * FINISHME: without an initializer is linked in two different
855 * FINISHME: programs with shaders that have differing
856 * FINISHME: initializers. Linking with the first will
857 * FINISHME: modify the shader, and linking with the second
858 * FINISHME: will fail.
859 */
860 existing->constant_initializer =
861 var->constant_initializer->clone(ralloc_parent(existing),
862 NULL);
863 }
864 }
865
866 if (var->data.has_initializer) {
867 if (existing->data.has_initializer
868 && (var->constant_initializer == NULL
869 || existing->constant_initializer == NULL)) {
870 linker_error(prog,
871 "shared global variable `%s' has multiple "
872 "non-constant initializers.\n",
873 var->name);
874 return;
875 }
876
877 /* Some instance had an initializer, so keep track of that. In
878 * this location, all sorts of initializers (constant or
879 * otherwise) will propagate the existence to the variable
880 * stored in the symbol table.
881 */
882 existing->data.has_initializer = true;
883 }
884
885 if (existing->data.invariant != var->data.invariant) {
886 linker_error(prog, "declarations for %s `%s' have "
887 "mismatching invariant qualifiers\n",
888 mode_string(var), var->name);
889 return;
890 }
891 if (existing->data.centroid != var->data.centroid) {
892 linker_error(prog, "declarations for %s `%s' have "
893 "mismatching centroid qualifiers\n",
894 mode_string(var), var->name);
895 return;
896 }
897 if (existing->data.sample != var->data.sample) {
898 linker_error(prog, "declarations for %s `%s` have "
899 "mismatching sample qualifiers\n",
900 mode_string(var), var->name);
901 return;
902 }
903 } else
904 variables.add_variable(var);
905 }
906 }
907 }
908
909
910 /**
911 * Perform validation of uniforms used across multiple shader stages
912 */
913 void
914 cross_validate_uniforms(struct gl_shader_program *prog)
915 {
916 cross_validate_globals(prog, prog->_LinkedShaders,
917 MESA_SHADER_STAGES, true);
918 }
919
920 /**
921 * Accumulates the array of prog->UniformBlocks and checks that all
922 * definitons of blocks agree on their contents.
923 */
924 static bool
925 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
926 {
927 unsigned max_num_uniform_blocks = 0;
928 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
929 if (prog->_LinkedShaders[i])
930 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
931 }
932
933 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
934 struct gl_shader *sh = prog->_LinkedShaders[i];
935
936 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
937 max_num_uniform_blocks);
938 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
939 prog->UniformBlockStageIndex[i][j] = -1;
940
941 if (sh == NULL)
942 continue;
943
944 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
945 int index = link_cross_validate_uniform_block(prog,
946 &prog->UniformBlocks,
947 &prog->NumUniformBlocks,
948 &sh->UniformBlocks[j]);
949
950 if (index == -1) {
951 linker_error(prog, "uniform block `%s' has mismatching definitions",
952 sh->UniformBlocks[j].Name);
953 return false;
954 }
955
956 prog->UniformBlockStageIndex[i][index] = j;
957 }
958 }
959
960 return true;
961 }
962
963
964 /**
965 * Populates a shaders symbol table with all global declarations
966 */
967 static void
968 populate_symbol_table(gl_shader *sh)
969 {
970 sh->symbols = new(sh) glsl_symbol_table;
971
972 foreach_in_list(ir_instruction, inst, sh->ir) {
973 ir_variable *var;
974 ir_function *func;
975
976 if ((func = inst->as_function()) != NULL) {
977 sh->symbols->add_function(func);
978 } else if ((var = inst->as_variable()) != NULL) {
979 sh->symbols->add_variable(var);
980 }
981 }
982 }
983
984
985 /**
986 * Remap variables referenced in an instruction tree
987 *
988 * This is used when instruction trees are cloned from one shader and placed in
989 * another. These trees will contain references to \c ir_variable nodes that
990 * do not exist in the target shader. This function finds these \c ir_variable
991 * references and replaces the references with matching variables in the target
992 * shader.
993 *
994 * If there is no matching variable in the target shader, a clone of the
995 * \c ir_variable is made and added to the target shader. The new variable is
996 * added to \b both the instruction stream and the symbol table.
997 *
998 * \param inst IR tree that is to be processed.
999 * \param symbols Symbol table containing global scope symbols in the
1000 * linked shader.
1001 * \param instructions Instruction stream where new variable declarations
1002 * should be added.
1003 */
1004 void
1005 remap_variables(ir_instruction *inst, struct gl_shader *target,
1006 hash_table *temps)
1007 {
1008 class remap_visitor : public ir_hierarchical_visitor {
1009 public:
1010 remap_visitor(struct gl_shader *target,
1011 hash_table *temps)
1012 {
1013 this->target = target;
1014 this->symbols = target->symbols;
1015 this->instructions = target->ir;
1016 this->temps = temps;
1017 }
1018
1019 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1020 {
1021 if (ir->var->data.mode == ir_var_temporary) {
1022 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1023
1024 assert(var != NULL);
1025 ir->var = var;
1026 return visit_continue;
1027 }
1028
1029 ir_variable *const existing =
1030 this->symbols->get_variable(ir->var->name);
1031 if (existing != NULL)
1032 ir->var = existing;
1033 else {
1034 ir_variable *copy = ir->var->clone(this->target, NULL);
1035
1036 this->symbols->add_variable(copy);
1037 this->instructions->push_head(copy);
1038 ir->var = copy;
1039 }
1040
1041 return visit_continue;
1042 }
1043
1044 private:
1045 struct gl_shader *target;
1046 glsl_symbol_table *symbols;
1047 exec_list *instructions;
1048 hash_table *temps;
1049 };
1050
1051 remap_visitor v(target, temps);
1052
1053 inst->accept(&v);
1054 }
1055
1056
1057 /**
1058 * Move non-declarations from one instruction stream to another
1059 *
1060 * The intended usage pattern of this function is to pass the pointer to the
1061 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1062 * pointer) for \c last and \c false for \c make_copies on the first
1063 * call. Successive calls pass the return value of the previous call for
1064 * \c last and \c true for \c make_copies.
1065 *
1066 * \param instructions Source instruction stream
1067 * \param last Instruction after which new instructions should be
1068 * inserted in the target instruction stream
1069 * \param make_copies Flag selecting whether instructions in \c instructions
1070 * should be copied (via \c ir_instruction::clone) into the
1071 * target list or moved.
1072 *
1073 * \return
1074 * The new "last" instruction in the target instruction stream. This pointer
1075 * is suitable for use as the \c last parameter of a later call to this
1076 * function.
1077 */
1078 exec_node *
1079 move_non_declarations(exec_list *instructions, exec_node *last,
1080 bool make_copies, gl_shader *target)
1081 {
1082 hash_table *temps = NULL;
1083
1084 if (make_copies)
1085 temps = hash_table_ctor(0, hash_table_pointer_hash,
1086 hash_table_pointer_compare);
1087
1088 foreach_in_list_safe(ir_instruction, inst, instructions) {
1089 if (inst->as_function())
1090 continue;
1091
1092 ir_variable *var = inst->as_variable();
1093 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1094 continue;
1095
1096 assert(inst->as_assignment()
1097 || inst->as_call()
1098 || inst->as_if() /* for initializers with the ?: operator */
1099 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1100
1101 if (make_copies) {
1102 inst = inst->clone(target, NULL);
1103
1104 if (var != NULL)
1105 hash_table_insert(temps, inst, var);
1106 else
1107 remap_variables(inst, target, temps);
1108 } else {
1109 inst->remove();
1110 }
1111
1112 last->insert_after(inst);
1113 last = inst;
1114 }
1115
1116 if (make_copies)
1117 hash_table_dtor(temps);
1118
1119 return last;
1120 }
1121
1122 /**
1123 * Get the function signature for main from a shader
1124 */
1125 ir_function_signature *
1126 link_get_main_function_signature(gl_shader *sh)
1127 {
1128 ir_function *const f = sh->symbols->get_function("main");
1129 if (f != NULL) {
1130 exec_list void_parameters;
1131
1132 /* Look for the 'void main()' signature and ensure that it's defined.
1133 * This keeps the linker from accidentally pick a shader that just
1134 * contains a prototype for main.
1135 *
1136 * We don't have to check for multiple definitions of main (in multiple
1137 * shaders) because that would have already been caught above.
1138 */
1139 ir_function_signature *sig =
1140 f->matching_signature(NULL, &void_parameters, false);
1141 if ((sig != NULL) && sig->is_defined) {
1142 return sig;
1143 }
1144 }
1145
1146 return NULL;
1147 }
1148
1149
1150 /**
1151 * This class is only used in link_intrastage_shaders() below but declaring
1152 * it inside that function leads to compiler warnings with some versions of
1153 * gcc.
1154 */
1155 class array_sizing_visitor : public ir_hierarchical_visitor {
1156 public:
1157 array_sizing_visitor()
1158 : mem_ctx(ralloc_context(NULL)),
1159 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1160 hash_table_pointer_compare))
1161 {
1162 }
1163
1164 ~array_sizing_visitor()
1165 {
1166 hash_table_dtor(this->unnamed_interfaces);
1167 ralloc_free(this->mem_ctx);
1168 }
1169
1170 virtual ir_visitor_status visit(ir_variable *var)
1171 {
1172 fixup_type(&var->type, var->data.max_array_access);
1173 if (var->type->is_interface()) {
1174 if (interface_contains_unsized_arrays(var->type)) {
1175 const glsl_type *new_type =
1176 resize_interface_members(var->type, var->max_ifc_array_access);
1177 var->type = new_type;
1178 var->change_interface_type(new_type);
1179 }
1180 } else if (var->type->is_array() &&
1181 var->type->fields.array->is_interface()) {
1182 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1183 const glsl_type *new_type =
1184 resize_interface_members(var->type->fields.array,
1185 var->max_ifc_array_access);
1186 var->change_interface_type(new_type);
1187 var->type =
1188 glsl_type::get_array_instance(new_type, var->type->length);
1189 }
1190 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1191 /* Store a pointer to the variable in the unnamed_interfaces
1192 * hashtable.
1193 */
1194 ir_variable **interface_vars = (ir_variable **)
1195 hash_table_find(this->unnamed_interfaces, ifc_type);
1196 if (interface_vars == NULL) {
1197 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1198 ifc_type->length);
1199 hash_table_insert(this->unnamed_interfaces, interface_vars,
1200 ifc_type);
1201 }
1202 unsigned index = ifc_type->field_index(var->name);
1203 assert(index < ifc_type->length);
1204 assert(interface_vars[index] == NULL);
1205 interface_vars[index] = var;
1206 }
1207 return visit_continue;
1208 }
1209
1210 /**
1211 * For each unnamed interface block that was discovered while running the
1212 * visitor, adjust the interface type to reflect the newly assigned array
1213 * sizes, and fix up the ir_variable nodes to point to the new interface
1214 * type.
1215 */
1216 void fixup_unnamed_interface_types()
1217 {
1218 hash_table_call_foreach(this->unnamed_interfaces,
1219 fixup_unnamed_interface_type, NULL);
1220 }
1221
1222 private:
1223 /**
1224 * If the type pointed to by \c type represents an unsized array, replace
1225 * it with a sized array whose size is determined by max_array_access.
1226 */
1227 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1228 {
1229 if ((*type)->is_unsized_array()) {
1230 *type = glsl_type::get_array_instance((*type)->fields.array,
1231 max_array_access + 1);
1232 assert(*type != NULL);
1233 }
1234 }
1235
1236 /**
1237 * Determine whether the given interface type contains unsized arrays (if
1238 * it doesn't, array_sizing_visitor doesn't need to process it).
1239 */
1240 static bool interface_contains_unsized_arrays(const glsl_type *type)
1241 {
1242 for (unsigned i = 0; i < type->length; i++) {
1243 const glsl_type *elem_type = type->fields.structure[i].type;
1244 if (elem_type->is_unsized_array())
1245 return true;
1246 }
1247 return false;
1248 }
1249
1250 /**
1251 * Create a new interface type based on the given type, with unsized arrays
1252 * replaced by sized arrays whose size is determined by
1253 * max_ifc_array_access.
1254 */
1255 static const glsl_type *
1256 resize_interface_members(const glsl_type *type,
1257 const unsigned *max_ifc_array_access)
1258 {
1259 unsigned num_fields = type->length;
1260 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1261 memcpy(fields, type->fields.structure,
1262 num_fields * sizeof(*fields));
1263 for (unsigned i = 0; i < num_fields; i++) {
1264 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1265 }
1266 glsl_interface_packing packing =
1267 (glsl_interface_packing) type->interface_packing;
1268 const glsl_type *new_ifc_type =
1269 glsl_type::get_interface_instance(fields, num_fields,
1270 packing, type->name);
1271 delete [] fields;
1272 return new_ifc_type;
1273 }
1274
1275 static void fixup_unnamed_interface_type(const void *key, void *data,
1276 void *)
1277 {
1278 const glsl_type *ifc_type = (const glsl_type *) key;
1279 ir_variable **interface_vars = (ir_variable **) data;
1280 unsigned num_fields = ifc_type->length;
1281 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1282 memcpy(fields, ifc_type->fields.structure,
1283 num_fields * sizeof(*fields));
1284 bool interface_type_changed = false;
1285 for (unsigned i = 0; i < num_fields; i++) {
1286 if (interface_vars[i] != NULL &&
1287 fields[i].type != interface_vars[i]->type) {
1288 fields[i].type = interface_vars[i]->type;
1289 interface_type_changed = true;
1290 }
1291 }
1292 if (!interface_type_changed) {
1293 delete [] fields;
1294 return;
1295 }
1296 glsl_interface_packing packing =
1297 (glsl_interface_packing) ifc_type->interface_packing;
1298 const glsl_type *new_ifc_type =
1299 glsl_type::get_interface_instance(fields, num_fields, packing,
1300 ifc_type->name);
1301 delete [] fields;
1302 for (unsigned i = 0; i < num_fields; i++) {
1303 if (interface_vars[i] != NULL)
1304 interface_vars[i]->change_interface_type(new_ifc_type);
1305 }
1306 }
1307
1308 /**
1309 * Memory context used to allocate the data in \c unnamed_interfaces.
1310 */
1311 void *mem_ctx;
1312
1313 /**
1314 * Hash table from const glsl_type * to an array of ir_variable *'s
1315 * pointing to the ir_variables constituting each unnamed interface block.
1316 */
1317 hash_table *unnamed_interfaces;
1318 };
1319
1320 /**
1321 * Performs the cross-validation of layout qualifiers specified in
1322 * redeclaration of gl_FragCoord for the attached fragment shaders,
1323 * and propagates them to the linked FS and linked shader program.
1324 */
1325 static void
1326 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1327 struct gl_shader *linked_shader,
1328 struct gl_shader **shader_list,
1329 unsigned num_shaders)
1330 {
1331 linked_shader->redeclares_gl_fragcoord = false;
1332 linked_shader->uses_gl_fragcoord = false;
1333 linked_shader->origin_upper_left = false;
1334 linked_shader->pixel_center_integer = false;
1335
1336 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1337 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1338 return;
1339
1340 for (unsigned i = 0; i < num_shaders; i++) {
1341 struct gl_shader *shader = shader_list[i];
1342 /* From the GLSL 1.50 spec, page 39:
1343 *
1344 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1345 * it must be redeclared in all the fragment shaders in that program
1346 * that have a static use gl_FragCoord."
1347 *
1348 * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
1349 * gl_FragCoord with no layout qualifiers but the other one doesn't
1350 * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
1351 * should be a link error. But, generating link error for this case will
1352 * be a wrong behaviour which spec didn't intend to do and it could also
1353 * break some applications.
1354 */
1355 if ((linked_shader->redeclares_gl_fragcoord
1356 && !shader->redeclares_gl_fragcoord
1357 && shader->uses_gl_fragcoord
1358 && (linked_shader->origin_upper_left
1359 || linked_shader->pixel_center_integer))
1360 || (shader->redeclares_gl_fragcoord
1361 && !linked_shader->redeclares_gl_fragcoord
1362 && linked_shader->uses_gl_fragcoord
1363 && (shader->origin_upper_left
1364 || shader->pixel_center_integer))) {
1365 linker_error(prog, "fragment shader defined with conflicting "
1366 "layout qualifiers for gl_FragCoord\n");
1367 }
1368
1369 /* From the GLSL 1.50 spec, page 39:
1370 *
1371 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1372 * single program must have the same set of qualifiers."
1373 */
1374 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1375 && (shader->origin_upper_left != linked_shader->origin_upper_left
1376 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1377 linker_error(prog, "fragment shader defined with conflicting "
1378 "layout qualifiers for gl_FragCoord\n");
1379 }
1380
1381 /* Update the linked shader state.  Note that uses_gl_fragcoord should
1382 * accumulate the results.  The other values should replace.  If there
1383 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1384 * are already known to be the same.
1385 */
1386 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1387 linked_shader->redeclares_gl_fragcoord =
1388 shader->redeclares_gl_fragcoord;
1389 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1390 || shader->uses_gl_fragcoord;
1391 linked_shader->origin_upper_left = shader->origin_upper_left;
1392 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1393 }
1394 }
1395 }
1396
1397 /**
1398 * Performs the cross-validation of geometry shader max_vertices and
1399 * primitive type layout qualifiers for the attached geometry shaders,
1400 * and propagates them to the linked GS and linked shader program.
1401 */
1402 static void
1403 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1404 struct gl_shader *linked_shader,
1405 struct gl_shader **shader_list,
1406 unsigned num_shaders)
1407 {
1408 linked_shader->Geom.VerticesOut = 0;
1409 linked_shader->Geom.Invocations = 0;
1410 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1411 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1412
1413 /* No in/out qualifiers defined for anything but GLSL 1.50+
1414 * geometry shaders so far.
1415 */
1416 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1417 return;
1418
1419 /* From the GLSL 1.50 spec, page 46:
1420 *
1421 * "All geometry shader output layout declarations in a program
1422 * must declare the same layout and same value for
1423 * max_vertices. There must be at least one geometry output
1424 * layout declaration somewhere in a program, but not all
1425 * geometry shaders (compilation units) are required to
1426 * declare it."
1427 */
1428
1429 for (unsigned i = 0; i < num_shaders; i++) {
1430 struct gl_shader *shader = shader_list[i];
1431
1432 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1433 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1434 linked_shader->Geom.InputType != shader->Geom.InputType) {
1435 linker_error(prog, "geometry shader defined with conflicting "
1436 "input types\n");
1437 return;
1438 }
1439 linked_shader->Geom.InputType = shader->Geom.InputType;
1440 }
1441
1442 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1443 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1444 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1445 linker_error(prog, "geometry shader defined with conflicting "
1446 "output types\n");
1447 return;
1448 }
1449 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1450 }
1451
1452 if (shader->Geom.VerticesOut != 0) {
1453 if (linked_shader->Geom.VerticesOut != 0 &&
1454 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1455 linker_error(prog, "geometry shader defined with conflicting "
1456 "output vertex count (%d and %d)\n",
1457 linked_shader->Geom.VerticesOut,
1458 shader->Geom.VerticesOut);
1459 return;
1460 }
1461 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1462 }
1463
1464 if (shader->Geom.Invocations != 0) {
1465 if (linked_shader->Geom.Invocations != 0 &&
1466 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1467 linker_error(prog, "geometry shader defined with conflicting "
1468 "invocation count (%d and %d)\n",
1469 linked_shader->Geom.Invocations,
1470 shader->Geom.Invocations);
1471 return;
1472 }
1473 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1474 }
1475 }
1476
1477 /* Just do the intrastage -> interstage propagation right now,
1478 * since we already know we're in the right type of shader program
1479 * for doing it.
1480 */
1481 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1482 linker_error(prog,
1483 "geometry shader didn't declare primitive input type\n");
1484 return;
1485 }
1486 prog->Geom.InputType = linked_shader->Geom.InputType;
1487
1488 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1489 linker_error(prog,
1490 "geometry shader didn't declare primitive output type\n");
1491 return;
1492 }
1493 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1494
1495 if (linked_shader->Geom.VerticesOut == 0) {
1496 linker_error(prog,
1497 "geometry shader didn't declare max_vertices\n");
1498 return;
1499 }
1500 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1501
1502 if (linked_shader->Geom.Invocations == 0)
1503 linked_shader->Geom.Invocations = 1;
1504
1505 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1506 }
1507
1508
1509 /**
1510 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1511 * qualifiers for the attached compute shaders, and propagate them to the
1512 * linked CS and linked shader program.
1513 */
1514 static void
1515 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1516 struct gl_shader *linked_shader,
1517 struct gl_shader **shader_list,
1518 unsigned num_shaders)
1519 {
1520 for (int i = 0; i < 3; i++)
1521 linked_shader->Comp.LocalSize[i] = 0;
1522
1523 /* This function is called for all shader stages, but it only has an effect
1524 * for compute shaders.
1525 */
1526 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1527 return;
1528
1529 /* From the ARB_compute_shader spec, in the section describing local size
1530 * declarations:
1531 *
1532 * If multiple compute shaders attached to a single program object
1533 * declare local work-group size, the declarations must be identical;
1534 * otherwise a link-time error results. Furthermore, if a program
1535 * object contains any compute shaders, at least one must contain an
1536 * input layout qualifier specifying the local work sizes of the
1537 * program, or a link-time error will occur.
1538 */
1539 for (unsigned sh = 0; sh < num_shaders; sh++) {
1540 struct gl_shader *shader = shader_list[sh];
1541
1542 if (shader->Comp.LocalSize[0] != 0) {
1543 if (linked_shader->Comp.LocalSize[0] != 0) {
1544 for (int i = 0; i < 3; i++) {
1545 if (linked_shader->Comp.LocalSize[i] !=
1546 shader->Comp.LocalSize[i]) {
1547 linker_error(prog, "compute shader defined with conflicting "
1548 "local sizes\n");
1549 return;
1550 }
1551 }
1552 }
1553 for (int i = 0; i < 3; i++)
1554 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1555 }
1556 }
1557
1558 /* Just do the intrastage -> interstage propagation right now,
1559 * since we already know we're in the right type of shader program
1560 * for doing it.
1561 */
1562 if (linked_shader->Comp.LocalSize[0] == 0) {
1563 linker_error(prog, "compute shader didn't declare local size\n");
1564 return;
1565 }
1566 for (int i = 0; i < 3; i++)
1567 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1568 }
1569
1570
1571 /**
1572 * Combine a group of shaders for a single stage to generate a linked shader
1573 *
1574 * \note
1575 * If this function is supplied a single shader, it is cloned, and the new
1576 * shader is returned.
1577 */
1578 static struct gl_shader *
1579 link_intrastage_shaders(void *mem_ctx,
1580 struct gl_context *ctx,
1581 struct gl_shader_program *prog,
1582 struct gl_shader **shader_list,
1583 unsigned num_shaders)
1584 {
1585 struct gl_uniform_block *uniform_blocks = NULL;
1586
1587 /* Check that global variables defined in multiple shaders are consistent.
1588 */
1589 cross_validate_globals(prog, shader_list, num_shaders, false);
1590 if (!prog->LinkStatus)
1591 return NULL;
1592
1593 /* Check that interface blocks defined in multiple shaders are consistent.
1594 */
1595 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1596 num_shaders);
1597 if (!prog->LinkStatus)
1598 return NULL;
1599
1600 /* Link up uniform blocks defined within this stage. */
1601 const unsigned num_uniform_blocks =
1602 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1603 &uniform_blocks);
1604 if (!prog->LinkStatus)
1605 return NULL;
1606
1607 /* Check that there is only a single definition of each function signature
1608 * across all shaders.
1609 */
1610 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1611 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1612 ir_function *const f = node->as_function();
1613
1614 if (f == NULL)
1615 continue;
1616
1617 for (unsigned j = i + 1; j < num_shaders; j++) {
1618 ir_function *const other =
1619 shader_list[j]->symbols->get_function(f->name);
1620
1621 /* If the other shader has no function (and therefore no function
1622 * signatures) with the same name, skip to the next shader.
1623 */
1624 if (other == NULL)
1625 continue;
1626
1627 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1628 if (!sig->is_defined || sig->is_builtin())
1629 continue;
1630
1631 ir_function_signature *other_sig =
1632 other->exact_matching_signature(NULL, &sig->parameters);
1633
1634 if ((other_sig != NULL) && other_sig->is_defined
1635 && !other_sig->is_builtin()) {
1636 linker_error(prog, "function `%s' is multiply defined",
1637 f->name);
1638 return NULL;
1639 }
1640 }
1641 }
1642 }
1643 }
1644
1645 /* Find the shader that defines main, and make a clone of it.
1646 *
1647 * Starting with the clone, search for undefined references. If one is
1648 * found, find the shader that defines it. Clone the reference and add
1649 * it to the shader. Repeat until there are no undefined references or
1650 * until a reference cannot be resolved.
1651 */
1652 gl_shader *main = NULL;
1653 for (unsigned i = 0; i < num_shaders; i++) {
1654 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1655 main = shader_list[i];
1656 break;
1657 }
1658 }
1659
1660 if (main == NULL) {
1661 linker_error(prog, "%s shader lacks `main'\n",
1662 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1663 return NULL;
1664 }
1665
1666 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1667 linked->ir = new(linked) exec_list;
1668 clone_ir_list(mem_ctx, linked->ir, main->ir);
1669
1670 linked->UniformBlocks = uniform_blocks;
1671 linked->NumUniformBlocks = num_uniform_blocks;
1672 ralloc_steal(linked, linked->UniformBlocks);
1673
1674 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1675 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1676 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1677
1678 populate_symbol_table(linked);
1679
1680 /* The a pointer to the main function in the final linked shader (i.e., the
1681 * copy of the original shader that contained the main function).
1682 */
1683 ir_function_signature *const main_sig =
1684 link_get_main_function_signature(linked);
1685
1686 /* Move any instructions other than variable declarations or function
1687 * declarations into main.
1688 */
1689 exec_node *insertion_point =
1690 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1691 linked);
1692
1693 for (unsigned i = 0; i < num_shaders; i++) {
1694 if (shader_list[i] == main)
1695 continue;
1696
1697 insertion_point = move_non_declarations(shader_list[i]->ir,
1698 insertion_point, true, linked);
1699 }
1700
1701 /* Check if any shader needs built-in functions. */
1702 bool need_builtins = false;
1703 for (unsigned i = 0; i < num_shaders; i++) {
1704 if (shader_list[i]->uses_builtin_functions) {
1705 need_builtins = true;
1706 break;
1707 }
1708 }
1709
1710 bool ok;
1711 if (need_builtins) {
1712 /* Make a temporary array one larger than shader_list, which will hold
1713 * the built-in function shader as well.
1714 */
1715 gl_shader **linking_shaders = (gl_shader **)
1716 calloc(num_shaders + 1, sizeof(gl_shader *));
1717 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1718 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1719
1720 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1721
1722 free(linking_shaders);
1723 } else {
1724 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1725 }
1726
1727
1728 if (!ok) {
1729 ctx->Driver.DeleteShader(ctx, linked);
1730 return NULL;
1731 }
1732
1733 /* At this point linked should contain all of the linked IR, so
1734 * validate it to make sure nothing went wrong.
1735 */
1736 validate_ir_tree(linked->ir);
1737
1738 /* Set the size of geometry shader input arrays */
1739 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1740 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1741 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1742 foreach_in_list(ir_instruction, ir, linked->ir) {
1743 ir->accept(&input_resize_visitor);
1744 }
1745 }
1746
1747 if (ctx->Const.VertexID_is_zero_based)
1748 lower_vertex_id(linked);
1749
1750 /* Make a pass over all variable declarations to ensure that arrays with
1751 * unspecified sizes have a size specified. The size is inferred from the
1752 * max_array_access field.
1753 */
1754 array_sizing_visitor v;
1755 v.run(linked->ir);
1756 v.fixup_unnamed_interface_types();
1757
1758 return linked;
1759 }
1760
1761 /**
1762 * Update the sizes of linked shader uniform arrays to the maximum
1763 * array index used.
1764 *
1765 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1766 *
1767 * If one or more elements of an array are active,
1768 * GetActiveUniform will return the name of the array in name,
1769 * subject to the restrictions listed above. The type of the array
1770 * is returned in type. The size parameter contains the highest
1771 * array element index used, plus one. The compiler or linker
1772 * determines the highest index used. There will be only one
1773 * active uniform reported by the GL per uniform array.
1774
1775 */
1776 static void
1777 update_array_sizes(struct gl_shader_program *prog)
1778 {
1779 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1780 if (prog->_LinkedShaders[i] == NULL)
1781 continue;
1782
1783 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1784 ir_variable *const var = node->as_variable();
1785
1786 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1787 !var->type->is_array())
1788 continue;
1789
1790 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1791 * will not be eliminated. Since we always do std140, just
1792 * don't resize arrays in UBOs.
1793 *
1794 * Atomic counters are supposed to get deterministic
1795 * locations assigned based on the declaration ordering and
1796 * sizes, array compaction would mess that up.
1797 */
1798 if (var->is_in_uniform_block() || var->type->contains_atomic())
1799 continue;
1800
1801 unsigned int size = var->data.max_array_access;
1802 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1803 if (prog->_LinkedShaders[j] == NULL)
1804 continue;
1805
1806 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1807 ir_variable *other_var = node2->as_variable();
1808 if (!other_var)
1809 continue;
1810
1811 if (strcmp(var->name, other_var->name) == 0 &&
1812 other_var->data.max_array_access > size) {
1813 size = other_var->data.max_array_access;
1814 }
1815 }
1816 }
1817
1818 if (size + 1 != var->type->length) {
1819 /* If this is a built-in uniform (i.e., it's backed by some
1820 * fixed-function state), adjust the number of state slots to
1821 * match the new array size. The number of slots per array entry
1822 * is not known. It seems safe to assume that the total number of
1823 * slots is an integer multiple of the number of array elements.
1824 * Determine the number of slots per array element by dividing by
1825 * the old (total) size.
1826 */
1827 if (var->num_state_slots > 0) {
1828 var->num_state_slots = (size + 1)
1829 * (var->num_state_slots / var->type->length);
1830 }
1831
1832 var->type = glsl_type::get_array_instance(var->type->fields.array,
1833 size + 1);
1834 /* FINISHME: We should update the types of array
1835 * dereferences of this variable now.
1836 */
1837 }
1838 }
1839 }
1840 }
1841
1842 /**
1843 * Find a contiguous set of available bits in a bitmask.
1844 *
1845 * \param used_mask Bits representing used (1) and unused (0) locations
1846 * \param needed_count Number of contiguous bits needed.
1847 *
1848 * \return
1849 * Base location of the available bits on success or -1 on failure.
1850 */
1851 int
1852 find_available_slots(unsigned used_mask, unsigned needed_count)
1853 {
1854 unsigned needed_mask = (1 << needed_count) - 1;
1855 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1856
1857 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1858 * cannot optimize possibly infinite loops" for the loop below.
1859 */
1860 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1861 return -1;
1862
1863 for (int i = 0; i <= max_bit_to_test; i++) {
1864 if ((needed_mask & ~used_mask) == needed_mask)
1865 return i;
1866
1867 needed_mask <<= 1;
1868 }
1869
1870 return -1;
1871 }
1872
1873
1874 /**
1875 * Assign locations for either VS inputs for FS outputs
1876 *
1877 * \param prog Shader program whose variables need locations assigned
1878 * \param target_index Selector for the program target to receive location
1879 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1880 * \c MESA_SHADER_FRAGMENT.
1881 * \param max_index Maximum number of generic locations. This corresponds
1882 * to either the maximum number of draw buffers or the
1883 * maximum number of generic attributes.
1884 *
1885 * \return
1886 * If locations are successfully assigned, true is returned. Otherwise an
1887 * error is emitted to the shader link log and false is returned.
1888 */
1889 bool
1890 assign_attribute_or_color_locations(gl_shader_program *prog,
1891 unsigned target_index,
1892 unsigned max_index)
1893 {
1894 /* Mark invalid locations as being used.
1895 */
1896 unsigned used_locations = (max_index >= 32)
1897 ? ~0 : ~((1 << max_index) - 1);
1898
1899 assert((target_index == MESA_SHADER_VERTEX)
1900 || (target_index == MESA_SHADER_FRAGMENT));
1901
1902 gl_shader *const sh = prog->_LinkedShaders[target_index];
1903 if (sh == NULL)
1904 return true;
1905
1906 /* Operate in a total of four passes.
1907 *
1908 * 1. Invalidate the location assignments for all vertex shader inputs.
1909 *
1910 * 2. Assign locations for inputs that have user-defined (via
1911 * glBindVertexAttribLocation) locations and outputs that have
1912 * user-defined locations (via glBindFragDataLocation).
1913 *
1914 * 3. Sort the attributes without assigned locations by number of slots
1915 * required in decreasing order. Fragmentation caused by attribute
1916 * locations assigned by the application may prevent large attributes
1917 * from having enough contiguous space.
1918 *
1919 * 4. Assign locations to any inputs without assigned locations.
1920 */
1921
1922 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1923 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1924
1925 const enum ir_variable_mode direction =
1926 (target_index == MESA_SHADER_VERTEX)
1927 ? ir_var_shader_in : ir_var_shader_out;
1928
1929
1930 /* Temporary storage for the set of attributes that need locations assigned.
1931 */
1932 struct temp_attr {
1933 unsigned slots;
1934 ir_variable *var;
1935
1936 /* Used below in the call to qsort. */
1937 static int compare(const void *a, const void *b)
1938 {
1939 const temp_attr *const l = (const temp_attr *) a;
1940 const temp_attr *const r = (const temp_attr *) b;
1941
1942 /* Reversed because we want a descending order sort below. */
1943 return r->slots - l->slots;
1944 }
1945 } to_assign[16];
1946
1947 unsigned num_attr = 0;
1948
1949 foreach_in_list(ir_instruction, node, sh->ir) {
1950 ir_variable *const var = node->as_variable();
1951
1952 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1953 continue;
1954
1955 if (var->data.explicit_location) {
1956 if ((var->data.location >= (int)(max_index + generic_base))
1957 || (var->data.location < 0)) {
1958 linker_error(prog,
1959 "invalid explicit location %d specified for `%s'\n",
1960 (var->data.location < 0)
1961 ? var->data.location
1962 : var->data.location - generic_base,
1963 var->name);
1964 return false;
1965 }
1966 } else if (target_index == MESA_SHADER_VERTEX) {
1967 unsigned binding;
1968
1969 if (prog->AttributeBindings->get(binding, var->name)) {
1970 assert(binding >= VERT_ATTRIB_GENERIC0);
1971 var->data.location = binding;
1972 var->data.is_unmatched_generic_inout = 0;
1973 }
1974 } else if (target_index == MESA_SHADER_FRAGMENT) {
1975 unsigned binding;
1976 unsigned index;
1977
1978 if (prog->FragDataBindings->get(binding, var->name)) {
1979 assert(binding >= FRAG_RESULT_DATA0);
1980 var->data.location = binding;
1981 var->data.is_unmatched_generic_inout = 0;
1982
1983 if (prog->FragDataIndexBindings->get(index, var->name)) {
1984 var->data.index = index;
1985 }
1986 }
1987 }
1988
1989 /* If the variable is not a built-in and has a location statically
1990 * assigned in the shader (presumably via a layout qualifier), make sure
1991 * that it doesn't collide with other assigned locations. Otherwise,
1992 * add it to the list of variables that need linker-assigned locations.
1993 */
1994 const unsigned slots = var->type->count_attribute_slots();
1995 if (var->data.location != -1) {
1996 if (var->data.location >= generic_base && var->data.index < 1) {
1997 /* From page 61 of the OpenGL 4.0 spec:
1998 *
1999 * "LinkProgram will fail if the attribute bindings assigned
2000 * by BindAttribLocation do not leave not enough space to
2001 * assign a location for an active matrix attribute or an
2002 * active attribute array, both of which require multiple
2003 * contiguous generic attributes."
2004 *
2005 * I think above text prohibits the aliasing of explicit and
2006 * automatic assignments. But, aliasing is allowed in manual
2007 * assignments of attribute locations. See below comments for
2008 * the details.
2009 *
2010 * From OpenGL 4.0 spec, page 61:
2011 *
2012 * "It is possible for an application to bind more than one
2013 * attribute name to the same location. This is referred to as
2014 * aliasing. This will only work if only one of the aliased
2015 * attributes is active in the executable program, or if no
2016 * path through the shader consumes more than one attribute of
2017 * a set of attributes aliased to the same location. A link
2018 * error can occur if the linker determines that every path
2019 * through the shader consumes multiple aliased attributes,
2020 * but implementations are not required to generate an error
2021 * in this case."
2022 *
2023 * From GLSL 4.30 spec, page 54:
2024 *
2025 * "A program will fail to link if any two non-vertex shader
2026 * input variables are assigned to the same location. For
2027 * vertex shaders, multiple input variables may be assigned
2028 * to the same location using either layout qualifiers or via
2029 * the OpenGL API. However, such aliasing is intended only to
2030 * support vertex shaders where each execution path accesses
2031 * at most one input per each location. Implementations are
2032 * permitted, but not required, to generate link-time errors
2033 * if they detect that every path through the vertex shader
2034 * executable accesses multiple inputs assigned to any single
2035 * location. For all shader types, a program will fail to link
2036 * if explicit location assignments leave the linker unable
2037 * to find space for other variables without explicit
2038 * assignments."
2039 *
2040 * From OpenGL ES 3.0 spec, page 56:
2041 *
2042 * "Binding more than one attribute name to the same location
2043 * is referred to as aliasing, and is not permitted in OpenGL
2044 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2045 * fail when this condition exists. However, aliasing is
2046 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2047 * This will only work if only one of the aliased attributes
2048 * is active in the executable program, or if no path through
2049 * the shader consumes more than one attribute of a set of
2050 * attributes aliased to the same location. A link error can
2051 * occur if the linker determines that every path through the
2052 * shader consumes multiple aliased attributes, but implemen-
2053 * tations are not required to generate an error in this case."
2054 *
2055 * After looking at above references from OpenGL, OpenGL ES and
2056 * GLSL specifications, we allow aliasing of vertex input variables
2057 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2058 *
2059 * NOTE: This is not required by the spec but its worth mentioning
2060 * here that we're not doing anything to make sure that no path
2061 * through the vertex shader executable accesses multiple inputs
2062 * assigned to any single location.
2063 */
2064
2065 /* Mask representing the contiguous slots that will be used by
2066 * this attribute.
2067 */
2068 const unsigned attr = var->data.location - generic_base;
2069 const unsigned use_mask = (1 << slots) - 1;
2070 const char *const string = (target_index == MESA_SHADER_VERTEX)
2071 ? "vertex shader input" : "fragment shader output";
2072
2073 /* Generate a link error if the requested locations for this
2074 * attribute exceed the maximum allowed attribute location.
2075 */
2076 if (attr + slots > max_index) {
2077 linker_error(prog,
2078 "insufficient contiguous locations "
2079 "available for %s `%s' %d %d %d", string,
2080 var->name, used_locations, use_mask, attr);
2081 return false;
2082 }
2083
2084 /* Generate a link error if the set of bits requested for this
2085 * attribute overlaps any previously allocated bits.
2086 */
2087 if ((~(use_mask << attr) & used_locations) != used_locations) {
2088 if (target_index == MESA_SHADER_FRAGMENT ||
2089 (prog->IsES && prog->Version >= 300)) {
2090 linker_error(prog,
2091 "overlapping location is assigned "
2092 "to %s `%s' %d %d %d\n", string,
2093 var->name, used_locations, use_mask, attr);
2094 return false;
2095 } else {
2096 linker_warning(prog,
2097 "overlapping location is assigned "
2098 "to %s `%s' %d %d %d\n", string,
2099 var->name, used_locations, use_mask, attr);
2100 }
2101 }
2102
2103 used_locations |= (use_mask << attr);
2104 }
2105
2106 continue;
2107 }
2108
2109 to_assign[num_attr].slots = slots;
2110 to_assign[num_attr].var = var;
2111 num_attr++;
2112 }
2113
2114 /* If all of the attributes were assigned locations by the application (or
2115 * are built-in attributes with fixed locations), return early. This should
2116 * be the common case.
2117 */
2118 if (num_attr == 0)
2119 return true;
2120
2121 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2122
2123 if (target_index == MESA_SHADER_VERTEX) {
2124 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2125 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2126 * reserved to prevent it from being automatically allocated below.
2127 */
2128 find_deref_visitor find("gl_Vertex");
2129 find.run(sh->ir);
2130 if (find.variable_found())
2131 used_locations |= (1 << 0);
2132 }
2133
2134 for (unsigned i = 0; i < num_attr; i++) {
2135 /* Mask representing the contiguous slots that will be used by this
2136 * attribute.
2137 */
2138 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2139
2140 int location = find_available_slots(used_locations, to_assign[i].slots);
2141
2142 if (location < 0) {
2143 const char *const string = (target_index == MESA_SHADER_VERTEX)
2144 ? "vertex shader input" : "fragment shader output";
2145
2146 linker_error(prog,
2147 "insufficient contiguous locations "
2148 "available for %s `%s'",
2149 string, to_assign[i].var->name);
2150 return false;
2151 }
2152
2153 to_assign[i].var->data.location = generic_base + location;
2154 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2155 used_locations |= (use_mask << location);
2156 }
2157
2158 return true;
2159 }
2160
2161
2162 /**
2163 * Demote shader inputs and outputs that are not used in other stages
2164 */
2165 void
2166 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2167 {
2168 foreach_in_list(ir_instruction, node, sh->ir) {
2169 ir_variable *const var = node->as_variable();
2170
2171 if ((var == NULL) || (var->data.mode != int(mode)))
2172 continue;
2173
2174 /* A shader 'in' or 'out' variable is only really an input or output if
2175 * its value is used by other shader stages. This will cause the variable
2176 * to have a location assigned.
2177 */
2178 if (var->data.is_unmatched_generic_inout) {
2179 var->data.mode = ir_var_auto;
2180 }
2181 }
2182 }
2183
2184
2185 /**
2186 * Store the gl_FragDepth layout in the gl_shader_program struct.
2187 */
2188 static void
2189 store_fragdepth_layout(struct gl_shader_program *prog)
2190 {
2191 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2192 return;
2193 }
2194
2195 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2196
2197 /* We don't look up the gl_FragDepth symbol directly because if
2198 * gl_FragDepth is not used in the shader, it's removed from the IR.
2199 * However, the symbol won't be removed from the symbol table.
2200 *
2201 * We're only interested in the cases where the variable is NOT removed
2202 * from the IR.
2203 */
2204 foreach_in_list(ir_instruction, node, ir) {
2205 ir_variable *const var = node->as_variable();
2206
2207 if (var == NULL || var->data.mode != ir_var_shader_out) {
2208 continue;
2209 }
2210
2211 if (strcmp(var->name, "gl_FragDepth") == 0) {
2212 switch (var->data.depth_layout) {
2213 case ir_depth_layout_none:
2214 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2215 return;
2216 case ir_depth_layout_any:
2217 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2218 return;
2219 case ir_depth_layout_greater:
2220 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2221 return;
2222 case ir_depth_layout_less:
2223 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2224 return;
2225 case ir_depth_layout_unchanged:
2226 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2227 return;
2228 default:
2229 assert(0);
2230 return;
2231 }
2232 }
2233 }
2234 }
2235
2236 /**
2237 * Validate the resources used by a program versus the implementation limits
2238 */
2239 static void
2240 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2241 {
2242 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2243 struct gl_shader *sh = prog->_LinkedShaders[i];
2244
2245 if (sh == NULL)
2246 continue;
2247
2248 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2249 linker_error(prog, "Too many %s shader texture samplers",
2250 _mesa_shader_stage_to_string(i));
2251 }
2252
2253 if (sh->num_uniform_components >
2254 ctx->Const.Program[i].MaxUniformComponents) {
2255 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2256 linker_warning(prog, "Too many %s shader default uniform block "
2257 "components, but the driver will try to optimize "
2258 "them out; this is non-portable out-of-spec "
2259 "behavior\n",
2260 _mesa_shader_stage_to_string(i));
2261 } else {
2262 linker_error(prog, "Too many %s shader default uniform block "
2263 "components",
2264 _mesa_shader_stage_to_string(i));
2265 }
2266 }
2267
2268 if (sh->num_combined_uniform_components >
2269 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2270 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2271 linker_warning(prog, "Too many %s shader uniform components, "
2272 "but the driver will try to optimize them out; "
2273 "this is non-portable out-of-spec behavior\n",
2274 _mesa_shader_stage_to_string(i));
2275 } else {
2276 linker_error(prog, "Too many %s shader uniform components",
2277 _mesa_shader_stage_to_string(i));
2278 }
2279 }
2280 }
2281
2282 unsigned blocks[MESA_SHADER_STAGES] = {0};
2283 unsigned total_uniform_blocks = 0;
2284
2285 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2286 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2287 if (prog->UniformBlockStageIndex[j][i] != -1) {
2288 blocks[j]++;
2289 total_uniform_blocks++;
2290 }
2291 }
2292
2293 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2294 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
2295 prog->NumUniformBlocks,
2296 ctx->Const.MaxCombinedUniformBlocks);
2297 } else {
2298 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2299 const unsigned max_uniform_blocks =
2300 ctx->Const.Program[i].MaxUniformBlocks;
2301 if (blocks[i] > max_uniform_blocks) {
2302 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
2303 _mesa_shader_stage_to_string(i),
2304 blocks[i],
2305 max_uniform_blocks);
2306 break;
2307 }
2308 }
2309 }
2310 }
2311 }
2312
2313 /**
2314 * Validate shader image resources.
2315 */
2316 static void
2317 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2318 {
2319 unsigned total_image_units = 0;
2320 unsigned fragment_outputs = 0;
2321
2322 if (!ctx->Extensions.ARB_shader_image_load_store)
2323 return;
2324
2325 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2326 struct gl_shader *sh = prog->_LinkedShaders[i];
2327
2328 if (sh) {
2329 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2330 linker_error(prog, "Too many %s shader image uniforms",
2331 _mesa_shader_stage_to_string(i));
2332
2333 total_image_units += sh->NumImages;
2334
2335 if (i == MESA_SHADER_FRAGMENT) {
2336 foreach_in_list(ir_instruction, node, sh->ir) {
2337 ir_variable *var = node->as_variable();
2338 if (var && var->data.mode == ir_var_shader_out)
2339 fragment_outputs += var->type->count_attribute_slots();
2340 }
2341 }
2342 }
2343 }
2344
2345 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2346 linker_error(prog, "Too many combined image uniforms");
2347
2348 if (total_image_units + fragment_outputs >
2349 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2350 linker_error(prog, "Too many combined image uniforms and fragment outputs");
2351 }
2352
2353
2354 /**
2355 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2356 * for a variable, checks for overlaps between other uniforms using explicit
2357 * locations.
2358 */
2359 static bool
2360 reserve_explicit_locations(struct gl_shader_program *prog,
2361 string_to_uint_map *map, ir_variable *var)
2362 {
2363 unsigned slots = var->type->uniform_locations();
2364 unsigned max_loc = var->data.location + slots - 1;
2365
2366 /* Resize remap table if locations do not fit in the current one. */
2367 if (max_loc + 1 > prog->NumUniformRemapTable) {
2368 prog->UniformRemapTable =
2369 reralloc(prog, prog->UniformRemapTable,
2370 gl_uniform_storage *,
2371 max_loc + 1);
2372
2373 if (!prog->UniformRemapTable) {
2374 linker_error(prog, "Out of memory during linking.");
2375 return false;
2376 }
2377
2378 /* Initialize allocated space. */
2379 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2380 prog->UniformRemapTable[i] = NULL;
2381
2382 prog->NumUniformRemapTable = max_loc + 1;
2383 }
2384
2385 for (unsigned i = 0; i < slots; i++) {
2386 unsigned loc = var->data.location + i;
2387
2388 /* Check if location is already used. */
2389 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2390
2391 /* Possibly same uniform from a different stage, this is ok. */
2392 unsigned hash_loc;
2393 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2394 continue;
2395
2396 /* ARB_explicit_uniform_location specification states:
2397 *
2398 * "No two default-block uniform variables in the program can have
2399 * the same location, even if they are unused, otherwise a compiler
2400 * or linker error will be generated."
2401 */
2402 linker_error(prog,
2403 "location qualifier for uniform %s overlaps"
2404 "previously used location",
2405 var->name);
2406 return false;
2407 }
2408
2409 /* Initialize location as inactive before optimization
2410 * rounds and location assignment.
2411 */
2412 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2413 }
2414
2415 /* Note, base location used for arrays. */
2416 map->put(var->data.location, var->name);
2417
2418 return true;
2419 }
2420
2421 /**
2422 * Check and reserve all explicit uniform locations, called before
2423 * any optimizations happen to handle also inactive uniforms and
2424 * inactive array elements that may get trimmed away.
2425 */
2426 static void
2427 check_explicit_uniform_locations(struct gl_context *ctx,
2428 struct gl_shader_program *prog)
2429 {
2430 if (!ctx->Extensions.ARB_explicit_uniform_location)
2431 return;
2432
2433 /* This map is used to detect if overlapping explicit locations
2434 * occur with the same uniform (from different stage) or a different one.
2435 */
2436 string_to_uint_map *uniform_map = new string_to_uint_map;
2437
2438 if (!uniform_map) {
2439 linker_error(prog, "Out of memory during linking.");
2440 return;
2441 }
2442
2443 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2444 struct gl_shader *sh = prog->_LinkedShaders[i];
2445
2446 if (!sh)
2447 continue;
2448
2449 foreach_in_list(ir_instruction, node, sh->ir) {
2450 ir_variable *var = node->as_variable();
2451 if ((var && var->data.mode == ir_var_uniform) &&
2452 var->data.explicit_location) {
2453 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2454 delete uniform_map;
2455 return;
2456 }
2457 }
2458 }
2459 }
2460
2461 delete uniform_map;
2462 }
2463
2464 void
2465 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2466 {
2467 tfeedback_decl *tfeedback_decls = NULL;
2468 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2469
2470 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2471
2472 prog->LinkStatus = true; /* All error paths will set this to false */
2473 prog->Validated = false;
2474 prog->_Used = false;
2475
2476 ralloc_free(prog->InfoLog);
2477 prog->InfoLog = ralloc_strdup(NULL, "");
2478
2479 ralloc_free(prog->UniformBlocks);
2480 prog->UniformBlocks = NULL;
2481 prog->NumUniformBlocks = 0;
2482 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2483 ralloc_free(prog->UniformBlockStageIndex[i]);
2484 prog->UniformBlockStageIndex[i] = NULL;
2485 }
2486
2487 ralloc_free(prog->AtomicBuffers);
2488 prog->AtomicBuffers = NULL;
2489 prog->NumAtomicBuffers = 0;
2490 prog->ARB_fragment_coord_conventions_enable = false;
2491
2492 /* Separate the shaders into groups based on their type.
2493 */
2494 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2495 unsigned num_shaders[MESA_SHADER_STAGES];
2496
2497 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2498 shader_list[i] = (struct gl_shader **)
2499 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2500 num_shaders[i] = 0;
2501 }
2502
2503 unsigned min_version = UINT_MAX;
2504 unsigned max_version = 0;
2505 const bool is_es_prog =
2506 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2507 for (unsigned i = 0; i < prog->NumShaders; i++) {
2508 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2509 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2510
2511 if (prog->Shaders[i]->IsES != is_es_prog) {
2512 linker_error(prog, "all shaders must use same shading "
2513 "language version\n");
2514 goto done;
2515 }
2516
2517 prog->ARB_fragment_coord_conventions_enable |=
2518 prog->Shaders[i]->ARB_fragment_coord_conventions_enable;
2519
2520 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2521 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2522 num_shaders[shader_type]++;
2523 }
2524
2525 /* In desktop GLSL, different shader versions may be linked together. In
2526 * GLSL ES, all shader versions must be the same.
2527 */
2528 if (is_es_prog && min_version != max_version) {
2529 linker_error(prog, "all shaders must use same shading "
2530 "language version\n");
2531 goto done;
2532 }
2533
2534 prog->Version = max_version;
2535 prog->IsES = is_es_prog;
2536
2537 /* Geometry shaders have to be linked with vertex shaders.
2538 */
2539 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2540 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2541 !prog->SeparateShader) {
2542 linker_error(prog, "Geometry shader must be linked with "
2543 "vertex shader\n");
2544 goto done;
2545 }
2546
2547 /* Compute shaders have additional restrictions. */
2548 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2549 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2550 linker_error(prog, "Compute shaders may not be linked with any other "
2551 "type of shader\n");
2552 }
2553
2554 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2555 if (prog->_LinkedShaders[i] != NULL)
2556 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2557
2558 prog->_LinkedShaders[i] = NULL;
2559 }
2560
2561 /* Link all shaders for a particular stage and validate the result.
2562 */
2563 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2564 if (num_shaders[stage] > 0) {
2565 gl_shader *const sh =
2566 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2567 num_shaders[stage]);
2568
2569 if (!prog->LinkStatus)
2570 goto done;
2571
2572 switch (stage) {
2573 case MESA_SHADER_VERTEX:
2574 validate_vertex_shader_executable(prog, sh);
2575 break;
2576 case MESA_SHADER_GEOMETRY:
2577 validate_geometry_shader_executable(prog, sh);
2578 break;
2579 case MESA_SHADER_FRAGMENT:
2580 validate_fragment_shader_executable(prog, sh);
2581 break;
2582 }
2583 if (!prog->LinkStatus)
2584 goto done;
2585
2586 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2587 }
2588 }
2589
2590 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2591 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2592 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2593 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2594 else
2595 prog->LastClipDistanceArraySize = 0; /* Not used */
2596
2597 /* Here begins the inter-stage linking phase. Some initial validation is
2598 * performed, then locations are assigned for uniforms, attributes, and
2599 * varyings.
2600 */
2601 cross_validate_uniforms(prog);
2602 if (!prog->LinkStatus)
2603 goto done;
2604
2605 unsigned prev;
2606
2607 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2608 if (prog->_LinkedShaders[prev] != NULL)
2609 break;
2610 }
2611
2612 check_explicit_uniform_locations(ctx, prog);
2613 if (!prog->LinkStatus)
2614 goto done;
2615
2616 /* Validate the inputs of each stage with the output of the preceding
2617 * stage.
2618 */
2619 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2620 if (prog->_LinkedShaders[i] == NULL)
2621 continue;
2622
2623 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2624 prog->_LinkedShaders[i]);
2625 if (!prog->LinkStatus)
2626 goto done;
2627
2628 cross_validate_outputs_to_inputs(prog,
2629 prog->_LinkedShaders[prev],
2630 prog->_LinkedShaders[i]);
2631 if (!prog->LinkStatus)
2632 goto done;
2633
2634 prev = i;
2635 }
2636
2637 /* Cross-validate uniform blocks between shader stages */
2638 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2639 MESA_SHADER_STAGES);
2640 if (!prog->LinkStatus)
2641 goto done;
2642
2643 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2644 if (prog->_LinkedShaders[i] != NULL)
2645 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2646 }
2647
2648 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2649 * it before optimization because we want most of the checks to get
2650 * dropped thanks to constant propagation.
2651 *
2652 * This rule also applies to GLSL ES 3.00.
2653 */
2654 if (max_version >= (is_es_prog ? 300 : 130)) {
2655 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2656 if (sh) {
2657 lower_discard_flow(sh->ir);
2658 }
2659 }
2660
2661 if (!interstage_cross_validate_uniform_blocks(prog))
2662 goto done;
2663
2664 /* Do common optimization before assigning storage for attributes,
2665 * uniforms, and varyings. Later optimization could possibly make
2666 * some of that unused.
2667 */
2668 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2669 if (prog->_LinkedShaders[i] == NULL)
2670 continue;
2671
2672 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2673 if (!prog->LinkStatus)
2674 goto done;
2675
2676 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
2677 lower_clip_distance(prog->_LinkedShaders[i]);
2678 }
2679
2680 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2681 &ctx->Const.ShaderCompilerOptions[i],
2682 ctx->Const.NativeIntegers))
2683 ;
2684 }
2685
2686 /* Check and validate stream emissions in geometry shaders */
2687 validate_geometry_shader_emissions(ctx, prog);
2688
2689 /* Mark all generic shader inputs and outputs as unpaired. */
2690 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2691 if (prog->_LinkedShaders[i] != NULL) {
2692 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2693 }
2694 }
2695
2696 /* FINISHME: The value of the max_attribute_index parameter is
2697 * FINISHME: implementation dependent based on the value of
2698 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2699 * FINISHME: at least 16, so hardcode 16 for now.
2700 */
2701 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2702 goto done;
2703 }
2704
2705 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2706 goto done;
2707 }
2708
2709 unsigned first;
2710 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2711 if (prog->_LinkedShaders[first] != NULL)
2712 break;
2713 }
2714
2715 if (num_tfeedback_decls != 0) {
2716 /* From GL_EXT_transform_feedback:
2717 * A program will fail to link if:
2718 *
2719 * * the <count> specified by TransformFeedbackVaryingsEXT is
2720 * non-zero, but the program object has no vertex or geometry
2721 * shader;
2722 */
2723 if (first == MESA_SHADER_FRAGMENT) {
2724 linker_error(prog, "Transform feedback varyings specified, but "
2725 "no vertex or geometry shader is present.");
2726 goto done;
2727 }
2728
2729 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2730 prog->TransformFeedback.NumVarying);
2731 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2732 prog->TransformFeedback.VaryingNames,
2733 tfeedback_decls))
2734 goto done;
2735 }
2736
2737 /* Linking the stages in the opposite order (from fragment to vertex)
2738 * ensures that inter-shader outputs written to in an earlier stage are
2739 * eliminated if they are (transitively) not used in a later stage.
2740 */
2741 int last, next;
2742 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2743 if (prog->_LinkedShaders[last] != NULL)
2744 break;
2745 }
2746
2747 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2748 gl_shader *const sh = prog->_LinkedShaders[last];
2749
2750 if (num_tfeedback_decls != 0 || prog->SeparateShader) {
2751 /* There was no fragment shader, but we still have to assign varying
2752 * locations for use by transform feedback.
2753 */
2754 if (!assign_varying_locations(ctx, mem_ctx, prog,
2755 sh, NULL,
2756 num_tfeedback_decls, tfeedback_decls,
2757 0))
2758 goto done;
2759 }
2760
2761 do_dead_builtin_varyings(ctx, sh, NULL,
2762 num_tfeedback_decls, tfeedback_decls);
2763
2764 if (!prog->SeparateShader)
2765 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2766
2767 /* Eliminate code that is now dead due to unused outputs being demoted.
2768 */
2769 while (do_dead_code(sh->ir, false))
2770 ;
2771 }
2772 else if (first == MESA_SHADER_FRAGMENT) {
2773 /* If the program only contains a fragment shader...
2774 */
2775 gl_shader *const sh = prog->_LinkedShaders[first];
2776
2777 do_dead_builtin_varyings(ctx, NULL, sh,
2778 num_tfeedback_decls, tfeedback_decls);
2779
2780 if (prog->SeparateShader) {
2781 if (!assign_varying_locations(ctx, mem_ctx, prog,
2782 NULL /* producer */,
2783 sh /* consumer */,
2784 0 /* num_tfeedback_decls */,
2785 NULL /* tfeedback_decls */,
2786 0 /* gs_input_vertices */))
2787 goto done;
2788 } else
2789 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2790
2791 while (do_dead_code(sh->ir, false))
2792 ;
2793 }
2794
2795 next = last;
2796 for (int i = next - 1; i >= 0; i--) {
2797 if (prog->_LinkedShaders[i] == NULL)
2798 continue;
2799
2800 gl_shader *const sh_i = prog->_LinkedShaders[i];
2801 gl_shader *const sh_next = prog->_LinkedShaders[next];
2802 unsigned gs_input_vertices =
2803 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2804
2805 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2806 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2807 tfeedback_decls, gs_input_vertices))
2808 goto done;
2809
2810 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2811 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2812 tfeedback_decls);
2813
2814 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2815 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2816
2817 /* Eliminate code that is now dead due to unused outputs being demoted.
2818 */
2819 while (do_dead_code(sh_i->ir, false))
2820 ;
2821 while (do_dead_code(sh_next->ir, false))
2822 ;
2823
2824 /* This must be done after all dead varyings are eliminated. */
2825 if (!check_against_output_limit(ctx, prog, sh_i))
2826 goto done;
2827 if (!check_against_input_limit(ctx, prog, sh_next))
2828 goto done;
2829
2830 next = i;
2831 }
2832
2833 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2834 goto done;
2835
2836 update_array_sizes(prog);
2837 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
2838 link_assign_atomic_counter_resources(ctx, prog);
2839 store_fragdepth_layout(prog);
2840
2841 check_resources(ctx, prog);
2842 check_image_resources(ctx, prog);
2843 link_check_atomic_counter_resources(ctx, prog);
2844
2845 if (!prog->LinkStatus)
2846 goto done;
2847
2848 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2849 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2850 * anything about shader linking when one of the shaders (vertex or
2851 * fragment shader) is absent. So, the extension shouldn't change the
2852 * behavior specified in GLSL specification.
2853 */
2854 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
2855 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2856 linker_error(prog, "program lacks a vertex shader\n");
2857 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2858 linker_error(prog, "program lacks a fragment shader\n");
2859 }
2860 }
2861
2862 /* FINISHME: Assign fragment shader output locations. */
2863
2864 done:
2865 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2866 free(shader_list[i]);
2867 if (prog->_LinkedShaders[i] == NULL)
2868 continue;
2869
2870 /* Do a final validation step to make sure that the IR wasn't
2871 * invalidated by any modifications performed after intrastage linking.
2872 */
2873 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2874
2875 /* Retain any live IR, but trash the rest. */
2876 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2877
2878 /* The symbol table in the linked shaders may contain references to
2879 * variables that were removed (e.g., unused uniforms). Since it may
2880 * contain junk, there is no possible valid use. Delete it and set the
2881 * pointer to NULL.
2882 */
2883 delete prog->_LinkedShaders[i]->symbols;
2884 prog->_LinkedShaders[i]->symbols = NULL;
2885 }
2886
2887 ralloc_free(mem_ctx);
2888 }