glsl: Apply the link error conditions to GL_ARB_fragment_coord_conventions
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77
78 extern "C" {
79 #include "main/shaderobj.h"
80 #include "main/enums.h"
81 }
82
83 void linker_error(gl_shader_program *, const char *, ...);
84
85 namespace {
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 foreach_two_lists(formal_node, &ir->callee->parameters,
113 actual_node, &ir->actual_parameters) {
114 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
115 ir_variable *sig_param = (ir_variable *) formal_node;
116
117 if (sig_param->data.mode == ir_var_function_out ||
118 sig_param->data.mode == ir_var_function_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 }
126
127 if (ir->return_deref != NULL) {
128 ir_variable *const var = ir->return_deref->variable_referenced();
129
130 if (strcmp(name, var->name) == 0) {
131 found = true;
132 return visit_stop;
133 }
134 }
135
136 return visit_continue_with_parent;
137 }
138
139 bool variable_found()
140 {
141 return found;
142 }
143
144 private:
145 const char *name; /**< Find writes to a variable with this name. */
146 bool found; /**< Was a write to the variable found? */
147 };
148
149
150 /**
151 * Visitor that determines whether or not a variable is ever read.
152 */
153 class find_deref_visitor : public ir_hierarchical_visitor {
154 public:
155 find_deref_visitor(const char *name)
156 : name(name), found(false)
157 {
158 /* empty */
159 }
160
161 virtual ir_visitor_status visit(ir_dereference_variable *ir)
162 {
163 if (strcmp(this->name, ir->var->name) == 0) {
164 this->found = true;
165 return visit_stop;
166 }
167
168 return visit_continue;
169 }
170
171 bool variable_found() const
172 {
173 return this->found;
174 }
175
176 private:
177 const char *name; /**< Find writes to a variable with this name. */
178 bool found; /**< Was a write to the variable found? */
179 };
180
181
182 class geom_array_resize_visitor : public ir_hierarchical_visitor {
183 public:
184 unsigned num_vertices;
185 gl_shader_program *prog;
186
187 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
188 {
189 this->num_vertices = num_vertices;
190 this->prog = prog;
191 }
192
193 virtual ~geom_array_resize_visitor()
194 {
195 /* empty */
196 }
197
198 virtual ir_visitor_status visit(ir_variable *var)
199 {
200 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
201 return visit_continue;
202
203 unsigned size = var->type->length;
204
205 /* Generate a link error if the shader has declared this array with an
206 * incorrect size.
207 */
208 if (size && size != this->num_vertices) {
209 linker_error(this->prog, "size of array %s declared as %u, "
210 "but number of input vertices is %u\n",
211 var->name, size, this->num_vertices);
212 return visit_continue;
213 }
214
215 /* Generate a link error if the shader attempts to access an input
216 * array using an index too large for its actual size assigned at link
217 * time.
218 */
219 if (var->data.max_array_access >= this->num_vertices) {
220 linker_error(this->prog, "geometry shader accesses element %i of "
221 "%s, but only %i input vertices\n",
222 var->data.max_array_access, var->name, this->num_vertices);
223 return visit_continue;
224 }
225
226 var->type = glsl_type::get_array_instance(var->type->element_type(),
227 this->num_vertices);
228 var->data.max_array_access = this->num_vertices - 1;
229
230 return visit_continue;
231 }
232
233 /* Dereferences of input variables need to be updated so that their type
234 * matches the newly assigned type of the variable they are accessing. */
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 /* Dereferences of 2D input arrays need to be updated so that their type
242 * matches the newly assigned type of the array they are accessing. */
243 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
244 {
245 const glsl_type *const vt = ir->array->type;
246 if (vt->is_array())
247 ir->type = vt->element_type();
248 return visit_continue;
249 }
250 };
251
252
253 /**
254 * Visitor that determines whether or not a shader uses ir_end_primitive.
255 */
256 class find_end_primitive_visitor : public ir_hierarchical_visitor {
257 public:
258 find_end_primitive_visitor()
259 : found(false)
260 {
261 /* empty */
262 }
263
264 virtual ir_visitor_status visit(ir_end_primitive *)
265 {
266 found = true;
267 return visit_stop;
268 }
269
270 bool end_primitive_found()
271 {
272 return found;
273 }
274
275 private:
276 bool found;
277 };
278
279 } /* anonymous namespace */
280
281 void
282 linker_error(gl_shader_program *prog, const char *fmt, ...)
283 {
284 va_list ap;
285
286 ralloc_strcat(&prog->InfoLog, "error: ");
287 va_start(ap, fmt);
288 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
289 va_end(ap);
290
291 prog->LinkStatus = false;
292 }
293
294
295 void
296 linker_warning(gl_shader_program *prog, const char *fmt, ...)
297 {
298 va_list ap;
299
300 ralloc_strcat(&prog->InfoLog, "warning: ");
301 va_start(ap, fmt);
302 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
303 va_end(ap);
304
305 }
306
307
308 /**
309 * Given a string identifying a program resource, break it into a base name
310 * and an optional array index in square brackets.
311 *
312 * If an array index is present, \c out_base_name_end is set to point to the
313 * "[" that precedes the array index, and the array index itself is returned
314 * as a long.
315 *
316 * If no array index is present (or if the array index is negative or
317 * mal-formed), \c out_base_name_end, is set to point to the null terminator
318 * at the end of the input string, and -1 is returned.
319 *
320 * Only the final array index is parsed; if the string contains other array
321 * indices (or structure field accesses), they are left in the base name.
322 *
323 * No attempt is made to check that the base name is properly formed;
324 * typically the caller will look up the base name in a hash table, so
325 * ill-formed base names simply turn into hash table lookup failures.
326 */
327 long
328 parse_program_resource_name(const GLchar *name,
329 const GLchar **out_base_name_end)
330 {
331 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
332 *
333 * "When an integer array element or block instance number is part of
334 * the name string, it will be specified in decimal form without a "+"
335 * or "-" sign or any extra leading zeroes. Additionally, the name
336 * string will not include white space anywhere in the string."
337 */
338
339 const size_t len = strlen(name);
340 *out_base_name_end = name + len;
341
342 if (len == 0 || name[len-1] != ']')
343 return -1;
344
345 /* Walk backwards over the string looking for a non-digit character. This
346 * had better be the opening bracket for an array index.
347 *
348 * Initially, i specifies the location of the ']'. Since the string may
349 * contain only the ']' charcater, walk backwards very carefully.
350 */
351 unsigned i;
352 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
353 /* empty */ ;
354
355 if ((i == 0) || name[i-1] != '[')
356 return -1;
357
358 long array_index = strtol(&name[i], NULL, 10);
359 if (array_index < 0)
360 return -1;
361
362 *out_base_name_end = name + (i - 1);
363 return array_index;
364 }
365
366
367 void
368 link_invalidate_variable_locations(exec_list *ir)
369 {
370 foreach_list(node, ir) {
371 ir_variable *const var = ((ir_instruction *) node)->as_variable();
372
373 if (var == NULL)
374 continue;
375
376 /* Only assign locations for variables that lack an explicit location.
377 * Explicit locations are set for all built-in variables, generic vertex
378 * shader inputs (via layout(location=...)), and generic fragment shader
379 * outputs (also via layout(location=...)).
380 */
381 if (!var->data.explicit_location) {
382 var->data.location = -1;
383 var->data.location_frac = 0;
384 }
385
386 /* ir_variable::is_unmatched_generic_inout is used by the linker while
387 * connecting outputs from one stage to inputs of the next stage.
388 *
389 * There are two implicit assumptions here. First, we assume that any
390 * built-in variable (i.e., non-generic in or out) will have
391 * explicit_location set. Second, we assume that any generic in or out
392 * will not have explicit_location set.
393 *
394 * This second assumption will only be valid until
395 * GL_ARB_separate_shader_objects is supported. When that extension is
396 * implemented, this function will need some modifications.
397 */
398 if (!var->data.explicit_location) {
399 var->data.is_unmatched_generic_inout = 1;
400 } else {
401 var->data.is_unmatched_generic_inout = 0;
402 }
403 }
404 }
405
406
407 /**
408 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
409 *
410 * Also check for errors based on incorrect usage of gl_ClipVertex and
411 * gl_ClipDistance.
412 *
413 * Return false if an error was reported.
414 */
415 static void
416 analyze_clip_usage(struct gl_shader_program *prog,
417 struct gl_shader *shader, GLboolean *UsesClipDistance,
418 GLuint *ClipDistanceArraySize)
419 {
420 *ClipDistanceArraySize = 0;
421
422 if (!prog->IsES && prog->Version >= 130) {
423 /* From section 7.1 (Vertex Shader Special Variables) of the
424 * GLSL 1.30 spec:
425 *
426 * "It is an error for a shader to statically write both
427 * gl_ClipVertex and gl_ClipDistance."
428 *
429 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
430 * gl_ClipVertex nor gl_ClipDistance.
431 */
432 find_assignment_visitor clip_vertex("gl_ClipVertex");
433 find_assignment_visitor clip_distance("gl_ClipDistance");
434
435 clip_vertex.run(shader->ir);
436 clip_distance.run(shader->ir);
437 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
438 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
439 "and `gl_ClipDistance'\n",
440 _mesa_shader_stage_to_string(shader->Stage));
441 return;
442 }
443 *UsesClipDistance = clip_distance.variable_found();
444 ir_variable *clip_distance_var =
445 shader->symbols->get_variable("gl_ClipDistance");
446 if (clip_distance_var)
447 *ClipDistanceArraySize = clip_distance_var->type->length;
448 } else {
449 *UsesClipDistance = false;
450 }
451 }
452
453
454 /**
455 * Verify that a vertex shader executable meets all semantic requirements.
456 *
457 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
458 * as a side effect.
459 *
460 * \param shader Vertex shader executable to be verified
461 */
462 void
463 validate_vertex_shader_executable(struct gl_shader_program *prog,
464 struct gl_shader *shader)
465 {
466 if (shader == NULL)
467 return;
468
469 /* From the GLSL 1.10 spec, page 48:
470 *
471 * "The variable gl_Position is available only in the vertex
472 * language and is intended for writing the homogeneous vertex
473 * position. All executions of a well-formed vertex shader
474 * executable must write a value into this variable. [...] The
475 * variable gl_Position is available only in the vertex
476 * language and is intended for writing the homogeneous vertex
477 * position. All executions of a well-formed vertex shader
478 * executable must write a value into this variable."
479 *
480 * while in GLSL 1.40 this text is changed to:
481 *
482 * "The variable gl_Position is available only in the vertex
483 * language and is intended for writing the homogeneous vertex
484 * position. It can be written at any time during shader
485 * execution. It may also be read back by a vertex shader
486 * after being written. This value will be used by primitive
487 * assembly, clipping, culling, and other fixed functionality
488 * operations, if present, that operate on primitives after
489 * vertex processing has occurred. Its value is undefined if
490 * the vertex shader executable does not write gl_Position."
491 *
492 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
493 * not an error.
494 */
495 if (prog->Version < (prog->IsES ? 300 : 140)) {
496 find_assignment_visitor find("gl_Position");
497 find.run(shader->ir);
498 if (!find.variable_found()) {
499 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
500 return;
501 }
502 }
503
504 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
505 &prog->Vert.ClipDistanceArraySize);
506 }
507
508
509 /**
510 * Verify that a fragment shader executable meets all semantic requirements
511 *
512 * \param shader Fragment shader executable to be verified
513 */
514 void
515 validate_fragment_shader_executable(struct gl_shader_program *prog,
516 struct gl_shader *shader)
517 {
518 if (shader == NULL)
519 return;
520
521 find_assignment_visitor frag_color("gl_FragColor");
522 find_assignment_visitor frag_data("gl_FragData");
523
524 frag_color.run(shader->ir);
525 frag_data.run(shader->ir);
526
527 if (frag_color.variable_found() && frag_data.variable_found()) {
528 linker_error(prog, "fragment shader writes to both "
529 "`gl_FragColor' and `gl_FragData'\n");
530 }
531 }
532
533 /**
534 * Verify that a geometry shader executable meets all semantic requirements
535 *
536 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
537 * prog->Geom.ClipDistanceArraySize as a side effect.
538 *
539 * \param shader Geometry shader executable to be verified
540 */
541 void
542 validate_geometry_shader_executable(struct gl_shader_program *prog,
543 struct gl_shader *shader)
544 {
545 if (shader == NULL)
546 return;
547
548 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
549 prog->Geom.VerticesIn = num_vertices;
550
551 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
552 &prog->Geom.ClipDistanceArraySize);
553
554 find_end_primitive_visitor end_primitive;
555 end_primitive.run(shader->ir);
556 prog->Geom.UsesEndPrimitive = end_primitive.end_primitive_found();
557 }
558
559
560 /**
561 * Perform validation of global variables used across multiple shaders
562 */
563 void
564 cross_validate_globals(struct gl_shader_program *prog,
565 struct gl_shader **shader_list,
566 unsigned num_shaders,
567 bool uniforms_only)
568 {
569 /* Examine all of the uniforms in all of the shaders and cross validate
570 * them.
571 */
572 glsl_symbol_table variables;
573 for (unsigned i = 0; i < num_shaders; i++) {
574 if (shader_list[i] == NULL)
575 continue;
576
577 foreach_list(node, shader_list[i]->ir) {
578 ir_variable *const var = ((ir_instruction *) node)->as_variable();
579
580 if (var == NULL)
581 continue;
582
583 if (uniforms_only && (var->data.mode != ir_var_uniform))
584 continue;
585
586 /* Don't cross validate temporaries that are at global scope. These
587 * will eventually get pulled into the shaders 'main'.
588 */
589 if (var->data.mode == ir_var_temporary)
590 continue;
591
592 /* If a global with this name has already been seen, verify that the
593 * new instance has the same type. In addition, if the globals have
594 * initializers, the values of the initializers must be the same.
595 */
596 ir_variable *const existing = variables.get_variable(var->name);
597 if (existing != NULL) {
598 if (var->type != existing->type) {
599 /* Consider the types to be "the same" if both types are arrays
600 * of the same type and one of the arrays is implicitly sized.
601 * In addition, set the type of the linked variable to the
602 * explicitly sized array.
603 */
604 if (var->type->is_array()
605 && existing->type->is_array()
606 && (var->type->fields.array == existing->type->fields.array)
607 && ((var->type->length == 0)
608 || (existing->type->length == 0))) {
609 if (var->type->length != 0) {
610 existing->type = var->type;
611 }
612 } else if (var->type->is_record()
613 && existing->type->is_record()
614 && existing->type->record_compare(var->type)) {
615 existing->type = var->type;
616 } else {
617 linker_error(prog, "%s `%s' declared as type "
618 "`%s' and type `%s'\n",
619 mode_string(var),
620 var->name, var->type->name,
621 existing->type->name);
622 return;
623 }
624 }
625
626 if (var->data.explicit_location) {
627 if (existing->data.explicit_location
628 && (var->data.location != existing->data.location)) {
629 linker_error(prog, "explicit locations for %s "
630 "`%s' have differing values\n",
631 mode_string(var), var->name);
632 return;
633 }
634
635 existing->data.location = var->data.location;
636 existing->data.explicit_location = true;
637 }
638
639 /* From the GLSL 4.20 specification:
640 * "A link error will result if two compilation units in a program
641 * specify different integer-constant bindings for the same
642 * opaque-uniform name. However, it is not an error to specify a
643 * binding on some but not all declarations for the same name"
644 */
645 if (var->data.explicit_binding) {
646 if (existing->data.explicit_binding &&
647 var->data.binding != existing->data.binding) {
648 linker_error(prog, "explicit bindings for %s "
649 "`%s' have differing values\n",
650 mode_string(var), var->name);
651 return;
652 }
653
654 existing->data.binding = var->data.binding;
655 existing->data.explicit_binding = true;
656 }
657
658 if (var->type->contains_atomic() &&
659 var->data.atomic.offset != existing->data.atomic.offset) {
660 linker_error(prog, "offset specifications for %s "
661 "`%s' have differing values\n",
662 mode_string(var), var->name);
663 return;
664 }
665
666 /* Validate layout qualifiers for gl_FragDepth.
667 *
668 * From the AMD/ARB_conservative_depth specs:
669 *
670 * "If gl_FragDepth is redeclared in any fragment shader in a
671 * program, it must be redeclared in all fragment shaders in
672 * that program that have static assignments to
673 * gl_FragDepth. All redeclarations of gl_FragDepth in all
674 * fragment shaders in a single program must have the same set
675 * of qualifiers."
676 */
677 if (strcmp(var->name, "gl_FragDepth") == 0) {
678 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
679 bool layout_differs =
680 var->data.depth_layout != existing->data.depth_layout;
681
682 if (layout_declared && layout_differs) {
683 linker_error(prog,
684 "All redeclarations of gl_FragDepth in all "
685 "fragment shaders in a single program must have "
686 "the same set of qualifiers.");
687 }
688
689 if (var->data.used && layout_differs) {
690 linker_error(prog,
691 "If gl_FragDepth is redeclared with a layout "
692 "qualifier in any fragment shader, it must be "
693 "redeclared with the same layout qualifier in "
694 "all fragment shaders that have assignments to "
695 "gl_FragDepth");
696 }
697 }
698
699 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
700 *
701 * "If a shared global has multiple initializers, the
702 * initializers must all be constant expressions, and they
703 * must all have the same value. Otherwise, a link error will
704 * result. (A shared global having only one initializer does
705 * not require that initializer to be a constant expression.)"
706 *
707 * Previous to 4.20 the GLSL spec simply said that initializers
708 * must have the same value. In this case of non-constant
709 * initializers, this was impossible to determine. As a result,
710 * no vendor actually implemented that behavior. The 4.20
711 * behavior matches the implemented behavior of at least one other
712 * vendor, so we'll implement that for all GLSL versions.
713 */
714 if (var->constant_initializer != NULL) {
715 if (existing->constant_initializer != NULL) {
716 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
717 linker_error(prog, "initializers for %s "
718 "`%s' have differing values\n",
719 mode_string(var), var->name);
720 return;
721 }
722 } else {
723 /* If the first-seen instance of a particular uniform did not
724 * have an initializer but a later instance does, copy the
725 * initializer to the version stored in the symbol table.
726 */
727 /* FINISHME: This is wrong. The constant_value field should
728 * FINISHME: not be modified! Imagine a case where a shader
729 * FINISHME: without an initializer is linked in two different
730 * FINISHME: programs with shaders that have differing
731 * FINISHME: initializers. Linking with the first will
732 * FINISHME: modify the shader, and linking with the second
733 * FINISHME: will fail.
734 */
735 existing->constant_initializer =
736 var->constant_initializer->clone(ralloc_parent(existing),
737 NULL);
738 }
739 }
740
741 if (var->data.has_initializer) {
742 if (existing->data.has_initializer
743 && (var->constant_initializer == NULL
744 || existing->constant_initializer == NULL)) {
745 linker_error(prog,
746 "shared global variable `%s' has multiple "
747 "non-constant initializers.\n",
748 var->name);
749 return;
750 }
751
752 /* Some instance had an initializer, so keep track of that. In
753 * this location, all sorts of initializers (constant or
754 * otherwise) will propagate the existence to the variable
755 * stored in the symbol table.
756 */
757 existing->data.has_initializer = true;
758 }
759
760 if (existing->data.invariant != var->data.invariant) {
761 linker_error(prog, "declarations for %s `%s' have "
762 "mismatching invariant qualifiers\n",
763 mode_string(var), var->name);
764 return;
765 }
766 if (existing->data.centroid != var->data.centroid) {
767 linker_error(prog, "declarations for %s `%s' have "
768 "mismatching centroid qualifiers\n",
769 mode_string(var), var->name);
770 return;
771 }
772 if (existing->data.sample != var->data.sample) {
773 linker_error(prog, "declarations for %s `%s` have "
774 "mismatching sample qualifiers\n",
775 mode_string(var), var->name);
776 return;
777 }
778 } else
779 variables.add_variable(var);
780 }
781 }
782 }
783
784
785 /**
786 * Perform validation of uniforms used across multiple shader stages
787 */
788 void
789 cross_validate_uniforms(struct gl_shader_program *prog)
790 {
791 cross_validate_globals(prog, prog->_LinkedShaders,
792 MESA_SHADER_STAGES, true);
793 }
794
795 /**
796 * Accumulates the array of prog->UniformBlocks and checks that all
797 * definitons of blocks agree on their contents.
798 */
799 static bool
800 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
801 {
802 unsigned max_num_uniform_blocks = 0;
803 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
804 if (prog->_LinkedShaders[i])
805 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
806 }
807
808 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
809 struct gl_shader *sh = prog->_LinkedShaders[i];
810
811 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
812 max_num_uniform_blocks);
813 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
814 prog->UniformBlockStageIndex[i][j] = -1;
815
816 if (sh == NULL)
817 continue;
818
819 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
820 int index = link_cross_validate_uniform_block(prog,
821 &prog->UniformBlocks,
822 &prog->NumUniformBlocks,
823 &sh->UniformBlocks[j]);
824
825 if (index == -1) {
826 linker_error(prog, "uniform block `%s' has mismatching definitions",
827 sh->UniformBlocks[j].Name);
828 return false;
829 }
830
831 prog->UniformBlockStageIndex[i][index] = j;
832 }
833 }
834
835 return true;
836 }
837
838
839 /**
840 * Populates a shaders symbol table with all global declarations
841 */
842 static void
843 populate_symbol_table(gl_shader *sh)
844 {
845 sh->symbols = new(sh) glsl_symbol_table;
846
847 foreach_list(node, sh->ir) {
848 ir_instruction *const inst = (ir_instruction *) node;
849 ir_variable *var;
850 ir_function *func;
851
852 if ((func = inst->as_function()) != NULL) {
853 sh->symbols->add_function(func);
854 } else if ((var = inst->as_variable()) != NULL) {
855 sh->symbols->add_variable(var);
856 }
857 }
858 }
859
860
861 /**
862 * Remap variables referenced in an instruction tree
863 *
864 * This is used when instruction trees are cloned from one shader and placed in
865 * another. These trees will contain references to \c ir_variable nodes that
866 * do not exist in the target shader. This function finds these \c ir_variable
867 * references and replaces the references with matching variables in the target
868 * shader.
869 *
870 * If there is no matching variable in the target shader, a clone of the
871 * \c ir_variable is made and added to the target shader. The new variable is
872 * added to \b both the instruction stream and the symbol table.
873 *
874 * \param inst IR tree that is to be processed.
875 * \param symbols Symbol table containing global scope symbols in the
876 * linked shader.
877 * \param instructions Instruction stream where new variable declarations
878 * should be added.
879 */
880 void
881 remap_variables(ir_instruction *inst, struct gl_shader *target,
882 hash_table *temps)
883 {
884 class remap_visitor : public ir_hierarchical_visitor {
885 public:
886 remap_visitor(struct gl_shader *target,
887 hash_table *temps)
888 {
889 this->target = target;
890 this->symbols = target->symbols;
891 this->instructions = target->ir;
892 this->temps = temps;
893 }
894
895 virtual ir_visitor_status visit(ir_dereference_variable *ir)
896 {
897 if (ir->var->data.mode == ir_var_temporary) {
898 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
899
900 assert(var != NULL);
901 ir->var = var;
902 return visit_continue;
903 }
904
905 ir_variable *const existing =
906 this->symbols->get_variable(ir->var->name);
907 if (existing != NULL)
908 ir->var = existing;
909 else {
910 ir_variable *copy = ir->var->clone(this->target, NULL);
911
912 this->symbols->add_variable(copy);
913 this->instructions->push_head(copy);
914 ir->var = copy;
915 }
916
917 return visit_continue;
918 }
919
920 private:
921 struct gl_shader *target;
922 glsl_symbol_table *symbols;
923 exec_list *instructions;
924 hash_table *temps;
925 };
926
927 remap_visitor v(target, temps);
928
929 inst->accept(&v);
930 }
931
932
933 /**
934 * Move non-declarations from one instruction stream to another
935 *
936 * The intended usage pattern of this function is to pass the pointer to the
937 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
938 * pointer) for \c last and \c false for \c make_copies on the first
939 * call. Successive calls pass the return value of the previous call for
940 * \c last and \c true for \c make_copies.
941 *
942 * \param instructions Source instruction stream
943 * \param last Instruction after which new instructions should be
944 * inserted in the target instruction stream
945 * \param make_copies Flag selecting whether instructions in \c instructions
946 * should be copied (via \c ir_instruction::clone) into the
947 * target list or moved.
948 *
949 * \return
950 * The new "last" instruction in the target instruction stream. This pointer
951 * is suitable for use as the \c last parameter of a later call to this
952 * function.
953 */
954 exec_node *
955 move_non_declarations(exec_list *instructions, exec_node *last,
956 bool make_copies, gl_shader *target)
957 {
958 hash_table *temps = NULL;
959
960 if (make_copies)
961 temps = hash_table_ctor(0, hash_table_pointer_hash,
962 hash_table_pointer_compare);
963
964 foreach_list_safe(node, instructions) {
965 ir_instruction *inst = (ir_instruction *) node;
966
967 if (inst->as_function())
968 continue;
969
970 ir_variable *var = inst->as_variable();
971 if ((var != NULL) && (var->data.mode != ir_var_temporary))
972 continue;
973
974 assert(inst->as_assignment()
975 || inst->as_call()
976 || inst->as_if() /* for initializers with the ?: operator */
977 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
978
979 if (make_copies) {
980 inst = inst->clone(target, NULL);
981
982 if (var != NULL)
983 hash_table_insert(temps, inst, var);
984 else
985 remap_variables(inst, target, temps);
986 } else {
987 inst->remove();
988 }
989
990 last->insert_after(inst);
991 last = inst;
992 }
993
994 if (make_copies)
995 hash_table_dtor(temps);
996
997 return last;
998 }
999
1000 /**
1001 * Get the function signature for main from a shader
1002 */
1003 static ir_function_signature *
1004 get_main_function_signature(gl_shader *sh)
1005 {
1006 ir_function *const f = sh->symbols->get_function("main");
1007 if (f != NULL) {
1008 exec_list void_parameters;
1009
1010 /* Look for the 'void main()' signature and ensure that it's defined.
1011 * This keeps the linker from accidentally pick a shader that just
1012 * contains a prototype for main.
1013 *
1014 * We don't have to check for multiple definitions of main (in multiple
1015 * shaders) because that would have already been caught above.
1016 */
1017 ir_function_signature *sig = f->matching_signature(NULL, &void_parameters);
1018 if ((sig != NULL) && sig->is_defined) {
1019 return sig;
1020 }
1021 }
1022
1023 return NULL;
1024 }
1025
1026
1027 /**
1028 * This class is only used in link_intrastage_shaders() below but declaring
1029 * it inside that function leads to compiler warnings with some versions of
1030 * gcc.
1031 */
1032 class array_sizing_visitor : public ir_hierarchical_visitor {
1033 public:
1034 array_sizing_visitor()
1035 : mem_ctx(ralloc_context(NULL)),
1036 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1037 hash_table_pointer_compare))
1038 {
1039 }
1040
1041 ~array_sizing_visitor()
1042 {
1043 hash_table_dtor(this->unnamed_interfaces);
1044 ralloc_free(this->mem_ctx);
1045 }
1046
1047 virtual ir_visitor_status visit(ir_variable *var)
1048 {
1049 fixup_type(&var->type, var->data.max_array_access);
1050 if (var->type->is_interface()) {
1051 if (interface_contains_unsized_arrays(var->type)) {
1052 const glsl_type *new_type =
1053 resize_interface_members(var->type, var->max_ifc_array_access);
1054 var->type = new_type;
1055 var->change_interface_type(new_type);
1056 }
1057 } else if (var->type->is_array() &&
1058 var->type->fields.array->is_interface()) {
1059 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1060 const glsl_type *new_type =
1061 resize_interface_members(var->type->fields.array,
1062 var->max_ifc_array_access);
1063 var->change_interface_type(new_type);
1064 var->type =
1065 glsl_type::get_array_instance(new_type, var->type->length);
1066 }
1067 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1068 /* Store a pointer to the variable in the unnamed_interfaces
1069 * hashtable.
1070 */
1071 ir_variable **interface_vars = (ir_variable **)
1072 hash_table_find(this->unnamed_interfaces, ifc_type);
1073 if (interface_vars == NULL) {
1074 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1075 ifc_type->length);
1076 hash_table_insert(this->unnamed_interfaces, interface_vars,
1077 ifc_type);
1078 }
1079 unsigned index = ifc_type->field_index(var->name);
1080 assert(index < ifc_type->length);
1081 assert(interface_vars[index] == NULL);
1082 interface_vars[index] = var;
1083 }
1084 return visit_continue;
1085 }
1086
1087 /**
1088 * For each unnamed interface block that was discovered while running the
1089 * visitor, adjust the interface type to reflect the newly assigned array
1090 * sizes, and fix up the ir_variable nodes to point to the new interface
1091 * type.
1092 */
1093 void fixup_unnamed_interface_types()
1094 {
1095 hash_table_call_foreach(this->unnamed_interfaces,
1096 fixup_unnamed_interface_type, NULL);
1097 }
1098
1099 private:
1100 /**
1101 * If the type pointed to by \c type represents an unsized array, replace
1102 * it with a sized array whose size is determined by max_array_access.
1103 */
1104 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1105 {
1106 if ((*type)->is_unsized_array()) {
1107 *type = glsl_type::get_array_instance((*type)->fields.array,
1108 max_array_access + 1);
1109 assert(*type != NULL);
1110 }
1111 }
1112
1113 /**
1114 * Determine whether the given interface type contains unsized arrays (if
1115 * it doesn't, array_sizing_visitor doesn't need to process it).
1116 */
1117 static bool interface_contains_unsized_arrays(const glsl_type *type)
1118 {
1119 for (unsigned i = 0; i < type->length; i++) {
1120 const glsl_type *elem_type = type->fields.structure[i].type;
1121 if (elem_type->is_unsized_array())
1122 return true;
1123 }
1124 return false;
1125 }
1126
1127 /**
1128 * Create a new interface type based on the given type, with unsized arrays
1129 * replaced by sized arrays whose size is determined by
1130 * max_ifc_array_access.
1131 */
1132 static const glsl_type *
1133 resize_interface_members(const glsl_type *type,
1134 const unsigned *max_ifc_array_access)
1135 {
1136 unsigned num_fields = type->length;
1137 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1138 memcpy(fields, type->fields.structure,
1139 num_fields * sizeof(*fields));
1140 for (unsigned i = 0; i < num_fields; i++) {
1141 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1142 }
1143 glsl_interface_packing packing =
1144 (glsl_interface_packing) type->interface_packing;
1145 const glsl_type *new_ifc_type =
1146 glsl_type::get_interface_instance(fields, num_fields,
1147 packing, type->name);
1148 delete [] fields;
1149 return new_ifc_type;
1150 }
1151
1152 static void fixup_unnamed_interface_type(const void *key, void *data,
1153 void *)
1154 {
1155 const glsl_type *ifc_type = (const glsl_type *) key;
1156 ir_variable **interface_vars = (ir_variable **) data;
1157 unsigned num_fields = ifc_type->length;
1158 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1159 memcpy(fields, ifc_type->fields.structure,
1160 num_fields * sizeof(*fields));
1161 bool interface_type_changed = false;
1162 for (unsigned i = 0; i < num_fields; i++) {
1163 if (interface_vars[i] != NULL &&
1164 fields[i].type != interface_vars[i]->type) {
1165 fields[i].type = interface_vars[i]->type;
1166 interface_type_changed = true;
1167 }
1168 }
1169 if (!interface_type_changed) {
1170 delete [] fields;
1171 return;
1172 }
1173 glsl_interface_packing packing =
1174 (glsl_interface_packing) ifc_type->interface_packing;
1175 const glsl_type *new_ifc_type =
1176 glsl_type::get_interface_instance(fields, num_fields, packing,
1177 ifc_type->name);
1178 delete [] fields;
1179 for (unsigned i = 0; i < num_fields; i++) {
1180 if (interface_vars[i] != NULL)
1181 interface_vars[i]->change_interface_type(new_ifc_type);
1182 }
1183 }
1184
1185 /**
1186 * Memory context used to allocate the data in \c unnamed_interfaces.
1187 */
1188 void *mem_ctx;
1189
1190 /**
1191 * Hash table from const glsl_type * to an array of ir_variable *'s
1192 * pointing to the ir_variables constituting each unnamed interface block.
1193 */
1194 hash_table *unnamed_interfaces;
1195 };
1196
1197 /**
1198 * Performs the cross-validation of layout qualifiers specified in
1199 * redeclaration of gl_FragCoord for the attached fragment shaders,
1200 * and propagates them to the linked FS and linked shader program.
1201 */
1202 static void
1203 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1204 struct gl_shader *linked_shader,
1205 struct gl_shader **shader_list,
1206 unsigned num_shaders)
1207 {
1208 linked_shader->redeclares_gl_fragcoord = false;
1209 linked_shader->uses_gl_fragcoord = false;
1210 linked_shader->origin_upper_left = false;
1211 linked_shader->pixel_center_integer = false;
1212
1213 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1214 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1215 return;
1216
1217 for (unsigned i = 0; i < num_shaders; i++) {
1218 struct gl_shader *shader = shader_list[i];
1219 /* From the GLSL 1.50 spec, page 39:
1220 *
1221 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1222 * it must be redeclared in all the fragment shaders in that program
1223 * that have a static use gl_FragCoord."
1224 *
1225 * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
1226 * gl_FragCoord with no layout qualifiers but the other one doesn't
1227 * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
1228 * should be a link error. But, generating link error for this case will
1229 * be a wrong behaviour which spec didn't intend to do and it could also
1230 * break some applications.
1231 */
1232 if ((linked_shader->redeclares_gl_fragcoord
1233 && !shader->redeclares_gl_fragcoord
1234 && shader->uses_gl_fragcoord
1235 && (linked_shader->origin_upper_left
1236 || linked_shader->pixel_center_integer))
1237 || (shader->redeclares_gl_fragcoord
1238 && !linked_shader->redeclares_gl_fragcoord
1239 && linked_shader->uses_gl_fragcoord
1240 && (shader->origin_upper_left
1241 || shader->pixel_center_integer))) {
1242 linker_error(prog, "fragment shader defined with conflicting "
1243 "layout qualifiers for gl_FragCoord\n");
1244 }
1245
1246 /* From the GLSL 1.50 spec, page 39:
1247 *
1248 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1249 * single program must have the same set of qualifiers."
1250 */
1251 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1252 && (shader->origin_upper_left != linked_shader->origin_upper_left
1253 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1254 linker_error(prog, "fragment shader defined with conflicting "
1255 "layout qualifiers for gl_FragCoord\n");
1256 }
1257
1258 /* Update the linked shader state.  Note that uses_gl_fragcoord should
1259 * accumulate the results.  The other values should replace.  If there
1260 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1261 * are already known to be the same.
1262 */
1263 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1264 linked_shader->redeclares_gl_fragcoord =
1265 shader->redeclares_gl_fragcoord;
1266 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1267 || shader->uses_gl_fragcoord;
1268 linked_shader->origin_upper_left = shader->origin_upper_left;
1269 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1270 }
1271 }
1272 }
1273
1274 /**
1275 * Performs the cross-validation of geometry shader max_vertices and
1276 * primitive type layout qualifiers for the attached geometry shaders,
1277 * and propagates them to the linked GS and linked shader program.
1278 */
1279 static void
1280 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1281 struct gl_shader *linked_shader,
1282 struct gl_shader **shader_list,
1283 unsigned num_shaders)
1284 {
1285 linked_shader->Geom.VerticesOut = 0;
1286 linked_shader->Geom.Invocations = 0;
1287 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1288 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1289
1290 /* No in/out qualifiers defined for anything but GLSL 1.50+
1291 * geometry shaders so far.
1292 */
1293 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1294 return;
1295
1296 /* From the GLSL 1.50 spec, page 46:
1297 *
1298 * "All geometry shader output layout declarations in a program
1299 * must declare the same layout and same value for
1300 * max_vertices. There must be at least one geometry output
1301 * layout declaration somewhere in a program, but not all
1302 * geometry shaders (compilation units) are required to
1303 * declare it."
1304 */
1305
1306 for (unsigned i = 0; i < num_shaders; i++) {
1307 struct gl_shader *shader = shader_list[i];
1308
1309 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1310 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1311 linked_shader->Geom.InputType != shader->Geom.InputType) {
1312 linker_error(prog, "geometry shader defined with conflicting "
1313 "input types\n");
1314 return;
1315 }
1316 linked_shader->Geom.InputType = shader->Geom.InputType;
1317 }
1318
1319 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1320 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1321 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1322 linker_error(prog, "geometry shader defined with conflicting "
1323 "output types\n");
1324 return;
1325 }
1326 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1327 }
1328
1329 if (shader->Geom.VerticesOut != 0) {
1330 if (linked_shader->Geom.VerticesOut != 0 &&
1331 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1332 linker_error(prog, "geometry shader defined with conflicting "
1333 "output vertex count (%d and %d)\n",
1334 linked_shader->Geom.VerticesOut,
1335 shader->Geom.VerticesOut);
1336 return;
1337 }
1338 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1339 }
1340
1341 if (shader->Geom.Invocations != 0) {
1342 if (linked_shader->Geom.Invocations != 0 &&
1343 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1344 linker_error(prog, "geometry shader defined with conflicting "
1345 "invocation count (%d and %d)\n",
1346 linked_shader->Geom.Invocations,
1347 shader->Geom.Invocations);
1348 return;
1349 }
1350 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1351 }
1352 }
1353
1354 /* Just do the intrastage -> interstage propagation right now,
1355 * since we already know we're in the right type of shader program
1356 * for doing it.
1357 */
1358 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1359 linker_error(prog,
1360 "geometry shader didn't declare primitive input type\n");
1361 return;
1362 }
1363 prog->Geom.InputType = linked_shader->Geom.InputType;
1364
1365 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1366 linker_error(prog,
1367 "geometry shader didn't declare primitive output type\n");
1368 return;
1369 }
1370 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1371
1372 if (linked_shader->Geom.VerticesOut == 0) {
1373 linker_error(prog,
1374 "geometry shader didn't declare max_vertices\n");
1375 return;
1376 }
1377 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1378
1379 if (linked_shader->Geom.Invocations == 0)
1380 linked_shader->Geom.Invocations = 1;
1381
1382 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1383 }
1384
1385
1386 /**
1387 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1388 * qualifiers for the attached compute shaders, and propagate them to the
1389 * linked CS and linked shader program.
1390 */
1391 static void
1392 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1393 struct gl_shader *linked_shader,
1394 struct gl_shader **shader_list,
1395 unsigned num_shaders)
1396 {
1397 for (int i = 0; i < 3; i++)
1398 linked_shader->Comp.LocalSize[i] = 0;
1399
1400 /* This function is called for all shader stages, but it only has an effect
1401 * for compute shaders.
1402 */
1403 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1404 return;
1405
1406 /* From the ARB_compute_shader spec, in the section describing local size
1407 * declarations:
1408 *
1409 * If multiple compute shaders attached to a single program object
1410 * declare local work-group size, the declarations must be identical;
1411 * otherwise a link-time error results. Furthermore, if a program
1412 * object contains any compute shaders, at least one must contain an
1413 * input layout qualifier specifying the local work sizes of the
1414 * program, or a link-time error will occur.
1415 */
1416 for (unsigned sh = 0; sh < num_shaders; sh++) {
1417 struct gl_shader *shader = shader_list[sh];
1418
1419 if (shader->Comp.LocalSize[0] != 0) {
1420 if (linked_shader->Comp.LocalSize[0] != 0) {
1421 for (int i = 0; i < 3; i++) {
1422 if (linked_shader->Comp.LocalSize[i] !=
1423 shader->Comp.LocalSize[i]) {
1424 linker_error(prog, "compute shader defined with conflicting "
1425 "local sizes\n");
1426 return;
1427 }
1428 }
1429 }
1430 for (int i = 0; i < 3; i++)
1431 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1432 }
1433 }
1434
1435 /* Just do the intrastage -> interstage propagation right now,
1436 * since we already know we're in the right type of shader program
1437 * for doing it.
1438 */
1439 if (linked_shader->Comp.LocalSize[0] == 0) {
1440 linker_error(prog, "compute shader didn't declare local size\n");
1441 return;
1442 }
1443 for (int i = 0; i < 3; i++)
1444 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1445 }
1446
1447
1448 /**
1449 * Combine a group of shaders for a single stage to generate a linked shader
1450 *
1451 * \note
1452 * If this function is supplied a single shader, it is cloned, and the new
1453 * shader is returned.
1454 */
1455 static struct gl_shader *
1456 link_intrastage_shaders(void *mem_ctx,
1457 struct gl_context *ctx,
1458 struct gl_shader_program *prog,
1459 struct gl_shader **shader_list,
1460 unsigned num_shaders)
1461 {
1462 struct gl_uniform_block *uniform_blocks = NULL;
1463
1464 /* Check that global variables defined in multiple shaders are consistent.
1465 */
1466 cross_validate_globals(prog, shader_list, num_shaders, false);
1467 if (!prog->LinkStatus)
1468 return NULL;
1469
1470 /* Check that interface blocks defined in multiple shaders are consistent.
1471 */
1472 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1473 num_shaders);
1474 if (!prog->LinkStatus)
1475 return NULL;
1476
1477 /* Link up uniform blocks defined within this stage. */
1478 const unsigned num_uniform_blocks =
1479 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1480 &uniform_blocks);
1481
1482 /* Check that there is only a single definition of each function signature
1483 * across all shaders.
1484 */
1485 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1486 foreach_list(node, shader_list[i]->ir) {
1487 ir_function *const f = ((ir_instruction *) node)->as_function();
1488
1489 if (f == NULL)
1490 continue;
1491
1492 for (unsigned j = i + 1; j < num_shaders; j++) {
1493 ir_function *const other =
1494 shader_list[j]->symbols->get_function(f->name);
1495
1496 /* If the other shader has no function (and therefore no function
1497 * signatures) with the same name, skip to the next shader.
1498 */
1499 if (other == NULL)
1500 continue;
1501
1502 foreach_list(n, &f->signatures) {
1503 ir_function_signature *sig = (ir_function_signature *) n;
1504
1505 if (!sig->is_defined || sig->is_builtin())
1506 continue;
1507
1508 ir_function_signature *other_sig =
1509 other->exact_matching_signature(NULL, &sig->parameters);
1510
1511 if ((other_sig != NULL) && other_sig->is_defined
1512 && !other_sig->is_builtin()) {
1513 linker_error(prog, "function `%s' is multiply defined",
1514 f->name);
1515 return NULL;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* Find the shader that defines main, and make a clone of it.
1523 *
1524 * Starting with the clone, search for undefined references. If one is
1525 * found, find the shader that defines it. Clone the reference and add
1526 * it to the shader. Repeat until there are no undefined references or
1527 * until a reference cannot be resolved.
1528 */
1529 gl_shader *main = NULL;
1530 for (unsigned i = 0; i < num_shaders; i++) {
1531 if (get_main_function_signature(shader_list[i]) != NULL) {
1532 main = shader_list[i];
1533 break;
1534 }
1535 }
1536
1537 if (main == NULL) {
1538 linker_error(prog, "%s shader lacks `main'\n",
1539 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1540 return NULL;
1541 }
1542
1543 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1544 linked->ir = new(linked) exec_list;
1545 clone_ir_list(mem_ctx, linked->ir, main->ir);
1546
1547 linked->UniformBlocks = uniform_blocks;
1548 linked->NumUniformBlocks = num_uniform_blocks;
1549 ralloc_steal(linked, linked->UniformBlocks);
1550
1551 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1552 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1553 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1554
1555 populate_symbol_table(linked);
1556
1557 /* The a pointer to the main function in the final linked shader (i.e., the
1558 * copy of the original shader that contained the main function).
1559 */
1560 ir_function_signature *const main_sig = get_main_function_signature(linked);
1561
1562 /* Move any instructions other than variable declarations or function
1563 * declarations into main.
1564 */
1565 exec_node *insertion_point =
1566 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1567 linked);
1568
1569 for (unsigned i = 0; i < num_shaders; i++) {
1570 if (shader_list[i] == main)
1571 continue;
1572
1573 insertion_point = move_non_declarations(shader_list[i]->ir,
1574 insertion_point, true, linked);
1575 }
1576
1577 /* Check if any shader needs built-in functions. */
1578 bool need_builtins = false;
1579 for (unsigned i = 0; i < num_shaders; i++) {
1580 if (shader_list[i]->uses_builtin_functions) {
1581 need_builtins = true;
1582 break;
1583 }
1584 }
1585
1586 bool ok;
1587 if (need_builtins) {
1588 /* Make a temporary array one larger than shader_list, which will hold
1589 * the built-in function shader as well.
1590 */
1591 gl_shader **linking_shaders = (gl_shader **)
1592 calloc(num_shaders + 1, sizeof(gl_shader *));
1593 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1594 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1595
1596 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1597
1598 free(linking_shaders);
1599 } else {
1600 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1601 }
1602
1603
1604 if (!ok) {
1605 ctx->Driver.DeleteShader(ctx, linked);
1606 return NULL;
1607 }
1608
1609 /* At this point linked should contain all of the linked IR, so
1610 * validate it to make sure nothing went wrong.
1611 */
1612 validate_ir_tree(linked->ir);
1613
1614 /* Set the size of geometry shader input arrays */
1615 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1616 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1617 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1618 foreach_list(n, linked->ir) {
1619 ir_instruction *ir = (ir_instruction *) n;
1620 ir->accept(&input_resize_visitor);
1621 }
1622 }
1623
1624 /* Make a pass over all variable declarations to ensure that arrays with
1625 * unspecified sizes have a size specified. The size is inferred from the
1626 * max_array_access field.
1627 */
1628 array_sizing_visitor v;
1629 v.run(linked->ir);
1630 v.fixup_unnamed_interface_types();
1631
1632 return linked;
1633 }
1634
1635 /**
1636 * Update the sizes of linked shader uniform arrays to the maximum
1637 * array index used.
1638 *
1639 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1640 *
1641 * If one or more elements of an array are active,
1642 * GetActiveUniform will return the name of the array in name,
1643 * subject to the restrictions listed above. The type of the array
1644 * is returned in type. The size parameter contains the highest
1645 * array element index used, plus one. The compiler or linker
1646 * determines the highest index used. There will be only one
1647 * active uniform reported by the GL per uniform array.
1648
1649 */
1650 static void
1651 update_array_sizes(struct gl_shader_program *prog)
1652 {
1653 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1654 if (prog->_LinkedShaders[i] == NULL)
1655 continue;
1656
1657 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1658 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1659
1660 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1661 !var->type->is_array())
1662 continue;
1663
1664 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1665 * will not be eliminated. Since we always do std140, just
1666 * don't resize arrays in UBOs.
1667 *
1668 * Atomic counters are supposed to get deterministic
1669 * locations assigned based on the declaration ordering and
1670 * sizes, array compaction would mess that up.
1671 */
1672 if (var->is_in_uniform_block() || var->type->contains_atomic())
1673 continue;
1674
1675 unsigned int size = var->data.max_array_access;
1676 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1677 if (prog->_LinkedShaders[j] == NULL)
1678 continue;
1679
1680 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1681 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1682 if (!other_var)
1683 continue;
1684
1685 if (strcmp(var->name, other_var->name) == 0 &&
1686 other_var->data.max_array_access > size) {
1687 size = other_var->data.max_array_access;
1688 }
1689 }
1690 }
1691
1692 if (size + 1 != var->type->length) {
1693 /* If this is a built-in uniform (i.e., it's backed by some
1694 * fixed-function state), adjust the number of state slots to
1695 * match the new array size. The number of slots per array entry
1696 * is not known. It seems safe to assume that the total number of
1697 * slots is an integer multiple of the number of array elements.
1698 * Determine the number of slots per array element by dividing by
1699 * the old (total) size.
1700 */
1701 if (var->num_state_slots > 0) {
1702 var->num_state_slots = (size + 1)
1703 * (var->num_state_slots / var->type->length);
1704 }
1705
1706 var->type = glsl_type::get_array_instance(var->type->fields.array,
1707 size + 1);
1708 /* FINISHME: We should update the types of array
1709 * dereferences of this variable now.
1710 */
1711 }
1712 }
1713 }
1714 }
1715
1716 /**
1717 * Find a contiguous set of available bits in a bitmask.
1718 *
1719 * \param used_mask Bits representing used (1) and unused (0) locations
1720 * \param needed_count Number of contiguous bits needed.
1721 *
1722 * \return
1723 * Base location of the available bits on success or -1 on failure.
1724 */
1725 int
1726 find_available_slots(unsigned used_mask, unsigned needed_count)
1727 {
1728 unsigned needed_mask = (1 << needed_count) - 1;
1729 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1730
1731 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1732 * cannot optimize possibly infinite loops" for the loop below.
1733 */
1734 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1735 return -1;
1736
1737 for (int i = 0; i <= max_bit_to_test; i++) {
1738 if ((needed_mask & ~used_mask) == needed_mask)
1739 return i;
1740
1741 needed_mask <<= 1;
1742 }
1743
1744 return -1;
1745 }
1746
1747
1748 /**
1749 * Assign locations for either VS inputs for FS outputs
1750 *
1751 * \param prog Shader program whose variables need locations assigned
1752 * \param target_index Selector for the program target to receive location
1753 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1754 * \c MESA_SHADER_FRAGMENT.
1755 * \param max_index Maximum number of generic locations. This corresponds
1756 * to either the maximum number of draw buffers or the
1757 * maximum number of generic attributes.
1758 *
1759 * \return
1760 * If locations are successfully assigned, true is returned. Otherwise an
1761 * error is emitted to the shader link log and false is returned.
1762 */
1763 bool
1764 assign_attribute_or_color_locations(gl_shader_program *prog,
1765 unsigned target_index,
1766 unsigned max_index)
1767 {
1768 /* Mark invalid locations as being used.
1769 */
1770 unsigned used_locations = (max_index >= 32)
1771 ? ~0 : ~((1 << max_index) - 1);
1772
1773 assert((target_index == MESA_SHADER_VERTEX)
1774 || (target_index == MESA_SHADER_FRAGMENT));
1775
1776 gl_shader *const sh = prog->_LinkedShaders[target_index];
1777 if (sh == NULL)
1778 return true;
1779
1780 /* Operate in a total of four passes.
1781 *
1782 * 1. Invalidate the location assignments for all vertex shader inputs.
1783 *
1784 * 2. Assign locations for inputs that have user-defined (via
1785 * glBindVertexAttribLocation) locations and outputs that have
1786 * user-defined locations (via glBindFragDataLocation).
1787 *
1788 * 3. Sort the attributes without assigned locations by number of slots
1789 * required in decreasing order. Fragmentation caused by attribute
1790 * locations assigned by the application may prevent large attributes
1791 * from having enough contiguous space.
1792 *
1793 * 4. Assign locations to any inputs without assigned locations.
1794 */
1795
1796 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1797 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1798
1799 const enum ir_variable_mode direction =
1800 (target_index == MESA_SHADER_VERTEX)
1801 ? ir_var_shader_in : ir_var_shader_out;
1802
1803
1804 /* Temporary storage for the set of attributes that need locations assigned.
1805 */
1806 struct temp_attr {
1807 unsigned slots;
1808 ir_variable *var;
1809
1810 /* Used below in the call to qsort. */
1811 static int compare(const void *a, const void *b)
1812 {
1813 const temp_attr *const l = (const temp_attr *) a;
1814 const temp_attr *const r = (const temp_attr *) b;
1815
1816 /* Reversed because we want a descending order sort below. */
1817 return r->slots - l->slots;
1818 }
1819 } to_assign[16];
1820
1821 unsigned num_attr = 0;
1822
1823 foreach_list(node, sh->ir) {
1824 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1825
1826 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1827 continue;
1828
1829 if (var->data.explicit_location) {
1830 if ((var->data.location >= (int)(max_index + generic_base))
1831 || (var->data.location < 0)) {
1832 linker_error(prog,
1833 "invalid explicit location %d specified for `%s'\n",
1834 (var->data.location < 0)
1835 ? var->data.location
1836 : var->data.location - generic_base,
1837 var->name);
1838 return false;
1839 }
1840 } else if (target_index == MESA_SHADER_VERTEX) {
1841 unsigned binding;
1842
1843 if (prog->AttributeBindings->get(binding, var->name)) {
1844 assert(binding >= VERT_ATTRIB_GENERIC0);
1845 var->data.location = binding;
1846 var->data.is_unmatched_generic_inout = 0;
1847 }
1848 } else if (target_index == MESA_SHADER_FRAGMENT) {
1849 unsigned binding;
1850 unsigned index;
1851
1852 if (prog->FragDataBindings->get(binding, var->name)) {
1853 assert(binding >= FRAG_RESULT_DATA0);
1854 var->data.location = binding;
1855 var->data.is_unmatched_generic_inout = 0;
1856
1857 if (prog->FragDataIndexBindings->get(index, var->name)) {
1858 var->data.index = index;
1859 }
1860 }
1861 }
1862
1863 /* If the variable is not a built-in and has a location statically
1864 * assigned in the shader (presumably via a layout qualifier), make sure
1865 * that it doesn't collide with other assigned locations. Otherwise,
1866 * add it to the list of variables that need linker-assigned locations.
1867 */
1868 const unsigned slots = var->type->count_attribute_slots();
1869 if (var->data.location != -1) {
1870 if (var->data.location >= generic_base && var->data.index < 1) {
1871 /* From page 61 of the OpenGL 4.0 spec:
1872 *
1873 * "LinkProgram will fail if the attribute bindings assigned
1874 * by BindAttribLocation do not leave not enough space to
1875 * assign a location for an active matrix attribute or an
1876 * active attribute array, both of which require multiple
1877 * contiguous generic attributes."
1878 *
1879 * I think above text prohibits the aliasing of explicit and
1880 * automatic assignments. But, aliasing is allowed in manual
1881 * assignments of attribute locations. See below comments for
1882 * the details.
1883 *
1884 * From OpenGL 4.0 spec, page 61:
1885 *
1886 * "It is possible for an application to bind more than one
1887 * attribute name to the same location. This is referred to as
1888 * aliasing. This will only work if only one of the aliased
1889 * attributes is active in the executable program, or if no
1890 * path through the shader consumes more than one attribute of
1891 * a set of attributes aliased to the same location. A link
1892 * error can occur if the linker determines that every path
1893 * through the shader consumes multiple aliased attributes,
1894 * but implementations are not required to generate an error
1895 * in this case."
1896 *
1897 * From GLSL 4.30 spec, page 54:
1898 *
1899 * "A program will fail to link if any two non-vertex shader
1900 * input variables are assigned to the same location. For
1901 * vertex shaders, multiple input variables may be assigned
1902 * to the same location using either layout qualifiers or via
1903 * the OpenGL API. However, such aliasing is intended only to
1904 * support vertex shaders where each execution path accesses
1905 * at most one input per each location. Implementations are
1906 * permitted, but not required, to generate link-time errors
1907 * if they detect that every path through the vertex shader
1908 * executable accesses multiple inputs assigned to any single
1909 * location. For all shader types, a program will fail to link
1910 * if explicit location assignments leave the linker unable
1911 * to find space for other variables without explicit
1912 * assignments."
1913 *
1914 * From OpenGL ES 3.0 spec, page 56:
1915 *
1916 * "Binding more than one attribute name to the same location
1917 * is referred to as aliasing, and is not permitted in OpenGL
1918 * ES Shading Language 3.00 vertex shaders. LinkProgram will
1919 * fail when this condition exists. However, aliasing is
1920 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
1921 * This will only work if only one of the aliased attributes
1922 * is active in the executable program, or if no path through
1923 * the shader consumes more than one attribute of a set of
1924 * attributes aliased to the same location. A link error can
1925 * occur if the linker determines that every path through the
1926 * shader consumes multiple aliased attributes, but implemen-
1927 * tations are not required to generate an error in this case."
1928 *
1929 * After looking at above references from OpenGL, OpenGL ES and
1930 * GLSL specifications, we allow aliasing of vertex input variables
1931 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
1932 *
1933 * NOTE: This is not required by the spec but its worth mentioning
1934 * here that we're not doing anything to make sure that no path
1935 * through the vertex shader executable accesses multiple inputs
1936 * assigned to any single location.
1937 */
1938
1939 /* Mask representing the contiguous slots that will be used by
1940 * this attribute.
1941 */
1942 const unsigned attr = var->data.location - generic_base;
1943 const unsigned use_mask = (1 << slots) - 1;
1944 const char *const string = (target_index == MESA_SHADER_VERTEX)
1945 ? "vertex shader input" : "fragment shader output";
1946
1947 /* Generate a link error if the requested locations for this
1948 * attribute exceed the maximum allowed attribute location.
1949 */
1950 if (attr + slots > max_index) {
1951 linker_error(prog,
1952 "insufficient contiguous locations "
1953 "available for %s `%s' %d %d %d", string,
1954 var->name, used_locations, use_mask, attr);
1955 return false;
1956 }
1957
1958 /* Generate a link error if the set of bits requested for this
1959 * attribute overlaps any previously allocated bits.
1960 */
1961 if ((~(use_mask << attr) & used_locations) != used_locations) {
1962 if (target_index == MESA_SHADER_FRAGMENT ||
1963 (prog->IsES && prog->Version >= 300)) {
1964 linker_error(prog,
1965 "overlapping location is assigned "
1966 "to %s `%s' %d %d %d\n", string,
1967 var->name, used_locations, use_mask, attr);
1968 return false;
1969 } else {
1970 linker_warning(prog,
1971 "overlapping location is assigned "
1972 "to %s `%s' %d %d %d\n", string,
1973 var->name, used_locations, use_mask, attr);
1974 }
1975 }
1976
1977 used_locations |= (use_mask << attr);
1978 }
1979
1980 continue;
1981 }
1982
1983 to_assign[num_attr].slots = slots;
1984 to_assign[num_attr].var = var;
1985 num_attr++;
1986 }
1987
1988 /* If all of the attributes were assigned locations by the application (or
1989 * are built-in attributes with fixed locations), return early. This should
1990 * be the common case.
1991 */
1992 if (num_attr == 0)
1993 return true;
1994
1995 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1996
1997 if (target_index == MESA_SHADER_VERTEX) {
1998 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1999 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2000 * reserved to prevent it from being automatically allocated below.
2001 */
2002 find_deref_visitor find("gl_Vertex");
2003 find.run(sh->ir);
2004 if (find.variable_found())
2005 used_locations |= (1 << 0);
2006 }
2007
2008 for (unsigned i = 0; i < num_attr; i++) {
2009 /* Mask representing the contiguous slots that will be used by this
2010 * attribute.
2011 */
2012 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2013
2014 int location = find_available_slots(used_locations, to_assign[i].slots);
2015
2016 if (location < 0) {
2017 const char *const string = (target_index == MESA_SHADER_VERTEX)
2018 ? "vertex shader input" : "fragment shader output";
2019
2020 linker_error(prog,
2021 "insufficient contiguous locations "
2022 "available for %s `%s'",
2023 string, to_assign[i].var->name);
2024 return false;
2025 }
2026
2027 to_assign[i].var->data.location = generic_base + location;
2028 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2029 used_locations |= (use_mask << location);
2030 }
2031
2032 return true;
2033 }
2034
2035
2036 /**
2037 * Demote shader inputs and outputs that are not used in other stages
2038 */
2039 void
2040 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2041 {
2042 foreach_list(node, sh->ir) {
2043 ir_variable *const var = ((ir_instruction *) node)->as_variable();
2044
2045 if ((var == NULL) || (var->data.mode != int(mode)))
2046 continue;
2047
2048 /* A shader 'in' or 'out' variable is only really an input or output if
2049 * its value is used by other shader stages. This will cause the variable
2050 * to have a location assigned.
2051 */
2052 if (var->data.is_unmatched_generic_inout) {
2053 var->data.mode = ir_var_auto;
2054 }
2055 }
2056 }
2057
2058
2059 /**
2060 * Store the gl_FragDepth layout in the gl_shader_program struct.
2061 */
2062 static void
2063 store_fragdepth_layout(struct gl_shader_program *prog)
2064 {
2065 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2066 return;
2067 }
2068
2069 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2070
2071 /* We don't look up the gl_FragDepth symbol directly because if
2072 * gl_FragDepth is not used in the shader, it's removed from the IR.
2073 * However, the symbol won't be removed from the symbol table.
2074 *
2075 * We're only interested in the cases where the variable is NOT removed
2076 * from the IR.
2077 */
2078 foreach_list(node, ir) {
2079 ir_variable *const var = ((ir_instruction *) node)->as_variable();
2080
2081 if (var == NULL || var->data.mode != ir_var_shader_out) {
2082 continue;
2083 }
2084
2085 if (strcmp(var->name, "gl_FragDepth") == 0) {
2086 switch (var->data.depth_layout) {
2087 case ir_depth_layout_none:
2088 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2089 return;
2090 case ir_depth_layout_any:
2091 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2092 return;
2093 case ir_depth_layout_greater:
2094 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2095 return;
2096 case ir_depth_layout_less:
2097 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2098 return;
2099 case ir_depth_layout_unchanged:
2100 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2101 return;
2102 default:
2103 assert(0);
2104 return;
2105 }
2106 }
2107 }
2108 }
2109
2110 /**
2111 * Validate the resources used by a program versus the implementation limits
2112 */
2113 static void
2114 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2115 {
2116 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2117 struct gl_shader *sh = prog->_LinkedShaders[i];
2118
2119 if (sh == NULL)
2120 continue;
2121
2122 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2123 linker_error(prog, "Too many %s shader texture samplers",
2124 _mesa_shader_stage_to_string(i));
2125 }
2126
2127 if (sh->num_uniform_components >
2128 ctx->Const.Program[i].MaxUniformComponents) {
2129 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2130 linker_warning(prog, "Too many %s shader default uniform block "
2131 "components, but the driver will try to optimize "
2132 "them out; this is non-portable out-of-spec "
2133 "behavior\n",
2134 _mesa_shader_stage_to_string(i));
2135 } else {
2136 linker_error(prog, "Too many %s shader default uniform block "
2137 "components",
2138 _mesa_shader_stage_to_string(i));
2139 }
2140 }
2141
2142 if (sh->num_combined_uniform_components >
2143 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2144 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2145 linker_warning(prog, "Too many %s shader uniform components, "
2146 "but the driver will try to optimize them out; "
2147 "this is non-portable out-of-spec behavior\n",
2148 _mesa_shader_stage_to_string(i));
2149 } else {
2150 linker_error(prog, "Too many %s shader uniform components",
2151 _mesa_shader_stage_to_string(i));
2152 }
2153 }
2154 }
2155
2156 unsigned blocks[MESA_SHADER_STAGES] = {0};
2157 unsigned total_uniform_blocks = 0;
2158
2159 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2160 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2161 if (prog->UniformBlockStageIndex[j][i] != -1) {
2162 blocks[j]++;
2163 total_uniform_blocks++;
2164 }
2165 }
2166
2167 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2168 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
2169 prog->NumUniformBlocks,
2170 ctx->Const.MaxCombinedUniformBlocks);
2171 } else {
2172 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2173 const unsigned max_uniform_blocks =
2174 ctx->Const.Program[i].MaxUniformBlocks;
2175 if (blocks[i] > max_uniform_blocks) {
2176 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
2177 _mesa_shader_stage_to_string(i),
2178 blocks[i],
2179 max_uniform_blocks);
2180 break;
2181 }
2182 }
2183 }
2184 }
2185 }
2186
2187 /**
2188 * Validate shader image resources.
2189 */
2190 static void
2191 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2192 {
2193 unsigned total_image_units = 0;
2194 unsigned fragment_outputs = 0;
2195
2196 if (!ctx->Extensions.ARB_shader_image_load_store)
2197 return;
2198
2199 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2200 struct gl_shader *sh = prog->_LinkedShaders[i];
2201
2202 if (sh) {
2203 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2204 linker_error(prog, "Too many %s shader image uniforms",
2205 _mesa_shader_stage_to_string(i));
2206
2207 total_image_units += sh->NumImages;
2208
2209 if (i == MESA_SHADER_FRAGMENT) {
2210 foreach_list(node, sh->ir) {
2211 ir_variable *var = ((ir_instruction *)node)->as_variable();
2212 if (var && var->data.mode == ir_var_shader_out)
2213 fragment_outputs += var->type->count_attribute_slots();
2214 }
2215 }
2216 }
2217 }
2218
2219 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2220 linker_error(prog, "Too many combined image uniforms");
2221
2222 if (total_image_units + fragment_outputs >
2223 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2224 linker_error(prog, "Too many combined image uniforms and fragment outputs");
2225 }
2226
2227 void
2228 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2229 {
2230 tfeedback_decl *tfeedback_decls = NULL;
2231 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2232
2233 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2234
2235 prog->LinkStatus = true; /* All error paths will set this to false */
2236 prog->Validated = false;
2237 prog->_Used = false;
2238
2239 ralloc_free(prog->InfoLog);
2240 prog->InfoLog = ralloc_strdup(NULL, "");
2241
2242 ralloc_free(prog->UniformBlocks);
2243 prog->UniformBlocks = NULL;
2244 prog->NumUniformBlocks = 0;
2245 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2246 ralloc_free(prog->UniformBlockStageIndex[i]);
2247 prog->UniformBlockStageIndex[i] = NULL;
2248 }
2249
2250 ralloc_free(prog->AtomicBuffers);
2251 prog->AtomicBuffers = NULL;
2252 prog->NumAtomicBuffers = 0;
2253 prog->ARB_fragment_coord_conventions_enable = false;
2254
2255 /* Separate the shaders into groups based on their type.
2256 */
2257 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2258 unsigned num_shaders[MESA_SHADER_STAGES];
2259
2260 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2261 shader_list[i] = (struct gl_shader **)
2262 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2263 num_shaders[i] = 0;
2264 }
2265
2266 unsigned min_version = UINT_MAX;
2267 unsigned max_version = 0;
2268 const bool is_es_prog =
2269 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2270 for (unsigned i = 0; i < prog->NumShaders; i++) {
2271 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2272 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2273
2274 if (prog->Shaders[i]->IsES != is_es_prog) {
2275 linker_error(prog, "all shaders must use same shading "
2276 "language version\n");
2277 goto done;
2278 }
2279
2280 prog->ARB_fragment_coord_conventions_enable |=
2281 prog->Shaders[i]->ARB_fragment_coord_conventions_enable;
2282
2283 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2284 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2285 num_shaders[shader_type]++;
2286 }
2287
2288 /* In desktop GLSL, different shader versions may be linked together. In
2289 * GLSL ES, all shader versions must be the same.
2290 */
2291 if (is_es_prog && min_version != max_version) {
2292 linker_error(prog, "all shaders must use same shading "
2293 "language version\n");
2294 goto done;
2295 }
2296
2297 prog->Version = max_version;
2298 prog->IsES = is_es_prog;
2299
2300 /* Geometry shaders have to be linked with vertex shaders.
2301 */
2302 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2303 num_shaders[MESA_SHADER_VERTEX] == 0) {
2304 linker_error(prog, "Geometry shader must be linked with "
2305 "vertex shader\n");
2306 goto done;
2307 }
2308
2309 /* Compute shaders have additional restrictions. */
2310 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2311 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2312 linker_error(prog, "Compute shaders may not be linked with any other "
2313 "type of shader\n");
2314 }
2315
2316 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2317 if (prog->_LinkedShaders[i] != NULL)
2318 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2319
2320 prog->_LinkedShaders[i] = NULL;
2321 }
2322
2323 /* Link all shaders for a particular stage and validate the result.
2324 */
2325 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2326 if (num_shaders[stage] > 0) {
2327 gl_shader *const sh =
2328 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2329 num_shaders[stage]);
2330
2331 if (!prog->LinkStatus)
2332 goto done;
2333
2334 switch (stage) {
2335 case MESA_SHADER_VERTEX:
2336 validate_vertex_shader_executable(prog, sh);
2337 break;
2338 case MESA_SHADER_GEOMETRY:
2339 validate_geometry_shader_executable(prog, sh);
2340 break;
2341 case MESA_SHADER_FRAGMENT:
2342 validate_fragment_shader_executable(prog, sh);
2343 break;
2344 }
2345 if (!prog->LinkStatus)
2346 goto done;
2347
2348 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2349 }
2350 }
2351
2352 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2353 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2354 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2355 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2356 else
2357 prog->LastClipDistanceArraySize = 0; /* Not used */
2358
2359 /* Here begins the inter-stage linking phase. Some initial validation is
2360 * performed, then locations are assigned for uniforms, attributes, and
2361 * varyings.
2362 */
2363 cross_validate_uniforms(prog);
2364 if (!prog->LinkStatus)
2365 goto done;
2366
2367 unsigned prev;
2368
2369 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2370 if (prog->_LinkedShaders[prev] != NULL)
2371 break;
2372 }
2373
2374 /* Validate the inputs of each stage with the output of the preceding
2375 * stage.
2376 */
2377 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2378 if (prog->_LinkedShaders[i] == NULL)
2379 continue;
2380
2381 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2382 prog->_LinkedShaders[i]);
2383 if (!prog->LinkStatus)
2384 goto done;
2385
2386 cross_validate_outputs_to_inputs(prog,
2387 prog->_LinkedShaders[prev],
2388 prog->_LinkedShaders[i]);
2389 if (!prog->LinkStatus)
2390 goto done;
2391
2392 prev = i;
2393 }
2394
2395 /* Cross-validate uniform blocks between shader stages */
2396 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2397 MESA_SHADER_STAGES);
2398 if (!prog->LinkStatus)
2399 goto done;
2400
2401 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2402 if (prog->_LinkedShaders[i] != NULL)
2403 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2404 }
2405
2406 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2407 * it before optimization because we want most of the checks to get
2408 * dropped thanks to constant propagation.
2409 *
2410 * This rule also applies to GLSL ES 3.00.
2411 */
2412 if (max_version >= (is_es_prog ? 300 : 130)) {
2413 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2414 if (sh) {
2415 lower_discard_flow(sh->ir);
2416 }
2417 }
2418
2419 if (!interstage_cross_validate_uniform_blocks(prog))
2420 goto done;
2421
2422 /* Do common optimization before assigning storage for attributes,
2423 * uniforms, and varyings. Later optimization could possibly make
2424 * some of that unused.
2425 */
2426 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2427 if (prog->_LinkedShaders[i] == NULL)
2428 continue;
2429
2430 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2431 if (!prog->LinkStatus)
2432 goto done;
2433
2434 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
2435 lower_clip_distance(prog->_LinkedShaders[i]);
2436 }
2437
2438 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2439 &ctx->ShaderCompilerOptions[i],
2440 ctx->Const.NativeIntegers))
2441 ;
2442 }
2443
2444 /* Mark all generic shader inputs and outputs as unpaired. */
2445 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2446 if (prog->_LinkedShaders[i] != NULL) {
2447 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2448 }
2449 }
2450
2451 /* FINISHME: The value of the max_attribute_index parameter is
2452 * FINISHME: implementation dependent based on the value of
2453 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2454 * FINISHME: at least 16, so hardcode 16 for now.
2455 */
2456 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2457 goto done;
2458 }
2459
2460 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2461 goto done;
2462 }
2463
2464 unsigned first;
2465 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2466 if (prog->_LinkedShaders[first] != NULL)
2467 break;
2468 }
2469
2470 if (num_tfeedback_decls != 0) {
2471 /* From GL_EXT_transform_feedback:
2472 * A program will fail to link if:
2473 *
2474 * * the <count> specified by TransformFeedbackVaryingsEXT is
2475 * non-zero, but the program object has no vertex or geometry
2476 * shader;
2477 */
2478 if (first == MESA_SHADER_FRAGMENT) {
2479 linker_error(prog, "Transform feedback varyings specified, but "
2480 "no vertex or geometry shader is present.");
2481 goto done;
2482 }
2483
2484 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2485 prog->TransformFeedback.NumVarying);
2486 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2487 prog->TransformFeedback.VaryingNames,
2488 tfeedback_decls))
2489 goto done;
2490 }
2491
2492 /* Linking the stages in the opposite order (from fragment to vertex)
2493 * ensures that inter-shader outputs written to in an earlier stage are
2494 * eliminated if they are (transitively) not used in a later stage.
2495 */
2496 int last, next;
2497 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2498 if (prog->_LinkedShaders[last] != NULL)
2499 break;
2500 }
2501
2502 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2503 gl_shader *const sh = prog->_LinkedShaders[last];
2504
2505 if (num_tfeedback_decls != 0) {
2506 /* There was no fragment shader, but we still have to assign varying
2507 * locations for use by transform feedback.
2508 */
2509 if (!assign_varying_locations(ctx, mem_ctx, prog,
2510 sh, NULL,
2511 num_tfeedback_decls, tfeedback_decls,
2512 0))
2513 goto done;
2514 }
2515
2516 do_dead_builtin_varyings(ctx, sh, NULL,
2517 num_tfeedback_decls, tfeedback_decls);
2518
2519 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2520
2521 /* Eliminate code that is now dead due to unused outputs being demoted.
2522 */
2523 while (do_dead_code(sh->ir, false))
2524 ;
2525 }
2526 else if (first == MESA_SHADER_FRAGMENT) {
2527 /* If the program only contains a fragment shader...
2528 */
2529 gl_shader *const sh = prog->_LinkedShaders[first];
2530
2531 do_dead_builtin_varyings(ctx, NULL, sh,
2532 num_tfeedback_decls, tfeedback_decls);
2533
2534 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2535
2536 while (do_dead_code(sh->ir, false))
2537 ;
2538 }
2539
2540 next = last;
2541 for (int i = next - 1; i >= 0; i--) {
2542 if (prog->_LinkedShaders[i] == NULL)
2543 continue;
2544
2545 gl_shader *const sh_i = prog->_LinkedShaders[i];
2546 gl_shader *const sh_next = prog->_LinkedShaders[next];
2547 unsigned gs_input_vertices =
2548 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2549
2550 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2551 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2552 tfeedback_decls, gs_input_vertices))
2553 goto done;
2554
2555 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2556 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2557 tfeedback_decls);
2558
2559 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2560 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2561
2562 /* Eliminate code that is now dead due to unused outputs being demoted.
2563 */
2564 while (do_dead_code(sh_i->ir, false))
2565 ;
2566 while (do_dead_code(sh_next->ir, false))
2567 ;
2568
2569 /* This must be done after all dead varyings are eliminated. */
2570 if (!check_against_output_limit(ctx, prog, sh_i))
2571 goto done;
2572 if (!check_against_input_limit(ctx, prog, sh_next))
2573 goto done;
2574
2575 next = i;
2576 }
2577
2578 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2579 goto done;
2580
2581 update_array_sizes(prog);
2582 link_assign_uniform_locations(prog);
2583 link_assign_atomic_counter_resources(ctx, prog);
2584 store_fragdepth_layout(prog);
2585
2586 check_resources(ctx, prog);
2587 check_image_resources(ctx, prog);
2588 link_check_atomic_counter_resources(ctx, prog);
2589
2590 if (!prog->LinkStatus)
2591 goto done;
2592
2593 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2594 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2595 * anything about shader linking when one of the shaders (vertex or
2596 * fragment shader) is absent. So, the extension shouldn't change the
2597 * behavior specified in GLSL specification.
2598 */
2599 if (!prog->InternalSeparateShader && ctx->API == API_OPENGLES2) {
2600 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2601 linker_error(prog, "program lacks a vertex shader\n");
2602 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2603 linker_error(prog, "program lacks a fragment shader\n");
2604 }
2605 }
2606
2607 /* FINISHME: Assign fragment shader output locations. */
2608
2609 done:
2610 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2611 free(shader_list[i]);
2612 if (prog->_LinkedShaders[i] == NULL)
2613 continue;
2614
2615 /* Do a final validation step to make sure that the IR wasn't
2616 * invalidated by any modifications performed after intrastage linking.
2617 */
2618 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2619
2620 /* Retain any live IR, but trash the rest. */
2621 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2622
2623 /* The symbol table in the linked shaders may contain references to
2624 * variables that were removed (e.g., unused uniforms). Since it may
2625 * contain junk, there is no possible valid use. Delete it and set the
2626 * pointer to NULL.
2627 */
2628 delete prog->_LinkedShaders[i]->symbols;
2629 prog->_LinkedShaders[i]->symbols = NULL;
2630 }
2631
2632 ralloc_free(mem_ctx);
2633 }