gtest: Update to 1.7.0.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77
78 extern "C" {
79 #include "main/shaderobj.h"
80 #include "main/enums.h"
81 }
82
83 void linker_error(gl_shader_program *, const char *, ...);
84
85 namespace {
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 foreach_two_lists(formal_node, &ir->callee->parameters,
113 actual_node, &ir->actual_parameters) {
114 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
115 ir_variable *sig_param = (ir_variable *) formal_node;
116
117 if (sig_param->data.mode == ir_var_function_out ||
118 sig_param->data.mode == ir_var_function_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 }
126
127 if (ir->return_deref != NULL) {
128 ir_variable *const var = ir->return_deref->variable_referenced();
129
130 if (strcmp(name, var->name) == 0) {
131 found = true;
132 return visit_stop;
133 }
134 }
135
136 return visit_continue_with_parent;
137 }
138
139 bool variable_found()
140 {
141 return found;
142 }
143
144 private:
145 const char *name; /**< Find writes to a variable with this name. */
146 bool found; /**< Was a write to the variable found? */
147 };
148
149
150 /**
151 * Visitor that determines whether or not a variable is ever read.
152 */
153 class find_deref_visitor : public ir_hierarchical_visitor {
154 public:
155 find_deref_visitor(const char *name)
156 : name(name), found(false)
157 {
158 /* empty */
159 }
160
161 virtual ir_visitor_status visit(ir_dereference_variable *ir)
162 {
163 if (strcmp(this->name, ir->var->name) == 0) {
164 this->found = true;
165 return visit_stop;
166 }
167
168 return visit_continue;
169 }
170
171 bool variable_found() const
172 {
173 return this->found;
174 }
175
176 private:
177 const char *name; /**< Find writes to a variable with this name. */
178 bool found; /**< Was a write to the variable found? */
179 };
180
181
182 class geom_array_resize_visitor : public ir_hierarchical_visitor {
183 public:
184 unsigned num_vertices;
185 gl_shader_program *prog;
186
187 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
188 {
189 this->num_vertices = num_vertices;
190 this->prog = prog;
191 }
192
193 virtual ~geom_array_resize_visitor()
194 {
195 /* empty */
196 }
197
198 virtual ir_visitor_status visit(ir_variable *var)
199 {
200 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
201 return visit_continue;
202
203 unsigned size = var->type->length;
204
205 /* Generate a link error if the shader has declared this array with an
206 * incorrect size.
207 */
208 if (size && size != this->num_vertices) {
209 linker_error(this->prog, "size of array %s declared as %u, "
210 "but number of input vertices is %u\n",
211 var->name, size, this->num_vertices);
212 return visit_continue;
213 }
214
215 /* Generate a link error if the shader attempts to access an input
216 * array using an index too large for its actual size assigned at link
217 * time.
218 */
219 if (var->data.max_array_access >= this->num_vertices) {
220 linker_error(this->prog, "geometry shader accesses element %i of "
221 "%s, but only %i input vertices\n",
222 var->data.max_array_access, var->name, this->num_vertices);
223 return visit_continue;
224 }
225
226 var->type = glsl_type::get_array_instance(var->type->element_type(),
227 this->num_vertices);
228 var->data.max_array_access = this->num_vertices - 1;
229
230 return visit_continue;
231 }
232
233 /* Dereferences of input variables need to be updated so that their type
234 * matches the newly assigned type of the variable they are accessing. */
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 /* Dereferences of 2D input arrays need to be updated so that their type
242 * matches the newly assigned type of the array they are accessing. */
243 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
244 {
245 const glsl_type *const vt = ir->array->type;
246 if (vt->is_array())
247 ir->type = vt->element_type();
248 return visit_continue;
249 }
250 };
251
252
253 /**
254 * Visitor that determines whether or not a shader uses ir_end_primitive.
255 */
256 class find_end_primitive_visitor : public ir_hierarchical_visitor {
257 public:
258 find_end_primitive_visitor()
259 : found(false)
260 {
261 /* empty */
262 }
263
264 virtual ir_visitor_status visit(ir_end_primitive *)
265 {
266 found = true;
267 return visit_stop;
268 }
269
270 bool end_primitive_found()
271 {
272 return found;
273 }
274
275 private:
276 bool found;
277 };
278
279 } /* anonymous namespace */
280
281 void
282 linker_error(gl_shader_program *prog, const char *fmt, ...)
283 {
284 va_list ap;
285
286 ralloc_strcat(&prog->InfoLog, "error: ");
287 va_start(ap, fmt);
288 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
289 va_end(ap);
290
291 prog->LinkStatus = false;
292 }
293
294
295 void
296 linker_warning(gl_shader_program *prog, const char *fmt, ...)
297 {
298 va_list ap;
299
300 ralloc_strcat(&prog->InfoLog, "error: ");
301 va_start(ap, fmt);
302 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
303 va_end(ap);
304
305 }
306
307
308 /**
309 * Given a string identifying a program resource, break it into a base name
310 * and an optional array index in square brackets.
311 *
312 * If an array index is present, \c out_base_name_end is set to point to the
313 * "[" that precedes the array index, and the array index itself is returned
314 * as a long.
315 *
316 * If no array index is present (or if the array index is negative or
317 * mal-formed), \c out_base_name_end, is set to point to the null terminator
318 * at the end of the input string, and -1 is returned.
319 *
320 * Only the final array index is parsed; if the string contains other array
321 * indices (or structure field accesses), they are left in the base name.
322 *
323 * No attempt is made to check that the base name is properly formed;
324 * typically the caller will look up the base name in a hash table, so
325 * ill-formed base names simply turn into hash table lookup failures.
326 */
327 long
328 parse_program_resource_name(const GLchar *name,
329 const GLchar **out_base_name_end)
330 {
331 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
332 *
333 * "When an integer array element or block instance number is part of
334 * the name string, it will be specified in decimal form without a "+"
335 * or "-" sign or any extra leading zeroes. Additionally, the name
336 * string will not include white space anywhere in the string."
337 */
338
339 const size_t len = strlen(name);
340 *out_base_name_end = name + len;
341
342 if (len == 0 || name[len-1] != ']')
343 return -1;
344
345 /* Walk backwards over the string looking for a non-digit character. This
346 * had better be the opening bracket for an array index.
347 *
348 * Initially, i specifies the location of the ']'. Since the string may
349 * contain only the ']' charcater, walk backwards very carefully.
350 */
351 unsigned i;
352 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
353 /* empty */ ;
354
355 if ((i == 0) || name[i-1] != '[')
356 return -1;
357
358 long array_index = strtol(&name[i], NULL, 10);
359 if (array_index < 0)
360 return -1;
361
362 *out_base_name_end = name + (i - 1);
363 return array_index;
364 }
365
366
367 void
368 link_invalidate_variable_locations(exec_list *ir)
369 {
370 foreach_list(node, ir) {
371 ir_variable *const var = ((ir_instruction *) node)->as_variable();
372
373 if (var == NULL)
374 continue;
375
376 /* Only assign locations for variables that lack an explicit location.
377 * Explicit locations are set for all built-in variables, generic vertex
378 * shader inputs (via layout(location=...)), and generic fragment shader
379 * outputs (also via layout(location=...)).
380 */
381 if (!var->data.explicit_location) {
382 var->data.location = -1;
383 var->data.location_frac = 0;
384 }
385
386 /* ir_variable::is_unmatched_generic_inout is used by the linker while
387 * connecting outputs from one stage to inputs of the next stage.
388 *
389 * There are two implicit assumptions here. First, we assume that any
390 * built-in variable (i.e., non-generic in or out) will have
391 * explicit_location set. Second, we assume that any generic in or out
392 * will not have explicit_location set.
393 *
394 * This second assumption will only be valid until
395 * GL_ARB_separate_shader_objects is supported. When that extension is
396 * implemented, this function will need some modifications.
397 */
398 if (!var->data.explicit_location) {
399 var->data.is_unmatched_generic_inout = 1;
400 } else {
401 var->data.is_unmatched_generic_inout = 0;
402 }
403 }
404 }
405
406
407 /**
408 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
409 *
410 * Also check for errors based on incorrect usage of gl_ClipVertex and
411 * gl_ClipDistance.
412 *
413 * Return false if an error was reported.
414 */
415 static void
416 analyze_clip_usage(struct gl_shader_program *prog,
417 struct gl_shader *shader, GLboolean *UsesClipDistance,
418 GLuint *ClipDistanceArraySize)
419 {
420 *ClipDistanceArraySize = 0;
421
422 if (!prog->IsES && prog->Version >= 130) {
423 /* From section 7.1 (Vertex Shader Special Variables) of the
424 * GLSL 1.30 spec:
425 *
426 * "It is an error for a shader to statically write both
427 * gl_ClipVertex and gl_ClipDistance."
428 *
429 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
430 * gl_ClipVertex nor gl_ClipDistance.
431 */
432 find_assignment_visitor clip_vertex("gl_ClipVertex");
433 find_assignment_visitor clip_distance("gl_ClipDistance");
434
435 clip_vertex.run(shader->ir);
436 clip_distance.run(shader->ir);
437 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
438 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
439 "and `gl_ClipDistance'\n",
440 _mesa_shader_stage_to_string(shader->Stage));
441 return;
442 }
443 *UsesClipDistance = clip_distance.variable_found();
444 ir_variable *clip_distance_var =
445 shader->symbols->get_variable("gl_ClipDistance");
446 if (clip_distance_var)
447 *ClipDistanceArraySize = clip_distance_var->type->length;
448 } else {
449 *UsesClipDistance = false;
450 }
451 }
452
453
454 /**
455 * Verify that a vertex shader executable meets all semantic requirements.
456 *
457 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
458 * as a side effect.
459 *
460 * \param shader Vertex shader executable to be verified
461 */
462 void
463 validate_vertex_shader_executable(struct gl_shader_program *prog,
464 struct gl_shader *shader)
465 {
466 if (shader == NULL)
467 return;
468
469 /* From the GLSL 1.10 spec, page 48:
470 *
471 * "The variable gl_Position is available only in the vertex
472 * language and is intended for writing the homogeneous vertex
473 * position. All executions of a well-formed vertex shader
474 * executable must write a value into this variable. [...] The
475 * variable gl_Position is available only in the vertex
476 * language and is intended for writing the homogeneous vertex
477 * position. All executions of a well-formed vertex shader
478 * executable must write a value into this variable."
479 *
480 * while in GLSL 1.40 this text is changed to:
481 *
482 * "The variable gl_Position is available only in the vertex
483 * language and is intended for writing the homogeneous vertex
484 * position. It can be written at any time during shader
485 * execution. It may also be read back by a vertex shader
486 * after being written. This value will be used by primitive
487 * assembly, clipping, culling, and other fixed functionality
488 * operations, if present, that operate on primitives after
489 * vertex processing has occurred. Its value is undefined if
490 * the vertex shader executable does not write gl_Position."
491 *
492 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
493 * not an error.
494 */
495 if (prog->Version < (prog->IsES ? 300 : 140)) {
496 find_assignment_visitor find("gl_Position");
497 find.run(shader->ir);
498 if (!find.variable_found()) {
499 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
500 return;
501 }
502 }
503
504 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
505 &prog->Vert.ClipDistanceArraySize);
506 }
507
508
509 /**
510 * Verify that a fragment shader executable meets all semantic requirements
511 *
512 * \param shader Fragment shader executable to be verified
513 */
514 void
515 validate_fragment_shader_executable(struct gl_shader_program *prog,
516 struct gl_shader *shader)
517 {
518 if (shader == NULL)
519 return;
520
521 find_assignment_visitor frag_color("gl_FragColor");
522 find_assignment_visitor frag_data("gl_FragData");
523
524 frag_color.run(shader->ir);
525 frag_data.run(shader->ir);
526
527 if (frag_color.variable_found() && frag_data.variable_found()) {
528 linker_error(prog, "fragment shader writes to both "
529 "`gl_FragColor' and `gl_FragData'\n");
530 }
531 }
532
533 /**
534 * Verify that a geometry shader executable meets all semantic requirements
535 *
536 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
537 * prog->Geom.ClipDistanceArraySize as a side effect.
538 *
539 * \param shader Geometry shader executable to be verified
540 */
541 void
542 validate_geometry_shader_executable(struct gl_shader_program *prog,
543 struct gl_shader *shader)
544 {
545 if (shader == NULL)
546 return;
547
548 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
549 prog->Geom.VerticesIn = num_vertices;
550
551 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
552 &prog->Geom.ClipDistanceArraySize);
553
554 find_end_primitive_visitor end_primitive;
555 end_primitive.run(shader->ir);
556 prog->Geom.UsesEndPrimitive = end_primitive.end_primitive_found();
557 }
558
559
560 /**
561 * Perform validation of global variables used across multiple shaders
562 */
563 void
564 cross_validate_globals(struct gl_shader_program *prog,
565 struct gl_shader **shader_list,
566 unsigned num_shaders,
567 bool uniforms_only)
568 {
569 /* Examine all of the uniforms in all of the shaders and cross validate
570 * them.
571 */
572 glsl_symbol_table variables;
573 for (unsigned i = 0; i < num_shaders; i++) {
574 if (shader_list[i] == NULL)
575 continue;
576
577 foreach_list(node, shader_list[i]->ir) {
578 ir_variable *const var = ((ir_instruction *) node)->as_variable();
579
580 if (var == NULL)
581 continue;
582
583 if (uniforms_only && (var->data.mode != ir_var_uniform))
584 continue;
585
586 /* Don't cross validate temporaries that are at global scope. These
587 * will eventually get pulled into the shaders 'main'.
588 */
589 if (var->data.mode == ir_var_temporary)
590 continue;
591
592 /* If a global with this name has already been seen, verify that the
593 * new instance has the same type. In addition, if the globals have
594 * initializers, the values of the initializers must be the same.
595 */
596 ir_variable *const existing = variables.get_variable(var->name);
597 if (existing != NULL) {
598 if (var->type != existing->type) {
599 /* Consider the types to be "the same" if both types are arrays
600 * of the same type and one of the arrays is implicitly sized.
601 * In addition, set the type of the linked variable to the
602 * explicitly sized array.
603 */
604 if (var->type->is_array()
605 && existing->type->is_array()
606 && (var->type->fields.array == existing->type->fields.array)
607 && ((var->type->length == 0)
608 || (existing->type->length == 0))) {
609 if (var->type->length != 0) {
610 existing->type = var->type;
611 }
612 } else if (var->type->is_record()
613 && existing->type->is_record()
614 && existing->type->record_compare(var->type)) {
615 existing->type = var->type;
616 } else {
617 linker_error(prog, "%s `%s' declared as type "
618 "`%s' and type `%s'\n",
619 mode_string(var),
620 var->name, var->type->name,
621 existing->type->name);
622 return;
623 }
624 }
625
626 if (var->data.explicit_location) {
627 if (existing->data.explicit_location
628 && (var->data.location != existing->data.location)) {
629 linker_error(prog, "explicit locations for %s "
630 "`%s' have differing values\n",
631 mode_string(var), var->name);
632 return;
633 }
634
635 existing->data.location = var->data.location;
636 existing->data.explicit_location = true;
637 }
638
639 /* From the GLSL 4.20 specification:
640 * "A link error will result if two compilation units in a program
641 * specify different integer-constant bindings for the same
642 * opaque-uniform name. However, it is not an error to specify a
643 * binding on some but not all declarations for the same name"
644 */
645 if (var->data.explicit_binding) {
646 if (existing->data.explicit_binding &&
647 var->data.binding != existing->data.binding) {
648 linker_error(prog, "explicit bindings for %s "
649 "`%s' have differing values\n",
650 mode_string(var), var->name);
651 return;
652 }
653
654 existing->data.binding = var->data.binding;
655 existing->data.explicit_binding = true;
656 }
657
658 if (var->type->contains_atomic() &&
659 var->data.atomic.offset != existing->data.atomic.offset) {
660 linker_error(prog, "offset specifications for %s "
661 "`%s' have differing values\n",
662 mode_string(var), var->name);
663 return;
664 }
665
666 /* Validate layout qualifiers for gl_FragDepth.
667 *
668 * From the AMD/ARB_conservative_depth specs:
669 *
670 * "If gl_FragDepth is redeclared in any fragment shader in a
671 * program, it must be redeclared in all fragment shaders in
672 * that program that have static assignments to
673 * gl_FragDepth. All redeclarations of gl_FragDepth in all
674 * fragment shaders in a single program must have the same set
675 * of qualifiers."
676 */
677 if (strcmp(var->name, "gl_FragDepth") == 0) {
678 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
679 bool layout_differs =
680 var->data.depth_layout != existing->data.depth_layout;
681
682 if (layout_declared && layout_differs) {
683 linker_error(prog,
684 "All redeclarations of gl_FragDepth in all "
685 "fragment shaders in a single program must have "
686 "the same set of qualifiers.");
687 }
688
689 if (var->data.used && layout_differs) {
690 linker_error(prog,
691 "If gl_FragDepth is redeclared with a layout "
692 "qualifier in any fragment shader, it must be "
693 "redeclared with the same layout qualifier in "
694 "all fragment shaders that have assignments to "
695 "gl_FragDepth");
696 }
697 }
698
699 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
700 *
701 * "If a shared global has multiple initializers, the
702 * initializers must all be constant expressions, and they
703 * must all have the same value. Otherwise, a link error will
704 * result. (A shared global having only one initializer does
705 * not require that initializer to be a constant expression.)"
706 *
707 * Previous to 4.20 the GLSL spec simply said that initializers
708 * must have the same value. In this case of non-constant
709 * initializers, this was impossible to determine. As a result,
710 * no vendor actually implemented that behavior. The 4.20
711 * behavior matches the implemented behavior of at least one other
712 * vendor, so we'll implement that for all GLSL versions.
713 */
714 if (var->constant_initializer != NULL) {
715 if (existing->constant_initializer != NULL) {
716 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
717 linker_error(prog, "initializers for %s "
718 "`%s' have differing values\n",
719 mode_string(var), var->name);
720 return;
721 }
722 } else {
723 /* If the first-seen instance of a particular uniform did not
724 * have an initializer but a later instance does, copy the
725 * initializer to the version stored in the symbol table.
726 */
727 /* FINISHME: This is wrong. The constant_value field should
728 * FINISHME: not be modified! Imagine a case where a shader
729 * FINISHME: without an initializer is linked in two different
730 * FINISHME: programs with shaders that have differing
731 * FINISHME: initializers. Linking with the first will
732 * FINISHME: modify the shader, and linking with the second
733 * FINISHME: will fail.
734 */
735 existing->constant_initializer =
736 var->constant_initializer->clone(ralloc_parent(existing),
737 NULL);
738 }
739 }
740
741 if (var->data.has_initializer) {
742 if (existing->data.has_initializer
743 && (var->constant_initializer == NULL
744 || existing->constant_initializer == NULL)) {
745 linker_error(prog,
746 "shared global variable `%s' has multiple "
747 "non-constant initializers.\n",
748 var->name);
749 return;
750 }
751
752 /* Some instance had an initializer, so keep track of that. In
753 * this location, all sorts of initializers (constant or
754 * otherwise) will propagate the existence to the variable
755 * stored in the symbol table.
756 */
757 existing->data.has_initializer = true;
758 }
759
760 if (existing->data.invariant != var->data.invariant) {
761 linker_error(prog, "declarations for %s `%s' have "
762 "mismatching invariant qualifiers\n",
763 mode_string(var), var->name);
764 return;
765 }
766 if (existing->data.centroid != var->data.centroid) {
767 linker_error(prog, "declarations for %s `%s' have "
768 "mismatching centroid qualifiers\n",
769 mode_string(var), var->name);
770 return;
771 }
772 if (existing->data.sample != var->data.sample) {
773 linker_error(prog, "declarations for %s `%s` have "
774 "mismatching sample qualifiers\n",
775 mode_string(var), var->name);
776 return;
777 }
778 } else
779 variables.add_variable(var);
780 }
781 }
782 }
783
784
785 /**
786 * Perform validation of uniforms used across multiple shader stages
787 */
788 void
789 cross_validate_uniforms(struct gl_shader_program *prog)
790 {
791 cross_validate_globals(prog, prog->_LinkedShaders,
792 MESA_SHADER_STAGES, true);
793 }
794
795 /**
796 * Accumulates the array of prog->UniformBlocks and checks that all
797 * definitons of blocks agree on their contents.
798 */
799 static bool
800 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
801 {
802 unsigned max_num_uniform_blocks = 0;
803 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
804 if (prog->_LinkedShaders[i])
805 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
806 }
807
808 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
809 struct gl_shader *sh = prog->_LinkedShaders[i];
810
811 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
812 max_num_uniform_blocks);
813 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
814 prog->UniformBlockStageIndex[i][j] = -1;
815
816 if (sh == NULL)
817 continue;
818
819 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
820 int index = link_cross_validate_uniform_block(prog,
821 &prog->UniformBlocks,
822 &prog->NumUniformBlocks,
823 &sh->UniformBlocks[j]);
824
825 if (index == -1) {
826 linker_error(prog, "uniform block `%s' has mismatching definitions",
827 sh->UniformBlocks[j].Name);
828 return false;
829 }
830
831 prog->UniformBlockStageIndex[i][index] = j;
832 }
833 }
834
835 return true;
836 }
837
838
839 /**
840 * Populates a shaders symbol table with all global declarations
841 */
842 static void
843 populate_symbol_table(gl_shader *sh)
844 {
845 sh->symbols = new(sh) glsl_symbol_table;
846
847 foreach_list(node, sh->ir) {
848 ir_instruction *const inst = (ir_instruction *) node;
849 ir_variable *var;
850 ir_function *func;
851
852 if ((func = inst->as_function()) != NULL) {
853 sh->symbols->add_function(func);
854 } else if ((var = inst->as_variable()) != NULL) {
855 sh->symbols->add_variable(var);
856 }
857 }
858 }
859
860
861 /**
862 * Remap variables referenced in an instruction tree
863 *
864 * This is used when instruction trees are cloned from one shader and placed in
865 * another. These trees will contain references to \c ir_variable nodes that
866 * do not exist in the target shader. This function finds these \c ir_variable
867 * references and replaces the references with matching variables in the target
868 * shader.
869 *
870 * If there is no matching variable in the target shader, a clone of the
871 * \c ir_variable is made and added to the target shader. The new variable is
872 * added to \b both the instruction stream and the symbol table.
873 *
874 * \param inst IR tree that is to be processed.
875 * \param symbols Symbol table containing global scope symbols in the
876 * linked shader.
877 * \param instructions Instruction stream where new variable declarations
878 * should be added.
879 */
880 void
881 remap_variables(ir_instruction *inst, struct gl_shader *target,
882 hash_table *temps)
883 {
884 class remap_visitor : public ir_hierarchical_visitor {
885 public:
886 remap_visitor(struct gl_shader *target,
887 hash_table *temps)
888 {
889 this->target = target;
890 this->symbols = target->symbols;
891 this->instructions = target->ir;
892 this->temps = temps;
893 }
894
895 virtual ir_visitor_status visit(ir_dereference_variable *ir)
896 {
897 if (ir->var->data.mode == ir_var_temporary) {
898 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
899
900 assert(var != NULL);
901 ir->var = var;
902 return visit_continue;
903 }
904
905 ir_variable *const existing =
906 this->symbols->get_variable(ir->var->name);
907 if (existing != NULL)
908 ir->var = existing;
909 else {
910 ir_variable *copy = ir->var->clone(this->target, NULL);
911
912 this->symbols->add_variable(copy);
913 this->instructions->push_head(copy);
914 ir->var = copy;
915 }
916
917 return visit_continue;
918 }
919
920 private:
921 struct gl_shader *target;
922 glsl_symbol_table *symbols;
923 exec_list *instructions;
924 hash_table *temps;
925 };
926
927 remap_visitor v(target, temps);
928
929 inst->accept(&v);
930 }
931
932
933 /**
934 * Move non-declarations from one instruction stream to another
935 *
936 * The intended usage pattern of this function is to pass the pointer to the
937 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
938 * pointer) for \c last and \c false for \c make_copies on the first
939 * call. Successive calls pass the return value of the previous call for
940 * \c last and \c true for \c make_copies.
941 *
942 * \param instructions Source instruction stream
943 * \param last Instruction after which new instructions should be
944 * inserted in the target instruction stream
945 * \param make_copies Flag selecting whether instructions in \c instructions
946 * should be copied (via \c ir_instruction::clone) into the
947 * target list or moved.
948 *
949 * \return
950 * The new "last" instruction in the target instruction stream. This pointer
951 * is suitable for use as the \c last parameter of a later call to this
952 * function.
953 */
954 exec_node *
955 move_non_declarations(exec_list *instructions, exec_node *last,
956 bool make_copies, gl_shader *target)
957 {
958 hash_table *temps = NULL;
959
960 if (make_copies)
961 temps = hash_table_ctor(0, hash_table_pointer_hash,
962 hash_table_pointer_compare);
963
964 foreach_list_safe(node, instructions) {
965 ir_instruction *inst = (ir_instruction *) node;
966
967 if (inst->as_function())
968 continue;
969
970 ir_variable *var = inst->as_variable();
971 if ((var != NULL) && (var->data.mode != ir_var_temporary))
972 continue;
973
974 assert(inst->as_assignment()
975 || inst->as_call()
976 || inst->as_if() /* for initializers with the ?: operator */
977 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
978
979 if (make_copies) {
980 inst = inst->clone(target, NULL);
981
982 if (var != NULL)
983 hash_table_insert(temps, inst, var);
984 else
985 remap_variables(inst, target, temps);
986 } else {
987 inst->remove();
988 }
989
990 last->insert_after(inst);
991 last = inst;
992 }
993
994 if (make_copies)
995 hash_table_dtor(temps);
996
997 return last;
998 }
999
1000 /**
1001 * Get the function signature for main from a shader
1002 */
1003 static ir_function_signature *
1004 get_main_function_signature(gl_shader *sh)
1005 {
1006 ir_function *const f = sh->symbols->get_function("main");
1007 if (f != NULL) {
1008 exec_list void_parameters;
1009
1010 /* Look for the 'void main()' signature and ensure that it's defined.
1011 * This keeps the linker from accidentally pick a shader that just
1012 * contains a prototype for main.
1013 *
1014 * We don't have to check for multiple definitions of main (in multiple
1015 * shaders) because that would have already been caught above.
1016 */
1017 ir_function_signature *sig = f->matching_signature(NULL, &void_parameters);
1018 if ((sig != NULL) && sig->is_defined) {
1019 return sig;
1020 }
1021 }
1022
1023 return NULL;
1024 }
1025
1026
1027 /**
1028 * This class is only used in link_intrastage_shaders() below but declaring
1029 * it inside that function leads to compiler warnings with some versions of
1030 * gcc.
1031 */
1032 class array_sizing_visitor : public ir_hierarchical_visitor {
1033 public:
1034 array_sizing_visitor()
1035 : mem_ctx(ralloc_context(NULL)),
1036 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1037 hash_table_pointer_compare))
1038 {
1039 }
1040
1041 ~array_sizing_visitor()
1042 {
1043 hash_table_dtor(this->unnamed_interfaces);
1044 ralloc_free(this->mem_ctx);
1045 }
1046
1047 virtual ir_visitor_status visit(ir_variable *var)
1048 {
1049 fixup_type(&var->type, var->data.max_array_access);
1050 if (var->type->is_interface()) {
1051 if (interface_contains_unsized_arrays(var->type)) {
1052 const glsl_type *new_type =
1053 resize_interface_members(var->type, var->max_ifc_array_access);
1054 var->type = new_type;
1055 var->change_interface_type(new_type);
1056 }
1057 } else if (var->type->is_array() &&
1058 var->type->fields.array->is_interface()) {
1059 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1060 const glsl_type *new_type =
1061 resize_interface_members(var->type->fields.array,
1062 var->max_ifc_array_access);
1063 var->change_interface_type(new_type);
1064 var->type =
1065 glsl_type::get_array_instance(new_type, var->type->length);
1066 }
1067 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1068 /* Store a pointer to the variable in the unnamed_interfaces
1069 * hashtable.
1070 */
1071 ir_variable **interface_vars = (ir_variable **)
1072 hash_table_find(this->unnamed_interfaces, ifc_type);
1073 if (interface_vars == NULL) {
1074 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1075 ifc_type->length);
1076 hash_table_insert(this->unnamed_interfaces, interface_vars,
1077 ifc_type);
1078 }
1079 unsigned index = ifc_type->field_index(var->name);
1080 assert(index < ifc_type->length);
1081 assert(interface_vars[index] == NULL);
1082 interface_vars[index] = var;
1083 }
1084 return visit_continue;
1085 }
1086
1087 /**
1088 * For each unnamed interface block that was discovered while running the
1089 * visitor, adjust the interface type to reflect the newly assigned array
1090 * sizes, and fix up the ir_variable nodes to point to the new interface
1091 * type.
1092 */
1093 void fixup_unnamed_interface_types()
1094 {
1095 hash_table_call_foreach(this->unnamed_interfaces,
1096 fixup_unnamed_interface_type, NULL);
1097 }
1098
1099 private:
1100 /**
1101 * If the type pointed to by \c type represents an unsized array, replace
1102 * it with a sized array whose size is determined by max_array_access.
1103 */
1104 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1105 {
1106 if ((*type)->is_unsized_array()) {
1107 *type = glsl_type::get_array_instance((*type)->fields.array,
1108 max_array_access + 1);
1109 assert(*type != NULL);
1110 }
1111 }
1112
1113 /**
1114 * Determine whether the given interface type contains unsized arrays (if
1115 * it doesn't, array_sizing_visitor doesn't need to process it).
1116 */
1117 static bool interface_contains_unsized_arrays(const glsl_type *type)
1118 {
1119 for (unsigned i = 0; i < type->length; i++) {
1120 const glsl_type *elem_type = type->fields.structure[i].type;
1121 if (elem_type->is_unsized_array())
1122 return true;
1123 }
1124 return false;
1125 }
1126
1127 /**
1128 * Create a new interface type based on the given type, with unsized arrays
1129 * replaced by sized arrays whose size is determined by
1130 * max_ifc_array_access.
1131 */
1132 static const glsl_type *
1133 resize_interface_members(const glsl_type *type,
1134 const unsigned *max_ifc_array_access)
1135 {
1136 unsigned num_fields = type->length;
1137 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1138 memcpy(fields, type->fields.structure,
1139 num_fields * sizeof(*fields));
1140 for (unsigned i = 0; i < num_fields; i++) {
1141 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1142 }
1143 glsl_interface_packing packing =
1144 (glsl_interface_packing) type->interface_packing;
1145 const glsl_type *new_ifc_type =
1146 glsl_type::get_interface_instance(fields, num_fields,
1147 packing, type->name);
1148 delete [] fields;
1149 return new_ifc_type;
1150 }
1151
1152 static void fixup_unnamed_interface_type(const void *key, void *data,
1153 void *)
1154 {
1155 const glsl_type *ifc_type = (const glsl_type *) key;
1156 ir_variable **interface_vars = (ir_variable **) data;
1157 unsigned num_fields = ifc_type->length;
1158 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1159 memcpy(fields, ifc_type->fields.structure,
1160 num_fields * sizeof(*fields));
1161 bool interface_type_changed = false;
1162 for (unsigned i = 0; i < num_fields; i++) {
1163 if (interface_vars[i] != NULL &&
1164 fields[i].type != interface_vars[i]->type) {
1165 fields[i].type = interface_vars[i]->type;
1166 interface_type_changed = true;
1167 }
1168 }
1169 if (!interface_type_changed) {
1170 delete [] fields;
1171 return;
1172 }
1173 glsl_interface_packing packing =
1174 (glsl_interface_packing) ifc_type->interface_packing;
1175 const glsl_type *new_ifc_type =
1176 glsl_type::get_interface_instance(fields, num_fields, packing,
1177 ifc_type->name);
1178 delete [] fields;
1179 for (unsigned i = 0; i < num_fields; i++) {
1180 if (interface_vars[i] != NULL)
1181 interface_vars[i]->change_interface_type(new_ifc_type);
1182 }
1183 }
1184
1185 /**
1186 * Memory context used to allocate the data in \c unnamed_interfaces.
1187 */
1188 void *mem_ctx;
1189
1190 /**
1191 * Hash table from const glsl_type * to an array of ir_variable *'s
1192 * pointing to the ir_variables constituting each unnamed interface block.
1193 */
1194 hash_table *unnamed_interfaces;
1195 };
1196
1197 /**
1198 * Performs the cross-validation of geometry shader max_vertices and
1199 * primitive type layout qualifiers for the attached geometry shaders,
1200 * and propagates them to the linked GS and linked shader program.
1201 */
1202 static void
1203 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1204 struct gl_shader *linked_shader,
1205 struct gl_shader **shader_list,
1206 unsigned num_shaders)
1207 {
1208 linked_shader->Geom.VerticesOut = 0;
1209 linked_shader->Geom.Invocations = 0;
1210 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1211 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1212
1213 /* No in/out qualifiers defined for anything but GLSL 1.50+
1214 * geometry shaders so far.
1215 */
1216 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1217 return;
1218
1219 /* From the GLSL 1.50 spec, page 46:
1220 *
1221 * "All geometry shader output layout declarations in a program
1222 * must declare the same layout and same value for
1223 * max_vertices. There must be at least one geometry output
1224 * layout declaration somewhere in a program, but not all
1225 * geometry shaders (compilation units) are required to
1226 * declare it."
1227 */
1228
1229 for (unsigned i = 0; i < num_shaders; i++) {
1230 struct gl_shader *shader = shader_list[i];
1231
1232 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1233 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1234 linked_shader->Geom.InputType != shader->Geom.InputType) {
1235 linker_error(prog, "geometry shader defined with conflicting "
1236 "input types\n");
1237 return;
1238 }
1239 linked_shader->Geom.InputType = shader->Geom.InputType;
1240 }
1241
1242 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1243 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1244 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1245 linker_error(prog, "geometry shader defined with conflicting "
1246 "output types\n");
1247 return;
1248 }
1249 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1250 }
1251
1252 if (shader->Geom.VerticesOut != 0) {
1253 if (linked_shader->Geom.VerticesOut != 0 &&
1254 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1255 linker_error(prog, "geometry shader defined with conflicting "
1256 "output vertex count (%d and %d)\n",
1257 linked_shader->Geom.VerticesOut,
1258 shader->Geom.VerticesOut);
1259 return;
1260 }
1261 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1262 }
1263
1264 if (shader->Geom.Invocations != 0) {
1265 if (linked_shader->Geom.Invocations != 0 &&
1266 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1267 linker_error(prog, "geometry shader defined with conflicting "
1268 "invocation count (%d and %d)\n",
1269 linked_shader->Geom.Invocations,
1270 shader->Geom.Invocations);
1271 return;
1272 }
1273 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1274 }
1275 }
1276
1277 /* Just do the intrastage -> interstage propagation right now,
1278 * since we already know we're in the right type of shader program
1279 * for doing it.
1280 */
1281 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1282 linker_error(prog,
1283 "geometry shader didn't declare primitive input type\n");
1284 return;
1285 }
1286 prog->Geom.InputType = linked_shader->Geom.InputType;
1287
1288 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1289 linker_error(prog,
1290 "geometry shader didn't declare primitive output type\n");
1291 return;
1292 }
1293 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1294
1295 if (linked_shader->Geom.VerticesOut == 0) {
1296 linker_error(prog,
1297 "geometry shader didn't declare max_vertices\n");
1298 return;
1299 }
1300 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1301
1302 if (linked_shader->Geom.Invocations == 0)
1303 linked_shader->Geom.Invocations = 1;
1304
1305 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1306 }
1307
1308
1309 /**
1310 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1311 * qualifiers for the attached compute shaders, and propagate them to the
1312 * linked CS and linked shader program.
1313 */
1314 static void
1315 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1316 struct gl_shader *linked_shader,
1317 struct gl_shader **shader_list,
1318 unsigned num_shaders)
1319 {
1320 for (int i = 0; i < 3; i++)
1321 linked_shader->Comp.LocalSize[i] = 0;
1322
1323 /* This function is called for all shader stages, but it only has an effect
1324 * for compute shaders.
1325 */
1326 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1327 return;
1328
1329 /* From the ARB_compute_shader spec, in the section describing local size
1330 * declarations:
1331 *
1332 * If multiple compute shaders attached to a single program object
1333 * declare local work-group size, the declarations must be identical;
1334 * otherwise a link-time error results. Furthermore, if a program
1335 * object contains any compute shaders, at least one must contain an
1336 * input layout qualifier specifying the local work sizes of the
1337 * program, or a link-time error will occur.
1338 */
1339 for (unsigned sh = 0; sh < num_shaders; sh++) {
1340 struct gl_shader *shader = shader_list[sh];
1341
1342 if (shader->Comp.LocalSize[0] != 0) {
1343 if (linked_shader->Comp.LocalSize[0] != 0) {
1344 for (int i = 0; i < 3; i++) {
1345 if (linked_shader->Comp.LocalSize[i] !=
1346 shader->Comp.LocalSize[i]) {
1347 linker_error(prog, "compute shader defined with conflicting "
1348 "local sizes\n");
1349 return;
1350 }
1351 }
1352 }
1353 for (int i = 0; i < 3; i++)
1354 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1355 }
1356 }
1357
1358 /* Just do the intrastage -> interstage propagation right now,
1359 * since we already know we're in the right type of shader program
1360 * for doing it.
1361 */
1362 if (linked_shader->Comp.LocalSize[0] == 0) {
1363 linker_error(prog, "compute shader didn't declare local size\n");
1364 return;
1365 }
1366 for (int i = 0; i < 3; i++)
1367 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1368 }
1369
1370
1371 /**
1372 * Combine a group of shaders for a single stage to generate a linked shader
1373 *
1374 * \note
1375 * If this function is supplied a single shader, it is cloned, and the new
1376 * shader is returned.
1377 */
1378 static struct gl_shader *
1379 link_intrastage_shaders(void *mem_ctx,
1380 struct gl_context *ctx,
1381 struct gl_shader_program *prog,
1382 struct gl_shader **shader_list,
1383 unsigned num_shaders)
1384 {
1385 struct gl_uniform_block *uniform_blocks = NULL;
1386
1387 /* Check that global variables defined in multiple shaders are consistent.
1388 */
1389 cross_validate_globals(prog, shader_list, num_shaders, false);
1390 if (!prog->LinkStatus)
1391 return NULL;
1392
1393 /* Check that interface blocks defined in multiple shaders are consistent.
1394 */
1395 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1396 num_shaders);
1397 if (!prog->LinkStatus)
1398 return NULL;
1399
1400 /* Link up uniform blocks defined within this stage. */
1401 const unsigned num_uniform_blocks =
1402 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1403 &uniform_blocks);
1404
1405 /* Check that there is only a single definition of each function signature
1406 * across all shaders.
1407 */
1408 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1409 foreach_list(node, shader_list[i]->ir) {
1410 ir_function *const f = ((ir_instruction *) node)->as_function();
1411
1412 if (f == NULL)
1413 continue;
1414
1415 for (unsigned j = i + 1; j < num_shaders; j++) {
1416 ir_function *const other =
1417 shader_list[j]->symbols->get_function(f->name);
1418
1419 /* If the other shader has no function (and therefore no function
1420 * signatures) with the same name, skip to the next shader.
1421 */
1422 if (other == NULL)
1423 continue;
1424
1425 foreach_list(n, &f->signatures) {
1426 ir_function_signature *sig = (ir_function_signature *) n;
1427
1428 if (!sig->is_defined || sig->is_builtin())
1429 continue;
1430
1431 ir_function_signature *other_sig =
1432 other->exact_matching_signature(NULL, &sig->parameters);
1433
1434 if ((other_sig != NULL) && other_sig->is_defined
1435 && !other_sig->is_builtin()) {
1436 linker_error(prog, "function `%s' is multiply defined",
1437 f->name);
1438 return NULL;
1439 }
1440 }
1441 }
1442 }
1443 }
1444
1445 /* Find the shader that defines main, and make a clone of it.
1446 *
1447 * Starting with the clone, search for undefined references. If one is
1448 * found, find the shader that defines it. Clone the reference and add
1449 * it to the shader. Repeat until there are no undefined references or
1450 * until a reference cannot be resolved.
1451 */
1452 gl_shader *main = NULL;
1453 for (unsigned i = 0; i < num_shaders; i++) {
1454 if (get_main_function_signature(shader_list[i]) != NULL) {
1455 main = shader_list[i];
1456 break;
1457 }
1458 }
1459
1460 if (main == NULL) {
1461 linker_error(prog, "%s shader lacks `main'\n",
1462 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1463 return NULL;
1464 }
1465
1466 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1467 linked->ir = new(linked) exec_list;
1468 clone_ir_list(mem_ctx, linked->ir, main->ir);
1469
1470 linked->UniformBlocks = uniform_blocks;
1471 linked->NumUniformBlocks = num_uniform_blocks;
1472 ralloc_steal(linked, linked->UniformBlocks);
1473
1474 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1475 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1476
1477 populate_symbol_table(linked);
1478
1479 /* The a pointer to the main function in the final linked shader (i.e., the
1480 * copy of the original shader that contained the main function).
1481 */
1482 ir_function_signature *const main_sig = get_main_function_signature(linked);
1483
1484 /* Move any instructions other than variable declarations or function
1485 * declarations into main.
1486 */
1487 exec_node *insertion_point =
1488 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1489 linked);
1490
1491 for (unsigned i = 0; i < num_shaders; i++) {
1492 if (shader_list[i] == main)
1493 continue;
1494
1495 insertion_point = move_non_declarations(shader_list[i]->ir,
1496 insertion_point, true, linked);
1497 }
1498
1499 /* Check if any shader needs built-in functions. */
1500 bool need_builtins = false;
1501 for (unsigned i = 0; i < num_shaders; i++) {
1502 if (shader_list[i]->uses_builtin_functions) {
1503 need_builtins = true;
1504 break;
1505 }
1506 }
1507
1508 bool ok;
1509 if (need_builtins) {
1510 /* Make a temporary array one larger than shader_list, which will hold
1511 * the built-in function shader as well.
1512 */
1513 gl_shader **linking_shaders = (gl_shader **)
1514 calloc(num_shaders + 1, sizeof(gl_shader *));
1515 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1516 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1517
1518 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1519
1520 free(linking_shaders);
1521 } else {
1522 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1523 }
1524
1525
1526 if (!ok) {
1527 ctx->Driver.DeleteShader(ctx, linked);
1528 return NULL;
1529 }
1530
1531 /* At this point linked should contain all of the linked IR, so
1532 * validate it to make sure nothing went wrong.
1533 */
1534 validate_ir_tree(linked->ir);
1535
1536 /* Set the size of geometry shader input arrays */
1537 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1538 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1539 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1540 foreach_list(n, linked->ir) {
1541 ir_instruction *ir = (ir_instruction *) n;
1542 ir->accept(&input_resize_visitor);
1543 }
1544 }
1545
1546 /* Make a pass over all variable declarations to ensure that arrays with
1547 * unspecified sizes have a size specified. The size is inferred from the
1548 * max_array_access field.
1549 */
1550 array_sizing_visitor v;
1551 v.run(linked->ir);
1552 v.fixup_unnamed_interface_types();
1553
1554 return linked;
1555 }
1556
1557 /**
1558 * Update the sizes of linked shader uniform arrays to the maximum
1559 * array index used.
1560 *
1561 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1562 *
1563 * If one or more elements of an array are active,
1564 * GetActiveUniform will return the name of the array in name,
1565 * subject to the restrictions listed above. The type of the array
1566 * is returned in type. The size parameter contains the highest
1567 * array element index used, plus one. The compiler or linker
1568 * determines the highest index used. There will be only one
1569 * active uniform reported by the GL per uniform array.
1570
1571 */
1572 static void
1573 update_array_sizes(struct gl_shader_program *prog)
1574 {
1575 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1576 if (prog->_LinkedShaders[i] == NULL)
1577 continue;
1578
1579 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1580 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1581
1582 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1583 !var->type->is_array())
1584 continue;
1585
1586 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1587 * will not be eliminated. Since we always do std140, just
1588 * don't resize arrays in UBOs.
1589 *
1590 * Atomic counters are supposed to get deterministic
1591 * locations assigned based on the declaration ordering and
1592 * sizes, array compaction would mess that up.
1593 */
1594 if (var->is_in_uniform_block() || var->type->contains_atomic())
1595 continue;
1596
1597 unsigned int size = var->data.max_array_access;
1598 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1599 if (prog->_LinkedShaders[j] == NULL)
1600 continue;
1601
1602 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1603 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1604 if (!other_var)
1605 continue;
1606
1607 if (strcmp(var->name, other_var->name) == 0 &&
1608 other_var->data.max_array_access > size) {
1609 size = other_var->data.max_array_access;
1610 }
1611 }
1612 }
1613
1614 if (size + 1 != var->type->length) {
1615 /* If this is a built-in uniform (i.e., it's backed by some
1616 * fixed-function state), adjust the number of state slots to
1617 * match the new array size. The number of slots per array entry
1618 * is not known. It seems safe to assume that the total number of
1619 * slots is an integer multiple of the number of array elements.
1620 * Determine the number of slots per array element by dividing by
1621 * the old (total) size.
1622 */
1623 if (var->num_state_slots > 0) {
1624 var->num_state_slots = (size + 1)
1625 * (var->num_state_slots / var->type->length);
1626 }
1627
1628 var->type = glsl_type::get_array_instance(var->type->fields.array,
1629 size + 1);
1630 /* FINISHME: We should update the types of array
1631 * dereferences of this variable now.
1632 */
1633 }
1634 }
1635 }
1636 }
1637
1638 /**
1639 * Find a contiguous set of available bits in a bitmask.
1640 *
1641 * \param used_mask Bits representing used (1) and unused (0) locations
1642 * \param needed_count Number of contiguous bits needed.
1643 *
1644 * \return
1645 * Base location of the available bits on success or -1 on failure.
1646 */
1647 int
1648 find_available_slots(unsigned used_mask, unsigned needed_count)
1649 {
1650 unsigned needed_mask = (1 << needed_count) - 1;
1651 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1652
1653 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1654 * cannot optimize possibly infinite loops" for the loop below.
1655 */
1656 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1657 return -1;
1658
1659 for (int i = 0; i <= max_bit_to_test; i++) {
1660 if ((needed_mask & ~used_mask) == needed_mask)
1661 return i;
1662
1663 needed_mask <<= 1;
1664 }
1665
1666 return -1;
1667 }
1668
1669
1670 /**
1671 * Assign locations for either VS inputs for FS outputs
1672 *
1673 * \param prog Shader program whose variables need locations assigned
1674 * \param target_index Selector for the program target to receive location
1675 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1676 * \c MESA_SHADER_FRAGMENT.
1677 * \param max_index Maximum number of generic locations. This corresponds
1678 * to either the maximum number of draw buffers or the
1679 * maximum number of generic attributes.
1680 *
1681 * \return
1682 * If locations are successfully assigned, true is returned. Otherwise an
1683 * error is emitted to the shader link log and false is returned.
1684 */
1685 bool
1686 assign_attribute_or_color_locations(gl_shader_program *prog,
1687 unsigned target_index,
1688 unsigned max_index)
1689 {
1690 /* Mark invalid locations as being used.
1691 */
1692 unsigned used_locations = (max_index >= 32)
1693 ? ~0 : ~((1 << max_index) - 1);
1694
1695 assert((target_index == MESA_SHADER_VERTEX)
1696 || (target_index == MESA_SHADER_FRAGMENT));
1697
1698 gl_shader *const sh = prog->_LinkedShaders[target_index];
1699 if (sh == NULL)
1700 return true;
1701
1702 /* Operate in a total of four passes.
1703 *
1704 * 1. Invalidate the location assignments for all vertex shader inputs.
1705 *
1706 * 2. Assign locations for inputs that have user-defined (via
1707 * glBindVertexAttribLocation) locations and outputs that have
1708 * user-defined locations (via glBindFragDataLocation).
1709 *
1710 * 3. Sort the attributes without assigned locations by number of slots
1711 * required in decreasing order. Fragmentation caused by attribute
1712 * locations assigned by the application may prevent large attributes
1713 * from having enough contiguous space.
1714 *
1715 * 4. Assign locations to any inputs without assigned locations.
1716 */
1717
1718 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1719 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1720
1721 const enum ir_variable_mode direction =
1722 (target_index == MESA_SHADER_VERTEX)
1723 ? ir_var_shader_in : ir_var_shader_out;
1724
1725
1726 /* Temporary storage for the set of attributes that need locations assigned.
1727 */
1728 struct temp_attr {
1729 unsigned slots;
1730 ir_variable *var;
1731
1732 /* Used below in the call to qsort. */
1733 static int compare(const void *a, const void *b)
1734 {
1735 const temp_attr *const l = (const temp_attr *) a;
1736 const temp_attr *const r = (const temp_attr *) b;
1737
1738 /* Reversed because we want a descending order sort below. */
1739 return r->slots - l->slots;
1740 }
1741 } to_assign[16];
1742
1743 unsigned num_attr = 0;
1744
1745 foreach_list(node, sh->ir) {
1746 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1747
1748 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1749 continue;
1750
1751 if (var->data.explicit_location) {
1752 if ((var->data.location >= (int)(max_index + generic_base))
1753 || (var->data.location < 0)) {
1754 linker_error(prog,
1755 "invalid explicit location %d specified for `%s'\n",
1756 (var->data.location < 0)
1757 ? var->data.location
1758 : var->data.location - generic_base,
1759 var->name);
1760 return false;
1761 }
1762 } else if (target_index == MESA_SHADER_VERTEX) {
1763 unsigned binding;
1764
1765 if (prog->AttributeBindings->get(binding, var->name)) {
1766 assert(binding >= VERT_ATTRIB_GENERIC0);
1767 var->data.location = binding;
1768 var->data.is_unmatched_generic_inout = 0;
1769 }
1770 } else if (target_index == MESA_SHADER_FRAGMENT) {
1771 unsigned binding;
1772 unsigned index;
1773
1774 if (prog->FragDataBindings->get(binding, var->name)) {
1775 assert(binding >= FRAG_RESULT_DATA0);
1776 var->data.location = binding;
1777 var->data.is_unmatched_generic_inout = 0;
1778
1779 if (prog->FragDataIndexBindings->get(index, var->name)) {
1780 var->data.index = index;
1781 }
1782 }
1783 }
1784
1785 /* If the variable is not a built-in and has a location statically
1786 * assigned in the shader (presumably via a layout qualifier), make sure
1787 * that it doesn't collide with other assigned locations. Otherwise,
1788 * add it to the list of variables that need linker-assigned locations.
1789 */
1790 const unsigned slots = var->type->count_attribute_slots();
1791 if (var->data.location != -1) {
1792 if (var->data.location >= generic_base && var->data.index < 1) {
1793 /* From page 61 of the OpenGL 4.0 spec:
1794 *
1795 * "LinkProgram will fail if the attribute bindings assigned
1796 * by BindAttribLocation do not leave not enough space to
1797 * assign a location for an active matrix attribute or an
1798 * active attribute array, both of which require multiple
1799 * contiguous generic attributes."
1800 *
1801 * Previous versions of the spec contain similar language but omit
1802 * the bit about attribute arrays.
1803 *
1804 * Page 61 of the OpenGL 4.0 spec also says:
1805 *
1806 * "It is possible for an application to bind more than one
1807 * attribute name to the same location. This is referred to as
1808 * aliasing. This will only work if only one of the aliased
1809 * attributes is active in the executable program, or if no
1810 * path through the shader consumes more than one attribute of
1811 * a set of attributes aliased to the same location. A link
1812 * error can occur if the linker determines that every path
1813 * through the shader consumes multiple aliased attributes,
1814 * but implementations are not required to generate an error
1815 * in this case."
1816 *
1817 * These two paragraphs are either somewhat contradictory, or I
1818 * don't fully understand one or both of them.
1819 */
1820 /* FINISHME: The code as currently written does not support
1821 * FINISHME: attribute location aliasing (see comment above).
1822 */
1823 /* Mask representing the contiguous slots that will be used by
1824 * this attribute.
1825 */
1826 const unsigned attr = var->data.location - generic_base;
1827 const unsigned use_mask = (1 << slots) - 1;
1828
1829 /* Generate a link error if the set of bits requested for this
1830 * attribute overlaps any previously allocated bits.
1831 */
1832 if ((~(use_mask << attr) & used_locations) != used_locations) {
1833 const char *const string = (target_index == MESA_SHADER_VERTEX)
1834 ? "vertex shader input" : "fragment shader output";
1835 linker_error(prog,
1836 "insufficient contiguous locations "
1837 "available for %s `%s' %d %d %d", string,
1838 var->name, used_locations, use_mask, attr);
1839 return false;
1840 }
1841
1842 used_locations |= (use_mask << attr);
1843 }
1844
1845 continue;
1846 }
1847
1848 to_assign[num_attr].slots = slots;
1849 to_assign[num_attr].var = var;
1850 num_attr++;
1851 }
1852
1853 /* If all of the attributes were assigned locations by the application (or
1854 * are built-in attributes with fixed locations), return early. This should
1855 * be the common case.
1856 */
1857 if (num_attr == 0)
1858 return true;
1859
1860 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1861
1862 if (target_index == MESA_SHADER_VERTEX) {
1863 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1864 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1865 * reserved to prevent it from being automatically allocated below.
1866 */
1867 find_deref_visitor find("gl_Vertex");
1868 find.run(sh->ir);
1869 if (find.variable_found())
1870 used_locations |= (1 << 0);
1871 }
1872
1873 for (unsigned i = 0; i < num_attr; i++) {
1874 /* Mask representing the contiguous slots that will be used by this
1875 * attribute.
1876 */
1877 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1878
1879 int location = find_available_slots(used_locations, to_assign[i].slots);
1880
1881 if (location < 0) {
1882 const char *const string = (target_index == MESA_SHADER_VERTEX)
1883 ? "vertex shader input" : "fragment shader output";
1884
1885 linker_error(prog,
1886 "insufficient contiguous locations "
1887 "available for %s `%s'",
1888 string, to_assign[i].var->name);
1889 return false;
1890 }
1891
1892 to_assign[i].var->data.location = generic_base + location;
1893 to_assign[i].var->data.is_unmatched_generic_inout = 0;
1894 used_locations |= (use_mask << location);
1895 }
1896
1897 return true;
1898 }
1899
1900
1901 /**
1902 * Demote shader inputs and outputs that are not used in other stages
1903 */
1904 void
1905 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1906 {
1907 foreach_list(node, sh->ir) {
1908 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1909
1910 if ((var == NULL) || (var->data.mode != int(mode)))
1911 continue;
1912
1913 /* A shader 'in' or 'out' variable is only really an input or output if
1914 * its value is used by other shader stages. This will cause the variable
1915 * to have a location assigned.
1916 */
1917 if (var->data.is_unmatched_generic_inout) {
1918 var->data.mode = ir_var_auto;
1919 }
1920 }
1921 }
1922
1923
1924 /**
1925 * Store the gl_FragDepth layout in the gl_shader_program struct.
1926 */
1927 static void
1928 store_fragdepth_layout(struct gl_shader_program *prog)
1929 {
1930 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1931 return;
1932 }
1933
1934 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1935
1936 /* We don't look up the gl_FragDepth symbol directly because if
1937 * gl_FragDepth is not used in the shader, it's removed from the IR.
1938 * However, the symbol won't be removed from the symbol table.
1939 *
1940 * We're only interested in the cases where the variable is NOT removed
1941 * from the IR.
1942 */
1943 foreach_list(node, ir) {
1944 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1945
1946 if (var == NULL || var->data.mode != ir_var_shader_out) {
1947 continue;
1948 }
1949
1950 if (strcmp(var->name, "gl_FragDepth") == 0) {
1951 switch (var->data.depth_layout) {
1952 case ir_depth_layout_none:
1953 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1954 return;
1955 case ir_depth_layout_any:
1956 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1957 return;
1958 case ir_depth_layout_greater:
1959 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1960 return;
1961 case ir_depth_layout_less:
1962 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1963 return;
1964 case ir_depth_layout_unchanged:
1965 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1966 return;
1967 default:
1968 assert(0);
1969 return;
1970 }
1971 }
1972 }
1973 }
1974
1975 /**
1976 * Validate the resources used by a program versus the implementation limits
1977 */
1978 static void
1979 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1980 {
1981 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1982 struct gl_shader *sh = prog->_LinkedShaders[i];
1983
1984 if (sh == NULL)
1985 continue;
1986
1987 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
1988 linker_error(prog, "Too many %s shader texture samplers",
1989 _mesa_shader_stage_to_string(i));
1990 }
1991
1992 if (sh->num_uniform_components >
1993 ctx->Const.Program[i].MaxUniformComponents) {
1994 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1995 linker_warning(prog, "Too many %s shader default uniform block "
1996 "components, but the driver will try to optimize "
1997 "them out; this is non-portable out-of-spec "
1998 "behavior\n",
1999 _mesa_shader_stage_to_string(i));
2000 } else {
2001 linker_error(prog, "Too many %s shader default uniform block "
2002 "components",
2003 _mesa_shader_stage_to_string(i));
2004 }
2005 }
2006
2007 if (sh->num_combined_uniform_components >
2008 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2009 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2010 linker_warning(prog, "Too many %s shader uniform components, "
2011 "but the driver will try to optimize them out; "
2012 "this is non-portable out-of-spec behavior\n",
2013 _mesa_shader_stage_to_string(i));
2014 } else {
2015 linker_error(prog, "Too many %s shader uniform components",
2016 _mesa_shader_stage_to_string(i));
2017 }
2018 }
2019 }
2020
2021 unsigned blocks[MESA_SHADER_STAGES] = {0};
2022 unsigned total_uniform_blocks = 0;
2023
2024 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2025 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2026 if (prog->UniformBlockStageIndex[j][i] != -1) {
2027 blocks[j]++;
2028 total_uniform_blocks++;
2029 }
2030 }
2031
2032 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2033 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
2034 prog->NumUniformBlocks,
2035 ctx->Const.MaxCombinedUniformBlocks);
2036 } else {
2037 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2038 const unsigned max_uniform_blocks =
2039 ctx->Const.Program[i].MaxUniformBlocks;
2040 if (blocks[i] > max_uniform_blocks) {
2041 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
2042 _mesa_shader_stage_to_string(i),
2043 blocks[i],
2044 max_uniform_blocks);
2045 break;
2046 }
2047 }
2048 }
2049 }
2050 }
2051
2052 /**
2053 * Validate shader image resources.
2054 */
2055 static void
2056 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2057 {
2058 unsigned total_image_units = 0;
2059 unsigned fragment_outputs = 0;
2060
2061 if (!ctx->Extensions.ARB_shader_image_load_store)
2062 return;
2063
2064 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2065 struct gl_shader *sh = prog->_LinkedShaders[i];
2066
2067 if (sh) {
2068 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2069 linker_error(prog, "Too many %s shader image uniforms",
2070 _mesa_shader_stage_to_string(i));
2071
2072 total_image_units += sh->NumImages;
2073
2074 if (i == MESA_SHADER_FRAGMENT) {
2075 foreach_list(node, sh->ir) {
2076 ir_variable *var = ((ir_instruction *)node)->as_variable();
2077 if (var && var->data.mode == ir_var_shader_out)
2078 fragment_outputs += var->type->count_attribute_slots();
2079 }
2080 }
2081 }
2082 }
2083
2084 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2085 linker_error(prog, "Too many combined image uniforms");
2086
2087 if (total_image_units + fragment_outputs >
2088 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2089 linker_error(prog, "Too many combined image uniforms and fragment outputs");
2090 }
2091
2092 void
2093 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2094 {
2095 tfeedback_decl *tfeedback_decls = NULL;
2096 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2097
2098 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2099
2100 prog->LinkStatus = true; /* All error paths will set this to false */
2101 prog->Validated = false;
2102 prog->_Used = false;
2103
2104 ralloc_free(prog->InfoLog);
2105 prog->InfoLog = ralloc_strdup(NULL, "");
2106
2107 ralloc_free(prog->UniformBlocks);
2108 prog->UniformBlocks = NULL;
2109 prog->NumUniformBlocks = 0;
2110 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2111 ralloc_free(prog->UniformBlockStageIndex[i]);
2112 prog->UniformBlockStageIndex[i] = NULL;
2113 }
2114
2115 ralloc_free(prog->AtomicBuffers);
2116 prog->AtomicBuffers = NULL;
2117 prog->NumAtomicBuffers = 0;
2118
2119 /* Separate the shaders into groups based on their type.
2120 */
2121 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2122 unsigned num_shaders[MESA_SHADER_STAGES];
2123
2124 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2125 shader_list[i] = (struct gl_shader **)
2126 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2127 num_shaders[i] = 0;
2128 }
2129
2130 unsigned min_version = UINT_MAX;
2131 unsigned max_version = 0;
2132 const bool is_es_prog =
2133 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2134 for (unsigned i = 0; i < prog->NumShaders; i++) {
2135 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2136 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2137
2138 if (prog->Shaders[i]->IsES != is_es_prog) {
2139 linker_error(prog, "all shaders must use same shading "
2140 "language version\n");
2141 goto done;
2142 }
2143
2144 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2145 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2146 num_shaders[shader_type]++;
2147 }
2148
2149 /* In desktop GLSL, different shader versions may be linked together. In
2150 * GLSL ES, all shader versions must be the same.
2151 */
2152 if (is_es_prog && min_version != max_version) {
2153 linker_error(prog, "all shaders must use same shading "
2154 "language version\n");
2155 goto done;
2156 }
2157
2158 prog->Version = max_version;
2159 prog->IsES = is_es_prog;
2160
2161 /* Geometry shaders have to be linked with vertex shaders.
2162 */
2163 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2164 num_shaders[MESA_SHADER_VERTEX] == 0) {
2165 linker_error(prog, "Geometry shader must be linked with "
2166 "vertex shader\n");
2167 goto done;
2168 }
2169
2170 /* Compute shaders have additional restrictions. */
2171 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2172 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2173 linker_error(prog, "Compute shaders may not be linked with any other "
2174 "type of shader\n");
2175 }
2176
2177 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2178 if (prog->_LinkedShaders[i] != NULL)
2179 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2180
2181 prog->_LinkedShaders[i] = NULL;
2182 }
2183
2184 /* Link all shaders for a particular stage and validate the result.
2185 */
2186 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2187 if (num_shaders[stage] > 0) {
2188 gl_shader *const sh =
2189 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2190 num_shaders[stage]);
2191
2192 if (!prog->LinkStatus)
2193 goto done;
2194
2195 switch (stage) {
2196 case MESA_SHADER_VERTEX:
2197 validate_vertex_shader_executable(prog, sh);
2198 break;
2199 case MESA_SHADER_GEOMETRY:
2200 validate_geometry_shader_executable(prog, sh);
2201 break;
2202 case MESA_SHADER_FRAGMENT:
2203 validate_fragment_shader_executable(prog, sh);
2204 break;
2205 }
2206 if (!prog->LinkStatus)
2207 goto done;
2208
2209 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2210 }
2211 }
2212
2213 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2214 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2215 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2216 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2217 else
2218 prog->LastClipDistanceArraySize = 0; /* Not used */
2219
2220 /* Here begins the inter-stage linking phase. Some initial validation is
2221 * performed, then locations are assigned for uniforms, attributes, and
2222 * varyings.
2223 */
2224 cross_validate_uniforms(prog);
2225 if (!prog->LinkStatus)
2226 goto done;
2227
2228 unsigned prev;
2229
2230 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2231 if (prog->_LinkedShaders[prev] != NULL)
2232 break;
2233 }
2234
2235 /* Validate the inputs of each stage with the output of the preceding
2236 * stage.
2237 */
2238 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2239 if (prog->_LinkedShaders[i] == NULL)
2240 continue;
2241
2242 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2243 prog->_LinkedShaders[i]);
2244 if (!prog->LinkStatus)
2245 goto done;
2246
2247 cross_validate_outputs_to_inputs(prog,
2248 prog->_LinkedShaders[prev],
2249 prog->_LinkedShaders[i]);
2250 if (!prog->LinkStatus)
2251 goto done;
2252
2253 prev = i;
2254 }
2255
2256 /* Cross-validate uniform blocks between shader stages */
2257 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2258 MESA_SHADER_STAGES);
2259 if (!prog->LinkStatus)
2260 goto done;
2261
2262 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2263 if (prog->_LinkedShaders[i] != NULL)
2264 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2265 }
2266
2267 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2268 * it before optimization because we want most of the checks to get
2269 * dropped thanks to constant propagation.
2270 *
2271 * This rule also applies to GLSL ES 3.00.
2272 */
2273 if (max_version >= (is_es_prog ? 300 : 130)) {
2274 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2275 if (sh) {
2276 lower_discard_flow(sh->ir);
2277 }
2278 }
2279
2280 if (!interstage_cross_validate_uniform_blocks(prog))
2281 goto done;
2282
2283 /* Do common optimization before assigning storage for attributes,
2284 * uniforms, and varyings. Later optimization could possibly make
2285 * some of that unused.
2286 */
2287 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2288 if (prog->_LinkedShaders[i] == NULL)
2289 continue;
2290
2291 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2292 if (!prog->LinkStatus)
2293 goto done;
2294
2295 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
2296 lower_clip_distance(prog->_LinkedShaders[i]);
2297 }
2298
2299 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2300 &ctx->ShaderCompilerOptions[i],
2301 ctx->Const.NativeIntegers))
2302 ;
2303 }
2304
2305 /* Mark all generic shader inputs and outputs as unpaired. */
2306 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2307 if (prog->_LinkedShaders[i] != NULL) {
2308 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2309 }
2310 }
2311
2312 /* FINISHME: The value of the max_attribute_index parameter is
2313 * FINISHME: implementation dependent based on the value of
2314 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2315 * FINISHME: at least 16, so hardcode 16 for now.
2316 */
2317 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2318 goto done;
2319 }
2320
2321 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2322 goto done;
2323 }
2324
2325 unsigned first;
2326 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2327 if (prog->_LinkedShaders[first] != NULL)
2328 break;
2329 }
2330
2331 if (num_tfeedback_decls != 0) {
2332 /* From GL_EXT_transform_feedback:
2333 * A program will fail to link if:
2334 *
2335 * * the <count> specified by TransformFeedbackVaryingsEXT is
2336 * non-zero, but the program object has no vertex or geometry
2337 * shader;
2338 */
2339 if (first == MESA_SHADER_FRAGMENT) {
2340 linker_error(prog, "Transform feedback varyings specified, but "
2341 "no vertex or geometry shader is present.");
2342 goto done;
2343 }
2344
2345 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2346 prog->TransformFeedback.NumVarying);
2347 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2348 prog->TransformFeedback.VaryingNames,
2349 tfeedback_decls))
2350 goto done;
2351 }
2352
2353 /* Linking the stages in the opposite order (from fragment to vertex)
2354 * ensures that inter-shader outputs written to in an earlier stage are
2355 * eliminated if they are (transitively) not used in a later stage.
2356 */
2357 int last, next;
2358 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2359 if (prog->_LinkedShaders[last] != NULL)
2360 break;
2361 }
2362
2363 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2364 gl_shader *const sh = prog->_LinkedShaders[last];
2365
2366 if (num_tfeedback_decls != 0) {
2367 /* There was no fragment shader, but we still have to assign varying
2368 * locations for use by transform feedback.
2369 */
2370 if (!assign_varying_locations(ctx, mem_ctx, prog,
2371 sh, NULL,
2372 num_tfeedback_decls, tfeedback_decls,
2373 0))
2374 goto done;
2375 }
2376
2377 do_dead_builtin_varyings(ctx, sh, NULL,
2378 num_tfeedback_decls, tfeedback_decls);
2379
2380 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2381
2382 /* Eliminate code that is now dead due to unused outputs being demoted.
2383 */
2384 while (do_dead_code(sh->ir, false))
2385 ;
2386 }
2387 else if (first == MESA_SHADER_FRAGMENT) {
2388 /* If the program only contains a fragment shader...
2389 */
2390 gl_shader *const sh = prog->_LinkedShaders[first];
2391
2392 do_dead_builtin_varyings(ctx, NULL, sh,
2393 num_tfeedback_decls, tfeedback_decls);
2394
2395 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2396
2397 while (do_dead_code(sh->ir, false))
2398 ;
2399 }
2400
2401 next = last;
2402 for (int i = next - 1; i >= 0; i--) {
2403 if (prog->_LinkedShaders[i] == NULL)
2404 continue;
2405
2406 gl_shader *const sh_i = prog->_LinkedShaders[i];
2407 gl_shader *const sh_next = prog->_LinkedShaders[next];
2408 unsigned gs_input_vertices =
2409 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2410
2411 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2412 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2413 tfeedback_decls, gs_input_vertices))
2414 goto done;
2415
2416 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2417 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2418 tfeedback_decls);
2419
2420 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2421 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2422
2423 /* Eliminate code that is now dead due to unused outputs being demoted.
2424 */
2425 while (do_dead_code(sh_i->ir, false))
2426 ;
2427 while (do_dead_code(sh_next->ir, false))
2428 ;
2429
2430 /* This must be done after all dead varyings are eliminated. */
2431 if (!check_against_output_limit(ctx, prog, sh_i))
2432 goto done;
2433 if (!check_against_input_limit(ctx, prog, sh_next))
2434 goto done;
2435
2436 next = i;
2437 }
2438
2439 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2440 goto done;
2441
2442 update_array_sizes(prog);
2443 link_assign_uniform_locations(prog);
2444 link_assign_atomic_counter_resources(ctx, prog);
2445 store_fragdepth_layout(prog);
2446
2447 check_resources(ctx, prog);
2448 check_image_resources(ctx, prog);
2449 link_check_atomic_counter_resources(ctx, prog);
2450
2451 if (!prog->LinkStatus)
2452 goto done;
2453
2454 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2455 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2456 * anything about shader linking when one of the shaders (vertex or
2457 * fragment shader) is absent. So, the extension shouldn't change the
2458 * behavior specified in GLSL specification.
2459 */
2460 if (!prog->InternalSeparateShader && ctx->API == API_OPENGLES2) {
2461 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2462 linker_error(prog, "program lacks a vertex shader\n");
2463 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2464 linker_error(prog, "program lacks a fragment shader\n");
2465 }
2466 }
2467
2468 /* FINISHME: Assign fragment shader output locations. */
2469
2470 done:
2471 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2472 free(shader_list[i]);
2473 if (prog->_LinkedShaders[i] == NULL)
2474 continue;
2475
2476 /* Do a final validation step to make sure that the IR wasn't
2477 * invalidated by any modifications performed after intrastage linking.
2478 */
2479 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2480
2481 /* Retain any live IR, but trash the rest. */
2482 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2483
2484 /* The symbol table in the linked shaders may contain references to
2485 * variables that were removed (e.g., unused uniforms). Since it may
2486 * contain junk, there is no possible valid use. Delete it and set the
2487 * pointer to NULL.
2488 */
2489 delete prog->_LinkedShaders[i]->symbols;
2490 prog->_LinkedShaders[i]->symbols = NULL;
2491 }
2492
2493 ralloc_free(mem_ctx);
2494 }