glsl: store read vector in a temp in vec_index_to_cond
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "ir_optimization.h"
74
75 extern "C" {
76 #include "main/shaderobj.h"
77 }
78
79 /**
80 * Visitor that determines whether or not a variable is ever written.
81 */
82 class find_assignment_visitor : public ir_hierarchical_visitor {
83 public:
84 find_assignment_visitor(const char *name)
85 : name(name), found(false)
86 {
87 /* empty */
88 }
89
90 virtual ir_visitor_status visit_enter(ir_assignment *ir)
91 {
92 ir_variable *const var = ir->lhs->variable_referenced();
93
94 if (strcmp(name, var->name) == 0) {
95 found = true;
96 return visit_stop;
97 }
98
99 return visit_continue_with_parent;
100 }
101
102 virtual ir_visitor_status visit_enter(ir_call *ir)
103 {
104 exec_list_iterator sig_iter = ir->callee->parameters.iterator();
105 foreach_iter(exec_list_iterator, iter, *ir) {
106 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
107 ir_variable *sig_param = (ir_variable *)sig_iter.get();
108
109 if (sig_param->mode == ir_var_out ||
110 sig_param->mode == ir_var_inout) {
111 ir_variable *var = param_rval->variable_referenced();
112 if (var && strcmp(name, var->name) == 0) {
113 found = true;
114 return visit_stop;
115 }
116 }
117 sig_iter.next();
118 }
119
120 if (ir->return_deref != NULL) {
121 ir_variable *const var = ir->return_deref->variable_referenced();
122
123 if (strcmp(name, var->name) == 0) {
124 found = true;
125 return visit_stop;
126 }
127 }
128
129 return visit_continue_with_parent;
130 }
131
132 bool variable_found()
133 {
134 return found;
135 }
136
137 private:
138 const char *name; /**< Find writes to a variable with this name. */
139 bool found; /**< Was a write to the variable found? */
140 };
141
142
143 /**
144 * Visitor that determines whether or not a variable is ever read.
145 */
146 class find_deref_visitor : public ir_hierarchical_visitor {
147 public:
148 find_deref_visitor(const char *name)
149 : name(name), found(false)
150 {
151 /* empty */
152 }
153
154 virtual ir_visitor_status visit(ir_dereference_variable *ir)
155 {
156 if (strcmp(this->name, ir->var->name) == 0) {
157 this->found = true;
158 return visit_stop;
159 }
160
161 return visit_continue;
162 }
163
164 bool variable_found() const
165 {
166 return this->found;
167 }
168
169 private:
170 const char *name; /**< Find writes to a variable with this name. */
171 bool found; /**< Was a write to the variable found? */
172 };
173
174
175 void
176 linker_error(gl_shader_program *prog, const char *fmt, ...)
177 {
178 va_list ap;
179
180 ralloc_strcat(&prog->InfoLog, "error: ");
181 va_start(ap, fmt);
182 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
183 va_end(ap);
184
185 prog->LinkStatus = false;
186 }
187
188
189 void
190 linker_warning(gl_shader_program *prog, const char *fmt, ...)
191 {
192 va_list ap;
193
194 ralloc_strcat(&prog->InfoLog, "error: ");
195 va_start(ap, fmt);
196 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
197 va_end(ap);
198
199 }
200
201
202 void
203 link_invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
204 int generic_base)
205 {
206 foreach_list(node, sh->ir) {
207 ir_variable *const var = ((ir_instruction *) node)->as_variable();
208
209 if ((var == NULL) || (var->mode != (unsigned) mode))
210 continue;
211
212 /* Only assign locations for generic attributes / varyings / etc.
213 */
214 if ((var->location >= generic_base) && !var->explicit_location)
215 var->location = -1;
216 }
217 }
218
219
220 /**
221 * Determine the number of attribute slots required for a particular type
222 *
223 * This code is here because it implements the language rules of a specific
224 * GLSL version. Since it's a property of the language and not a property of
225 * types in general, it doesn't really belong in glsl_type.
226 */
227 unsigned
228 count_attribute_slots(const glsl_type *t)
229 {
230 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
231 *
232 * "A scalar input counts the same amount against this limit as a vec4,
233 * so applications may want to consider packing groups of four
234 * unrelated float inputs together into a vector to better utilize the
235 * capabilities of the underlying hardware. A matrix input will use up
236 * multiple locations. The number of locations used will equal the
237 * number of columns in the matrix."
238 *
239 * The spec does not explicitly say how arrays are counted. However, it
240 * should be safe to assume the total number of slots consumed by an array
241 * is the number of entries in the array multiplied by the number of slots
242 * consumed by a single element of the array.
243 */
244
245 if (t->is_array())
246 return t->array_size() * count_attribute_slots(t->element_type());
247
248 if (t->is_matrix())
249 return t->matrix_columns;
250
251 return 1;
252 }
253
254
255 /**
256 * Verify that a vertex shader executable meets all semantic requirements.
257 *
258 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
259 * as a side effect.
260 *
261 * \param shader Vertex shader executable to be verified
262 */
263 bool
264 validate_vertex_shader_executable(struct gl_shader_program *prog,
265 struct gl_shader *shader)
266 {
267 if (shader == NULL)
268 return true;
269
270 /* From the GLSL 1.10 spec, page 48:
271 *
272 * "The variable gl_Position is available only in the vertex
273 * language and is intended for writing the homogeneous vertex
274 * position. All executions of a well-formed vertex shader
275 * executable must write a value into this variable. [...] The
276 * variable gl_Position is available only in the vertex
277 * language and is intended for writing the homogeneous vertex
278 * position. All executions of a well-formed vertex shader
279 * executable must write a value into this variable."
280 *
281 * while in GLSL 1.40 this text is changed to:
282 *
283 * "The variable gl_Position is available only in the vertex
284 * language and is intended for writing the homogeneous vertex
285 * position. It can be written at any time during shader
286 * execution. It may also be read back by a vertex shader
287 * after being written. This value will be used by primitive
288 * assembly, clipping, culling, and other fixed functionality
289 * operations, if present, that operate on primitives after
290 * vertex processing has occurred. Its value is undefined if
291 * the vertex shader executable does not write gl_Position."
292 */
293 if (prog->Version < 140) {
294 find_assignment_visitor find("gl_Position");
295 find.run(shader->ir);
296 if (!find.variable_found()) {
297 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
298 return false;
299 }
300 }
301
302 prog->Vert.ClipDistanceArraySize = 0;
303
304 if (prog->Version >= 130) {
305 /* From section 7.1 (Vertex Shader Special Variables) of the
306 * GLSL 1.30 spec:
307 *
308 * "It is an error for a shader to statically write both
309 * gl_ClipVertex and gl_ClipDistance."
310 */
311 find_assignment_visitor clip_vertex("gl_ClipVertex");
312 find_assignment_visitor clip_distance("gl_ClipDistance");
313
314 clip_vertex.run(shader->ir);
315 clip_distance.run(shader->ir);
316 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
317 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
318 "and `gl_ClipDistance'\n");
319 return false;
320 }
321 prog->Vert.UsesClipDistance = clip_distance.variable_found();
322 ir_variable *clip_distance_var =
323 shader->symbols->get_variable("gl_ClipDistance");
324 if (clip_distance_var)
325 prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length;
326 }
327
328 return true;
329 }
330
331
332 /**
333 * Verify that a fragment shader executable meets all semantic requirements
334 *
335 * \param shader Fragment shader executable to be verified
336 */
337 bool
338 validate_fragment_shader_executable(struct gl_shader_program *prog,
339 struct gl_shader *shader)
340 {
341 if (shader == NULL)
342 return true;
343
344 find_assignment_visitor frag_color("gl_FragColor");
345 find_assignment_visitor frag_data("gl_FragData");
346
347 frag_color.run(shader->ir);
348 frag_data.run(shader->ir);
349
350 if (frag_color.variable_found() && frag_data.variable_found()) {
351 linker_error(prog, "fragment shader writes to both "
352 "`gl_FragColor' and `gl_FragData'\n");
353 return false;
354 }
355
356 return true;
357 }
358
359
360 /**
361 * Generate a string describing the mode of a variable
362 */
363 static const char *
364 mode_string(const ir_variable *var)
365 {
366 switch (var->mode) {
367 case ir_var_auto:
368 return (var->read_only) ? "global constant" : "global variable";
369
370 case ir_var_uniform: return "uniform";
371 case ir_var_in: return "shader input";
372 case ir_var_out: return "shader output";
373 case ir_var_inout: return "shader inout";
374
375 case ir_var_const_in:
376 case ir_var_temporary:
377 default:
378 assert(!"Should not get here.");
379 return "invalid variable";
380 }
381 }
382
383
384 /**
385 * Perform validation of global variables used across multiple shaders
386 */
387 bool
388 cross_validate_globals(struct gl_shader_program *prog,
389 struct gl_shader **shader_list,
390 unsigned num_shaders,
391 bool uniforms_only)
392 {
393 /* Examine all of the uniforms in all of the shaders and cross validate
394 * them.
395 */
396 glsl_symbol_table variables;
397 for (unsigned i = 0; i < num_shaders; i++) {
398 if (shader_list[i] == NULL)
399 continue;
400
401 foreach_list(node, shader_list[i]->ir) {
402 ir_variable *const var = ((ir_instruction *) node)->as_variable();
403
404 if (var == NULL)
405 continue;
406
407 if (uniforms_only && (var->mode != ir_var_uniform))
408 continue;
409
410 /* Don't cross validate temporaries that are at global scope. These
411 * will eventually get pulled into the shaders 'main'.
412 */
413 if (var->mode == ir_var_temporary)
414 continue;
415
416 /* If a global with this name has already been seen, verify that the
417 * new instance has the same type. In addition, if the globals have
418 * initializers, the values of the initializers must be the same.
419 */
420 ir_variable *const existing = variables.get_variable(var->name);
421 if (existing != NULL) {
422 if (var->type != existing->type) {
423 /* Consider the types to be "the same" if both types are arrays
424 * of the same type and one of the arrays is implicitly sized.
425 * In addition, set the type of the linked variable to the
426 * explicitly sized array.
427 */
428 if (var->type->is_array()
429 && existing->type->is_array()
430 && (var->type->fields.array == existing->type->fields.array)
431 && ((var->type->length == 0)
432 || (existing->type->length == 0))) {
433 if (var->type->length != 0) {
434 existing->type = var->type;
435 }
436 } else {
437 linker_error(prog, "%s `%s' declared as type "
438 "`%s' and type `%s'\n",
439 mode_string(var),
440 var->name, var->type->name,
441 existing->type->name);
442 return false;
443 }
444 }
445
446 if (var->explicit_location) {
447 if (existing->explicit_location
448 && (var->location != existing->location)) {
449 linker_error(prog, "explicit locations for %s "
450 "`%s' have differing values\n",
451 mode_string(var), var->name);
452 return false;
453 }
454
455 existing->location = var->location;
456 existing->explicit_location = true;
457 }
458
459 /* Validate layout qualifiers for gl_FragDepth.
460 *
461 * From the AMD/ARB_conservative_depth specs:
462 *
463 * "If gl_FragDepth is redeclared in any fragment shader in a
464 * program, it must be redeclared in all fragment shaders in
465 * that program that have static assignments to
466 * gl_FragDepth. All redeclarations of gl_FragDepth in all
467 * fragment shaders in a single program must have the same set
468 * of qualifiers."
469 */
470 if (strcmp(var->name, "gl_FragDepth") == 0) {
471 bool layout_declared = var->depth_layout != ir_depth_layout_none;
472 bool layout_differs =
473 var->depth_layout != existing->depth_layout;
474
475 if (layout_declared && layout_differs) {
476 linker_error(prog,
477 "All redeclarations of gl_FragDepth in all "
478 "fragment shaders in a single program must have "
479 "the same set of qualifiers.");
480 }
481
482 if (var->used && layout_differs) {
483 linker_error(prog,
484 "If gl_FragDepth is redeclared with a layout "
485 "qualifier in any fragment shader, it must be "
486 "redeclared with the same layout qualifier in "
487 "all fragment shaders that have assignments to "
488 "gl_FragDepth");
489 }
490 }
491
492 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
493 *
494 * "If a shared global has multiple initializers, the
495 * initializers must all be constant expressions, and they
496 * must all have the same value. Otherwise, a link error will
497 * result. (A shared global having only one initializer does
498 * not require that initializer to be a constant expression.)"
499 *
500 * Previous to 4.20 the GLSL spec simply said that initializers
501 * must have the same value. In this case of non-constant
502 * initializers, this was impossible to determine. As a result,
503 * no vendor actually implemented that behavior. The 4.20
504 * behavior matches the implemented behavior of at least one other
505 * vendor, so we'll implement that for all GLSL versions.
506 */
507 if (var->constant_initializer != NULL) {
508 if (existing->constant_initializer != NULL) {
509 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
510 linker_error(prog, "initializers for %s "
511 "`%s' have differing values\n",
512 mode_string(var), var->name);
513 return false;
514 }
515 } else {
516 /* If the first-seen instance of a particular uniform did not
517 * have an initializer but a later instance does, copy the
518 * initializer to the version stored in the symbol table.
519 */
520 /* FINISHME: This is wrong. The constant_value field should
521 * FINISHME: not be modified! Imagine a case where a shader
522 * FINISHME: without an initializer is linked in two different
523 * FINISHME: programs with shaders that have differing
524 * FINISHME: initializers. Linking with the first will
525 * FINISHME: modify the shader, and linking with the second
526 * FINISHME: will fail.
527 */
528 existing->constant_initializer =
529 var->constant_initializer->clone(ralloc_parent(existing),
530 NULL);
531 }
532 }
533
534 if (var->has_initializer) {
535 if (existing->has_initializer
536 && (var->constant_initializer == NULL
537 || existing->constant_initializer == NULL)) {
538 linker_error(prog,
539 "shared global variable `%s' has multiple "
540 "non-constant initializers.\n",
541 var->name);
542 return false;
543 }
544
545 /* Some instance had an initializer, so keep track of that. In
546 * this location, all sorts of initializers (constant or
547 * otherwise) will propagate the existence to the variable
548 * stored in the symbol table.
549 */
550 existing->has_initializer = true;
551 }
552
553 if (existing->invariant != var->invariant) {
554 linker_error(prog, "declarations for %s `%s' have "
555 "mismatching invariant qualifiers\n",
556 mode_string(var), var->name);
557 return false;
558 }
559 if (existing->centroid != var->centroid) {
560 linker_error(prog, "declarations for %s `%s' have "
561 "mismatching centroid qualifiers\n",
562 mode_string(var), var->name);
563 return false;
564 }
565 } else
566 variables.add_variable(var);
567 }
568 }
569
570 return true;
571 }
572
573
574 /**
575 * Perform validation of uniforms used across multiple shader stages
576 */
577 bool
578 cross_validate_uniforms(struct gl_shader_program *prog)
579 {
580 return cross_validate_globals(prog, prog->_LinkedShaders,
581 MESA_SHADER_TYPES, true);
582 }
583
584 /**
585 * Accumulates the array of prog->UniformBlocks and checks that all
586 * definitons of blocks agree on their contents.
587 */
588 static bool
589 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
590 {
591 unsigned max_num_uniform_blocks = 0;
592 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
593 if (prog->_LinkedShaders[i])
594 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
595 }
596
597 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
598 struct gl_shader *sh = prog->_LinkedShaders[i];
599
600 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
601 max_num_uniform_blocks);
602 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
603 prog->UniformBlockStageIndex[i][j] = -1;
604
605 if (sh == NULL)
606 continue;
607
608 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
609 int index = link_cross_validate_uniform_block(prog,
610 &prog->UniformBlocks,
611 &prog->NumUniformBlocks,
612 &sh->UniformBlocks[j]);
613
614 if (index == -1) {
615 linker_error(prog, "uniform block `%s' has mismatching definitions",
616 sh->UniformBlocks[j].Name);
617 return false;
618 }
619
620 prog->UniformBlockStageIndex[i][index] = j;
621 }
622 }
623
624 return true;
625 }
626
627 /**
628 * Validate that outputs from one stage match inputs of another
629 */
630 bool
631 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
632 gl_shader *producer, gl_shader *consumer)
633 {
634 glsl_symbol_table parameters;
635 /* FINISHME: Figure these out dynamically. */
636 const char *const producer_stage = "vertex";
637 const char *const consumer_stage = "fragment";
638
639 /* Find all shader outputs in the "producer" stage.
640 */
641 foreach_list(node, producer->ir) {
642 ir_variable *const var = ((ir_instruction *) node)->as_variable();
643
644 /* FINISHME: For geometry shaders, this should also look for inout
645 * FINISHME: variables.
646 */
647 if ((var == NULL) || (var->mode != ir_var_out))
648 continue;
649
650 parameters.add_variable(var);
651 }
652
653
654 /* Find all shader inputs in the "consumer" stage. Any variables that have
655 * matching outputs already in the symbol table must have the same type and
656 * qualifiers.
657 */
658 foreach_list(node, consumer->ir) {
659 ir_variable *const input = ((ir_instruction *) node)->as_variable();
660
661 /* FINISHME: For geometry shaders, this should also look for inout
662 * FINISHME: variables.
663 */
664 if ((input == NULL) || (input->mode != ir_var_in))
665 continue;
666
667 ir_variable *const output = parameters.get_variable(input->name);
668 if (output != NULL) {
669 /* Check that the types match between stages.
670 */
671 if (input->type != output->type) {
672 /* There is a bit of a special case for gl_TexCoord. This
673 * built-in is unsized by default. Applications that variable
674 * access it must redeclare it with a size. There is some
675 * language in the GLSL spec that implies the fragment shader
676 * and vertex shader do not have to agree on this size. Other
677 * driver behave this way, and one or two applications seem to
678 * rely on it.
679 *
680 * Neither declaration needs to be modified here because the array
681 * sizes are fixed later when update_array_sizes is called.
682 *
683 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
684 *
685 * "Unlike user-defined varying variables, the built-in
686 * varying variables don't have a strict one-to-one
687 * correspondence between the vertex language and the
688 * fragment language."
689 */
690 if (!output->type->is_array()
691 || (strncmp("gl_", output->name, 3) != 0)) {
692 linker_error(prog,
693 "%s shader output `%s' declared as type `%s', "
694 "but %s shader input declared as type `%s'\n",
695 producer_stage, output->name,
696 output->type->name,
697 consumer_stage, input->type->name);
698 return false;
699 }
700 }
701
702 /* Check that all of the qualifiers match between stages.
703 */
704 if (input->centroid != output->centroid) {
705 linker_error(prog,
706 "%s shader output `%s' %s centroid qualifier, "
707 "but %s shader input %s centroid qualifier\n",
708 producer_stage,
709 output->name,
710 (output->centroid) ? "has" : "lacks",
711 consumer_stage,
712 (input->centroid) ? "has" : "lacks");
713 return false;
714 }
715
716 if (input->invariant != output->invariant) {
717 linker_error(prog,
718 "%s shader output `%s' %s invariant qualifier, "
719 "but %s shader input %s invariant qualifier\n",
720 producer_stage,
721 output->name,
722 (output->invariant) ? "has" : "lacks",
723 consumer_stage,
724 (input->invariant) ? "has" : "lacks");
725 return false;
726 }
727
728 if (input->interpolation != output->interpolation) {
729 linker_error(prog,
730 "%s shader output `%s' specifies %s "
731 "interpolation qualifier, "
732 "but %s shader input specifies %s "
733 "interpolation qualifier\n",
734 producer_stage,
735 output->name,
736 output->interpolation_string(),
737 consumer_stage,
738 input->interpolation_string());
739 return false;
740 }
741 }
742 }
743
744 return true;
745 }
746
747
748 /**
749 * Populates a shaders symbol table with all global declarations
750 */
751 static void
752 populate_symbol_table(gl_shader *sh)
753 {
754 sh->symbols = new(sh) glsl_symbol_table;
755
756 foreach_list(node, sh->ir) {
757 ir_instruction *const inst = (ir_instruction *) node;
758 ir_variable *var;
759 ir_function *func;
760
761 if ((func = inst->as_function()) != NULL) {
762 sh->symbols->add_function(func);
763 } else if ((var = inst->as_variable()) != NULL) {
764 sh->symbols->add_variable(var);
765 }
766 }
767 }
768
769
770 /**
771 * Remap variables referenced in an instruction tree
772 *
773 * This is used when instruction trees are cloned from one shader and placed in
774 * another. These trees will contain references to \c ir_variable nodes that
775 * do not exist in the target shader. This function finds these \c ir_variable
776 * references and replaces the references with matching variables in the target
777 * shader.
778 *
779 * If there is no matching variable in the target shader, a clone of the
780 * \c ir_variable is made and added to the target shader. The new variable is
781 * added to \b both the instruction stream and the symbol table.
782 *
783 * \param inst IR tree that is to be processed.
784 * \param symbols Symbol table containing global scope symbols in the
785 * linked shader.
786 * \param instructions Instruction stream where new variable declarations
787 * should be added.
788 */
789 void
790 remap_variables(ir_instruction *inst, struct gl_shader *target,
791 hash_table *temps)
792 {
793 class remap_visitor : public ir_hierarchical_visitor {
794 public:
795 remap_visitor(struct gl_shader *target,
796 hash_table *temps)
797 {
798 this->target = target;
799 this->symbols = target->symbols;
800 this->instructions = target->ir;
801 this->temps = temps;
802 }
803
804 virtual ir_visitor_status visit(ir_dereference_variable *ir)
805 {
806 if (ir->var->mode == ir_var_temporary) {
807 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
808
809 assert(var != NULL);
810 ir->var = var;
811 return visit_continue;
812 }
813
814 ir_variable *const existing =
815 this->symbols->get_variable(ir->var->name);
816 if (existing != NULL)
817 ir->var = existing;
818 else {
819 ir_variable *copy = ir->var->clone(this->target, NULL);
820
821 this->symbols->add_variable(copy);
822 this->instructions->push_head(copy);
823 ir->var = copy;
824 }
825
826 return visit_continue;
827 }
828
829 private:
830 struct gl_shader *target;
831 glsl_symbol_table *symbols;
832 exec_list *instructions;
833 hash_table *temps;
834 };
835
836 remap_visitor v(target, temps);
837
838 inst->accept(&v);
839 }
840
841
842 /**
843 * Move non-declarations from one instruction stream to another
844 *
845 * The intended usage pattern of this function is to pass the pointer to the
846 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
847 * pointer) for \c last and \c false for \c make_copies on the first
848 * call. Successive calls pass the return value of the previous call for
849 * \c last and \c true for \c make_copies.
850 *
851 * \param instructions Source instruction stream
852 * \param last Instruction after which new instructions should be
853 * inserted in the target instruction stream
854 * \param make_copies Flag selecting whether instructions in \c instructions
855 * should be copied (via \c ir_instruction::clone) into the
856 * target list or moved.
857 *
858 * \return
859 * The new "last" instruction in the target instruction stream. This pointer
860 * is suitable for use as the \c last parameter of a later call to this
861 * function.
862 */
863 exec_node *
864 move_non_declarations(exec_list *instructions, exec_node *last,
865 bool make_copies, gl_shader *target)
866 {
867 hash_table *temps = NULL;
868
869 if (make_copies)
870 temps = hash_table_ctor(0, hash_table_pointer_hash,
871 hash_table_pointer_compare);
872
873 foreach_list_safe(node, instructions) {
874 ir_instruction *inst = (ir_instruction *) node;
875
876 if (inst->as_function())
877 continue;
878
879 ir_variable *var = inst->as_variable();
880 if ((var != NULL) && (var->mode != ir_var_temporary))
881 continue;
882
883 assert(inst->as_assignment()
884 || inst->as_call()
885 || inst->as_if() /* for initializers with the ?: operator */
886 || ((var != NULL) && (var->mode == ir_var_temporary)));
887
888 if (make_copies) {
889 inst = inst->clone(target, NULL);
890
891 if (var != NULL)
892 hash_table_insert(temps, inst, var);
893 else
894 remap_variables(inst, target, temps);
895 } else {
896 inst->remove();
897 }
898
899 last->insert_after(inst);
900 last = inst;
901 }
902
903 if (make_copies)
904 hash_table_dtor(temps);
905
906 return last;
907 }
908
909 /**
910 * Get the function signature for main from a shader
911 */
912 static ir_function_signature *
913 get_main_function_signature(gl_shader *sh)
914 {
915 ir_function *const f = sh->symbols->get_function("main");
916 if (f != NULL) {
917 exec_list void_parameters;
918
919 /* Look for the 'void main()' signature and ensure that it's defined.
920 * This keeps the linker from accidentally pick a shader that just
921 * contains a prototype for main.
922 *
923 * We don't have to check for multiple definitions of main (in multiple
924 * shaders) because that would have already been caught above.
925 */
926 ir_function_signature *sig = f->matching_signature(&void_parameters);
927 if ((sig != NULL) && sig->is_defined) {
928 return sig;
929 }
930 }
931
932 return NULL;
933 }
934
935
936 /**
937 * This class is only used in link_intrastage_shaders() below but declaring
938 * it inside that function leads to compiler warnings with some versions of
939 * gcc.
940 */
941 class array_sizing_visitor : public ir_hierarchical_visitor {
942 public:
943 virtual ir_visitor_status visit(ir_variable *var)
944 {
945 if (var->type->is_array() && (var->type->length == 0)) {
946 const glsl_type *type =
947 glsl_type::get_array_instance(var->type->fields.array,
948 var->max_array_access + 1);
949 assert(type != NULL);
950 var->type = type;
951 }
952 return visit_continue;
953 }
954 };
955
956 /**
957 * Combine a group of shaders for a single stage to generate a linked shader
958 *
959 * \note
960 * If this function is supplied a single shader, it is cloned, and the new
961 * shader is returned.
962 */
963 static struct gl_shader *
964 link_intrastage_shaders(void *mem_ctx,
965 struct gl_context *ctx,
966 struct gl_shader_program *prog,
967 struct gl_shader **shader_list,
968 unsigned num_shaders)
969 {
970 struct gl_uniform_block *uniform_blocks = NULL;
971 unsigned num_uniform_blocks = 0;
972
973 /* Check that global variables defined in multiple shaders are consistent.
974 */
975 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
976 return NULL;
977
978 /* Check that uniform blocks between shaders for a stage agree. */
979 for (unsigned i = 0; i < num_shaders; i++) {
980 struct gl_shader *sh = shader_list[i];
981
982 for (unsigned j = 0; j < shader_list[i]->NumUniformBlocks; j++) {
983 link_assign_uniform_block_offsets(shader_list[i]);
984
985 int index = link_cross_validate_uniform_block(mem_ctx,
986 &uniform_blocks,
987 &num_uniform_blocks,
988 &sh->UniformBlocks[j]);
989 if (index == -1) {
990 linker_error(prog, "uniform block `%s' has mismatching definitions",
991 sh->UniformBlocks[j].Name);
992 return NULL;
993 }
994 }
995 }
996
997 /* Check that there is only a single definition of each function signature
998 * across all shaders.
999 */
1000 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1001 foreach_list(node, shader_list[i]->ir) {
1002 ir_function *const f = ((ir_instruction *) node)->as_function();
1003
1004 if (f == NULL)
1005 continue;
1006
1007 for (unsigned j = i + 1; j < num_shaders; j++) {
1008 ir_function *const other =
1009 shader_list[j]->symbols->get_function(f->name);
1010
1011 /* If the other shader has no function (and therefore no function
1012 * signatures) with the same name, skip to the next shader.
1013 */
1014 if (other == NULL)
1015 continue;
1016
1017 foreach_iter (exec_list_iterator, iter, *f) {
1018 ir_function_signature *sig =
1019 (ir_function_signature *) iter.get();
1020
1021 if (!sig->is_defined || sig->is_builtin)
1022 continue;
1023
1024 ir_function_signature *other_sig =
1025 other->exact_matching_signature(& sig->parameters);
1026
1027 if ((other_sig != NULL) && other_sig->is_defined
1028 && !other_sig->is_builtin) {
1029 linker_error(prog, "function `%s' is multiply defined",
1030 f->name);
1031 return NULL;
1032 }
1033 }
1034 }
1035 }
1036 }
1037
1038 /* Find the shader that defines main, and make a clone of it.
1039 *
1040 * Starting with the clone, search for undefined references. If one is
1041 * found, find the shader that defines it. Clone the reference and add
1042 * it to the shader. Repeat until there are no undefined references or
1043 * until a reference cannot be resolved.
1044 */
1045 gl_shader *main = NULL;
1046 for (unsigned i = 0; i < num_shaders; i++) {
1047 if (get_main_function_signature(shader_list[i]) != NULL) {
1048 main = shader_list[i];
1049 break;
1050 }
1051 }
1052
1053 if (main == NULL) {
1054 linker_error(prog, "%s shader lacks `main'\n",
1055 (shader_list[0]->Type == GL_VERTEX_SHADER)
1056 ? "vertex" : "fragment");
1057 return NULL;
1058 }
1059
1060 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1061 linked->ir = new(linked) exec_list;
1062 clone_ir_list(mem_ctx, linked->ir, main->ir);
1063
1064 linked->UniformBlocks = uniform_blocks;
1065 linked->NumUniformBlocks = num_uniform_blocks;
1066 ralloc_steal(linked, linked->UniformBlocks);
1067
1068 populate_symbol_table(linked);
1069
1070 /* The a pointer to the main function in the final linked shader (i.e., the
1071 * copy of the original shader that contained the main function).
1072 */
1073 ir_function_signature *const main_sig = get_main_function_signature(linked);
1074
1075 /* Move any instructions other than variable declarations or function
1076 * declarations into main.
1077 */
1078 exec_node *insertion_point =
1079 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1080 linked);
1081
1082 for (unsigned i = 0; i < num_shaders; i++) {
1083 if (shader_list[i] == main)
1084 continue;
1085
1086 insertion_point = move_non_declarations(shader_list[i]->ir,
1087 insertion_point, true, linked);
1088 }
1089
1090 /* Resolve initializers for global variables in the linked shader.
1091 */
1092 unsigned num_linking_shaders = num_shaders;
1093 for (unsigned i = 0; i < num_shaders; i++)
1094 num_linking_shaders += shader_list[i]->num_builtins_to_link;
1095
1096 gl_shader **linking_shaders =
1097 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
1098
1099 memcpy(linking_shaders, shader_list,
1100 sizeof(linking_shaders[0]) * num_shaders);
1101
1102 unsigned idx = num_shaders;
1103 for (unsigned i = 0; i < num_shaders; i++) {
1104 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
1105 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
1106 idx += shader_list[i]->num_builtins_to_link;
1107 }
1108
1109 assert(idx == num_linking_shaders);
1110
1111 if (!link_function_calls(prog, linked, linking_shaders,
1112 num_linking_shaders)) {
1113 ctx->Driver.DeleteShader(ctx, linked);
1114 linked = NULL;
1115 }
1116
1117 free(linking_shaders);
1118
1119 #ifdef DEBUG
1120 /* At this point linked should contain all of the linked IR, so
1121 * validate it to make sure nothing went wrong.
1122 */
1123 if (linked)
1124 validate_ir_tree(linked->ir);
1125 #endif
1126
1127 /* Make a pass over all variable declarations to ensure that arrays with
1128 * unspecified sizes have a size specified. The size is inferred from the
1129 * max_array_access field.
1130 */
1131 if (linked != NULL) {
1132 array_sizing_visitor v;
1133
1134 v.run(linked->ir);
1135 }
1136
1137 return linked;
1138 }
1139
1140 /**
1141 * Update the sizes of linked shader uniform arrays to the maximum
1142 * array index used.
1143 *
1144 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1145 *
1146 * If one or more elements of an array are active,
1147 * GetActiveUniform will return the name of the array in name,
1148 * subject to the restrictions listed above. The type of the array
1149 * is returned in type. The size parameter contains the highest
1150 * array element index used, plus one. The compiler or linker
1151 * determines the highest index used. There will be only one
1152 * active uniform reported by the GL per uniform array.
1153
1154 */
1155 static void
1156 update_array_sizes(struct gl_shader_program *prog)
1157 {
1158 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1159 if (prog->_LinkedShaders[i] == NULL)
1160 continue;
1161
1162 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1163 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1164
1165 if ((var == NULL) || (var->mode != ir_var_uniform &&
1166 var->mode != ir_var_in &&
1167 var->mode != ir_var_out) ||
1168 !var->type->is_array())
1169 continue;
1170
1171 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1172 * will not be eliminated. Since we always do std140, just
1173 * don't resize arrays in UBOs.
1174 */
1175 if (var->uniform_block != -1)
1176 continue;
1177
1178 unsigned int size = var->max_array_access;
1179 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1180 if (prog->_LinkedShaders[j] == NULL)
1181 continue;
1182
1183 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1184 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1185 if (!other_var)
1186 continue;
1187
1188 if (strcmp(var->name, other_var->name) == 0 &&
1189 other_var->max_array_access > size) {
1190 size = other_var->max_array_access;
1191 }
1192 }
1193 }
1194
1195 if (size + 1 != var->type->fields.array->length) {
1196 /* If this is a built-in uniform (i.e., it's backed by some
1197 * fixed-function state), adjust the number of state slots to
1198 * match the new array size. The number of slots per array entry
1199 * is not known. It seems safe to assume that the total number of
1200 * slots is an integer multiple of the number of array elements.
1201 * Determine the number of slots per array element by dividing by
1202 * the old (total) size.
1203 */
1204 if (var->num_state_slots > 0) {
1205 var->num_state_slots = (size + 1)
1206 * (var->num_state_slots / var->type->length);
1207 }
1208
1209 var->type = glsl_type::get_array_instance(var->type->fields.array,
1210 size + 1);
1211 /* FINISHME: We should update the types of array
1212 * dereferences of this variable now.
1213 */
1214 }
1215 }
1216 }
1217 }
1218
1219 /**
1220 * Find a contiguous set of available bits in a bitmask.
1221 *
1222 * \param used_mask Bits representing used (1) and unused (0) locations
1223 * \param needed_count Number of contiguous bits needed.
1224 *
1225 * \return
1226 * Base location of the available bits on success or -1 on failure.
1227 */
1228 int
1229 find_available_slots(unsigned used_mask, unsigned needed_count)
1230 {
1231 unsigned needed_mask = (1 << needed_count) - 1;
1232 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1233
1234 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1235 * cannot optimize possibly infinite loops" for the loop below.
1236 */
1237 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1238 return -1;
1239
1240 for (int i = 0; i <= max_bit_to_test; i++) {
1241 if ((needed_mask & ~used_mask) == needed_mask)
1242 return i;
1243
1244 needed_mask <<= 1;
1245 }
1246
1247 return -1;
1248 }
1249
1250
1251 /**
1252 * Assign locations for either VS inputs for FS outputs
1253 *
1254 * \param prog Shader program whose variables need locations assigned
1255 * \param target_index Selector for the program target to receive location
1256 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1257 * \c MESA_SHADER_FRAGMENT.
1258 * \param max_index Maximum number of generic locations. This corresponds
1259 * to either the maximum number of draw buffers or the
1260 * maximum number of generic attributes.
1261 *
1262 * \return
1263 * If locations are successfully assigned, true is returned. Otherwise an
1264 * error is emitted to the shader link log and false is returned.
1265 */
1266 bool
1267 assign_attribute_or_color_locations(gl_shader_program *prog,
1268 unsigned target_index,
1269 unsigned max_index)
1270 {
1271 /* Mark invalid locations as being used.
1272 */
1273 unsigned used_locations = (max_index >= 32)
1274 ? ~0 : ~((1 << max_index) - 1);
1275
1276 assert((target_index == MESA_SHADER_VERTEX)
1277 || (target_index == MESA_SHADER_FRAGMENT));
1278
1279 gl_shader *const sh = prog->_LinkedShaders[target_index];
1280 if (sh == NULL)
1281 return true;
1282
1283 /* Operate in a total of four passes.
1284 *
1285 * 1. Invalidate the location assignments for all vertex shader inputs.
1286 *
1287 * 2. Assign locations for inputs that have user-defined (via
1288 * glBindVertexAttribLocation) locations and outputs that have
1289 * user-defined locations (via glBindFragDataLocation).
1290 *
1291 * 3. Sort the attributes without assigned locations by number of slots
1292 * required in decreasing order. Fragmentation caused by attribute
1293 * locations assigned by the application may prevent large attributes
1294 * from having enough contiguous space.
1295 *
1296 * 4. Assign locations to any inputs without assigned locations.
1297 */
1298
1299 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1300 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1301
1302 const enum ir_variable_mode direction =
1303 (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1304
1305
1306 link_invalidate_variable_locations(sh, direction, generic_base);
1307
1308 /* Temporary storage for the set of attributes that need locations assigned.
1309 */
1310 struct temp_attr {
1311 unsigned slots;
1312 ir_variable *var;
1313
1314 /* Used below in the call to qsort. */
1315 static int compare(const void *a, const void *b)
1316 {
1317 const temp_attr *const l = (const temp_attr *) a;
1318 const temp_attr *const r = (const temp_attr *) b;
1319
1320 /* Reversed because we want a descending order sort below. */
1321 return r->slots - l->slots;
1322 }
1323 } to_assign[16];
1324
1325 unsigned num_attr = 0;
1326
1327 foreach_list(node, sh->ir) {
1328 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1329
1330 if ((var == NULL) || (var->mode != (unsigned) direction))
1331 continue;
1332
1333 if (var->explicit_location) {
1334 if ((var->location >= (int)(max_index + generic_base))
1335 || (var->location < 0)) {
1336 linker_error(prog,
1337 "invalid explicit location %d specified for `%s'\n",
1338 (var->location < 0)
1339 ? var->location : var->location - generic_base,
1340 var->name);
1341 return false;
1342 }
1343 } else if (target_index == MESA_SHADER_VERTEX) {
1344 unsigned binding;
1345
1346 if (prog->AttributeBindings->get(binding, var->name)) {
1347 assert(binding >= VERT_ATTRIB_GENERIC0);
1348 var->location = binding;
1349 }
1350 } else if (target_index == MESA_SHADER_FRAGMENT) {
1351 unsigned binding;
1352 unsigned index;
1353
1354 if (prog->FragDataBindings->get(binding, var->name)) {
1355 assert(binding >= FRAG_RESULT_DATA0);
1356 var->location = binding;
1357
1358 if (prog->FragDataIndexBindings->get(index, var->name)) {
1359 var->index = index;
1360 }
1361 }
1362 }
1363
1364 /* If the variable is not a built-in and has a location statically
1365 * assigned in the shader (presumably via a layout qualifier), make sure
1366 * that it doesn't collide with other assigned locations. Otherwise,
1367 * add it to the list of variables that need linker-assigned locations.
1368 */
1369 const unsigned slots = count_attribute_slots(var->type);
1370 if (var->location != -1) {
1371 if (var->location >= generic_base && var->index < 1) {
1372 /* From page 61 of the OpenGL 4.0 spec:
1373 *
1374 * "LinkProgram will fail if the attribute bindings assigned
1375 * by BindAttribLocation do not leave not enough space to
1376 * assign a location for an active matrix attribute or an
1377 * active attribute array, both of which require multiple
1378 * contiguous generic attributes."
1379 *
1380 * Previous versions of the spec contain similar language but omit
1381 * the bit about attribute arrays.
1382 *
1383 * Page 61 of the OpenGL 4.0 spec also says:
1384 *
1385 * "It is possible for an application to bind more than one
1386 * attribute name to the same location. This is referred to as
1387 * aliasing. This will only work if only one of the aliased
1388 * attributes is active in the executable program, or if no
1389 * path through the shader consumes more than one attribute of
1390 * a set of attributes aliased to the same location. A link
1391 * error can occur if the linker determines that every path
1392 * through the shader consumes multiple aliased attributes,
1393 * but implementations are not required to generate an error
1394 * in this case."
1395 *
1396 * These two paragraphs are either somewhat contradictory, or I
1397 * don't fully understand one or both of them.
1398 */
1399 /* FINISHME: The code as currently written does not support
1400 * FINISHME: attribute location aliasing (see comment above).
1401 */
1402 /* Mask representing the contiguous slots that will be used by
1403 * this attribute.
1404 */
1405 const unsigned attr = var->location - generic_base;
1406 const unsigned use_mask = (1 << slots) - 1;
1407
1408 /* Generate a link error if the set of bits requested for this
1409 * attribute overlaps any previously allocated bits.
1410 */
1411 if ((~(use_mask << attr) & used_locations) != used_locations) {
1412 const char *const string = (target_index == MESA_SHADER_VERTEX)
1413 ? "vertex shader input" : "fragment shader output";
1414 linker_error(prog,
1415 "insufficient contiguous locations "
1416 "available for %s `%s' %d %d %d", string,
1417 var->name, used_locations, use_mask, attr);
1418 return false;
1419 }
1420
1421 used_locations |= (use_mask << attr);
1422 }
1423
1424 continue;
1425 }
1426
1427 to_assign[num_attr].slots = slots;
1428 to_assign[num_attr].var = var;
1429 num_attr++;
1430 }
1431
1432 /* If all of the attributes were assigned locations by the application (or
1433 * are built-in attributes with fixed locations), return early. This should
1434 * be the common case.
1435 */
1436 if (num_attr == 0)
1437 return true;
1438
1439 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1440
1441 if (target_index == MESA_SHADER_VERTEX) {
1442 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1443 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1444 * reserved to prevent it from being automatically allocated below.
1445 */
1446 find_deref_visitor find("gl_Vertex");
1447 find.run(sh->ir);
1448 if (find.variable_found())
1449 used_locations |= (1 << 0);
1450 }
1451
1452 for (unsigned i = 0; i < num_attr; i++) {
1453 /* Mask representing the contiguous slots that will be used by this
1454 * attribute.
1455 */
1456 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1457
1458 int location = find_available_slots(used_locations, to_assign[i].slots);
1459
1460 if (location < 0) {
1461 const char *const string = (target_index == MESA_SHADER_VERTEX)
1462 ? "vertex shader input" : "fragment shader output";
1463
1464 linker_error(prog,
1465 "insufficient contiguous locations "
1466 "available for %s `%s'",
1467 string, to_assign[i].var->name);
1468 return false;
1469 }
1470
1471 to_assign[i].var->location = generic_base + location;
1472 used_locations |= (use_mask << location);
1473 }
1474
1475 return true;
1476 }
1477
1478
1479 /**
1480 * Demote shader inputs and outputs that are not used in other stages
1481 */
1482 void
1483 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1484 {
1485 foreach_list(node, sh->ir) {
1486 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1487
1488 if ((var == NULL) || (var->mode != int(mode)))
1489 continue;
1490
1491 /* A shader 'in' or 'out' variable is only really an input or output if
1492 * its value is used by other shader stages. This will cause the variable
1493 * to have a location assigned.
1494 */
1495 if (var->location == -1) {
1496 var->mode = ir_var_auto;
1497 }
1498 }
1499 }
1500
1501
1502 /**
1503 * Data structure tracking information about a transform feedback declaration
1504 * during linking.
1505 */
1506 class tfeedback_decl
1507 {
1508 public:
1509 bool init(struct gl_context *ctx, struct gl_shader_program *prog,
1510 const void *mem_ctx, const char *input);
1511 static bool is_same(const tfeedback_decl &x, const tfeedback_decl &y);
1512 bool assign_location(struct gl_context *ctx, struct gl_shader_program *prog,
1513 ir_variable *output_var);
1514 bool accumulate_num_outputs(struct gl_shader_program *prog, unsigned *count);
1515 bool store(struct gl_context *ctx, struct gl_shader_program *prog,
1516 struct gl_transform_feedback_info *info, unsigned buffer,
1517 const unsigned max_outputs) const;
1518
1519 /**
1520 * True if assign_location() has been called for this object.
1521 */
1522 bool is_assigned() const
1523 {
1524 return this->location != -1;
1525 }
1526
1527 bool is_next_buffer_separator() const
1528 {
1529 return this->next_buffer_separator;
1530 }
1531
1532 bool is_varying() const
1533 {
1534 return !this->next_buffer_separator && !this->skip_components;
1535 }
1536
1537 /**
1538 * Determine whether this object refers to the variable var.
1539 */
1540 bool matches_var(ir_variable *var) const
1541 {
1542 if (this->is_clip_distance_mesa)
1543 return strcmp(var->name, "gl_ClipDistanceMESA") == 0;
1544 else
1545 return strcmp(var->name, this->var_name) == 0;
1546 }
1547
1548 /**
1549 * The total number of varying components taken up by this variable. Only
1550 * valid if is_assigned() is true.
1551 */
1552 unsigned num_components() const
1553 {
1554 if (this->is_clip_distance_mesa)
1555 return this->size;
1556 else
1557 return this->vector_elements * this->matrix_columns * this->size;
1558 }
1559
1560 private:
1561 /**
1562 * The name that was supplied to glTransformFeedbackVaryings. Used for
1563 * error reporting and glGetTransformFeedbackVarying().
1564 */
1565 const char *orig_name;
1566
1567 /**
1568 * The name of the variable, parsed from orig_name.
1569 */
1570 const char *var_name;
1571
1572 /**
1573 * True if the declaration in orig_name represents an array.
1574 */
1575 bool is_subscripted;
1576
1577 /**
1578 * If is_subscripted is true, the subscript that was specified in orig_name.
1579 */
1580 unsigned array_subscript;
1581
1582 /**
1583 * True if the variable is gl_ClipDistance and the driver lowers
1584 * gl_ClipDistance to gl_ClipDistanceMESA.
1585 */
1586 bool is_clip_distance_mesa;
1587
1588 /**
1589 * The vertex shader output location that the linker assigned for this
1590 * variable. -1 if a location hasn't been assigned yet.
1591 */
1592 int location;
1593
1594 /**
1595 * If location != -1, the number of vector elements in this variable, or 1
1596 * if this variable is a scalar.
1597 */
1598 unsigned vector_elements;
1599
1600 /**
1601 * If location != -1, the number of matrix columns in this variable, or 1
1602 * if this variable is not a matrix.
1603 */
1604 unsigned matrix_columns;
1605
1606 /** Type of the varying returned by glGetTransformFeedbackVarying() */
1607 GLenum type;
1608
1609 /**
1610 * If location != -1, the size that should be returned by
1611 * glGetTransformFeedbackVarying().
1612 */
1613 unsigned size;
1614
1615 /**
1616 * How many components to skip. If non-zero, this is
1617 * gl_SkipComponents{1,2,3,4} from ARB_transform_feedback3.
1618 */
1619 unsigned skip_components;
1620
1621 /**
1622 * Whether this is gl_NextBuffer from ARB_transform_feedback3.
1623 */
1624 bool next_buffer_separator;
1625 };
1626
1627
1628 /**
1629 * Initialize this object based on a string that was passed to
1630 * glTransformFeedbackVaryings. If there is a parse error, the error is
1631 * reported using linker_error(), and false is returned.
1632 */
1633 bool
1634 tfeedback_decl::init(struct gl_context *ctx, struct gl_shader_program *prog,
1635 const void *mem_ctx, const char *input)
1636 {
1637 /* We don't have to be pedantic about what is a valid GLSL variable name,
1638 * because any variable with an invalid name can't exist in the IR anyway.
1639 */
1640
1641 this->location = -1;
1642 this->orig_name = input;
1643 this->is_clip_distance_mesa = false;
1644 this->skip_components = 0;
1645 this->next_buffer_separator = false;
1646
1647 if (ctx->Extensions.ARB_transform_feedback3) {
1648 /* Parse gl_NextBuffer. */
1649 if (strcmp(input, "gl_NextBuffer") == 0) {
1650 this->next_buffer_separator = true;
1651 return true;
1652 }
1653
1654 /* Parse gl_SkipComponents. */
1655 if (strcmp(input, "gl_SkipComponents1") == 0)
1656 this->skip_components = 1;
1657 else if (strcmp(input, "gl_SkipComponents2") == 0)
1658 this->skip_components = 2;
1659 else if (strcmp(input, "gl_SkipComponents3") == 0)
1660 this->skip_components = 3;
1661 else if (strcmp(input, "gl_SkipComponents4") == 0)
1662 this->skip_components = 4;
1663
1664 if (this->skip_components)
1665 return true;
1666 }
1667
1668 /* Parse a declaration. */
1669 const char *bracket = strrchr(input, '[');
1670
1671 if (bracket) {
1672 this->var_name = ralloc_strndup(mem_ctx, input, bracket - input);
1673 if (sscanf(bracket, "[%u]", &this->array_subscript) != 1) {
1674 linker_error(prog, "Cannot parse transform feedback varying %s", input);
1675 return false;
1676 }
1677 this->is_subscripted = true;
1678 } else {
1679 this->var_name = ralloc_strdup(mem_ctx, input);
1680 this->is_subscripted = false;
1681 }
1682
1683 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
1684 * class must behave specially to account for the fact that gl_ClipDistance
1685 * is converted from a float[8] to a vec4[2].
1686 */
1687 if (ctx->ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
1688 strcmp(this->var_name, "gl_ClipDistance") == 0) {
1689 this->is_clip_distance_mesa = true;
1690 }
1691
1692 return true;
1693 }
1694
1695
1696 /**
1697 * Determine whether two tfeedback_decl objects refer to the same variable and
1698 * array index (if applicable).
1699 */
1700 bool
1701 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
1702 {
1703 assert(x.is_varying() && y.is_varying());
1704
1705 if (strcmp(x.var_name, y.var_name) != 0)
1706 return false;
1707 if (x.is_subscripted != y.is_subscripted)
1708 return false;
1709 if (x.is_subscripted && x.array_subscript != y.array_subscript)
1710 return false;
1711 return true;
1712 }
1713
1714
1715 /**
1716 * Assign a location for this tfeedback_decl object based on the location
1717 * assignment in output_var.
1718 *
1719 * If an error occurs, the error is reported through linker_error() and false
1720 * is returned.
1721 */
1722 bool
1723 tfeedback_decl::assign_location(struct gl_context *ctx,
1724 struct gl_shader_program *prog,
1725 ir_variable *output_var)
1726 {
1727 assert(this->is_varying());
1728
1729 if (output_var->type->is_array()) {
1730 /* Array variable */
1731 const unsigned matrix_cols =
1732 output_var->type->fields.array->matrix_columns;
1733 unsigned actual_array_size = this->is_clip_distance_mesa ?
1734 prog->Vert.ClipDistanceArraySize : output_var->type->array_size();
1735
1736 if (this->is_subscripted) {
1737 /* Check array bounds. */
1738 if (this->array_subscript >= actual_array_size) {
1739 linker_error(prog, "Transform feedback varying %s has index "
1740 "%i, but the array size is %u.",
1741 this->orig_name, this->array_subscript,
1742 actual_array_size);
1743 return false;
1744 }
1745 if (this->is_clip_distance_mesa) {
1746 this->location =
1747 output_var->location + this->array_subscript / 4;
1748 } else {
1749 this->location =
1750 output_var->location + this->array_subscript * matrix_cols;
1751 }
1752 this->size = 1;
1753 } else {
1754 this->location = output_var->location;
1755 this->size = actual_array_size;
1756 }
1757 this->vector_elements = output_var->type->fields.array->vector_elements;
1758 this->matrix_columns = matrix_cols;
1759 if (this->is_clip_distance_mesa)
1760 this->type = GL_FLOAT;
1761 else
1762 this->type = output_var->type->fields.array->gl_type;
1763 } else {
1764 /* Regular variable (scalar, vector, or matrix) */
1765 if (this->is_subscripted) {
1766 linker_error(prog, "Transform feedback varying %s requested, "
1767 "but %s is not an array.",
1768 this->orig_name, this->var_name);
1769 return false;
1770 }
1771 this->location = output_var->location;
1772 this->size = 1;
1773 this->vector_elements = output_var->type->vector_elements;
1774 this->matrix_columns = output_var->type->matrix_columns;
1775 this->type = output_var->type->gl_type;
1776 }
1777
1778 /* From GL_EXT_transform_feedback:
1779 * A program will fail to link if:
1780 *
1781 * * the total number of components to capture in any varying
1782 * variable in <varyings> is greater than the constant
1783 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
1784 * buffer mode is SEPARATE_ATTRIBS_EXT;
1785 */
1786 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1787 this->num_components() >
1788 ctx->Const.MaxTransformFeedbackSeparateComponents) {
1789 linker_error(prog, "Transform feedback varying %s exceeds "
1790 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
1791 this->orig_name);
1792 return false;
1793 }
1794
1795 return true;
1796 }
1797
1798
1799 bool
1800 tfeedback_decl::accumulate_num_outputs(struct gl_shader_program *prog,
1801 unsigned *count)
1802 {
1803 if (!this->is_varying()) {
1804 return true;
1805 }
1806
1807 if (!this->is_assigned()) {
1808 /* From GL_EXT_transform_feedback:
1809 * A program will fail to link if:
1810 *
1811 * * any variable name specified in the <varyings> array is not
1812 * declared as an output in the geometry shader (if present) or
1813 * the vertex shader (if no geometry shader is present);
1814 */
1815 linker_error(prog, "Transform feedback varying %s undeclared.",
1816 this->orig_name);
1817 return false;
1818 }
1819
1820 unsigned translated_size = this->size;
1821 if (this->is_clip_distance_mesa)
1822 translated_size = (translated_size + 3) / 4;
1823
1824 *count += translated_size * this->matrix_columns;
1825
1826 return true;
1827 }
1828
1829
1830 /**
1831 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1832 *
1833 * If an error occurs, the error is reported through linker_error() and false
1834 * is returned.
1835 */
1836 bool
1837 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
1838 struct gl_transform_feedback_info *info,
1839 unsigned buffer, const unsigned max_outputs) const
1840 {
1841 assert(!this->next_buffer_separator);
1842
1843 /* Handle gl_SkipComponents. */
1844 if (this->skip_components) {
1845 info->BufferStride[buffer] += this->skip_components;
1846 return true;
1847 }
1848
1849 /* From GL_EXT_transform_feedback:
1850 * A program will fail to link if:
1851 *
1852 * * the total number of components to capture is greater than
1853 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1854 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
1855 */
1856 if (prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS &&
1857 info->BufferStride[buffer] + this->num_components() >
1858 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1859 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1860 "limit has been exceeded.");
1861 return false;
1862 }
1863
1864 unsigned translated_size = this->size;
1865 if (this->is_clip_distance_mesa)
1866 translated_size = (translated_size + 3) / 4;
1867 unsigned components_so_far = 0;
1868 for (unsigned index = 0; index < translated_size; ++index) {
1869 for (unsigned v = 0; v < this->matrix_columns; ++v) {
1870 unsigned num_components = this->vector_elements;
1871 assert(info->NumOutputs < max_outputs);
1872 info->Outputs[info->NumOutputs].ComponentOffset = 0;
1873 if (this->is_clip_distance_mesa) {
1874 if (this->is_subscripted) {
1875 num_components = 1;
1876 info->Outputs[info->NumOutputs].ComponentOffset =
1877 this->array_subscript % 4;
1878 } else {
1879 num_components = MIN2(4, this->size - components_so_far);
1880 }
1881 }
1882 info->Outputs[info->NumOutputs].OutputRegister =
1883 this->location + v + index * this->matrix_columns;
1884 info->Outputs[info->NumOutputs].NumComponents = num_components;
1885 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1886 info->Outputs[info->NumOutputs].DstOffset = info->BufferStride[buffer];
1887 ++info->NumOutputs;
1888 info->BufferStride[buffer] += num_components;
1889 components_so_far += num_components;
1890 }
1891 }
1892 assert(components_so_far == this->num_components());
1893
1894 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog, this->orig_name);
1895 info->Varyings[info->NumVarying].Type = this->type;
1896 info->Varyings[info->NumVarying].Size = this->size;
1897 info->NumVarying++;
1898
1899 return true;
1900 }
1901
1902
1903 /**
1904 * Parse all the transform feedback declarations that were passed to
1905 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1906 *
1907 * If an error occurs, the error is reported through linker_error() and false
1908 * is returned.
1909 */
1910 static bool
1911 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1912 const void *mem_ctx, unsigned num_names,
1913 char **varying_names, tfeedback_decl *decls)
1914 {
1915 for (unsigned i = 0; i < num_names; ++i) {
1916 if (!decls[i].init(ctx, prog, mem_ctx, varying_names[i]))
1917 return false;
1918
1919 if (!decls[i].is_varying())
1920 continue;
1921
1922 /* From GL_EXT_transform_feedback:
1923 * A program will fail to link if:
1924 *
1925 * * any two entries in the <varyings> array specify the same varying
1926 * variable;
1927 *
1928 * We interpret this to mean "any two entries in the <varyings> array
1929 * specify the same varying variable and array index", since transform
1930 * feedback of arrays would be useless otherwise.
1931 */
1932 for (unsigned j = 0; j < i; ++j) {
1933 if (!decls[j].is_varying())
1934 continue;
1935
1936 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1937 linker_error(prog, "Transform feedback varying %s specified "
1938 "more than once.", varying_names[i]);
1939 return false;
1940 }
1941 }
1942 }
1943 return true;
1944 }
1945
1946
1947 /**
1948 * Assign a location for a variable that is produced in one pipeline stage
1949 * (the "producer") and consumed in the next stage (the "consumer").
1950 *
1951 * \param input_var is the input variable declaration in the consumer.
1952 *
1953 * \param output_var is the output variable declaration in the producer.
1954 *
1955 * \param input_index is the counter that keeps track of assigned input
1956 * locations in the consumer.
1957 *
1958 * \param output_index is the counter that keeps track of assigned output
1959 * locations in the producer.
1960 *
1961 * It is permissible for \c input_var to be NULL (this happens if a variable
1962 * is output by the producer and consumed by transform feedback, but not
1963 * consumed by the consumer).
1964 *
1965 * If the variable has already been assigned a location, this function has no
1966 * effect.
1967 */
1968 void
1969 assign_varying_location(ir_variable *input_var, ir_variable *output_var,
1970 unsigned *input_index, unsigned *output_index)
1971 {
1972 if (output_var->location != -1) {
1973 /* Location already assigned. */
1974 return;
1975 }
1976
1977 if (input_var) {
1978 assert(input_var->location == -1);
1979 input_var->location = *input_index;
1980 }
1981
1982 output_var->location = *output_index;
1983
1984 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1985 assert(!output_var->type->is_record());
1986
1987 if (output_var->type->is_array()) {
1988 const unsigned slots = output_var->type->length
1989 * output_var->type->fields.array->matrix_columns;
1990
1991 *output_index += slots;
1992 *input_index += slots;
1993 } else {
1994 const unsigned slots = output_var->type->matrix_columns;
1995
1996 *output_index += slots;
1997 *input_index += slots;
1998 }
1999 }
2000
2001
2002 /**
2003 * Is the given variable a varying variable to be counted against the
2004 * limit in ctx->Const.MaxVarying?
2005 * This includes variables such as texcoords, colors and generic
2006 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
2007 */
2008 static bool
2009 is_varying_var(GLenum shaderType, const ir_variable *var)
2010 {
2011 /* Only fragment shaders will take a varying variable as an input */
2012 if (shaderType == GL_FRAGMENT_SHADER &&
2013 var->mode == ir_var_in &&
2014 var->explicit_location) {
2015 switch (var->location) {
2016 case FRAG_ATTRIB_WPOS:
2017 case FRAG_ATTRIB_FACE:
2018 case FRAG_ATTRIB_PNTC:
2019 return false;
2020 default:
2021 return true;
2022 }
2023 }
2024 return false;
2025 }
2026
2027
2028 /**
2029 * Assign locations for all variables that are produced in one pipeline stage
2030 * (the "producer") and consumed in the next stage (the "consumer").
2031 *
2032 * Variables produced by the producer may also be consumed by transform
2033 * feedback.
2034 *
2035 * \param num_tfeedback_decls is the number of declarations indicating
2036 * variables that may be consumed by transform feedback.
2037 *
2038 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2039 * representing the result of parsing the strings passed to
2040 * glTransformFeedbackVaryings(). assign_location() will be called for
2041 * each of these objects that matches one of the outputs of the
2042 * producer.
2043 *
2044 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2045 * be NULL. In this case, varying locations are assigned solely based on the
2046 * requirements of transform feedback.
2047 */
2048 bool
2049 assign_varying_locations(struct gl_context *ctx,
2050 struct gl_shader_program *prog,
2051 gl_shader *producer, gl_shader *consumer,
2052 unsigned num_tfeedback_decls,
2053 tfeedback_decl *tfeedback_decls)
2054 {
2055 /* FINISHME: Set dynamically when geometry shader support is added. */
2056 unsigned output_index = VERT_RESULT_VAR0;
2057 unsigned input_index = FRAG_ATTRIB_VAR0;
2058
2059 /* Operate in a total of three passes.
2060 *
2061 * 1. Assign locations for any matching inputs and outputs.
2062 *
2063 * 2. Mark output variables in the producer that do not have locations as
2064 * not being outputs. This lets the optimizer eliminate them.
2065 *
2066 * 3. Mark input variables in the consumer that do not have locations as
2067 * not being inputs. This lets the optimizer eliminate them.
2068 */
2069
2070 link_invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
2071 if (consumer)
2072 link_invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
2073
2074 foreach_list(node, producer->ir) {
2075 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
2076
2077 if ((output_var == NULL) || (output_var->mode != ir_var_out))
2078 continue;
2079
2080 ir_variable *input_var =
2081 consumer ? consumer->symbols->get_variable(output_var->name) : NULL;
2082
2083 if (input_var && input_var->mode != ir_var_in)
2084 input_var = NULL;
2085
2086 if (input_var) {
2087 assign_varying_location(input_var, output_var, &input_index,
2088 &output_index);
2089 }
2090
2091 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2092 if (!tfeedback_decls[i].is_varying())
2093 continue;
2094
2095 if (!tfeedback_decls[i].is_assigned() &&
2096 tfeedback_decls[i].matches_var(output_var)) {
2097 if (output_var->location == -1) {
2098 assign_varying_location(input_var, output_var, &input_index,
2099 &output_index);
2100 }
2101 if (!tfeedback_decls[i].assign_location(ctx, prog, output_var))
2102 return false;
2103 }
2104 }
2105 }
2106
2107 unsigned varying_vectors = 0;
2108
2109 if (consumer) {
2110 foreach_list(node, consumer->ir) {
2111 ir_variable *const var = ((ir_instruction *) node)->as_variable();
2112
2113 if ((var == NULL) || (var->mode != ir_var_in))
2114 continue;
2115
2116 if (var->location == -1) {
2117 if (prog->Version <= 120) {
2118 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2119 *
2120 * Only those varying variables used (i.e. read) in
2121 * the fragment shader executable must be written to
2122 * by the vertex shader executable; declaring
2123 * superfluous varying variables in a vertex shader is
2124 * permissible.
2125 *
2126 * We interpret this text as meaning that the VS must
2127 * write the variable for the FS to read it. See
2128 * "glsl1-varying read but not written" in piglit.
2129 */
2130
2131 linker_error(prog, "fragment shader varying %s not written "
2132 "by vertex shader\n.", var->name);
2133 }
2134
2135 /* An 'in' variable is only really a shader input if its
2136 * value is written by the previous stage.
2137 */
2138 var->mode = ir_var_auto;
2139 } else if (is_varying_var(consumer->Type, var)) {
2140 /* The packing rules are used for vertex shader inputs are also
2141 * used for fragment shader inputs.
2142 */
2143 varying_vectors += count_attribute_slots(var->type);
2144 }
2145 }
2146 }
2147
2148 if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
2149 if (varying_vectors > ctx->Const.MaxVarying) {
2150 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
2151 linker_warning(prog, "shader uses too many varying vectors "
2152 "(%u > %u), but the driver will try to optimize "
2153 "them out; this is non-portable out-of-spec "
2154 "behavior\n",
2155 varying_vectors, ctx->Const.MaxVarying);
2156 } else {
2157 linker_error(prog, "shader uses too many varying vectors "
2158 "(%u > %u)\n",
2159 varying_vectors, ctx->Const.MaxVarying);
2160 return false;
2161 }
2162 }
2163 } else {
2164 const unsigned float_components = varying_vectors * 4;
2165 if (float_components > ctx->Const.MaxVarying * 4) {
2166 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
2167 linker_warning(prog, "shader uses too many varying components "
2168 "(%u > %u), but the driver will try to optimize "
2169 "them out; this is non-portable out-of-spec "
2170 "behavior\n",
2171 float_components, ctx->Const.MaxVarying * 4);
2172 } else {
2173 linker_error(prog, "shader uses too many varying components "
2174 "(%u > %u)\n",
2175 float_components, ctx->Const.MaxVarying * 4);
2176 return false;
2177 }
2178 }
2179 }
2180
2181 return true;
2182 }
2183
2184
2185 /**
2186 * Store transform feedback location assignments into
2187 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
2188 *
2189 * If an error occurs, the error is reported through linker_error() and false
2190 * is returned.
2191 */
2192 static bool
2193 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
2194 unsigned num_tfeedback_decls,
2195 tfeedback_decl *tfeedback_decls)
2196 {
2197 bool separate_attribs_mode =
2198 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
2199
2200 ralloc_free(prog->LinkedTransformFeedback.Varyings);
2201 ralloc_free(prog->LinkedTransformFeedback.Outputs);
2202
2203 memset(&prog->LinkedTransformFeedback, 0,
2204 sizeof(prog->LinkedTransformFeedback));
2205
2206 prog->LinkedTransformFeedback.Varyings =
2207 rzalloc_array(prog,
2208 struct gl_transform_feedback_varying_info,
2209 num_tfeedback_decls);
2210
2211 unsigned num_outputs = 0;
2212 for (unsigned i = 0; i < num_tfeedback_decls; ++i)
2213 if (!tfeedback_decls[i].accumulate_num_outputs(prog, &num_outputs))
2214 return false;
2215
2216 prog->LinkedTransformFeedback.Outputs =
2217 rzalloc_array(prog,
2218 struct gl_transform_feedback_output,
2219 num_outputs);
2220
2221 unsigned num_buffers = 0;
2222
2223 if (separate_attribs_mode) {
2224 /* GL_SEPARATE_ATTRIBS */
2225 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2226 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
2227 num_buffers, num_outputs))
2228 return false;
2229
2230 num_buffers++;
2231 }
2232 }
2233 else {
2234 /* GL_INVERLEAVED_ATTRIBS */
2235 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2236 if (tfeedback_decls[i].is_next_buffer_separator()) {
2237 num_buffers++;
2238 continue;
2239 }
2240
2241 if (!tfeedback_decls[i].store(ctx, prog,
2242 &prog->LinkedTransformFeedback,
2243 num_buffers, num_outputs))
2244 return false;
2245 }
2246 num_buffers++;
2247 }
2248
2249 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
2250
2251 prog->LinkedTransformFeedback.NumBuffers = num_buffers;
2252 return true;
2253 }
2254
2255 /**
2256 * Store the gl_FragDepth layout in the gl_shader_program struct.
2257 */
2258 static void
2259 store_fragdepth_layout(struct gl_shader_program *prog)
2260 {
2261 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2262 return;
2263 }
2264
2265 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2266
2267 /* We don't look up the gl_FragDepth symbol directly because if
2268 * gl_FragDepth is not used in the shader, it's removed from the IR.
2269 * However, the symbol won't be removed from the symbol table.
2270 *
2271 * We're only interested in the cases where the variable is NOT removed
2272 * from the IR.
2273 */
2274 foreach_list(node, ir) {
2275 ir_variable *const var = ((ir_instruction *) node)->as_variable();
2276
2277 if (var == NULL || var->mode != ir_var_out) {
2278 continue;
2279 }
2280
2281 if (strcmp(var->name, "gl_FragDepth") == 0) {
2282 switch (var->depth_layout) {
2283 case ir_depth_layout_none:
2284 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2285 return;
2286 case ir_depth_layout_any:
2287 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2288 return;
2289 case ir_depth_layout_greater:
2290 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2291 return;
2292 case ir_depth_layout_less:
2293 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2294 return;
2295 case ir_depth_layout_unchanged:
2296 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2297 return;
2298 default:
2299 assert(0);
2300 return;
2301 }
2302 }
2303 }
2304 }
2305
2306 /**
2307 * Validate the resources used by a program versus the implementation limits
2308 */
2309 static bool
2310 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2311 {
2312 static const char *const shader_names[MESA_SHADER_TYPES] = {
2313 "vertex", "fragment", "geometry"
2314 };
2315
2316 const unsigned max_samplers[MESA_SHADER_TYPES] = {
2317 ctx->Const.MaxVertexTextureImageUnits,
2318 ctx->Const.MaxTextureImageUnits,
2319 ctx->Const.MaxGeometryTextureImageUnits
2320 };
2321
2322 const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
2323 ctx->Const.VertexProgram.MaxUniformComponents,
2324 ctx->Const.FragmentProgram.MaxUniformComponents,
2325 0 /* FINISHME: Geometry shaders. */
2326 };
2327
2328 const unsigned max_uniform_blocks[MESA_SHADER_TYPES] = {
2329 ctx->Const.VertexProgram.MaxUniformBlocks,
2330 ctx->Const.FragmentProgram.MaxUniformBlocks,
2331 ctx->Const.GeometryProgram.MaxUniformBlocks,
2332 };
2333
2334 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2335 struct gl_shader *sh = prog->_LinkedShaders[i];
2336
2337 if (sh == NULL)
2338 continue;
2339
2340 if (sh->num_samplers > max_samplers[i]) {
2341 linker_error(prog, "Too many %s shader texture samplers",
2342 shader_names[i]);
2343 }
2344
2345 if (sh->num_uniform_components > max_uniform_components[i]) {
2346 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2347 linker_warning(prog, "Too many %s shader uniform components, "
2348 "but the driver will try to optimize them out; "
2349 "this is non-portable out-of-spec behavior\n",
2350 shader_names[i]);
2351 } else {
2352 linker_error(prog, "Too many %s shader uniform components",
2353 shader_names[i]);
2354 }
2355 }
2356 }
2357
2358 unsigned blocks[MESA_SHADER_TYPES] = {0};
2359 unsigned total_uniform_blocks = 0;
2360
2361 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2362 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
2363 if (prog->UniformBlockStageIndex[j][i] != -1) {
2364 blocks[j]++;
2365 total_uniform_blocks++;
2366 }
2367 }
2368
2369 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2370 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
2371 prog->NumUniformBlocks,
2372 ctx->Const.MaxCombinedUniformBlocks);
2373 } else {
2374 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2375 if (blocks[i] > max_uniform_blocks[i]) {
2376 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
2377 shader_names[i],
2378 blocks[i],
2379 max_uniform_blocks[i]);
2380 break;
2381 }
2382 }
2383 }
2384 }
2385
2386 return prog->LinkStatus;
2387 }
2388
2389 void
2390 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2391 {
2392 tfeedback_decl *tfeedback_decls = NULL;
2393 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2394
2395 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2396
2397 prog->LinkStatus = false;
2398 prog->Validated = false;
2399 prog->_Used = false;
2400
2401 ralloc_free(prog->InfoLog);
2402 prog->InfoLog = ralloc_strdup(NULL, "");
2403
2404 ralloc_free(prog->UniformBlocks);
2405 prog->UniformBlocks = NULL;
2406 prog->NumUniformBlocks = 0;
2407 for (int i = 0; i < MESA_SHADER_TYPES; i++) {
2408 ralloc_free(prog->UniformBlockStageIndex[i]);
2409 prog->UniformBlockStageIndex[i] = NULL;
2410 }
2411
2412 /* Separate the shaders into groups based on their type.
2413 */
2414 struct gl_shader **vert_shader_list;
2415 unsigned num_vert_shaders = 0;
2416 struct gl_shader **frag_shader_list;
2417 unsigned num_frag_shaders = 0;
2418
2419 vert_shader_list = (struct gl_shader **)
2420 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
2421 frag_shader_list = &vert_shader_list[prog->NumShaders];
2422
2423 unsigned min_version = UINT_MAX;
2424 unsigned max_version = 0;
2425 for (unsigned i = 0; i < prog->NumShaders; i++) {
2426 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2427 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2428
2429 switch (prog->Shaders[i]->Type) {
2430 case GL_VERTEX_SHADER:
2431 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
2432 num_vert_shaders++;
2433 break;
2434 case GL_FRAGMENT_SHADER:
2435 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
2436 num_frag_shaders++;
2437 break;
2438 case GL_GEOMETRY_SHADER:
2439 /* FINISHME: Support geometry shaders. */
2440 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
2441 break;
2442 }
2443 }
2444
2445 /* Previous to GLSL version 1.30, different compilation units could mix and
2446 * match shading language versions. With GLSL 1.30 and later, the versions
2447 * of all shaders must match.
2448 */
2449 assert(min_version >= 100);
2450 assert(max_version <= 140);
2451 if ((max_version >= 130 || min_version == 100)
2452 && min_version != max_version) {
2453 linker_error(prog, "all shaders must use same shading "
2454 "language version\n");
2455 goto done;
2456 }
2457
2458 prog->Version = max_version;
2459
2460 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2461 if (prog->_LinkedShaders[i] != NULL)
2462 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2463
2464 prog->_LinkedShaders[i] = NULL;
2465 }
2466
2467 /* Link all shaders for a particular stage and validate the result.
2468 */
2469 if (num_vert_shaders > 0) {
2470 gl_shader *const sh =
2471 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
2472 num_vert_shaders);
2473
2474 if (sh == NULL)
2475 goto done;
2476
2477 if (!validate_vertex_shader_executable(prog, sh))
2478 goto done;
2479
2480 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
2481 sh);
2482 }
2483
2484 if (num_frag_shaders > 0) {
2485 gl_shader *const sh =
2486 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
2487 num_frag_shaders);
2488
2489 if (sh == NULL)
2490 goto done;
2491
2492 if (!validate_fragment_shader_executable(prog, sh))
2493 goto done;
2494
2495 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
2496 sh);
2497 }
2498
2499 /* Here begins the inter-stage linking phase. Some initial validation is
2500 * performed, then locations are assigned for uniforms, attributes, and
2501 * varyings.
2502 */
2503 if (cross_validate_uniforms(prog)) {
2504 unsigned prev;
2505
2506 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2507 if (prog->_LinkedShaders[prev] != NULL)
2508 break;
2509 }
2510
2511 /* Validate the inputs of each stage with the output of the preceding
2512 * stage.
2513 */
2514 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2515 if (prog->_LinkedShaders[i] == NULL)
2516 continue;
2517
2518 if (!cross_validate_outputs_to_inputs(prog,
2519 prog->_LinkedShaders[prev],
2520 prog->_LinkedShaders[i]))
2521 goto done;
2522
2523 prev = i;
2524 }
2525
2526 prog->LinkStatus = true;
2527 }
2528
2529 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2530 * it before optimization because we want most of the checks to get
2531 * dropped thanks to constant propagation.
2532 */
2533 if (max_version >= 130) {
2534 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2535 if (sh) {
2536 lower_discard_flow(sh->ir);
2537 }
2538 }
2539
2540 if (!interstage_cross_validate_uniform_blocks(prog))
2541 goto done;
2542
2543 /* Do common optimization before assigning storage for attributes,
2544 * uniforms, and varyings. Later optimization could possibly make
2545 * some of that unused.
2546 */
2547 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2548 if (prog->_LinkedShaders[i] == NULL)
2549 continue;
2550
2551 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2552 if (!prog->LinkStatus)
2553 goto done;
2554
2555 if (ctx->ShaderCompilerOptions[i].LowerClipDistance)
2556 lower_clip_distance(prog->_LinkedShaders[i]->ir);
2557
2558 unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
2559
2560 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll))
2561 ;
2562 }
2563
2564 /* FINISHME: The value of the max_attribute_index parameter is
2565 * FINISHME: implementation dependent based on the value of
2566 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2567 * FINISHME: at least 16, so hardcode 16 for now.
2568 */
2569 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2570 goto done;
2571 }
2572
2573 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2574 goto done;
2575 }
2576
2577 unsigned prev;
2578 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2579 if (prog->_LinkedShaders[prev] != NULL)
2580 break;
2581 }
2582
2583 if (num_tfeedback_decls != 0) {
2584 /* From GL_EXT_transform_feedback:
2585 * A program will fail to link if:
2586 *
2587 * * the <count> specified by TransformFeedbackVaryingsEXT is
2588 * non-zero, but the program object has no vertex or geometry
2589 * shader;
2590 */
2591 if (prev >= MESA_SHADER_FRAGMENT) {
2592 linker_error(prog, "Transform feedback varyings specified, but "
2593 "no vertex or geometry shader is present.");
2594 goto done;
2595 }
2596
2597 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2598 prog->TransformFeedback.NumVarying);
2599 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2600 prog->TransformFeedback.VaryingNames,
2601 tfeedback_decls))
2602 goto done;
2603 }
2604
2605 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2606 if (prog->_LinkedShaders[i] == NULL)
2607 continue;
2608
2609 if (!assign_varying_locations(
2610 ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
2611 i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2612 tfeedback_decls))
2613 goto done;
2614
2615 prev = i;
2616 }
2617
2618 if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
2619 /* There was no fragment shader, but we still have to assign varying
2620 * locations for use by transform feedback.
2621 */
2622 if (!assign_varying_locations(
2623 ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
2624 tfeedback_decls))
2625 goto done;
2626 }
2627
2628 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2629 goto done;
2630
2631 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2632 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
2633 ir_var_out);
2634
2635 /* Eliminate code that is now dead due to unused vertex outputs being
2636 * demoted.
2637 */
2638 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
2639 ;
2640 }
2641
2642 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2643 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
2644
2645 demote_shader_inputs_and_outputs(sh, ir_var_in);
2646 demote_shader_inputs_and_outputs(sh, ir_var_inout);
2647 demote_shader_inputs_and_outputs(sh, ir_var_out);
2648
2649 /* Eliminate code that is now dead due to unused geometry outputs being
2650 * demoted.
2651 */
2652 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
2653 ;
2654 }
2655
2656 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2657 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2658
2659 demote_shader_inputs_and_outputs(sh, ir_var_in);
2660
2661 /* Eliminate code that is now dead due to unused fragment inputs being
2662 * demoted. This shouldn't actually do anything other than remove
2663 * declarations of the (now unused) global variables.
2664 */
2665 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
2666 ;
2667 }
2668
2669 update_array_sizes(prog);
2670 link_assign_uniform_locations(prog);
2671 store_fragdepth_layout(prog);
2672
2673 if (!check_resources(ctx, prog))
2674 goto done;
2675
2676 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2677 * present in a linked program. By checking for use of shading language
2678 * version 1.00, we also catch the GL_ARB_ES2_compatibility case.
2679 */
2680 if (!prog->InternalSeparateShader &&
2681 (ctx->API == API_OPENGLES2 || prog->Version == 100)) {
2682 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2683 linker_error(prog, "program lacks a vertex shader\n");
2684 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2685 linker_error(prog, "program lacks a fragment shader\n");
2686 }
2687 }
2688
2689 /* FINISHME: Assign fragment shader output locations. */
2690
2691 done:
2692 free(vert_shader_list);
2693
2694 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2695 if (prog->_LinkedShaders[i] == NULL)
2696 continue;
2697
2698 /* Retain any live IR, but trash the rest. */
2699 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2700
2701 /* The symbol table in the linked shaders may contain references to
2702 * variables that were removed (e.g., unused uniforms). Since it may
2703 * contain junk, there is no possible valid use. Delete it and set the
2704 * pointer to NULL.
2705 */
2706 delete prog->_LinkedShaders[i]->symbols;
2707 prog->_LinkedShaders[i]->symbols = NULL;
2708 }
2709
2710 ralloc_free(mem_ctx);
2711 }