beadec6f66c01bfc65ed3e874e69ca558d2d592e
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "ir_optimization.h"
74
75 extern "C" {
76 #include "main/shaderobj.h"
77 }
78
79 /**
80 * Visitor that determines whether or not a variable is ever written.
81 */
82 class find_assignment_visitor : public ir_hierarchical_visitor {
83 public:
84 find_assignment_visitor(const char *name)
85 : name(name), found(false)
86 {
87 /* empty */
88 }
89
90 virtual ir_visitor_status visit_enter(ir_assignment *ir)
91 {
92 ir_variable *const var = ir->lhs->variable_referenced();
93
94 if (strcmp(name, var->name) == 0) {
95 found = true;
96 return visit_stop;
97 }
98
99 return visit_continue_with_parent;
100 }
101
102 virtual ir_visitor_status visit_enter(ir_call *ir)
103 {
104 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
105 foreach_iter(exec_list_iterator, iter, *ir) {
106 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
107 ir_variable *sig_param = (ir_variable *)sig_iter.get();
108
109 if (sig_param->mode == ir_var_out ||
110 sig_param->mode == ir_var_inout) {
111 ir_variable *var = param_rval->variable_referenced();
112 if (var && strcmp(name, var->name) == 0) {
113 found = true;
114 return visit_stop;
115 }
116 }
117 sig_iter.next();
118 }
119
120 return visit_continue_with_parent;
121 }
122
123 bool variable_found()
124 {
125 return found;
126 }
127
128 private:
129 const char *name; /**< Find writes to a variable with this name. */
130 bool found; /**< Was a write to the variable found? */
131 };
132
133
134 /**
135 * Visitor that determines whether or not a variable is ever read.
136 */
137 class find_deref_visitor : public ir_hierarchical_visitor {
138 public:
139 find_deref_visitor(const char *name)
140 : name(name), found(false)
141 {
142 /* empty */
143 }
144
145 virtual ir_visitor_status visit(ir_dereference_variable *ir)
146 {
147 if (strcmp(this->name, ir->var->name) == 0) {
148 this->found = true;
149 return visit_stop;
150 }
151
152 return visit_continue;
153 }
154
155 bool variable_found() const
156 {
157 return this->found;
158 }
159
160 private:
161 const char *name; /**< Find writes to a variable with this name. */
162 bool found; /**< Was a write to the variable found? */
163 };
164
165
166 void
167 linker_error(gl_shader_program *prog, const char *fmt, ...)
168 {
169 va_list ap;
170
171 ralloc_strcat(&prog->InfoLog, "error: ");
172 va_start(ap, fmt);
173 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
174 va_end(ap);
175
176 prog->LinkStatus = false;
177 }
178
179
180 void
181 linker_warning(gl_shader_program *prog, const char *fmt, ...)
182 {
183 va_list ap;
184
185 ralloc_strcat(&prog->InfoLog, "error: ");
186 va_start(ap, fmt);
187 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
188 va_end(ap);
189
190 }
191
192
193 void
194 invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
195 int generic_base)
196 {
197 foreach_list(node, sh->ir) {
198 ir_variable *const var = ((ir_instruction *) node)->as_variable();
199
200 if ((var == NULL) || (var->mode != (unsigned) mode))
201 continue;
202
203 /* Only assign locations for generic attributes / varyings / etc.
204 */
205 if ((var->location >= generic_base) && !var->explicit_location)
206 var->location = -1;
207 }
208 }
209
210
211 /**
212 * Determine the number of attribute slots required for a particular type
213 *
214 * This code is here because it implements the language rules of a specific
215 * GLSL version. Since it's a property of the language and not a property of
216 * types in general, it doesn't really belong in glsl_type.
217 */
218 unsigned
219 count_attribute_slots(const glsl_type *t)
220 {
221 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
222 *
223 * "A scalar input counts the same amount against this limit as a vec4,
224 * so applications may want to consider packing groups of four
225 * unrelated float inputs together into a vector to better utilize the
226 * capabilities of the underlying hardware. A matrix input will use up
227 * multiple locations. The number of locations used will equal the
228 * number of columns in the matrix."
229 *
230 * The spec does not explicitly say how arrays are counted. However, it
231 * should be safe to assume the total number of slots consumed by an array
232 * is the number of entries in the array multiplied by the number of slots
233 * consumed by a single element of the array.
234 */
235
236 if (t->is_array())
237 return t->array_size() * count_attribute_slots(t->element_type());
238
239 if (t->is_matrix())
240 return t->matrix_columns;
241
242 return 1;
243 }
244
245
246 /**
247 * Verify that a vertex shader executable meets all semantic requirements.
248 *
249 * Also sets prog->Vert.UsesClipDistance as a side effect.
250 *
251 * \param shader Vertex shader executable to be verified
252 */
253 bool
254 validate_vertex_shader_executable(struct gl_shader_program *prog,
255 struct gl_shader *shader)
256 {
257 if (shader == NULL)
258 return true;
259
260 find_assignment_visitor find("gl_Position");
261 find.run(shader->ir);
262 if (!find.variable_found()) {
263 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
264 return false;
265 }
266
267 if (prog->Version >= 130) {
268 /* From section 7.1 (Vertex Shader Special Variables) of the
269 * GLSL 1.30 spec:
270 *
271 * "It is an error for a shader to statically write both
272 * gl_ClipVertex and gl_ClipDistance."
273 */
274 find_assignment_visitor clip_vertex("gl_ClipVertex");
275 find_assignment_visitor clip_distance("gl_ClipDistance");
276
277 clip_vertex.run(shader->ir);
278 clip_distance.run(shader->ir);
279 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
280 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
281 "and `gl_ClipDistance'\n");
282 return false;
283 }
284 prog->Vert.UsesClipDistance = clip_distance.variable_found();
285 }
286
287 return true;
288 }
289
290
291 /**
292 * Verify that a fragment shader executable meets all semantic requirements
293 *
294 * \param shader Fragment shader executable to be verified
295 */
296 bool
297 validate_fragment_shader_executable(struct gl_shader_program *prog,
298 struct gl_shader *shader)
299 {
300 if (shader == NULL)
301 return true;
302
303 find_assignment_visitor frag_color("gl_FragColor");
304 find_assignment_visitor frag_data("gl_FragData");
305
306 frag_color.run(shader->ir);
307 frag_data.run(shader->ir);
308
309 if (frag_color.variable_found() && frag_data.variable_found()) {
310 linker_error(prog, "fragment shader writes to both "
311 "`gl_FragColor' and `gl_FragData'\n");
312 return false;
313 }
314
315 return true;
316 }
317
318
319 /**
320 * Generate a string describing the mode of a variable
321 */
322 static const char *
323 mode_string(const ir_variable *var)
324 {
325 switch (var->mode) {
326 case ir_var_auto:
327 return (var->read_only) ? "global constant" : "global variable";
328
329 case ir_var_uniform: return "uniform";
330 case ir_var_in: return "shader input";
331 case ir_var_out: return "shader output";
332 case ir_var_inout: return "shader inout";
333
334 case ir_var_const_in:
335 case ir_var_temporary:
336 default:
337 assert(!"Should not get here.");
338 return "invalid variable";
339 }
340 }
341
342
343 /**
344 * Perform validation of global variables used across multiple shaders
345 */
346 bool
347 cross_validate_globals(struct gl_shader_program *prog,
348 struct gl_shader **shader_list,
349 unsigned num_shaders,
350 bool uniforms_only)
351 {
352 /* Examine all of the uniforms in all of the shaders and cross validate
353 * them.
354 */
355 glsl_symbol_table variables;
356 for (unsigned i = 0; i < num_shaders; i++) {
357 if (shader_list[i] == NULL)
358 continue;
359
360 foreach_list(node, shader_list[i]->ir) {
361 ir_variable *const var = ((ir_instruction *) node)->as_variable();
362
363 if (var == NULL)
364 continue;
365
366 if (uniforms_only && (var->mode != ir_var_uniform))
367 continue;
368
369 /* Don't cross validate temporaries that are at global scope. These
370 * will eventually get pulled into the shaders 'main'.
371 */
372 if (var->mode == ir_var_temporary)
373 continue;
374
375 /* If a global with this name has already been seen, verify that the
376 * new instance has the same type. In addition, if the globals have
377 * initializers, the values of the initializers must be the same.
378 */
379 ir_variable *const existing = variables.get_variable(var->name);
380 if (existing != NULL) {
381 if (var->type != existing->type) {
382 /* Consider the types to be "the same" if both types are arrays
383 * of the same type and one of the arrays is implicitly sized.
384 * In addition, set the type of the linked variable to the
385 * explicitly sized array.
386 */
387 if (var->type->is_array()
388 && existing->type->is_array()
389 && (var->type->fields.array == existing->type->fields.array)
390 && ((var->type->length == 0)
391 || (existing->type->length == 0))) {
392 if (var->type->length != 0) {
393 existing->type = var->type;
394 }
395 } else {
396 linker_error(prog, "%s `%s' declared as type "
397 "`%s' and type `%s'\n",
398 mode_string(var),
399 var->name, var->type->name,
400 existing->type->name);
401 return false;
402 }
403 }
404
405 if (var->explicit_location) {
406 if (existing->explicit_location
407 && (var->location != existing->location)) {
408 linker_error(prog, "explicit locations for %s "
409 "`%s' have differing values\n",
410 mode_string(var), var->name);
411 return false;
412 }
413
414 existing->location = var->location;
415 existing->explicit_location = true;
416 }
417
418 /* Validate layout qualifiers for gl_FragDepth.
419 *
420 * From the AMD/ARB_conservative_depth specs:
421 * "If gl_FragDepth is redeclared in any fragment shader in
422 * a program, it must be redeclared in all fragment shaders in that
423 * program that have static assignments to gl_FragDepth. All
424 * redeclarations of gl_FragDepth in all fragment shaders in
425 * a single program must have the same set of qualifiers."
426 */
427 if (strcmp(var->name, "gl_FragDepth") == 0) {
428 bool layout_declared = var->depth_layout != ir_depth_layout_none;
429 bool layout_differs = var->depth_layout != existing->depth_layout;
430 if (layout_declared && layout_differs) {
431 linker_error(prog,
432 "All redeclarations of gl_FragDepth in all fragment shaders "
433 "in a single program must have the same set of qualifiers.");
434 }
435 if (var->used && layout_differs) {
436 linker_error(prog,
437 "If gl_FragDepth is redeclared with a layout qualifier in"
438 "any fragment shader, it must be redeclared with the same"
439 "layout qualifier in all fragment shaders that have"
440 "assignments to gl_FragDepth");
441 }
442 }
443
444 /* FINISHME: Handle non-constant initializers.
445 */
446 if (var->constant_value != NULL) {
447 if (existing->constant_value != NULL) {
448 if (!var->constant_value->has_value(existing->constant_value)) {
449 linker_error(prog, "initializers for %s "
450 "`%s' have differing values\n",
451 mode_string(var), var->name);
452 return false;
453 }
454 } else
455 /* If the first-seen instance of a particular uniform did not
456 * have an initializer but a later instance does, copy the
457 * initializer to the version stored in the symbol table.
458 */
459 /* FINISHME: This is wrong. The constant_value field should
460 * FINISHME: not be modified! Imagine a case where a shader
461 * FINISHME: without an initializer is linked in two different
462 * FINISHME: programs with shaders that have differing
463 * FINISHME: initializers. Linking with the first will
464 * FINISHME: modify the shader, and linking with the second
465 * FINISHME: will fail.
466 */
467 existing->constant_value =
468 var->constant_value->clone(ralloc_parent(existing), NULL);
469 }
470
471 if (existing->invariant != var->invariant) {
472 linker_error(prog, "declarations for %s `%s' have "
473 "mismatching invariant qualifiers\n",
474 mode_string(var), var->name);
475 return false;
476 }
477 if (existing->centroid != var->centroid) {
478 linker_error(prog, "declarations for %s `%s' have "
479 "mismatching centroid qualifiers\n",
480 mode_string(var), var->name);
481 return false;
482 }
483 } else
484 variables.add_variable(var);
485 }
486 }
487
488 return true;
489 }
490
491
492 /**
493 * Perform validation of uniforms used across multiple shader stages
494 */
495 bool
496 cross_validate_uniforms(struct gl_shader_program *prog)
497 {
498 return cross_validate_globals(prog, prog->_LinkedShaders,
499 MESA_SHADER_TYPES, true);
500 }
501
502
503 /**
504 * Validate that outputs from one stage match inputs of another
505 */
506 bool
507 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
508 gl_shader *producer, gl_shader *consumer)
509 {
510 glsl_symbol_table parameters;
511 /* FINISHME: Figure these out dynamically. */
512 const char *const producer_stage = "vertex";
513 const char *const consumer_stage = "fragment";
514
515 /* Find all shader outputs in the "producer" stage.
516 */
517 foreach_list(node, producer->ir) {
518 ir_variable *const var = ((ir_instruction *) node)->as_variable();
519
520 /* FINISHME: For geometry shaders, this should also look for inout
521 * FINISHME: variables.
522 */
523 if ((var == NULL) || (var->mode != ir_var_out))
524 continue;
525
526 parameters.add_variable(var);
527 }
528
529
530 /* Find all shader inputs in the "consumer" stage. Any variables that have
531 * matching outputs already in the symbol table must have the same type and
532 * qualifiers.
533 */
534 foreach_list(node, consumer->ir) {
535 ir_variable *const input = ((ir_instruction *) node)->as_variable();
536
537 /* FINISHME: For geometry shaders, this should also look for inout
538 * FINISHME: variables.
539 */
540 if ((input == NULL) || (input->mode != ir_var_in))
541 continue;
542
543 ir_variable *const output = parameters.get_variable(input->name);
544 if (output != NULL) {
545 /* Check that the types match between stages.
546 */
547 if (input->type != output->type) {
548 /* There is a bit of a special case for gl_TexCoord. This
549 * built-in is unsized by default. Applications that variable
550 * access it must redeclare it with a size. There is some
551 * language in the GLSL spec that implies the fragment shader
552 * and vertex shader do not have to agree on this size. Other
553 * driver behave this way, and one or two applications seem to
554 * rely on it.
555 *
556 * Neither declaration needs to be modified here because the array
557 * sizes are fixed later when update_array_sizes is called.
558 *
559 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
560 *
561 * "Unlike user-defined varying variables, the built-in
562 * varying variables don't have a strict one-to-one
563 * correspondence between the vertex language and the
564 * fragment language."
565 */
566 if (!output->type->is_array()
567 || (strncmp("gl_", output->name, 3) != 0)) {
568 linker_error(prog,
569 "%s shader output `%s' declared as type `%s', "
570 "but %s shader input declared as type `%s'\n",
571 producer_stage, output->name,
572 output->type->name,
573 consumer_stage, input->type->name);
574 return false;
575 }
576 }
577
578 /* Check that all of the qualifiers match between stages.
579 */
580 if (input->centroid != output->centroid) {
581 linker_error(prog,
582 "%s shader output `%s' %s centroid qualifier, "
583 "but %s shader input %s centroid qualifier\n",
584 producer_stage,
585 output->name,
586 (output->centroid) ? "has" : "lacks",
587 consumer_stage,
588 (input->centroid) ? "has" : "lacks");
589 return false;
590 }
591
592 if (input->invariant != output->invariant) {
593 linker_error(prog,
594 "%s shader output `%s' %s invariant qualifier, "
595 "but %s shader input %s invariant qualifier\n",
596 producer_stage,
597 output->name,
598 (output->invariant) ? "has" : "lacks",
599 consumer_stage,
600 (input->invariant) ? "has" : "lacks");
601 return false;
602 }
603
604 if (input->interpolation != output->interpolation) {
605 linker_error(prog,
606 "%s shader output `%s' specifies %s "
607 "interpolation qualifier, "
608 "but %s shader input specifies %s "
609 "interpolation qualifier\n",
610 producer_stage,
611 output->name,
612 output->interpolation_string(),
613 consumer_stage,
614 input->interpolation_string());
615 return false;
616 }
617 }
618 }
619
620 return true;
621 }
622
623
624 /**
625 * Populates a shaders symbol table with all global declarations
626 */
627 static void
628 populate_symbol_table(gl_shader *sh)
629 {
630 sh->symbols = new(sh) glsl_symbol_table;
631
632 foreach_list(node, sh->ir) {
633 ir_instruction *const inst = (ir_instruction *) node;
634 ir_variable *var;
635 ir_function *func;
636
637 if ((func = inst->as_function()) != NULL) {
638 sh->symbols->add_function(func);
639 } else if ((var = inst->as_variable()) != NULL) {
640 sh->symbols->add_variable(var);
641 }
642 }
643 }
644
645
646 /**
647 * Remap variables referenced in an instruction tree
648 *
649 * This is used when instruction trees are cloned from one shader and placed in
650 * another. These trees will contain references to \c ir_variable nodes that
651 * do not exist in the target shader. This function finds these \c ir_variable
652 * references and replaces the references with matching variables in the target
653 * shader.
654 *
655 * If there is no matching variable in the target shader, a clone of the
656 * \c ir_variable is made and added to the target shader. The new variable is
657 * added to \b both the instruction stream and the symbol table.
658 *
659 * \param inst IR tree that is to be processed.
660 * \param symbols Symbol table containing global scope symbols in the
661 * linked shader.
662 * \param instructions Instruction stream where new variable declarations
663 * should be added.
664 */
665 void
666 remap_variables(ir_instruction *inst, struct gl_shader *target,
667 hash_table *temps)
668 {
669 class remap_visitor : public ir_hierarchical_visitor {
670 public:
671 remap_visitor(struct gl_shader *target,
672 hash_table *temps)
673 {
674 this->target = target;
675 this->symbols = target->symbols;
676 this->instructions = target->ir;
677 this->temps = temps;
678 }
679
680 virtual ir_visitor_status visit(ir_dereference_variable *ir)
681 {
682 if (ir->var->mode == ir_var_temporary) {
683 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
684
685 assert(var != NULL);
686 ir->var = var;
687 return visit_continue;
688 }
689
690 ir_variable *const existing =
691 this->symbols->get_variable(ir->var->name);
692 if (existing != NULL)
693 ir->var = existing;
694 else {
695 ir_variable *copy = ir->var->clone(this->target, NULL);
696
697 this->symbols->add_variable(copy);
698 this->instructions->push_head(copy);
699 ir->var = copy;
700 }
701
702 return visit_continue;
703 }
704
705 private:
706 struct gl_shader *target;
707 glsl_symbol_table *symbols;
708 exec_list *instructions;
709 hash_table *temps;
710 };
711
712 remap_visitor v(target, temps);
713
714 inst->accept(&v);
715 }
716
717
718 /**
719 * Move non-declarations from one instruction stream to another
720 *
721 * The intended usage pattern of this function is to pass the pointer to the
722 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
723 * pointer) for \c last and \c false for \c make_copies on the first
724 * call. Successive calls pass the return value of the previous call for
725 * \c last and \c true for \c make_copies.
726 *
727 * \param instructions Source instruction stream
728 * \param last Instruction after which new instructions should be
729 * inserted in the target instruction stream
730 * \param make_copies Flag selecting whether instructions in \c instructions
731 * should be copied (via \c ir_instruction::clone) into the
732 * target list or moved.
733 *
734 * \return
735 * The new "last" instruction in the target instruction stream. This pointer
736 * is suitable for use as the \c last parameter of a later call to this
737 * function.
738 */
739 exec_node *
740 move_non_declarations(exec_list *instructions, exec_node *last,
741 bool make_copies, gl_shader *target)
742 {
743 hash_table *temps = NULL;
744
745 if (make_copies)
746 temps = hash_table_ctor(0, hash_table_pointer_hash,
747 hash_table_pointer_compare);
748
749 foreach_list_safe(node, instructions) {
750 ir_instruction *inst = (ir_instruction *) node;
751
752 if (inst->as_function())
753 continue;
754
755 ir_variable *var = inst->as_variable();
756 if ((var != NULL) && (var->mode != ir_var_temporary))
757 continue;
758
759 assert(inst->as_assignment()
760 || ((var != NULL) && (var->mode == ir_var_temporary)));
761
762 if (make_copies) {
763 inst = inst->clone(target, NULL);
764
765 if (var != NULL)
766 hash_table_insert(temps, inst, var);
767 else
768 remap_variables(inst, target, temps);
769 } else {
770 inst->remove();
771 }
772
773 last->insert_after(inst);
774 last = inst;
775 }
776
777 if (make_copies)
778 hash_table_dtor(temps);
779
780 return last;
781 }
782
783 /**
784 * Get the function signature for main from a shader
785 */
786 static ir_function_signature *
787 get_main_function_signature(gl_shader *sh)
788 {
789 ir_function *const f = sh->symbols->get_function("main");
790 if (f != NULL) {
791 exec_list void_parameters;
792
793 /* Look for the 'void main()' signature and ensure that it's defined.
794 * This keeps the linker from accidentally pick a shader that just
795 * contains a prototype for main.
796 *
797 * We don't have to check for multiple definitions of main (in multiple
798 * shaders) because that would have already been caught above.
799 */
800 ir_function_signature *sig = f->matching_signature(&void_parameters);
801 if ((sig != NULL) && sig->is_defined) {
802 return sig;
803 }
804 }
805
806 return NULL;
807 }
808
809
810 /**
811 * Combine a group of shaders for a single stage to generate a linked shader
812 *
813 * \note
814 * If this function is supplied a single shader, it is cloned, and the new
815 * shader is returned.
816 */
817 static struct gl_shader *
818 link_intrastage_shaders(void *mem_ctx,
819 struct gl_context *ctx,
820 struct gl_shader_program *prog,
821 struct gl_shader **shader_list,
822 unsigned num_shaders)
823 {
824 /* Check that global variables defined in multiple shaders are consistent.
825 */
826 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
827 return NULL;
828
829 /* Check that there is only a single definition of each function signature
830 * across all shaders.
831 */
832 for (unsigned i = 0; i < (num_shaders - 1); i++) {
833 foreach_list(node, shader_list[i]->ir) {
834 ir_function *const f = ((ir_instruction *) node)->as_function();
835
836 if (f == NULL)
837 continue;
838
839 for (unsigned j = i + 1; j < num_shaders; j++) {
840 ir_function *const other =
841 shader_list[j]->symbols->get_function(f->name);
842
843 /* If the other shader has no function (and therefore no function
844 * signatures) with the same name, skip to the next shader.
845 */
846 if (other == NULL)
847 continue;
848
849 foreach_iter (exec_list_iterator, iter, *f) {
850 ir_function_signature *sig =
851 (ir_function_signature *) iter.get();
852
853 if (!sig->is_defined || sig->is_builtin)
854 continue;
855
856 ir_function_signature *other_sig =
857 other->exact_matching_signature(& sig->parameters);
858
859 if ((other_sig != NULL) && other_sig->is_defined
860 && !other_sig->is_builtin) {
861 linker_error(prog, "function `%s' is multiply defined",
862 f->name);
863 return NULL;
864 }
865 }
866 }
867 }
868 }
869
870 /* Find the shader that defines main, and make a clone of it.
871 *
872 * Starting with the clone, search for undefined references. If one is
873 * found, find the shader that defines it. Clone the reference and add
874 * it to the shader. Repeat until there are no undefined references or
875 * until a reference cannot be resolved.
876 */
877 gl_shader *main = NULL;
878 for (unsigned i = 0; i < num_shaders; i++) {
879 if (get_main_function_signature(shader_list[i]) != NULL) {
880 main = shader_list[i];
881 break;
882 }
883 }
884
885 if (main == NULL) {
886 linker_error(prog, "%s shader lacks `main'\n",
887 (shader_list[0]->Type == GL_VERTEX_SHADER)
888 ? "vertex" : "fragment");
889 return NULL;
890 }
891
892 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
893 linked->ir = new(linked) exec_list;
894 clone_ir_list(mem_ctx, linked->ir, main->ir);
895
896 populate_symbol_table(linked);
897
898 /* The a pointer to the main function in the final linked shader (i.e., the
899 * copy of the original shader that contained the main function).
900 */
901 ir_function_signature *const main_sig = get_main_function_signature(linked);
902
903 /* Move any instructions other than variable declarations or function
904 * declarations into main.
905 */
906 exec_node *insertion_point =
907 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
908 linked);
909
910 for (unsigned i = 0; i < num_shaders; i++) {
911 if (shader_list[i] == main)
912 continue;
913
914 insertion_point = move_non_declarations(shader_list[i]->ir,
915 insertion_point, true, linked);
916 }
917
918 /* Resolve initializers for global variables in the linked shader.
919 */
920 unsigned num_linking_shaders = num_shaders;
921 for (unsigned i = 0; i < num_shaders; i++)
922 num_linking_shaders += shader_list[i]->num_builtins_to_link;
923
924 gl_shader **linking_shaders =
925 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
926
927 memcpy(linking_shaders, shader_list,
928 sizeof(linking_shaders[0]) * num_shaders);
929
930 unsigned idx = num_shaders;
931 for (unsigned i = 0; i < num_shaders; i++) {
932 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
933 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
934 idx += shader_list[i]->num_builtins_to_link;
935 }
936
937 assert(idx == num_linking_shaders);
938
939 if (!link_function_calls(prog, linked, linking_shaders,
940 num_linking_shaders)) {
941 ctx->Driver.DeleteShader(ctx, linked);
942 linked = NULL;
943 }
944
945 free(linking_shaders);
946
947 #ifdef DEBUG
948 /* At this point linked should contain all of the linked IR, so
949 * validate it to make sure nothing went wrong.
950 */
951 if (linked)
952 validate_ir_tree(linked->ir);
953 #endif
954
955 /* Make a pass over all variable declarations to ensure that arrays with
956 * unspecified sizes have a size specified. The size is inferred from the
957 * max_array_access field.
958 */
959 if (linked != NULL) {
960 class array_sizing_visitor : public ir_hierarchical_visitor {
961 public:
962 virtual ir_visitor_status visit(ir_variable *var)
963 {
964 if (var->type->is_array() && (var->type->length == 0)) {
965 const glsl_type *type =
966 glsl_type::get_array_instance(var->type->fields.array,
967 var->max_array_access + 1);
968
969 assert(type != NULL);
970 var->type = type;
971 }
972
973 return visit_continue;
974 }
975 } v;
976
977 v.run(linked->ir);
978 }
979
980 return linked;
981 }
982
983
984 struct uniform_node {
985 exec_node link;
986 struct gl_uniform *u;
987 unsigned slots;
988 };
989
990 /**
991 * Update the sizes of linked shader uniform arrays to the maximum
992 * array index used.
993 *
994 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
995 *
996 * If one or more elements of an array are active,
997 * GetActiveUniform will return the name of the array in name,
998 * subject to the restrictions listed above. The type of the array
999 * is returned in type. The size parameter contains the highest
1000 * array element index used, plus one. The compiler or linker
1001 * determines the highest index used. There will be only one
1002 * active uniform reported by the GL per uniform array.
1003
1004 */
1005 static void
1006 update_array_sizes(struct gl_shader_program *prog)
1007 {
1008 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1009 if (prog->_LinkedShaders[i] == NULL)
1010 continue;
1011
1012 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1013 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1014
1015 if ((var == NULL) || (var->mode != ir_var_uniform &&
1016 var->mode != ir_var_in &&
1017 var->mode != ir_var_out) ||
1018 !var->type->is_array())
1019 continue;
1020
1021 unsigned int size = var->max_array_access;
1022 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1023 if (prog->_LinkedShaders[j] == NULL)
1024 continue;
1025
1026 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1027 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1028 if (!other_var)
1029 continue;
1030
1031 if (strcmp(var->name, other_var->name) == 0 &&
1032 other_var->max_array_access > size) {
1033 size = other_var->max_array_access;
1034 }
1035 }
1036 }
1037
1038 if (size + 1 != var->type->fields.array->length) {
1039 /* If this is a built-in uniform (i.e., it's backed by some
1040 * fixed-function state), adjust the number of state slots to
1041 * match the new array size. The number of slots per array entry
1042 * is not known. It seems safe to assume that the total number of
1043 * slots is an integer multiple of the number of array elements.
1044 * Determine the number of slots per array element by dividing by
1045 * the old (total) size.
1046 */
1047 if (var->num_state_slots > 0) {
1048 var->num_state_slots = (size + 1)
1049 * (var->num_state_slots / var->type->length);
1050 }
1051
1052 var->type = glsl_type::get_array_instance(var->type->fields.array,
1053 size + 1);
1054 /* FINISHME: We should update the types of array
1055 * dereferences of this variable now.
1056 */
1057 }
1058 }
1059 }
1060 }
1061
1062 static void
1063 add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
1064 const char *name, const glsl_type *type, GLenum shader_type,
1065 unsigned *next_shader_pos, unsigned *total_uniforms)
1066 {
1067 if (type->is_record()) {
1068 for (unsigned int i = 0; i < type->length; i++) {
1069 const glsl_type *field_type = type->fields.structure[i].type;
1070 char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
1071 type->fields.structure[i].name);
1072
1073 add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
1074 shader_type, next_shader_pos, total_uniforms);
1075 }
1076 } else {
1077 uniform_node *n = (uniform_node *) hash_table_find(ht, name);
1078 unsigned int vec4_slots;
1079 const glsl_type *array_elem_type = NULL;
1080
1081 if (type->is_array()) {
1082 array_elem_type = type->fields.array;
1083 /* Array of structures. */
1084 if (array_elem_type->is_record()) {
1085 for (unsigned int i = 0; i < type->length; i++) {
1086 char *elem_name = ralloc_asprintf(mem_ctx, "%s[%d]", name, i);
1087 add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
1088 shader_type, next_shader_pos, total_uniforms);
1089 }
1090 return;
1091 }
1092 }
1093
1094 /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
1095 * vectors to vec4 slots.
1096 */
1097 if (type->is_array()) {
1098 if (array_elem_type->is_sampler())
1099 vec4_slots = type->length;
1100 else
1101 vec4_slots = type->length * array_elem_type->matrix_columns;
1102 } else if (type->is_sampler()) {
1103 vec4_slots = 1;
1104 } else {
1105 vec4_slots = type->matrix_columns;
1106 }
1107
1108 if (n == NULL) {
1109 n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
1110 n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
1111 n->slots = vec4_slots;
1112
1113 n->u->Name = strdup(name);
1114 n->u->Type = type;
1115 n->u->VertPos = -1;
1116 n->u->FragPos = -1;
1117 n->u->GeomPos = -1;
1118 (*total_uniforms)++;
1119
1120 hash_table_insert(ht, n, name);
1121 uniforms->push_tail(& n->link);
1122 }
1123
1124 switch (shader_type) {
1125 case GL_VERTEX_SHADER:
1126 n->u->VertPos = *next_shader_pos;
1127 break;
1128 case GL_FRAGMENT_SHADER:
1129 n->u->FragPos = *next_shader_pos;
1130 break;
1131 case GL_GEOMETRY_SHADER:
1132 n->u->GeomPos = *next_shader_pos;
1133 break;
1134 }
1135
1136 (*next_shader_pos) += vec4_slots;
1137 }
1138 }
1139
1140 void
1141 assign_uniform_locations(struct gl_shader_program *prog)
1142 {
1143 /* */
1144 exec_list uniforms;
1145 unsigned total_uniforms = 0;
1146 hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
1147 hash_table_string_compare);
1148 void *mem_ctx = ralloc_context(NULL);
1149
1150 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1151 if (prog->_LinkedShaders[i] == NULL)
1152 continue;
1153
1154 unsigned next_position = 0;
1155
1156 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1157 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1158
1159 if ((var == NULL) || (var->mode != ir_var_uniform))
1160 continue;
1161
1162 if (strncmp(var->name, "gl_", 3) == 0) {
1163 /* At the moment, we don't allocate uniform locations for
1164 * builtin uniforms. It's permitted by spec, and we'll
1165 * likely switch to doing that at some point, but not yet.
1166 */
1167 continue;
1168 }
1169
1170 var->location = next_position;
1171 add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
1172 prog->_LinkedShaders[i]->Type,
1173 &next_position, &total_uniforms);
1174 }
1175 }
1176
1177 ralloc_free(mem_ctx);
1178
1179 gl_uniform_list *ul = (gl_uniform_list *)
1180 calloc(1, sizeof(gl_uniform_list));
1181
1182 ul->Size = total_uniforms;
1183 ul->NumUniforms = total_uniforms;
1184 ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
1185
1186 unsigned idx = 0;
1187 uniform_node *next;
1188 for (uniform_node *node = (uniform_node *) uniforms.head
1189 ; node->link.next != NULL
1190 ; node = next) {
1191 next = (uniform_node *) node->link.next;
1192
1193 node->link.remove();
1194 memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
1195 idx++;
1196
1197 free(node->u);
1198 free(node);
1199 }
1200
1201 hash_table_dtor(ht);
1202
1203 prog->Uniforms = ul;
1204 }
1205
1206
1207 /**
1208 * Find a contiguous set of available bits in a bitmask.
1209 *
1210 * \param used_mask Bits representing used (1) and unused (0) locations
1211 * \param needed_count Number of contiguous bits needed.
1212 *
1213 * \return
1214 * Base location of the available bits on success or -1 on failure.
1215 */
1216 int
1217 find_available_slots(unsigned used_mask, unsigned needed_count)
1218 {
1219 unsigned needed_mask = (1 << needed_count) - 1;
1220 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1221
1222 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1223 * cannot optimize possibly infinite loops" for the loop below.
1224 */
1225 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1226 return -1;
1227
1228 for (int i = 0; i <= max_bit_to_test; i++) {
1229 if ((needed_mask & ~used_mask) == needed_mask)
1230 return i;
1231
1232 needed_mask <<= 1;
1233 }
1234
1235 return -1;
1236 }
1237
1238
1239 /**
1240 * Assign locations for either VS inputs for FS outputs
1241 *
1242 * \param prog Shader program whose variables need locations assigned
1243 * \param target_index Selector for the program target to receive location
1244 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1245 * \c MESA_SHADER_FRAGMENT.
1246 * \param max_index Maximum number of generic locations. This corresponds
1247 * to either the maximum number of draw buffers or the
1248 * maximum number of generic attributes.
1249 *
1250 * \return
1251 * If locations are successfully assigned, true is returned. Otherwise an
1252 * error is emitted to the shader link log and false is returned.
1253 *
1254 * \bug
1255 * Locations set via \c glBindFragDataLocation are not currently supported.
1256 * Only locations assigned automatically by the linker, explicitly set by a
1257 * layout qualifier, or explicitly set by a built-in variable (e.g., \c
1258 * gl_FragColor) are supported for fragment shaders.
1259 */
1260 bool
1261 assign_attribute_or_color_locations(gl_shader_program *prog,
1262 unsigned target_index,
1263 unsigned max_index)
1264 {
1265 /* Mark invalid locations as being used.
1266 */
1267 unsigned used_locations = (max_index >= 32)
1268 ? ~0 : ~((1 << max_index) - 1);
1269
1270 assert((target_index == MESA_SHADER_VERTEX)
1271 || (target_index == MESA_SHADER_FRAGMENT));
1272
1273 gl_shader *const sh = prog->_LinkedShaders[target_index];
1274 if (sh == NULL)
1275 return true;
1276
1277 /* Operate in a total of four passes.
1278 *
1279 * 1. Invalidate the location assignments for all vertex shader inputs.
1280 *
1281 * 2. Assign locations for inputs that have user-defined (via
1282 * glBindVertexAttribLocation) locations.
1283 *
1284 * 3. Sort the attributes without assigned locations by number of slots
1285 * required in decreasing order. Fragmentation caused by attribute
1286 * locations assigned by the application may prevent large attributes
1287 * from having enough contiguous space.
1288 *
1289 * 4. Assign locations to any inputs without assigned locations.
1290 */
1291
1292 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1293 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1294
1295 const enum ir_variable_mode direction =
1296 (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1297
1298
1299 invalidate_variable_locations(sh, direction, generic_base);
1300
1301 /* Temporary storage for the set of attributes that need locations assigned.
1302 */
1303 struct temp_attr {
1304 unsigned slots;
1305 ir_variable *var;
1306
1307 /* Used below in the call to qsort. */
1308 static int compare(const void *a, const void *b)
1309 {
1310 const temp_attr *const l = (const temp_attr *) a;
1311 const temp_attr *const r = (const temp_attr *) b;
1312
1313 /* Reversed because we want a descending order sort below. */
1314 return r->slots - l->slots;
1315 }
1316 } to_assign[16];
1317
1318 unsigned num_attr = 0;
1319
1320 foreach_list(node, sh->ir) {
1321 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1322
1323 if ((var == NULL) || (var->mode != (unsigned) direction))
1324 continue;
1325
1326 if (var->explicit_location) {
1327 if ((var->location >= (int)(max_index + generic_base))
1328 || (var->location < 0)) {
1329 linker_error(prog,
1330 "invalid explicit location %d specified for `%s'\n",
1331 (var->location < 0)
1332 ? var->location : var->location - generic_base,
1333 var->name);
1334 return false;
1335 }
1336 } else if (target_index == MESA_SHADER_VERTEX) {
1337 unsigned binding;
1338
1339 if (prog->AttributeBindings->get(binding, var->name)) {
1340 assert(binding >= VERT_ATTRIB_GENERIC0);
1341 var->location = binding;
1342 }
1343 }
1344
1345 /* If the variable is not a built-in and has a location statically
1346 * assigned in the shader (presumably via a layout qualifier), make sure
1347 * that it doesn't collide with other assigned locations. Otherwise,
1348 * add it to the list of variables that need linker-assigned locations.
1349 */
1350 const unsigned slots = count_attribute_slots(var->type);
1351 if (var->location != -1) {
1352 if (var->location >= generic_base) {
1353 /* From page 61 of the OpenGL 4.0 spec:
1354 *
1355 * "LinkProgram will fail if the attribute bindings assigned
1356 * by BindAttribLocation do not leave not enough space to
1357 * assign a location for an active matrix attribute or an
1358 * active attribute array, both of which require multiple
1359 * contiguous generic attributes."
1360 *
1361 * Previous versions of the spec contain similar language but omit
1362 * the bit about attribute arrays.
1363 *
1364 * Page 61 of the OpenGL 4.0 spec also says:
1365 *
1366 * "It is possible for an application to bind more than one
1367 * attribute name to the same location. This is referred to as
1368 * aliasing. This will only work if only one of the aliased
1369 * attributes is active in the executable program, or if no
1370 * path through the shader consumes more than one attribute of
1371 * a set of attributes aliased to the same location. A link
1372 * error can occur if the linker determines that every path
1373 * through the shader consumes multiple aliased attributes,
1374 * but implementations are not required to generate an error
1375 * in this case."
1376 *
1377 * These two paragraphs are either somewhat contradictory, or I
1378 * don't fully understand one or both of them.
1379 */
1380 /* FINISHME: The code as currently written does not support
1381 * FINISHME: attribute location aliasing (see comment above).
1382 */
1383 /* Mask representing the contiguous slots that will be used by
1384 * this attribute.
1385 */
1386 const unsigned attr = var->location - generic_base;
1387 const unsigned use_mask = (1 << slots) - 1;
1388
1389 /* Generate a link error if the set of bits requested for this
1390 * attribute overlaps any previously allocated bits.
1391 */
1392 if ((~(use_mask << attr) & used_locations) != used_locations) {
1393 linker_error(prog,
1394 "insufficient contiguous attribute locations "
1395 "available for vertex shader input `%s'",
1396 var->name);
1397 return false;
1398 }
1399
1400 used_locations |= (use_mask << attr);
1401 }
1402
1403 continue;
1404 }
1405
1406 to_assign[num_attr].slots = slots;
1407 to_assign[num_attr].var = var;
1408 num_attr++;
1409 }
1410
1411 /* If all of the attributes were assigned locations by the application (or
1412 * are built-in attributes with fixed locations), return early. This should
1413 * be the common case.
1414 */
1415 if (num_attr == 0)
1416 return true;
1417
1418 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1419
1420 if (target_index == MESA_SHADER_VERTEX) {
1421 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1422 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1423 * reserved to prevent it from being automatically allocated below.
1424 */
1425 find_deref_visitor find("gl_Vertex");
1426 find.run(sh->ir);
1427 if (find.variable_found())
1428 used_locations |= (1 << 0);
1429 }
1430
1431 for (unsigned i = 0; i < num_attr; i++) {
1432 /* Mask representing the contiguous slots that will be used by this
1433 * attribute.
1434 */
1435 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1436
1437 int location = find_available_slots(used_locations, to_assign[i].slots);
1438
1439 if (location < 0) {
1440 const char *const string = (target_index == MESA_SHADER_VERTEX)
1441 ? "vertex shader input" : "fragment shader output";
1442
1443 linker_error(prog,
1444 "insufficient contiguous attribute locations "
1445 "available for %s `%s'",
1446 string, to_assign[i].var->name);
1447 return false;
1448 }
1449
1450 to_assign[i].var->location = generic_base + location;
1451 used_locations |= (use_mask << location);
1452 }
1453
1454 return true;
1455 }
1456
1457
1458 /**
1459 * Demote shader inputs and outputs that are not used in other stages
1460 */
1461 void
1462 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1463 {
1464 foreach_list(node, sh->ir) {
1465 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1466
1467 if ((var == NULL) || (var->mode != int(mode)))
1468 continue;
1469
1470 /* A shader 'in' or 'out' variable is only really an input or output if
1471 * its value is used by other shader stages. This will cause the variable
1472 * to have a location assigned.
1473 */
1474 if (var->location == -1) {
1475 var->mode = ir_var_auto;
1476 }
1477 }
1478 }
1479
1480
1481 bool
1482 assign_varying_locations(struct gl_context *ctx,
1483 struct gl_shader_program *prog,
1484 gl_shader *producer, gl_shader *consumer)
1485 {
1486 /* FINISHME: Set dynamically when geometry shader support is added. */
1487 unsigned output_index = VERT_RESULT_VAR0;
1488 unsigned input_index = FRAG_ATTRIB_VAR0;
1489
1490 /* Operate in a total of three passes.
1491 *
1492 * 1. Assign locations for any matching inputs and outputs.
1493 *
1494 * 2. Mark output variables in the producer that do not have locations as
1495 * not being outputs. This lets the optimizer eliminate them.
1496 *
1497 * 3. Mark input variables in the consumer that do not have locations as
1498 * not being inputs. This lets the optimizer eliminate them.
1499 */
1500
1501 invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1502 invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1503
1504 foreach_list(node, producer->ir) {
1505 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1506
1507 if ((output_var == NULL) || (output_var->mode != ir_var_out)
1508 || (output_var->location != -1))
1509 continue;
1510
1511 ir_variable *const input_var =
1512 consumer->symbols->get_variable(output_var->name);
1513
1514 if ((input_var == NULL) || (input_var->mode != ir_var_in))
1515 continue;
1516
1517 assert(input_var->location == -1);
1518
1519 output_var->location = output_index;
1520 input_var->location = input_index;
1521
1522 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1523 assert(!output_var->type->is_record());
1524
1525 if (output_var->type->is_array()) {
1526 const unsigned slots = output_var->type->length
1527 * output_var->type->fields.array->matrix_columns;
1528
1529 output_index += slots;
1530 input_index += slots;
1531 } else {
1532 const unsigned slots = output_var->type->matrix_columns;
1533
1534 output_index += slots;
1535 input_index += slots;
1536 }
1537 }
1538
1539 unsigned varying_vectors = 0;
1540
1541 foreach_list(node, consumer->ir) {
1542 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1543
1544 if ((var == NULL) || (var->mode != ir_var_in))
1545 continue;
1546
1547 if (var->location == -1) {
1548 if (prog->Version <= 120) {
1549 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1550 *
1551 * Only those varying variables used (i.e. read) in
1552 * the fragment shader executable must be written to
1553 * by the vertex shader executable; declaring
1554 * superfluous varying variables in a vertex shader is
1555 * permissible.
1556 *
1557 * We interpret this text as meaning that the VS must
1558 * write the variable for the FS to read it. See
1559 * "glsl1-varying read but not written" in piglit.
1560 */
1561
1562 linker_error(prog, "fragment shader varying %s not written "
1563 "by vertex shader\n.", var->name);
1564 }
1565
1566 /* An 'in' variable is only really a shader input if its
1567 * value is written by the previous stage.
1568 */
1569 var->mode = ir_var_auto;
1570 } else {
1571 /* The packing rules are used for vertex shader inputs are also used
1572 * for fragment shader inputs.
1573 */
1574 varying_vectors += count_attribute_slots(var->type);
1575 }
1576 }
1577
1578 if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
1579 if (varying_vectors > ctx->Const.MaxVarying) {
1580 linker_error(prog, "shader uses too many varying vectors "
1581 "(%u > %u)\n",
1582 varying_vectors, ctx->Const.MaxVarying);
1583 return false;
1584 }
1585 } else {
1586 const unsigned float_components = varying_vectors * 4;
1587 if (float_components > ctx->Const.MaxVarying * 4) {
1588 linker_error(prog, "shader uses too many varying components "
1589 "(%u > %u)\n",
1590 float_components, ctx->Const.MaxVarying * 4);
1591 return false;
1592 }
1593 }
1594
1595 return true;
1596 }
1597
1598
1599 void
1600 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1601 {
1602 void *mem_ctx = ralloc_context(NULL); // temporary linker context
1603
1604 prog->LinkStatus = false;
1605 prog->Validated = false;
1606 prog->_Used = false;
1607
1608 if (prog->InfoLog != NULL)
1609 ralloc_free(prog->InfoLog);
1610
1611 prog->InfoLog = ralloc_strdup(NULL, "");
1612
1613 /* Separate the shaders into groups based on their type.
1614 */
1615 struct gl_shader **vert_shader_list;
1616 unsigned num_vert_shaders = 0;
1617 struct gl_shader **frag_shader_list;
1618 unsigned num_frag_shaders = 0;
1619
1620 vert_shader_list = (struct gl_shader **)
1621 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1622 frag_shader_list = &vert_shader_list[prog->NumShaders];
1623
1624 unsigned min_version = UINT_MAX;
1625 unsigned max_version = 0;
1626 for (unsigned i = 0; i < prog->NumShaders; i++) {
1627 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1628 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1629
1630 switch (prog->Shaders[i]->Type) {
1631 case GL_VERTEX_SHADER:
1632 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1633 num_vert_shaders++;
1634 break;
1635 case GL_FRAGMENT_SHADER:
1636 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1637 num_frag_shaders++;
1638 break;
1639 case GL_GEOMETRY_SHADER:
1640 /* FINISHME: Support geometry shaders. */
1641 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1642 break;
1643 }
1644 }
1645
1646 /* Previous to GLSL version 1.30, different compilation units could mix and
1647 * match shading language versions. With GLSL 1.30 and later, the versions
1648 * of all shaders must match.
1649 */
1650 assert(min_version >= 100);
1651 assert(max_version <= 130);
1652 if ((max_version >= 130 || min_version == 100)
1653 && min_version != max_version) {
1654 linker_error(prog, "all shaders must use same shading "
1655 "language version\n");
1656 goto done;
1657 }
1658
1659 prog->Version = max_version;
1660
1661 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1662 if (prog->_LinkedShaders[i] != NULL)
1663 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1664
1665 prog->_LinkedShaders[i] = NULL;
1666 }
1667
1668 /* Link all shaders for a particular stage and validate the result.
1669 */
1670 if (num_vert_shaders > 0) {
1671 gl_shader *const sh =
1672 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1673 num_vert_shaders);
1674
1675 if (sh == NULL)
1676 goto done;
1677
1678 if (!validate_vertex_shader_executable(prog, sh))
1679 goto done;
1680
1681 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1682 sh);
1683 }
1684
1685 if (num_frag_shaders > 0) {
1686 gl_shader *const sh =
1687 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1688 num_frag_shaders);
1689
1690 if (sh == NULL)
1691 goto done;
1692
1693 if (!validate_fragment_shader_executable(prog, sh))
1694 goto done;
1695
1696 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1697 sh);
1698 }
1699
1700 /* Here begins the inter-stage linking phase. Some initial validation is
1701 * performed, then locations are assigned for uniforms, attributes, and
1702 * varyings.
1703 */
1704 if (cross_validate_uniforms(prog)) {
1705 unsigned prev;
1706
1707 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1708 if (prog->_LinkedShaders[prev] != NULL)
1709 break;
1710 }
1711
1712 /* Validate the inputs of each stage with the output of the preceding
1713 * stage.
1714 */
1715 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1716 if (prog->_LinkedShaders[i] == NULL)
1717 continue;
1718
1719 if (!cross_validate_outputs_to_inputs(prog,
1720 prog->_LinkedShaders[prev],
1721 prog->_LinkedShaders[i]))
1722 goto done;
1723
1724 prev = i;
1725 }
1726
1727 prog->LinkStatus = true;
1728 }
1729
1730 /* Do common optimization before assigning storage for attributes,
1731 * uniforms, and varyings. Later optimization could possibly make
1732 * some of that unused.
1733 */
1734 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1735 if (prog->_LinkedShaders[i] == NULL)
1736 continue;
1737
1738 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
1739 if (!prog->LinkStatus)
1740 goto done;
1741
1742 if (ctx->ShaderCompilerOptions[i].LowerClipDistance)
1743 lower_clip_distance(prog->_LinkedShaders[i]->ir);
1744
1745 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, 32))
1746 ;
1747 }
1748
1749 /* FINISHME: The value of the max_attribute_index parameter is
1750 * FINISHME: implementation dependent based on the value of
1751 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1752 * FINISHME: at least 16, so hardcode 16 for now.
1753 */
1754 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
1755 goto done;
1756 }
1757
1758 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, ctx->Const.MaxDrawBuffers)) {
1759 goto done;
1760 }
1761
1762 unsigned prev;
1763 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1764 if (prog->_LinkedShaders[prev] != NULL)
1765 break;
1766 }
1767
1768 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1769 if (prog->_LinkedShaders[i] == NULL)
1770 continue;
1771
1772 if (!assign_varying_locations(ctx, prog,
1773 prog->_LinkedShaders[prev],
1774 prog->_LinkedShaders[i])) {
1775 goto done;
1776 }
1777
1778 prev = i;
1779 }
1780
1781 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1782 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1783 ir_var_out);
1784
1785 /* Eliminate code that is now dead due to unused vertex outputs being
1786 * demoted.
1787 */
1788 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
1789 ;
1790 }
1791
1792 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1793 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1794
1795 demote_shader_inputs_and_outputs(sh, ir_var_in);
1796 demote_shader_inputs_and_outputs(sh, ir_var_inout);
1797 demote_shader_inputs_and_outputs(sh, ir_var_out);
1798
1799 /* Eliminate code that is now dead due to unused geometry outputs being
1800 * demoted.
1801 */
1802 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
1803 ;
1804 }
1805
1806 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1807 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1808
1809 demote_shader_inputs_and_outputs(sh, ir_var_in);
1810
1811 /* Eliminate code that is now dead due to unused fragment inputs being
1812 * demoted. This shouldn't actually do anything other than remove
1813 * declarations of the (now unused) global variables.
1814 */
1815 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
1816 ;
1817 }
1818
1819 update_array_sizes(prog);
1820 assign_uniform_locations(prog);
1821
1822 /* OpenGL ES requires that a vertex shader and a fragment shader both be
1823 * present in a linked program. By checking for use of shading language
1824 * version 1.00, we also catch the GL_ARB_ES2_compatibility case.
1825 */
1826 if (!prog->InternalSeparateShader &&
1827 (ctx->API == API_OPENGLES2 || prog->Version == 100)) {
1828 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
1829 linker_error(prog, "program lacks a vertex shader\n");
1830 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1831 linker_error(prog, "program lacks a fragment shader\n");
1832 }
1833 }
1834
1835 /* FINISHME: Assign fragment shader output locations. */
1836
1837 done:
1838 free(vert_shader_list);
1839
1840 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1841 if (prog->_LinkedShaders[i] == NULL)
1842 continue;
1843
1844 /* Retain any live IR, but trash the rest. */
1845 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1846
1847 /* The symbol table in the linked shaders may contain references to
1848 * variables that were removed (e.g., unused uniforms). Since it may
1849 * contain junk, there is no possible valid use. Delete it and set the
1850 * pointer to NULL.
1851 */
1852 delete prog->_LinkedShaders[i]->symbols;
1853 prog->_LinkedShaders[i]->symbols = NULL;
1854 }
1855
1856 ralloc_free(mem_ctx);
1857 }