Replace gl_vert_result enum with gl_varying_slot.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "link_varyings.h"
74 #include "ir_optimization.h"
75
76 extern "C" {
77 #include "main/shaderobj.h"
78 }
79
80 /**
81 * Visitor that determines whether or not a variable is ever written.
82 */
83 class find_assignment_visitor : public ir_hierarchical_visitor {
84 public:
85 find_assignment_visitor(const char *name)
86 : name(name), found(false)
87 {
88 /* empty */
89 }
90
91 virtual ir_visitor_status visit_enter(ir_assignment *ir)
92 {
93 ir_variable *const var = ir->lhs->variable_referenced();
94
95 if (strcmp(name, var->name) == 0) {
96 found = true;
97 return visit_stop;
98 }
99
100 return visit_continue_with_parent;
101 }
102
103 virtual ir_visitor_status visit_enter(ir_call *ir)
104 {
105 exec_list_iterator sig_iter = ir->callee->parameters.iterator();
106 foreach_iter(exec_list_iterator, iter, *ir) {
107 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
108 ir_variable *sig_param = (ir_variable *)sig_iter.get();
109
110 if (sig_param->mode == ir_var_function_out ||
111 sig_param->mode == ir_var_function_inout) {
112 ir_variable *var = param_rval->variable_referenced();
113 if (var && strcmp(name, var->name) == 0) {
114 found = true;
115 return visit_stop;
116 }
117 }
118 sig_iter.next();
119 }
120
121 if (ir->return_deref != NULL) {
122 ir_variable *const var = ir->return_deref->variable_referenced();
123
124 if (strcmp(name, var->name) == 0) {
125 found = true;
126 return visit_stop;
127 }
128 }
129
130 return visit_continue_with_parent;
131 }
132
133 bool variable_found()
134 {
135 return found;
136 }
137
138 private:
139 const char *name; /**< Find writes to a variable with this name. */
140 bool found; /**< Was a write to the variable found? */
141 };
142
143
144 /**
145 * Visitor that determines whether or not a variable is ever read.
146 */
147 class find_deref_visitor : public ir_hierarchical_visitor {
148 public:
149 find_deref_visitor(const char *name)
150 : name(name), found(false)
151 {
152 /* empty */
153 }
154
155 virtual ir_visitor_status visit(ir_dereference_variable *ir)
156 {
157 if (strcmp(this->name, ir->var->name) == 0) {
158 this->found = true;
159 return visit_stop;
160 }
161
162 return visit_continue;
163 }
164
165 bool variable_found() const
166 {
167 return this->found;
168 }
169
170 private:
171 const char *name; /**< Find writes to a variable with this name. */
172 bool found; /**< Was a write to the variable found? */
173 };
174
175
176 void
177 linker_error(gl_shader_program *prog, const char *fmt, ...)
178 {
179 va_list ap;
180
181 ralloc_strcat(&prog->InfoLog, "error: ");
182 va_start(ap, fmt);
183 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
184 va_end(ap);
185
186 prog->LinkStatus = false;
187 }
188
189
190 void
191 linker_warning(gl_shader_program *prog, const char *fmt, ...)
192 {
193 va_list ap;
194
195 ralloc_strcat(&prog->InfoLog, "error: ");
196 va_start(ap, fmt);
197 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
198 va_end(ap);
199
200 }
201
202
203 /**
204 * Given a string identifying a program resource, break it into a base name
205 * and an optional array index in square brackets.
206 *
207 * If an array index is present, \c out_base_name_end is set to point to the
208 * "[" that precedes the array index, and the array index itself is returned
209 * as a long.
210 *
211 * If no array index is present (or if the array index is negative or
212 * mal-formed), \c out_base_name_end, is set to point to the null terminator
213 * at the end of the input string, and -1 is returned.
214 *
215 * Only the final array index is parsed; if the string contains other array
216 * indices (or structure field accesses), they are left in the base name.
217 *
218 * No attempt is made to check that the base name is properly formed;
219 * typically the caller will look up the base name in a hash table, so
220 * ill-formed base names simply turn into hash table lookup failures.
221 */
222 long
223 parse_program_resource_name(const GLchar *name,
224 const GLchar **out_base_name_end)
225 {
226 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
227 *
228 * "When an integer array element or block instance number is part of
229 * the name string, it will be specified in decimal form without a "+"
230 * or "-" sign or any extra leading zeroes. Additionally, the name
231 * string will not include white space anywhere in the string."
232 */
233
234 const size_t len = strlen(name);
235 *out_base_name_end = name + len;
236
237 if (len == 0 || name[len-1] != ']')
238 return -1;
239
240 /* Walk backwards over the string looking for a non-digit character. This
241 * had better be the opening bracket for an array index.
242 *
243 * Initially, i specifies the location of the ']'. Since the string may
244 * contain only the ']' charcater, walk backwards very carefully.
245 */
246 unsigned i;
247 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
248 /* empty */ ;
249
250 if ((i == 0) || name[i-1] != '[')
251 return -1;
252
253 long array_index = strtol(&name[i], NULL, 10);
254 if (array_index < 0)
255 return -1;
256
257 *out_base_name_end = name + (i - 1);
258 return array_index;
259 }
260
261
262 void
263 link_invalidate_variable_locations(gl_shader *sh, int input_base,
264 int output_base)
265 {
266 foreach_list(node, sh->ir) {
267 ir_variable *const var = ((ir_instruction *) node)->as_variable();
268
269 if (var == NULL)
270 continue;
271
272 int base;
273 switch (var->mode) {
274 case ir_var_shader_in:
275 base = input_base;
276 break;
277 case ir_var_shader_out:
278 base = output_base;
279 break;
280 default:
281 continue;
282 }
283
284 /* Only assign locations for generic attributes / varyings / etc.
285 */
286 if ((var->location >= base) && !var->explicit_location)
287 var->location = -1;
288
289 if ((var->location == -1) && !var->explicit_location) {
290 var->is_unmatched_generic_inout = 1;
291 var->location_frac = 0;
292 } else {
293 var->is_unmatched_generic_inout = 0;
294 }
295 }
296 }
297
298
299 /**
300 * Determine the number of attribute slots required for a particular type
301 *
302 * This code is here because it implements the language rules of a specific
303 * GLSL version. Since it's a property of the language and not a property of
304 * types in general, it doesn't really belong in glsl_type.
305 */
306 unsigned
307 count_attribute_slots(const glsl_type *t)
308 {
309 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
310 *
311 * "A scalar input counts the same amount against this limit as a vec4,
312 * so applications may want to consider packing groups of four
313 * unrelated float inputs together into a vector to better utilize the
314 * capabilities of the underlying hardware. A matrix input will use up
315 * multiple locations. The number of locations used will equal the
316 * number of columns in the matrix."
317 *
318 * The spec does not explicitly say how arrays are counted. However, it
319 * should be safe to assume the total number of slots consumed by an array
320 * is the number of entries in the array multiplied by the number of slots
321 * consumed by a single element of the array.
322 */
323
324 if (t->is_array())
325 return t->array_size() * count_attribute_slots(t->element_type());
326
327 if (t->is_matrix())
328 return t->matrix_columns;
329
330 return 1;
331 }
332
333
334 /**
335 * Verify that a vertex shader executable meets all semantic requirements.
336 *
337 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
338 * as a side effect.
339 *
340 * \param shader Vertex shader executable to be verified
341 */
342 bool
343 validate_vertex_shader_executable(struct gl_shader_program *prog,
344 struct gl_shader *shader)
345 {
346 if (shader == NULL)
347 return true;
348
349 /* From the GLSL 1.10 spec, page 48:
350 *
351 * "The variable gl_Position is available only in the vertex
352 * language and is intended for writing the homogeneous vertex
353 * position. All executions of a well-formed vertex shader
354 * executable must write a value into this variable. [...] The
355 * variable gl_Position is available only in the vertex
356 * language and is intended for writing the homogeneous vertex
357 * position. All executions of a well-formed vertex shader
358 * executable must write a value into this variable."
359 *
360 * while in GLSL 1.40 this text is changed to:
361 *
362 * "The variable gl_Position is available only in the vertex
363 * language and is intended for writing the homogeneous vertex
364 * position. It can be written at any time during shader
365 * execution. It may also be read back by a vertex shader
366 * after being written. This value will be used by primitive
367 * assembly, clipping, culling, and other fixed functionality
368 * operations, if present, that operate on primitives after
369 * vertex processing has occurred. Its value is undefined if
370 * the vertex shader executable does not write gl_Position."
371 *
372 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
373 * not an error.
374 */
375 if (prog->Version < (prog->IsES ? 300 : 140)) {
376 find_assignment_visitor find("gl_Position");
377 find.run(shader->ir);
378 if (!find.variable_found()) {
379 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
380 return false;
381 }
382 }
383
384 prog->Vert.ClipDistanceArraySize = 0;
385
386 if (!prog->IsES && prog->Version >= 130) {
387 /* From section 7.1 (Vertex Shader Special Variables) of the
388 * GLSL 1.30 spec:
389 *
390 * "It is an error for a shader to statically write both
391 * gl_ClipVertex and gl_ClipDistance."
392 *
393 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
394 * gl_ClipVertex nor gl_ClipDistance.
395 */
396 find_assignment_visitor clip_vertex("gl_ClipVertex");
397 find_assignment_visitor clip_distance("gl_ClipDistance");
398
399 clip_vertex.run(shader->ir);
400 clip_distance.run(shader->ir);
401 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
402 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
403 "and `gl_ClipDistance'\n");
404 return false;
405 }
406 prog->Vert.UsesClipDistance = clip_distance.variable_found();
407 ir_variable *clip_distance_var =
408 shader->symbols->get_variable("gl_ClipDistance");
409 if (clip_distance_var)
410 prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length;
411 }
412
413 return true;
414 }
415
416
417 /**
418 * Verify that a fragment shader executable meets all semantic requirements
419 *
420 * \param shader Fragment shader executable to be verified
421 */
422 bool
423 validate_fragment_shader_executable(struct gl_shader_program *prog,
424 struct gl_shader *shader)
425 {
426 if (shader == NULL)
427 return true;
428
429 find_assignment_visitor frag_color("gl_FragColor");
430 find_assignment_visitor frag_data("gl_FragData");
431
432 frag_color.run(shader->ir);
433 frag_data.run(shader->ir);
434
435 if (frag_color.variable_found() && frag_data.variable_found()) {
436 linker_error(prog, "fragment shader writes to both "
437 "`gl_FragColor' and `gl_FragData'\n");
438 return false;
439 }
440
441 return true;
442 }
443
444
445 /**
446 * Generate a string describing the mode of a variable
447 */
448 static const char *
449 mode_string(const ir_variable *var)
450 {
451 switch (var->mode) {
452 case ir_var_auto:
453 return (var->read_only) ? "global constant" : "global variable";
454
455 case ir_var_uniform: return "uniform";
456 case ir_var_shader_in: return "shader input";
457 case ir_var_shader_out: return "shader output";
458
459 case ir_var_const_in:
460 case ir_var_temporary:
461 default:
462 assert(!"Should not get here.");
463 return "invalid variable";
464 }
465 }
466
467
468 /**
469 * Perform validation of global variables used across multiple shaders
470 */
471 bool
472 cross_validate_globals(struct gl_shader_program *prog,
473 struct gl_shader **shader_list,
474 unsigned num_shaders,
475 bool uniforms_only)
476 {
477 /* Examine all of the uniforms in all of the shaders and cross validate
478 * them.
479 */
480 glsl_symbol_table variables;
481 for (unsigned i = 0; i < num_shaders; i++) {
482 if (shader_list[i] == NULL)
483 continue;
484
485 foreach_list(node, shader_list[i]->ir) {
486 ir_variable *const var = ((ir_instruction *) node)->as_variable();
487
488 if (var == NULL)
489 continue;
490
491 if (uniforms_only && (var->mode != ir_var_uniform))
492 continue;
493
494 /* Don't cross validate temporaries that are at global scope. These
495 * will eventually get pulled into the shaders 'main'.
496 */
497 if (var->mode == ir_var_temporary)
498 continue;
499
500 /* If a global with this name has already been seen, verify that the
501 * new instance has the same type. In addition, if the globals have
502 * initializers, the values of the initializers must be the same.
503 */
504 ir_variable *const existing = variables.get_variable(var->name);
505 if (existing != NULL) {
506 if (var->type != existing->type) {
507 /* Consider the types to be "the same" if both types are arrays
508 * of the same type and one of the arrays is implicitly sized.
509 * In addition, set the type of the linked variable to the
510 * explicitly sized array.
511 */
512 if (var->type->is_array()
513 && existing->type->is_array()
514 && (var->type->fields.array == existing->type->fields.array)
515 && ((var->type->length == 0)
516 || (existing->type->length == 0))) {
517 if (var->type->length != 0) {
518 existing->type = var->type;
519 }
520 } else {
521 linker_error(prog, "%s `%s' declared as type "
522 "`%s' and type `%s'\n",
523 mode_string(var),
524 var->name, var->type->name,
525 existing->type->name);
526 return false;
527 }
528 }
529
530 if (var->explicit_location) {
531 if (existing->explicit_location
532 && (var->location != existing->location)) {
533 linker_error(prog, "explicit locations for %s "
534 "`%s' have differing values\n",
535 mode_string(var), var->name);
536 return false;
537 }
538
539 existing->location = var->location;
540 existing->explicit_location = true;
541 }
542
543 /* Validate layout qualifiers for gl_FragDepth.
544 *
545 * From the AMD/ARB_conservative_depth specs:
546 *
547 * "If gl_FragDepth is redeclared in any fragment shader in a
548 * program, it must be redeclared in all fragment shaders in
549 * that program that have static assignments to
550 * gl_FragDepth. All redeclarations of gl_FragDepth in all
551 * fragment shaders in a single program must have the same set
552 * of qualifiers."
553 */
554 if (strcmp(var->name, "gl_FragDepth") == 0) {
555 bool layout_declared = var->depth_layout != ir_depth_layout_none;
556 bool layout_differs =
557 var->depth_layout != existing->depth_layout;
558
559 if (layout_declared && layout_differs) {
560 linker_error(prog,
561 "All redeclarations of gl_FragDepth in all "
562 "fragment shaders in a single program must have "
563 "the same set of qualifiers.");
564 }
565
566 if (var->used && layout_differs) {
567 linker_error(prog,
568 "If gl_FragDepth is redeclared with a layout "
569 "qualifier in any fragment shader, it must be "
570 "redeclared with the same layout qualifier in "
571 "all fragment shaders that have assignments to "
572 "gl_FragDepth");
573 }
574 }
575
576 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
577 *
578 * "If a shared global has multiple initializers, the
579 * initializers must all be constant expressions, and they
580 * must all have the same value. Otherwise, a link error will
581 * result. (A shared global having only one initializer does
582 * not require that initializer to be a constant expression.)"
583 *
584 * Previous to 4.20 the GLSL spec simply said that initializers
585 * must have the same value. In this case of non-constant
586 * initializers, this was impossible to determine. As a result,
587 * no vendor actually implemented that behavior. The 4.20
588 * behavior matches the implemented behavior of at least one other
589 * vendor, so we'll implement that for all GLSL versions.
590 */
591 if (var->constant_initializer != NULL) {
592 if (existing->constant_initializer != NULL) {
593 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
594 linker_error(prog, "initializers for %s "
595 "`%s' have differing values\n",
596 mode_string(var), var->name);
597 return false;
598 }
599 } else {
600 /* If the first-seen instance of a particular uniform did not
601 * have an initializer but a later instance does, copy the
602 * initializer to the version stored in the symbol table.
603 */
604 /* FINISHME: This is wrong. The constant_value field should
605 * FINISHME: not be modified! Imagine a case where a shader
606 * FINISHME: without an initializer is linked in two different
607 * FINISHME: programs with shaders that have differing
608 * FINISHME: initializers. Linking with the first will
609 * FINISHME: modify the shader, and linking with the second
610 * FINISHME: will fail.
611 */
612 existing->constant_initializer =
613 var->constant_initializer->clone(ralloc_parent(existing),
614 NULL);
615 }
616 }
617
618 if (var->has_initializer) {
619 if (existing->has_initializer
620 && (var->constant_initializer == NULL
621 || existing->constant_initializer == NULL)) {
622 linker_error(prog,
623 "shared global variable `%s' has multiple "
624 "non-constant initializers.\n",
625 var->name);
626 return false;
627 }
628
629 /* Some instance had an initializer, so keep track of that. In
630 * this location, all sorts of initializers (constant or
631 * otherwise) will propagate the existence to the variable
632 * stored in the symbol table.
633 */
634 existing->has_initializer = true;
635 }
636
637 if (existing->invariant != var->invariant) {
638 linker_error(prog, "declarations for %s `%s' have "
639 "mismatching invariant qualifiers\n",
640 mode_string(var), var->name);
641 return false;
642 }
643 if (existing->centroid != var->centroid) {
644 linker_error(prog, "declarations for %s `%s' have "
645 "mismatching centroid qualifiers\n",
646 mode_string(var), var->name);
647 return false;
648 }
649 } else
650 variables.add_variable(var);
651 }
652 }
653
654 return true;
655 }
656
657
658 /**
659 * Perform validation of uniforms used across multiple shader stages
660 */
661 bool
662 cross_validate_uniforms(struct gl_shader_program *prog)
663 {
664 return cross_validate_globals(prog, prog->_LinkedShaders,
665 MESA_SHADER_TYPES, true);
666 }
667
668 /**
669 * Accumulates the array of prog->UniformBlocks and checks that all
670 * definitons of blocks agree on their contents.
671 */
672 static bool
673 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
674 {
675 unsigned max_num_uniform_blocks = 0;
676 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
677 if (prog->_LinkedShaders[i])
678 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
679 }
680
681 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
682 struct gl_shader *sh = prog->_LinkedShaders[i];
683
684 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
685 max_num_uniform_blocks);
686 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
687 prog->UniformBlockStageIndex[i][j] = -1;
688
689 if (sh == NULL)
690 continue;
691
692 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
693 int index = link_cross_validate_uniform_block(prog,
694 &prog->UniformBlocks,
695 &prog->NumUniformBlocks,
696 &sh->UniformBlocks[j]);
697
698 if (index == -1) {
699 linker_error(prog, "uniform block `%s' has mismatching definitions",
700 sh->UniformBlocks[j].Name);
701 return false;
702 }
703
704 prog->UniformBlockStageIndex[i][index] = j;
705 }
706 }
707
708 return true;
709 }
710
711
712 /**
713 * Populates a shaders symbol table with all global declarations
714 */
715 static void
716 populate_symbol_table(gl_shader *sh)
717 {
718 sh->symbols = new(sh) glsl_symbol_table;
719
720 foreach_list(node, sh->ir) {
721 ir_instruction *const inst = (ir_instruction *) node;
722 ir_variable *var;
723 ir_function *func;
724
725 if ((func = inst->as_function()) != NULL) {
726 sh->symbols->add_function(func);
727 } else if ((var = inst->as_variable()) != NULL) {
728 sh->symbols->add_variable(var);
729 }
730 }
731 }
732
733
734 /**
735 * Remap variables referenced in an instruction tree
736 *
737 * This is used when instruction trees are cloned from one shader and placed in
738 * another. These trees will contain references to \c ir_variable nodes that
739 * do not exist in the target shader. This function finds these \c ir_variable
740 * references and replaces the references with matching variables in the target
741 * shader.
742 *
743 * If there is no matching variable in the target shader, a clone of the
744 * \c ir_variable is made and added to the target shader. The new variable is
745 * added to \b both the instruction stream and the symbol table.
746 *
747 * \param inst IR tree that is to be processed.
748 * \param symbols Symbol table containing global scope symbols in the
749 * linked shader.
750 * \param instructions Instruction stream where new variable declarations
751 * should be added.
752 */
753 void
754 remap_variables(ir_instruction *inst, struct gl_shader *target,
755 hash_table *temps)
756 {
757 class remap_visitor : public ir_hierarchical_visitor {
758 public:
759 remap_visitor(struct gl_shader *target,
760 hash_table *temps)
761 {
762 this->target = target;
763 this->symbols = target->symbols;
764 this->instructions = target->ir;
765 this->temps = temps;
766 }
767
768 virtual ir_visitor_status visit(ir_dereference_variable *ir)
769 {
770 if (ir->var->mode == ir_var_temporary) {
771 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
772
773 assert(var != NULL);
774 ir->var = var;
775 return visit_continue;
776 }
777
778 ir_variable *const existing =
779 this->symbols->get_variable(ir->var->name);
780 if (existing != NULL)
781 ir->var = existing;
782 else {
783 ir_variable *copy = ir->var->clone(this->target, NULL);
784
785 this->symbols->add_variable(copy);
786 this->instructions->push_head(copy);
787 ir->var = copy;
788 }
789
790 return visit_continue;
791 }
792
793 private:
794 struct gl_shader *target;
795 glsl_symbol_table *symbols;
796 exec_list *instructions;
797 hash_table *temps;
798 };
799
800 remap_visitor v(target, temps);
801
802 inst->accept(&v);
803 }
804
805
806 /**
807 * Move non-declarations from one instruction stream to another
808 *
809 * The intended usage pattern of this function is to pass the pointer to the
810 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
811 * pointer) for \c last and \c false for \c make_copies on the first
812 * call. Successive calls pass the return value of the previous call for
813 * \c last and \c true for \c make_copies.
814 *
815 * \param instructions Source instruction stream
816 * \param last Instruction after which new instructions should be
817 * inserted in the target instruction stream
818 * \param make_copies Flag selecting whether instructions in \c instructions
819 * should be copied (via \c ir_instruction::clone) into the
820 * target list or moved.
821 *
822 * \return
823 * The new "last" instruction in the target instruction stream. This pointer
824 * is suitable for use as the \c last parameter of a later call to this
825 * function.
826 */
827 exec_node *
828 move_non_declarations(exec_list *instructions, exec_node *last,
829 bool make_copies, gl_shader *target)
830 {
831 hash_table *temps = NULL;
832
833 if (make_copies)
834 temps = hash_table_ctor(0, hash_table_pointer_hash,
835 hash_table_pointer_compare);
836
837 foreach_list_safe(node, instructions) {
838 ir_instruction *inst = (ir_instruction *) node;
839
840 if (inst->as_function())
841 continue;
842
843 ir_variable *var = inst->as_variable();
844 if ((var != NULL) && (var->mode != ir_var_temporary))
845 continue;
846
847 assert(inst->as_assignment()
848 || inst->as_call()
849 || inst->as_if() /* for initializers with the ?: operator */
850 || ((var != NULL) && (var->mode == ir_var_temporary)));
851
852 if (make_copies) {
853 inst = inst->clone(target, NULL);
854
855 if (var != NULL)
856 hash_table_insert(temps, inst, var);
857 else
858 remap_variables(inst, target, temps);
859 } else {
860 inst->remove();
861 }
862
863 last->insert_after(inst);
864 last = inst;
865 }
866
867 if (make_copies)
868 hash_table_dtor(temps);
869
870 return last;
871 }
872
873 /**
874 * Get the function signature for main from a shader
875 */
876 static ir_function_signature *
877 get_main_function_signature(gl_shader *sh)
878 {
879 ir_function *const f = sh->symbols->get_function("main");
880 if (f != NULL) {
881 exec_list void_parameters;
882
883 /* Look for the 'void main()' signature and ensure that it's defined.
884 * This keeps the linker from accidentally pick a shader that just
885 * contains a prototype for main.
886 *
887 * We don't have to check for multiple definitions of main (in multiple
888 * shaders) because that would have already been caught above.
889 */
890 ir_function_signature *sig = f->matching_signature(&void_parameters);
891 if ((sig != NULL) && sig->is_defined) {
892 return sig;
893 }
894 }
895
896 return NULL;
897 }
898
899
900 /**
901 * This class is only used in link_intrastage_shaders() below but declaring
902 * it inside that function leads to compiler warnings with some versions of
903 * gcc.
904 */
905 class array_sizing_visitor : public ir_hierarchical_visitor {
906 public:
907 virtual ir_visitor_status visit(ir_variable *var)
908 {
909 if (var->type->is_array() && (var->type->length == 0)) {
910 const glsl_type *type =
911 glsl_type::get_array_instance(var->type->fields.array,
912 var->max_array_access + 1);
913 assert(type != NULL);
914 var->type = type;
915 }
916 return visit_continue;
917 }
918 };
919
920 /**
921 * Combine a group of shaders for a single stage to generate a linked shader
922 *
923 * \note
924 * If this function is supplied a single shader, it is cloned, and the new
925 * shader is returned.
926 */
927 static struct gl_shader *
928 link_intrastage_shaders(void *mem_ctx,
929 struct gl_context *ctx,
930 struct gl_shader_program *prog,
931 struct gl_shader **shader_list,
932 unsigned num_shaders)
933 {
934 struct gl_uniform_block *uniform_blocks = NULL;
935
936 /* Check that global variables defined in multiple shaders are consistent.
937 */
938 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
939 return NULL;
940
941 /* Check that uniform blocks between shaders for a stage agree. */
942 const int num_uniform_blocks =
943 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
944 &uniform_blocks);
945 if (num_uniform_blocks < 0)
946 return NULL;
947
948 /* Check that there is only a single definition of each function signature
949 * across all shaders.
950 */
951 for (unsigned i = 0; i < (num_shaders - 1); i++) {
952 foreach_list(node, shader_list[i]->ir) {
953 ir_function *const f = ((ir_instruction *) node)->as_function();
954
955 if (f == NULL)
956 continue;
957
958 for (unsigned j = i + 1; j < num_shaders; j++) {
959 ir_function *const other =
960 shader_list[j]->symbols->get_function(f->name);
961
962 /* If the other shader has no function (and therefore no function
963 * signatures) with the same name, skip to the next shader.
964 */
965 if (other == NULL)
966 continue;
967
968 foreach_iter (exec_list_iterator, iter, *f) {
969 ir_function_signature *sig =
970 (ir_function_signature *) iter.get();
971
972 if (!sig->is_defined || sig->is_builtin)
973 continue;
974
975 ir_function_signature *other_sig =
976 other->exact_matching_signature(& sig->parameters);
977
978 if ((other_sig != NULL) && other_sig->is_defined
979 && !other_sig->is_builtin) {
980 linker_error(prog, "function `%s' is multiply defined",
981 f->name);
982 return NULL;
983 }
984 }
985 }
986 }
987 }
988
989 /* Find the shader that defines main, and make a clone of it.
990 *
991 * Starting with the clone, search for undefined references. If one is
992 * found, find the shader that defines it. Clone the reference and add
993 * it to the shader. Repeat until there are no undefined references or
994 * until a reference cannot be resolved.
995 */
996 gl_shader *main = NULL;
997 for (unsigned i = 0; i < num_shaders; i++) {
998 if (get_main_function_signature(shader_list[i]) != NULL) {
999 main = shader_list[i];
1000 break;
1001 }
1002 }
1003
1004 if (main == NULL) {
1005 linker_error(prog, "%s shader lacks `main'\n",
1006 (shader_list[0]->Type == GL_VERTEX_SHADER)
1007 ? "vertex" : "fragment");
1008 return NULL;
1009 }
1010
1011 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1012 linked->ir = new(linked) exec_list;
1013 clone_ir_list(mem_ctx, linked->ir, main->ir);
1014
1015 linked->UniformBlocks = uniform_blocks;
1016 linked->NumUniformBlocks = num_uniform_blocks;
1017 ralloc_steal(linked, linked->UniformBlocks);
1018
1019 populate_symbol_table(linked);
1020
1021 /* The a pointer to the main function in the final linked shader (i.e., the
1022 * copy of the original shader that contained the main function).
1023 */
1024 ir_function_signature *const main_sig = get_main_function_signature(linked);
1025
1026 /* Move any instructions other than variable declarations or function
1027 * declarations into main.
1028 */
1029 exec_node *insertion_point =
1030 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1031 linked);
1032
1033 for (unsigned i = 0; i < num_shaders; i++) {
1034 if (shader_list[i] == main)
1035 continue;
1036
1037 insertion_point = move_non_declarations(shader_list[i]->ir,
1038 insertion_point, true, linked);
1039 }
1040
1041 /* Resolve initializers for global variables in the linked shader.
1042 */
1043 unsigned num_linking_shaders = num_shaders;
1044 for (unsigned i = 0; i < num_shaders; i++)
1045 num_linking_shaders += shader_list[i]->num_builtins_to_link;
1046
1047 gl_shader **linking_shaders =
1048 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
1049
1050 memcpy(linking_shaders, shader_list,
1051 sizeof(linking_shaders[0]) * num_shaders);
1052
1053 unsigned idx = num_shaders;
1054 for (unsigned i = 0; i < num_shaders; i++) {
1055 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
1056 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
1057 idx += shader_list[i]->num_builtins_to_link;
1058 }
1059
1060 assert(idx == num_linking_shaders);
1061
1062 if (!link_function_calls(prog, linked, linking_shaders,
1063 num_linking_shaders)) {
1064 ctx->Driver.DeleteShader(ctx, linked);
1065 linked = NULL;
1066 }
1067
1068 free(linking_shaders);
1069
1070 #ifdef DEBUG
1071 /* At this point linked should contain all of the linked IR, so
1072 * validate it to make sure nothing went wrong.
1073 */
1074 if (linked)
1075 validate_ir_tree(linked->ir);
1076 #endif
1077
1078 /* Make a pass over all variable declarations to ensure that arrays with
1079 * unspecified sizes have a size specified. The size is inferred from the
1080 * max_array_access field.
1081 */
1082 if (linked != NULL) {
1083 array_sizing_visitor v;
1084
1085 v.run(linked->ir);
1086 }
1087
1088 return linked;
1089 }
1090
1091 /**
1092 * Update the sizes of linked shader uniform arrays to the maximum
1093 * array index used.
1094 *
1095 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1096 *
1097 * If one or more elements of an array are active,
1098 * GetActiveUniform will return the name of the array in name,
1099 * subject to the restrictions listed above. The type of the array
1100 * is returned in type. The size parameter contains the highest
1101 * array element index used, plus one. The compiler or linker
1102 * determines the highest index used. There will be only one
1103 * active uniform reported by the GL per uniform array.
1104
1105 */
1106 static void
1107 update_array_sizes(struct gl_shader_program *prog)
1108 {
1109 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1110 if (prog->_LinkedShaders[i] == NULL)
1111 continue;
1112
1113 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1114 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1115
1116 if ((var == NULL) || (var->mode != ir_var_uniform &&
1117 var->mode != ir_var_shader_in &&
1118 var->mode != ir_var_shader_out) ||
1119 !var->type->is_array())
1120 continue;
1121
1122 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1123 * will not be eliminated. Since we always do std140, just
1124 * don't resize arrays in UBOs.
1125 */
1126 if (var->is_in_uniform_block())
1127 continue;
1128
1129 unsigned int size = var->max_array_access;
1130 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1131 if (prog->_LinkedShaders[j] == NULL)
1132 continue;
1133
1134 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1135 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1136 if (!other_var)
1137 continue;
1138
1139 if (strcmp(var->name, other_var->name) == 0 &&
1140 other_var->max_array_access > size) {
1141 size = other_var->max_array_access;
1142 }
1143 }
1144 }
1145
1146 if (size + 1 != var->type->fields.array->length) {
1147 /* If this is a built-in uniform (i.e., it's backed by some
1148 * fixed-function state), adjust the number of state slots to
1149 * match the new array size. The number of slots per array entry
1150 * is not known. It seems safe to assume that the total number of
1151 * slots is an integer multiple of the number of array elements.
1152 * Determine the number of slots per array element by dividing by
1153 * the old (total) size.
1154 */
1155 if (var->num_state_slots > 0) {
1156 var->num_state_slots = (size + 1)
1157 * (var->num_state_slots / var->type->length);
1158 }
1159
1160 var->type = glsl_type::get_array_instance(var->type->fields.array,
1161 size + 1);
1162 /* FINISHME: We should update the types of array
1163 * dereferences of this variable now.
1164 */
1165 }
1166 }
1167 }
1168 }
1169
1170 /**
1171 * Find a contiguous set of available bits in a bitmask.
1172 *
1173 * \param used_mask Bits representing used (1) and unused (0) locations
1174 * \param needed_count Number of contiguous bits needed.
1175 *
1176 * \return
1177 * Base location of the available bits on success or -1 on failure.
1178 */
1179 int
1180 find_available_slots(unsigned used_mask, unsigned needed_count)
1181 {
1182 unsigned needed_mask = (1 << needed_count) - 1;
1183 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1184
1185 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1186 * cannot optimize possibly infinite loops" for the loop below.
1187 */
1188 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1189 return -1;
1190
1191 for (int i = 0; i <= max_bit_to_test; i++) {
1192 if ((needed_mask & ~used_mask) == needed_mask)
1193 return i;
1194
1195 needed_mask <<= 1;
1196 }
1197
1198 return -1;
1199 }
1200
1201
1202 /**
1203 * Assign locations for either VS inputs for FS outputs
1204 *
1205 * \param prog Shader program whose variables need locations assigned
1206 * \param target_index Selector for the program target to receive location
1207 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1208 * \c MESA_SHADER_FRAGMENT.
1209 * \param max_index Maximum number of generic locations. This corresponds
1210 * to either the maximum number of draw buffers or the
1211 * maximum number of generic attributes.
1212 *
1213 * \return
1214 * If locations are successfully assigned, true is returned. Otherwise an
1215 * error is emitted to the shader link log and false is returned.
1216 */
1217 bool
1218 assign_attribute_or_color_locations(gl_shader_program *prog,
1219 unsigned target_index,
1220 unsigned max_index)
1221 {
1222 /* Mark invalid locations as being used.
1223 */
1224 unsigned used_locations = (max_index >= 32)
1225 ? ~0 : ~((1 << max_index) - 1);
1226
1227 assert((target_index == MESA_SHADER_VERTEX)
1228 || (target_index == MESA_SHADER_FRAGMENT));
1229
1230 gl_shader *const sh = prog->_LinkedShaders[target_index];
1231 if (sh == NULL)
1232 return true;
1233
1234 /* Operate in a total of four passes.
1235 *
1236 * 1. Invalidate the location assignments for all vertex shader inputs.
1237 *
1238 * 2. Assign locations for inputs that have user-defined (via
1239 * glBindVertexAttribLocation) locations and outputs that have
1240 * user-defined locations (via glBindFragDataLocation).
1241 *
1242 * 3. Sort the attributes without assigned locations by number of slots
1243 * required in decreasing order. Fragmentation caused by attribute
1244 * locations assigned by the application may prevent large attributes
1245 * from having enough contiguous space.
1246 *
1247 * 4. Assign locations to any inputs without assigned locations.
1248 */
1249
1250 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1251 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1252
1253 const enum ir_variable_mode direction =
1254 (target_index == MESA_SHADER_VERTEX)
1255 ? ir_var_shader_in : ir_var_shader_out;
1256
1257
1258 /* Temporary storage for the set of attributes that need locations assigned.
1259 */
1260 struct temp_attr {
1261 unsigned slots;
1262 ir_variable *var;
1263
1264 /* Used below in the call to qsort. */
1265 static int compare(const void *a, const void *b)
1266 {
1267 const temp_attr *const l = (const temp_attr *) a;
1268 const temp_attr *const r = (const temp_attr *) b;
1269
1270 /* Reversed because we want a descending order sort below. */
1271 return r->slots - l->slots;
1272 }
1273 } to_assign[16];
1274
1275 unsigned num_attr = 0;
1276
1277 foreach_list(node, sh->ir) {
1278 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1279
1280 if ((var == NULL) || (var->mode != (unsigned) direction))
1281 continue;
1282
1283 if (var->explicit_location) {
1284 if ((var->location >= (int)(max_index + generic_base))
1285 || (var->location < 0)) {
1286 linker_error(prog,
1287 "invalid explicit location %d specified for `%s'\n",
1288 (var->location < 0)
1289 ? var->location : var->location - generic_base,
1290 var->name);
1291 return false;
1292 }
1293 } else if (target_index == MESA_SHADER_VERTEX) {
1294 unsigned binding;
1295
1296 if (prog->AttributeBindings->get(binding, var->name)) {
1297 assert(binding >= VERT_ATTRIB_GENERIC0);
1298 var->location = binding;
1299 var->is_unmatched_generic_inout = 0;
1300 }
1301 } else if (target_index == MESA_SHADER_FRAGMENT) {
1302 unsigned binding;
1303 unsigned index;
1304
1305 if (prog->FragDataBindings->get(binding, var->name)) {
1306 assert(binding >= FRAG_RESULT_DATA0);
1307 var->location = binding;
1308 var->is_unmatched_generic_inout = 0;
1309
1310 if (prog->FragDataIndexBindings->get(index, var->name)) {
1311 var->index = index;
1312 }
1313 }
1314 }
1315
1316 /* If the variable is not a built-in and has a location statically
1317 * assigned in the shader (presumably via a layout qualifier), make sure
1318 * that it doesn't collide with other assigned locations. Otherwise,
1319 * add it to the list of variables that need linker-assigned locations.
1320 */
1321 const unsigned slots = count_attribute_slots(var->type);
1322 if (var->location != -1) {
1323 if (var->location >= generic_base && var->index < 1) {
1324 /* From page 61 of the OpenGL 4.0 spec:
1325 *
1326 * "LinkProgram will fail if the attribute bindings assigned
1327 * by BindAttribLocation do not leave not enough space to
1328 * assign a location for an active matrix attribute or an
1329 * active attribute array, both of which require multiple
1330 * contiguous generic attributes."
1331 *
1332 * Previous versions of the spec contain similar language but omit
1333 * the bit about attribute arrays.
1334 *
1335 * Page 61 of the OpenGL 4.0 spec also says:
1336 *
1337 * "It is possible for an application to bind more than one
1338 * attribute name to the same location. This is referred to as
1339 * aliasing. This will only work if only one of the aliased
1340 * attributes is active in the executable program, or if no
1341 * path through the shader consumes more than one attribute of
1342 * a set of attributes aliased to the same location. A link
1343 * error can occur if the linker determines that every path
1344 * through the shader consumes multiple aliased attributes,
1345 * but implementations are not required to generate an error
1346 * in this case."
1347 *
1348 * These two paragraphs are either somewhat contradictory, or I
1349 * don't fully understand one or both of them.
1350 */
1351 /* FINISHME: The code as currently written does not support
1352 * FINISHME: attribute location aliasing (see comment above).
1353 */
1354 /* Mask representing the contiguous slots that will be used by
1355 * this attribute.
1356 */
1357 const unsigned attr = var->location - generic_base;
1358 const unsigned use_mask = (1 << slots) - 1;
1359
1360 /* Generate a link error if the set of bits requested for this
1361 * attribute overlaps any previously allocated bits.
1362 */
1363 if ((~(use_mask << attr) & used_locations) != used_locations) {
1364 const char *const string = (target_index == MESA_SHADER_VERTEX)
1365 ? "vertex shader input" : "fragment shader output";
1366 linker_error(prog,
1367 "insufficient contiguous locations "
1368 "available for %s `%s' %d %d %d", string,
1369 var->name, used_locations, use_mask, attr);
1370 return false;
1371 }
1372
1373 used_locations |= (use_mask << attr);
1374 }
1375
1376 continue;
1377 }
1378
1379 to_assign[num_attr].slots = slots;
1380 to_assign[num_attr].var = var;
1381 num_attr++;
1382 }
1383
1384 /* If all of the attributes were assigned locations by the application (or
1385 * are built-in attributes with fixed locations), return early. This should
1386 * be the common case.
1387 */
1388 if (num_attr == 0)
1389 return true;
1390
1391 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1392
1393 if (target_index == MESA_SHADER_VERTEX) {
1394 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1395 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1396 * reserved to prevent it from being automatically allocated below.
1397 */
1398 find_deref_visitor find("gl_Vertex");
1399 find.run(sh->ir);
1400 if (find.variable_found())
1401 used_locations |= (1 << 0);
1402 }
1403
1404 for (unsigned i = 0; i < num_attr; i++) {
1405 /* Mask representing the contiguous slots that will be used by this
1406 * attribute.
1407 */
1408 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1409
1410 int location = find_available_slots(used_locations, to_assign[i].slots);
1411
1412 if (location < 0) {
1413 const char *const string = (target_index == MESA_SHADER_VERTEX)
1414 ? "vertex shader input" : "fragment shader output";
1415
1416 linker_error(prog,
1417 "insufficient contiguous locations "
1418 "available for %s `%s'",
1419 string, to_assign[i].var->name);
1420 return false;
1421 }
1422
1423 to_assign[i].var->location = generic_base + location;
1424 to_assign[i].var->is_unmatched_generic_inout = 0;
1425 used_locations |= (use_mask << location);
1426 }
1427
1428 return true;
1429 }
1430
1431
1432 /**
1433 * Demote shader inputs and outputs that are not used in other stages
1434 */
1435 void
1436 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1437 {
1438 foreach_list(node, sh->ir) {
1439 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1440
1441 if ((var == NULL) || (var->mode != int(mode)))
1442 continue;
1443
1444 /* A shader 'in' or 'out' variable is only really an input or output if
1445 * its value is used by other shader stages. This will cause the variable
1446 * to have a location assigned.
1447 */
1448 if (var->is_unmatched_generic_inout) {
1449 var->mode = ir_var_auto;
1450 }
1451 }
1452 }
1453
1454
1455 /**
1456 * Store the gl_FragDepth layout in the gl_shader_program struct.
1457 */
1458 static void
1459 store_fragdepth_layout(struct gl_shader_program *prog)
1460 {
1461 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1462 return;
1463 }
1464
1465 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1466
1467 /* We don't look up the gl_FragDepth symbol directly because if
1468 * gl_FragDepth is not used in the shader, it's removed from the IR.
1469 * However, the symbol won't be removed from the symbol table.
1470 *
1471 * We're only interested in the cases where the variable is NOT removed
1472 * from the IR.
1473 */
1474 foreach_list(node, ir) {
1475 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1476
1477 if (var == NULL || var->mode != ir_var_shader_out) {
1478 continue;
1479 }
1480
1481 if (strcmp(var->name, "gl_FragDepth") == 0) {
1482 switch (var->depth_layout) {
1483 case ir_depth_layout_none:
1484 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1485 return;
1486 case ir_depth_layout_any:
1487 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1488 return;
1489 case ir_depth_layout_greater:
1490 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1491 return;
1492 case ir_depth_layout_less:
1493 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1494 return;
1495 case ir_depth_layout_unchanged:
1496 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1497 return;
1498 default:
1499 assert(0);
1500 return;
1501 }
1502 }
1503 }
1504 }
1505
1506 /**
1507 * Validate the resources used by a program versus the implementation limits
1508 */
1509 static bool
1510 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1511 {
1512 static const char *const shader_names[MESA_SHADER_TYPES] = {
1513 "vertex", "fragment", "geometry"
1514 };
1515
1516 const unsigned max_samplers[MESA_SHADER_TYPES] = {
1517 ctx->Const.MaxVertexTextureImageUnits,
1518 ctx->Const.MaxTextureImageUnits,
1519 ctx->Const.MaxGeometryTextureImageUnits
1520 };
1521
1522 const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
1523 ctx->Const.VertexProgram.MaxUniformComponents,
1524 ctx->Const.FragmentProgram.MaxUniformComponents,
1525 0 /* FINISHME: Geometry shaders. */
1526 };
1527
1528 const unsigned max_uniform_blocks[MESA_SHADER_TYPES] = {
1529 ctx->Const.VertexProgram.MaxUniformBlocks,
1530 ctx->Const.FragmentProgram.MaxUniformBlocks,
1531 ctx->Const.GeometryProgram.MaxUniformBlocks,
1532 };
1533
1534 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1535 struct gl_shader *sh = prog->_LinkedShaders[i];
1536
1537 if (sh == NULL)
1538 continue;
1539
1540 if (sh->num_samplers > max_samplers[i]) {
1541 linker_error(prog, "Too many %s shader texture samplers",
1542 shader_names[i]);
1543 }
1544
1545 if (sh->num_uniform_components > max_uniform_components[i]) {
1546 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1547 linker_warning(prog, "Too many %s shader uniform components, "
1548 "but the driver will try to optimize them out; "
1549 "this is non-portable out-of-spec behavior\n",
1550 shader_names[i]);
1551 } else {
1552 linker_error(prog, "Too many %s shader uniform components",
1553 shader_names[i]);
1554 }
1555 }
1556 }
1557
1558 unsigned blocks[MESA_SHADER_TYPES] = {0};
1559 unsigned total_uniform_blocks = 0;
1560
1561 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
1562 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1563 if (prog->UniformBlockStageIndex[j][i] != -1) {
1564 blocks[j]++;
1565 total_uniform_blocks++;
1566 }
1567 }
1568
1569 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
1570 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
1571 prog->NumUniformBlocks,
1572 ctx->Const.MaxCombinedUniformBlocks);
1573 } else {
1574 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1575 if (blocks[i] > max_uniform_blocks[i]) {
1576 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
1577 shader_names[i],
1578 blocks[i],
1579 max_uniform_blocks[i]);
1580 break;
1581 }
1582 }
1583 }
1584 }
1585
1586 return prog->LinkStatus;
1587 }
1588
1589 void
1590 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1591 {
1592 tfeedback_decl *tfeedback_decls = NULL;
1593 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
1594
1595 void *mem_ctx = ralloc_context(NULL); // temporary linker context
1596
1597 prog->LinkStatus = false;
1598 prog->Validated = false;
1599 prog->_Used = false;
1600
1601 ralloc_free(prog->InfoLog);
1602 prog->InfoLog = ralloc_strdup(NULL, "");
1603
1604 ralloc_free(prog->UniformBlocks);
1605 prog->UniformBlocks = NULL;
1606 prog->NumUniformBlocks = 0;
1607 for (int i = 0; i < MESA_SHADER_TYPES; i++) {
1608 ralloc_free(prog->UniformBlockStageIndex[i]);
1609 prog->UniformBlockStageIndex[i] = NULL;
1610 }
1611
1612 /* Separate the shaders into groups based on their type.
1613 */
1614 struct gl_shader **vert_shader_list;
1615 unsigned num_vert_shaders = 0;
1616 struct gl_shader **frag_shader_list;
1617 unsigned num_frag_shaders = 0;
1618
1619 vert_shader_list = (struct gl_shader **)
1620 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1621 frag_shader_list = &vert_shader_list[prog->NumShaders];
1622
1623 unsigned min_version = UINT_MAX;
1624 unsigned max_version = 0;
1625 const bool is_es_prog =
1626 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
1627 for (unsigned i = 0; i < prog->NumShaders; i++) {
1628 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1629 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1630
1631 if (prog->Shaders[i]->IsES != is_es_prog) {
1632 linker_error(prog, "all shaders must use same shading "
1633 "language version\n");
1634 goto done;
1635 }
1636
1637 switch (prog->Shaders[i]->Type) {
1638 case GL_VERTEX_SHADER:
1639 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1640 num_vert_shaders++;
1641 break;
1642 case GL_FRAGMENT_SHADER:
1643 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1644 num_frag_shaders++;
1645 break;
1646 case GL_GEOMETRY_SHADER:
1647 /* FINISHME: Support geometry shaders. */
1648 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1649 break;
1650 }
1651 }
1652
1653 /* Previous to GLSL version 1.30, different compilation units could mix and
1654 * match shading language versions. With GLSL 1.30 and later, the versions
1655 * of all shaders must match.
1656 *
1657 * GLSL ES has never allowed mixing of shading language versions.
1658 */
1659 if ((is_es_prog || max_version >= 130)
1660 && min_version != max_version) {
1661 linker_error(prog, "all shaders must use same shading "
1662 "language version\n");
1663 goto done;
1664 }
1665
1666 prog->Version = max_version;
1667 prog->IsES = is_es_prog;
1668
1669 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1670 if (prog->_LinkedShaders[i] != NULL)
1671 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1672
1673 prog->_LinkedShaders[i] = NULL;
1674 }
1675
1676 /* Link all shaders for a particular stage and validate the result.
1677 */
1678 if (num_vert_shaders > 0) {
1679 gl_shader *const sh =
1680 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1681 num_vert_shaders);
1682
1683 if (sh == NULL)
1684 goto done;
1685
1686 if (!validate_vertex_shader_executable(prog, sh))
1687 goto done;
1688
1689 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1690 sh);
1691 }
1692
1693 if (num_frag_shaders > 0) {
1694 gl_shader *const sh =
1695 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1696 num_frag_shaders);
1697
1698 if (sh == NULL)
1699 goto done;
1700
1701 if (!validate_fragment_shader_executable(prog, sh))
1702 goto done;
1703
1704 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1705 sh);
1706 }
1707
1708 /* Here begins the inter-stage linking phase. Some initial validation is
1709 * performed, then locations are assigned for uniforms, attributes, and
1710 * varyings.
1711 */
1712 if (cross_validate_uniforms(prog)) {
1713 unsigned prev;
1714
1715 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1716 if (prog->_LinkedShaders[prev] != NULL)
1717 break;
1718 }
1719
1720 /* Validate the inputs of each stage with the output of the preceding
1721 * stage.
1722 */
1723 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1724 if (prog->_LinkedShaders[i] == NULL)
1725 continue;
1726
1727 if (!cross_validate_outputs_to_inputs(prog,
1728 prog->_LinkedShaders[prev],
1729 prog->_LinkedShaders[i]))
1730 goto done;
1731
1732 prev = i;
1733 }
1734
1735 prog->LinkStatus = true;
1736 }
1737
1738 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
1739 * it before optimization because we want most of the checks to get
1740 * dropped thanks to constant propagation.
1741 *
1742 * This rule also applies to GLSL ES 3.00.
1743 */
1744 if (max_version >= (is_es_prog ? 300 : 130)) {
1745 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1746 if (sh) {
1747 lower_discard_flow(sh->ir);
1748 }
1749 }
1750
1751 if (!interstage_cross_validate_uniform_blocks(prog))
1752 goto done;
1753
1754 /* Do common optimization before assigning storage for attributes,
1755 * uniforms, and varyings. Later optimization could possibly make
1756 * some of that unused.
1757 */
1758 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1759 if (prog->_LinkedShaders[i] == NULL)
1760 continue;
1761
1762 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
1763 if (!prog->LinkStatus)
1764 goto done;
1765
1766 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
1767 lower_clip_distance(prog->_LinkedShaders[i]);
1768 }
1769
1770 unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
1771
1772 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll))
1773 ;
1774 }
1775
1776 /* Mark all generic shader inputs and outputs as unpaired. */
1777 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1778 link_invalidate_variable_locations(
1779 prog->_LinkedShaders[MESA_SHADER_VERTEX],
1780 VERT_ATTRIB_GENERIC0, VARYING_SLOT_VAR0);
1781 }
1782 /* FINISHME: Geometry shaders not implemented yet */
1783 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1784 link_invalidate_variable_locations(
1785 prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1786 FRAG_ATTRIB_VAR0, FRAG_RESULT_DATA0);
1787 }
1788
1789 /* FINISHME: The value of the max_attribute_index parameter is
1790 * FINISHME: implementation dependent based on the value of
1791 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1792 * FINISHME: at least 16, so hardcode 16 for now.
1793 */
1794 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
1795 goto done;
1796 }
1797
1798 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
1799 goto done;
1800 }
1801
1802 unsigned prev;
1803 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1804 if (prog->_LinkedShaders[prev] != NULL)
1805 break;
1806 }
1807
1808 if (num_tfeedback_decls != 0) {
1809 /* From GL_EXT_transform_feedback:
1810 * A program will fail to link if:
1811 *
1812 * * the <count> specified by TransformFeedbackVaryingsEXT is
1813 * non-zero, but the program object has no vertex or geometry
1814 * shader;
1815 */
1816 if (prev >= MESA_SHADER_FRAGMENT) {
1817 linker_error(prog, "Transform feedback varyings specified, but "
1818 "no vertex or geometry shader is present.");
1819 goto done;
1820 }
1821
1822 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
1823 prog->TransformFeedback.NumVarying);
1824 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
1825 prog->TransformFeedback.VaryingNames,
1826 tfeedback_decls))
1827 goto done;
1828 }
1829
1830 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1831 if (prog->_LinkedShaders[i] == NULL)
1832 continue;
1833
1834 if (!assign_varying_locations(
1835 ctx, mem_ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
1836 i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
1837 tfeedback_decls))
1838 goto done;
1839
1840 prev = i;
1841 }
1842
1843 if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
1844 /* There was no fragment shader, but we still have to assign varying
1845 * locations for use by transform feedback.
1846 */
1847 if (!assign_varying_locations(
1848 ctx, mem_ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
1849 tfeedback_decls))
1850 goto done;
1851 }
1852
1853 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
1854 goto done;
1855
1856 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1857 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1858 ir_var_shader_out);
1859
1860 /* Eliminate code that is now dead due to unused vertex outputs being
1861 * demoted.
1862 */
1863 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
1864 ;
1865 }
1866
1867 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1868 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1869
1870 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
1871 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
1872
1873 /* Eliminate code that is now dead due to unused geometry outputs being
1874 * demoted.
1875 */
1876 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
1877 ;
1878 }
1879
1880 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1881 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1882
1883 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
1884
1885 /* Eliminate code that is now dead due to unused fragment inputs being
1886 * demoted. This shouldn't actually do anything other than remove
1887 * declarations of the (now unused) global variables.
1888 */
1889 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
1890 ;
1891 }
1892
1893 update_array_sizes(prog);
1894 link_assign_uniform_locations(prog);
1895 store_fragdepth_layout(prog);
1896
1897 if (!check_resources(ctx, prog))
1898 goto done;
1899
1900 /* OpenGL ES requires that a vertex shader and a fragment shader both be
1901 * present in a linked program. By checking prog->IsES, we also
1902 * catch the GL_ARB_ES2_compatibility case.
1903 */
1904 if (!prog->InternalSeparateShader &&
1905 (ctx->API == API_OPENGLES2 || prog->IsES)) {
1906 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
1907 linker_error(prog, "program lacks a vertex shader\n");
1908 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1909 linker_error(prog, "program lacks a fragment shader\n");
1910 }
1911 }
1912
1913 /* FINISHME: Assign fragment shader output locations. */
1914
1915 done:
1916 free(vert_shader_list);
1917
1918 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1919 if (prog->_LinkedShaders[i] == NULL)
1920 continue;
1921
1922 /* Retain any live IR, but trash the rest. */
1923 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1924
1925 /* The symbol table in the linked shaders may contain references to
1926 * variables that were removed (e.g., unused uniforms). Since it may
1927 * contain junk, there is no possible valid use. Delete it and set the
1928 * pointer to NULL.
1929 */
1930 delete prog->_LinkedShaders[i]->symbols;
1931 prog->_LinkedShaders[i]->symbols = NULL;
1932 }
1933
1934 ralloc_free(mem_ctx);
1935 }