i965: Use a new miptree to avoid software fallbacks due to drawing offset.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66 #include <cstdlib>
67 #include <cstdio>
68 #include <cstdarg>
69 #include <climits>
70
71 extern "C" {
72 #include <talloc.h>
73 }
74
75 #include "main/core.h"
76 #include "glsl_symbol_table.h"
77 #include "ir.h"
78 #include "program.h"
79 #include "program/hash_table.h"
80 #include "linker.h"
81 #include "ir_optimization.h"
82
83 extern "C" {
84 #include "main/shaderobj.h"
85 }
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
113 foreach_iter(exec_list_iterator, iter, *ir) {
114 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
115 ir_variable *sig_param = (ir_variable *)sig_iter.get();
116
117 if (sig_param->mode == ir_var_out ||
118 sig_param->mode == ir_var_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 sig_iter.next();
126 }
127
128 return visit_continue_with_parent;
129 }
130
131 bool variable_found()
132 {
133 return found;
134 }
135
136 private:
137 const char *name; /**< Find writes to a variable with this name. */
138 bool found; /**< Was a write to the variable found? */
139 };
140
141
142 /**
143 * Visitor that determines whether or not a variable is ever read.
144 */
145 class find_deref_visitor : public ir_hierarchical_visitor {
146 public:
147 find_deref_visitor(const char *name)
148 : name(name), found(false)
149 {
150 /* empty */
151 }
152
153 virtual ir_visitor_status visit(ir_dereference_variable *ir)
154 {
155 if (strcmp(this->name, ir->var->name) == 0) {
156 this->found = true;
157 return visit_stop;
158 }
159
160 return visit_continue;
161 }
162
163 bool variable_found() const
164 {
165 return this->found;
166 }
167
168 private:
169 const char *name; /**< Find writes to a variable with this name. */
170 bool found; /**< Was a write to the variable found? */
171 };
172
173
174 void
175 linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
176 {
177 va_list ap;
178
179 prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: ");
180 va_start(ap, fmt);
181 prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap);
182 va_end(ap);
183 }
184
185
186 void
187 invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
188 int generic_base)
189 {
190 foreach_list(node, sh->ir) {
191 ir_variable *const var = ((ir_instruction *) node)->as_variable();
192
193 if ((var == NULL) || (var->mode != (unsigned) mode))
194 continue;
195
196 /* Only assign locations for generic attributes / varyings / etc.
197 */
198 if ((var->location >= generic_base) && !var->explicit_location)
199 var->location = -1;
200 }
201 }
202
203
204 /**
205 * Determine the number of attribute slots required for a particular type
206 *
207 * This code is here because it implements the language rules of a specific
208 * GLSL version. Since it's a property of the language and not a property of
209 * types in general, it doesn't really belong in glsl_type.
210 */
211 unsigned
212 count_attribute_slots(const glsl_type *t)
213 {
214 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
215 *
216 * "A scalar input counts the same amount against this limit as a vec4,
217 * so applications may want to consider packing groups of four
218 * unrelated float inputs together into a vector to better utilize the
219 * capabilities of the underlying hardware. A matrix input will use up
220 * multiple locations. The number of locations used will equal the
221 * number of columns in the matrix."
222 *
223 * The spec does not explicitly say how arrays are counted. However, it
224 * should be safe to assume the total number of slots consumed by an array
225 * is the number of entries in the array multiplied by the number of slots
226 * consumed by a single element of the array.
227 */
228
229 if (t->is_array())
230 return t->array_size() * count_attribute_slots(t->element_type());
231
232 if (t->is_matrix())
233 return t->matrix_columns;
234
235 return 1;
236 }
237
238
239 /**
240 * Verify that a vertex shader executable meets all semantic requirements
241 *
242 * \param shader Vertex shader executable to be verified
243 */
244 bool
245 validate_vertex_shader_executable(struct gl_shader_program *prog,
246 struct gl_shader *shader)
247 {
248 if (shader == NULL)
249 return true;
250
251 find_assignment_visitor find("gl_Position");
252 find.run(shader->ir);
253 if (!find.variable_found()) {
254 linker_error_printf(prog,
255 "vertex shader does not write to `gl_Position'\n");
256 return false;
257 }
258
259 return true;
260 }
261
262
263 /**
264 * Verify that a fragment shader executable meets all semantic requirements
265 *
266 * \param shader Fragment shader executable to be verified
267 */
268 bool
269 validate_fragment_shader_executable(struct gl_shader_program *prog,
270 struct gl_shader *shader)
271 {
272 if (shader == NULL)
273 return true;
274
275 find_assignment_visitor frag_color("gl_FragColor");
276 find_assignment_visitor frag_data("gl_FragData");
277
278 frag_color.run(shader->ir);
279 frag_data.run(shader->ir);
280
281 if (frag_color.variable_found() && frag_data.variable_found()) {
282 linker_error_printf(prog, "fragment shader writes to both "
283 "`gl_FragColor' and `gl_FragData'\n");
284 return false;
285 }
286
287 return true;
288 }
289
290
291 /**
292 * Generate a string describing the mode of a variable
293 */
294 static const char *
295 mode_string(const ir_variable *var)
296 {
297 switch (var->mode) {
298 case ir_var_auto:
299 return (var->read_only) ? "global constant" : "global variable";
300
301 case ir_var_uniform: return "uniform";
302 case ir_var_in: return "shader input";
303 case ir_var_out: return "shader output";
304 case ir_var_inout: return "shader inout";
305
306 case ir_var_temporary:
307 default:
308 assert(!"Should not get here.");
309 return "invalid variable";
310 }
311 }
312
313
314 /**
315 * Perform validation of global variables used across multiple shaders
316 */
317 bool
318 cross_validate_globals(struct gl_shader_program *prog,
319 struct gl_shader **shader_list,
320 unsigned num_shaders,
321 bool uniforms_only)
322 {
323 /* Examine all of the uniforms in all of the shaders and cross validate
324 * them.
325 */
326 glsl_symbol_table variables;
327 for (unsigned i = 0; i < num_shaders; i++) {
328 if (shader_list[i] == NULL)
329 continue;
330
331 foreach_list(node, shader_list[i]->ir) {
332 ir_variable *const var = ((ir_instruction *) node)->as_variable();
333
334 if (var == NULL)
335 continue;
336
337 if (uniforms_only && (var->mode != ir_var_uniform))
338 continue;
339
340 /* Don't cross validate temporaries that are at global scope. These
341 * will eventually get pulled into the shaders 'main'.
342 */
343 if (var->mode == ir_var_temporary)
344 continue;
345
346 /* If a global with this name has already been seen, verify that the
347 * new instance has the same type. In addition, if the globals have
348 * initializers, the values of the initializers must be the same.
349 */
350 ir_variable *const existing = variables.get_variable(var->name);
351 if (existing != NULL) {
352 if (var->type != existing->type) {
353 /* Consider the types to be "the same" if both types are arrays
354 * of the same type and one of the arrays is implicitly sized.
355 * In addition, set the type of the linked variable to the
356 * explicitly sized array.
357 */
358 if (var->type->is_array()
359 && existing->type->is_array()
360 && (var->type->fields.array == existing->type->fields.array)
361 && ((var->type->length == 0)
362 || (existing->type->length == 0))) {
363 if (existing->type->length == 0) {
364 existing->type = var->type;
365 existing->max_array_access =
366 MAX2(existing->max_array_access,
367 var->max_array_access);
368 }
369 } else {
370 linker_error_printf(prog, "%s `%s' declared as type "
371 "`%s' and type `%s'\n",
372 mode_string(var),
373 var->name, var->type->name,
374 existing->type->name);
375 return false;
376 }
377 }
378
379 if (var->explicit_location) {
380 if (existing->explicit_location
381 && (var->location != existing->location)) {
382 linker_error_printf(prog, "explicit locations for %s "
383 "`%s' have differing values\n",
384 mode_string(var), var->name);
385 return false;
386 }
387
388 existing->location = var->location;
389 existing->explicit_location = true;
390 }
391
392 /* FINISHME: Handle non-constant initializers.
393 */
394 if (var->constant_value != NULL) {
395 if (existing->constant_value != NULL) {
396 if (!var->constant_value->has_value(existing->constant_value)) {
397 linker_error_printf(prog, "initializers for %s "
398 "`%s' have differing values\n",
399 mode_string(var), var->name);
400 return false;
401 }
402 } else
403 /* If the first-seen instance of a particular uniform did not
404 * have an initializer but a later instance does, copy the
405 * initializer to the version stored in the symbol table.
406 */
407 /* FINISHME: This is wrong. The constant_value field should
408 * FINISHME: not be modified! Imagine a case where a shader
409 * FINISHME: without an initializer is linked in two different
410 * FINISHME: programs with shaders that have differing
411 * FINISHME: initializers. Linking with the first will
412 * FINISHME: modify the shader, and linking with the second
413 * FINISHME: will fail.
414 */
415 existing->constant_value =
416 var->constant_value->clone(talloc_parent(existing), NULL);
417 }
418
419 if (existing->invariant != var->invariant) {
420 linker_error_printf(prog, "declarations for %s `%s' have "
421 "mismatching invariant qualifiers\n",
422 mode_string(var), var->name);
423 return false;
424 }
425 if (existing->centroid != var->centroid) {
426 linker_error_printf(prog, "declarations for %s `%s' have "
427 "mismatching centroid qualifiers\n",
428 mode_string(var), var->name);
429 return false;
430 }
431 } else
432 variables.add_variable(var);
433 }
434 }
435
436 return true;
437 }
438
439
440 /**
441 * Perform validation of uniforms used across multiple shader stages
442 */
443 bool
444 cross_validate_uniforms(struct gl_shader_program *prog)
445 {
446 return cross_validate_globals(prog, prog->_LinkedShaders,
447 MESA_SHADER_TYPES, true);
448 }
449
450
451 /**
452 * Validate that outputs from one stage match inputs of another
453 */
454 bool
455 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
456 gl_shader *producer, gl_shader *consumer)
457 {
458 glsl_symbol_table parameters;
459 /* FINISHME: Figure these out dynamically. */
460 const char *const producer_stage = "vertex";
461 const char *const consumer_stage = "fragment";
462
463 /* Find all shader outputs in the "producer" stage.
464 */
465 foreach_list(node, producer->ir) {
466 ir_variable *const var = ((ir_instruction *) node)->as_variable();
467
468 /* FINISHME: For geometry shaders, this should also look for inout
469 * FINISHME: variables.
470 */
471 if ((var == NULL) || (var->mode != ir_var_out))
472 continue;
473
474 parameters.add_variable(var);
475 }
476
477
478 /* Find all shader inputs in the "consumer" stage. Any variables that have
479 * matching outputs already in the symbol table must have the same type and
480 * qualifiers.
481 */
482 foreach_list(node, consumer->ir) {
483 ir_variable *const input = ((ir_instruction *) node)->as_variable();
484
485 /* FINISHME: For geometry shaders, this should also look for inout
486 * FINISHME: variables.
487 */
488 if ((input == NULL) || (input->mode != ir_var_in))
489 continue;
490
491 ir_variable *const output = parameters.get_variable(input->name);
492 if (output != NULL) {
493 /* Check that the types match between stages.
494 */
495 if (input->type != output->type) {
496 /* There is a bit of a special case for gl_TexCoord. This
497 * built-in is unsized by default. Appliations that variable
498 * access it must redeclare it with a size. There is some
499 * language in the GLSL spec that implies the fragment shader
500 * and vertex shader do not have to agree on this size. Other
501 * driver behave this way, and one or two applications seem to
502 * rely on it.
503 *
504 * Neither declaration needs to be modified here because the array
505 * sizes are fixed later when update_array_sizes is called.
506 *
507 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
508 *
509 * "Unlike user-defined varying variables, the built-in
510 * varying variables don't have a strict one-to-one
511 * correspondence between the vertex language and the
512 * fragment language."
513 */
514 if (!output->type->is_array()
515 || (strncmp("gl_", output->name, 3) != 0)) {
516 linker_error_printf(prog,
517 "%s shader output `%s' declared as "
518 "type `%s', but %s shader input declared "
519 "as type `%s'\n",
520 producer_stage, output->name,
521 output->type->name,
522 consumer_stage, input->type->name);
523 return false;
524 }
525 }
526
527 /* Check that all of the qualifiers match between stages.
528 */
529 if (input->centroid != output->centroid) {
530 linker_error_printf(prog,
531 "%s shader output `%s' %s centroid qualifier, "
532 "but %s shader input %s centroid qualifier\n",
533 producer_stage,
534 output->name,
535 (output->centroid) ? "has" : "lacks",
536 consumer_stage,
537 (input->centroid) ? "has" : "lacks");
538 return false;
539 }
540
541 if (input->invariant != output->invariant) {
542 linker_error_printf(prog,
543 "%s shader output `%s' %s invariant qualifier, "
544 "but %s shader input %s invariant qualifier\n",
545 producer_stage,
546 output->name,
547 (output->invariant) ? "has" : "lacks",
548 consumer_stage,
549 (input->invariant) ? "has" : "lacks");
550 return false;
551 }
552
553 if (input->interpolation != output->interpolation) {
554 linker_error_printf(prog,
555 "%s shader output `%s' specifies %s "
556 "interpolation qualifier, "
557 "but %s shader input specifies %s "
558 "interpolation qualifier\n",
559 producer_stage,
560 output->name,
561 output->interpolation_string(),
562 consumer_stage,
563 input->interpolation_string());
564 return false;
565 }
566 }
567 }
568
569 return true;
570 }
571
572
573 /**
574 * Populates a shaders symbol table with all global declarations
575 */
576 static void
577 populate_symbol_table(gl_shader *sh)
578 {
579 sh->symbols = new(sh) glsl_symbol_table;
580
581 foreach_list(node, sh->ir) {
582 ir_instruction *const inst = (ir_instruction *) node;
583 ir_variable *var;
584 ir_function *func;
585
586 if ((func = inst->as_function()) != NULL) {
587 sh->symbols->add_function(func);
588 } else if ((var = inst->as_variable()) != NULL) {
589 sh->symbols->add_variable(var);
590 }
591 }
592 }
593
594
595 /**
596 * Remap variables referenced in an instruction tree
597 *
598 * This is used when instruction trees are cloned from one shader and placed in
599 * another. These trees will contain references to \c ir_variable nodes that
600 * do not exist in the target shader. This function finds these \c ir_variable
601 * references and replaces the references with matching variables in the target
602 * shader.
603 *
604 * If there is no matching variable in the target shader, a clone of the
605 * \c ir_variable is made and added to the target shader. The new variable is
606 * added to \b both the instruction stream and the symbol table.
607 *
608 * \param inst IR tree that is to be processed.
609 * \param symbols Symbol table containing global scope symbols in the
610 * linked shader.
611 * \param instructions Instruction stream where new variable declarations
612 * should be added.
613 */
614 void
615 remap_variables(ir_instruction *inst, struct gl_shader *target,
616 hash_table *temps)
617 {
618 class remap_visitor : public ir_hierarchical_visitor {
619 public:
620 remap_visitor(struct gl_shader *target,
621 hash_table *temps)
622 {
623 this->target = target;
624 this->symbols = target->symbols;
625 this->instructions = target->ir;
626 this->temps = temps;
627 }
628
629 virtual ir_visitor_status visit(ir_dereference_variable *ir)
630 {
631 if (ir->var->mode == ir_var_temporary) {
632 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
633
634 assert(var != NULL);
635 ir->var = var;
636 return visit_continue;
637 }
638
639 ir_variable *const existing =
640 this->symbols->get_variable(ir->var->name);
641 if (existing != NULL)
642 ir->var = existing;
643 else {
644 ir_variable *copy = ir->var->clone(this->target, NULL);
645
646 this->symbols->add_variable(copy);
647 this->instructions->push_head(copy);
648 ir->var = copy;
649 }
650
651 return visit_continue;
652 }
653
654 private:
655 struct gl_shader *target;
656 glsl_symbol_table *symbols;
657 exec_list *instructions;
658 hash_table *temps;
659 };
660
661 remap_visitor v(target, temps);
662
663 inst->accept(&v);
664 }
665
666
667 /**
668 * Move non-declarations from one instruction stream to another
669 *
670 * The intended usage pattern of this function is to pass the pointer to the
671 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
672 * pointer) for \c last and \c false for \c make_copies on the first
673 * call. Successive calls pass the return value of the previous call for
674 * \c last and \c true for \c make_copies.
675 *
676 * \param instructions Source instruction stream
677 * \param last Instruction after which new instructions should be
678 * inserted in the target instruction stream
679 * \param make_copies Flag selecting whether instructions in \c instructions
680 * should be copied (via \c ir_instruction::clone) into the
681 * target list or moved.
682 *
683 * \return
684 * The new "last" instruction in the target instruction stream. This pointer
685 * is suitable for use as the \c last parameter of a later call to this
686 * function.
687 */
688 exec_node *
689 move_non_declarations(exec_list *instructions, exec_node *last,
690 bool make_copies, gl_shader *target)
691 {
692 hash_table *temps = NULL;
693
694 if (make_copies)
695 temps = hash_table_ctor(0, hash_table_pointer_hash,
696 hash_table_pointer_compare);
697
698 foreach_list_safe(node, instructions) {
699 ir_instruction *inst = (ir_instruction *) node;
700
701 if (inst->as_function())
702 continue;
703
704 ir_variable *var = inst->as_variable();
705 if ((var != NULL) && (var->mode != ir_var_temporary))
706 continue;
707
708 assert(inst->as_assignment()
709 || ((var != NULL) && (var->mode == ir_var_temporary)));
710
711 if (make_copies) {
712 inst = inst->clone(target, NULL);
713
714 if (var != NULL)
715 hash_table_insert(temps, inst, var);
716 else
717 remap_variables(inst, target, temps);
718 } else {
719 inst->remove();
720 }
721
722 last->insert_after(inst);
723 last = inst;
724 }
725
726 if (make_copies)
727 hash_table_dtor(temps);
728
729 return last;
730 }
731
732 /**
733 * Get the function signature for main from a shader
734 */
735 static ir_function_signature *
736 get_main_function_signature(gl_shader *sh)
737 {
738 ir_function *const f = sh->symbols->get_function("main");
739 if (f != NULL) {
740 exec_list void_parameters;
741
742 /* Look for the 'void main()' signature and ensure that it's defined.
743 * This keeps the linker from accidentally pick a shader that just
744 * contains a prototype for main.
745 *
746 * We don't have to check for multiple definitions of main (in multiple
747 * shaders) because that would have already been caught above.
748 */
749 ir_function_signature *sig = f->matching_signature(&void_parameters);
750 if ((sig != NULL) && sig->is_defined) {
751 return sig;
752 }
753 }
754
755 return NULL;
756 }
757
758
759 /**
760 * Combine a group of shaders for a single stage to generate a linked shader
761 *
762 * \note
763 * If this function is supplied a single shader, it is cloned, and the new
764 * shader is returned.
765 */
766 static struct gl_shader *
767 link_intrastage_shaders(void *mem_ctx,
768 struct gl_context *ctx,
769 struct gl_shader_program *prog,
770 struct gl_shader **shader_list,
771 unsigned num_shaders)
772 {
773 /* Check that global variables defined in multiple shaders are consistent.
774 */
775 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
776 return NULL;
777
778 /* Check that there is only a single definition of each function signature
779 * across all shaders.
780 */
781 for (unsigned i = 0; i < (num_shaders - 1); i++) {
782 foreach_list(node, shader_list[i]->ir) {
783 ir_function *const f = ((ir_instruction *) node)->as_function();
784
785 if (f == NULL)
786 continue;
787
788 for (unsigned j = i + 1; j < num_shaders; j++) {
789 ir_function *const other =
790 shader_list[j]->symbols->get_function(f->name);
791
792 /* If the other shader has no function (and therefore no function
793 * signatures) with the same name, skip to the next shader.
794 */
795 if (other == NULL)
796 continue;
797
798 foreach_iter (exec_list_iterator, iter, *f) {
799 ir_function_signature *sig =
800 (ir_function_signature *) iter.get();
801
802 if (!sig->is_defined || sig->is_builtin)
803 continue;
804
805 ir_function_signature *other_sig =
806 other->exact_matching_signature(& sig->parameters);
807
808 if ((other_sig != NULL) && other_sig->is_defined
809 && !other_sig->is_builtin) {
810 linker_error_printf(prog,
811 "function `%s' is multiply defined",
812 f->name);
813 return NULL;
814 }
815 }
816 }
817 }
818 }
819
820 /* Find the shader that defines main, and make a clone of it.
821 *
822 * Starting with the clone, search for undefined references. If one is
823 * found, find the shader that defines it. Clone the reference and add
824 * it to the shader. Repeat until there are no undefined references or
825 * until a reference cannot be resolved.
826 */
827 gl_shader *main = NULL;
828 for (unsigned i = 0; i < num_shaders; i++) {
829 if (get_main_function_signature(shader_list[i]) != NULL) {
830 main = shader_list[i];
831 break;
832 }
833 }
834
835 if (main == NULL) {
836 linker_error_printf(prog, "%s shader lacks `main'\n",
837 (shader_list[0]->Type == GL_VERTEX_SHADER)
838 ? "vertex" : "fragment");
839 return NULL;
840 }
841
842 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
843 linked->ir = new(linked) exec_list;
844 clone_ir_list(mem_ctx, linked->ir, main->ir);
845
846 populate_symbol_table(linked);
847
848 /* The a pointer to the main function in the final linked shader (i.e., the
849 * copy of the original shader that contained the main function).
850 */
851 ir_function_signature *const main_sig = get_main_function_signature(linked);
852
853 /* Move any instructions other than variable declarations or function
854 * declarations into main.
855 */
856 exec_node *insertion_point =
857 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
858 linked);
859
860 for (unsigned i = 0; i < num_shaders; i++) {
861 if (shader_list[i] == main)
862 continue;
863
864 insertion_point = move_non_declarations(shader_list[i]->ir,
865 insertion_point, true, linked);
866 }
867
868 /* Resolve initializers for global variables in the linked shader.
869 */
870 unsigned num_linking_shaders = num_shaders;
871 for (unsigned i = 0; i < num_shaders; i++)
872 num_linking_shaders += shader_list[i]->num_builtins_to_link;
873
874 gl_shader **linking_shaders =
875 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
876
877 memcpy(linking_shaders, shader_list,
878 sizeof(linking_shaders[0]) * num_shaders);
879
880 unsigned idx = num_shaders;
881 for (unsigned i = 0; i < num_shaders; i++) {
882 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
883 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
884 idx += shader_list[i]->num_builtins_to_link;
885 }
886
887 assert(idx == num_linking_shaders);
888
889 if (!link_function_calls(prog, linked, linking_shaders,
890 num_linking_shaders)) {
891 ctx->Driver.DeleteShader(ctx, linked);
892 linked = NULL;
893 }
894
895 free(linking_shaders);
896
897 /* Make a pass over all global variables to ensure that arrays with
898 * unspecified sizes have a size specified. The size is inferred from the
899 * max_array_access field.
900 */
901 if (linked != NULL) {
902 foreach_list(node, linked->ir) {
903 ir_variable *const var = ((ir_instruction *) node)->as_variable();
904
905 if (var == NULL)
906 continue;
907
908 if ((var->mode != ir_var_auto) && (var->mode != ir_var_temporary))
909 continue;
910
911 if (!var->type->is_array() || (var->type->length != 0))
912 continue;
913
914 const glsl_type *type =
915 glsl_type::get_array_instance(var->type->fields.array,
916 var->max_array_access);
917
918 assert(type != NULL);
919 var->type = type;
920 }
921 }
922
923 return linked;
924 }
925
926
927 struct uniform_node {
928 exec_node link;
929 struct gl_uniform *u;
930 unsigned slots;
931 };
932
933 /**
934 * Update the sizes of linked shader uniform arrays to the maximum
935 * array index used.
936 *
937 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
938 *
939 * If one or more elements of an array are active,
940 * GetActiveUniform will return the name of the array in name,
941 * subject to the restrictions listed above. The type of the array
942 * is returned in type. The size parameter contains the highest
943 * array element index used, plus one. The compiler or linker
944 * determines the highest index used. There will be only one
945 * active uniform reported by the GL per uniform array.
946
947 */
948 static void
949 update_array_sizes(struct gl_shader_program *prog)
950 {
951 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
952 if (prog->_LinkedShaders[i] == NULL)
953 continue;
954
955 foreach_list(node, prog->_LinkedShaders[i]->ir) {
956 ir_variable *const var = ((ir_instruction *) node)->as_variable();
957
958 if ((var == NULL) || (var->mode != ir_var_uniform &&
959 var->mode != ir_var_in &&
960 var->mode != ir_var_out) ||
961 !var->type->is_array())
962 continue;
963
964 unsigned int size = var->max_array_access;
965 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
966 if (prog->_LinkedShaders[j] == NULL)
967 continue;
968
969 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
970 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
971 if (!other_var)
972 continue;
973
974 if (strcmp(var->name, other_var->name) == 0 &&
975 other_var->max_array_access > size) {
976 size = other_var->max_array_access;
977 }
978 }
979 }
980
981 if (size + 1 != var->type->fields.array->length) {
982 var->type = glsl_type::get_array_instance(var->type->fields.array,
983 size + 1);
984 /* FINISHME: We should update the types of array
985 * dereferences of this variable now.
986 */
987 }
988 }
989 }
990 }
991
992 static void
993 add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
994 const char *name, const glsl_type *type, GLenum shader_type,
995 unsigned *next_shader_pos, unsigned *total_uniforms)
996 {
997 if (type->is_record()) {
998 for (unsigned int i = 0; i < type->length; i++) {
999 const glsl_type *field_type = type->fields.structure[i].type;
1000 char *field_name = talloc_asprintf(mem_ctx, "%s.%s", name,
1001 type->fields.structure[i].name);
1002
1003 add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
1004 shader_type, next_shader_pos, total_uniforms);
1005 }
1006 } else {
1007 uniform_node *n = (uniform_node *) hash_table_find(ht, name);
1008 unsigned int vec4_slots;
1009 const glsl_type *array_elem_type = NULL;
1010
1011 if (type->is_array()) {
1012 array_elem_type = type->fields.array;
1013 /* Array of structures. */
1014 if (array_elem_type->is_record()) {
1015 for (unsigned int i = 0; i < type->length; i++) {
1016 char *elem_name = talloc_asprintf(mem_ctx, "%s[%d]", name, i);
1017 add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
1018 shader_type, next_shader_pos, total_uniforms);
1019 }
1020 return;
1021 }
1022 }
1023
1024 /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
1025 * vectors to vec4 slots.
1026 */
1027 if (type->is_array()) {
1028 if (array_elem_type->is_sampler())
1029 vec4_slots = type->length;
1030 else
1031 vec4_slots = type->length * array_elem_type->matrix_columns;
1032 } else if (type->is_sampler()) {
1033 vec4_slots = 1;
1034 } else {
1035 vec4_slots = type->matrix_columns;
1036 }
1037
1038 if (n == NULL) {
1039 n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
1040 n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
1041 n->slots = vec4_slots;
1042
1043 n->u->Name = strdup(name);
1044 n->u->Type = type;
1045 n->u->VertPos = -1;
1046 n->u->FragPos = -1;
1047 n->u->GeomPos = -1;
1048 (*total_uniforms)++;
1049
1050 hash_table_insert(ht, n, name);
1051 uniforms->push_tail(& n->link);
1052 }
1053
1054 switch (shader_type) {
1055 case GL_VERTEX_SHADER:
1056 n->u->VertPos = *next_shader_pos;
1057 break;
1058 case GL_FRAGMENT_SHADER:
1059 n->u->FragPos = *next_shader_pos;
1060 break;
1061 case GL_GEOMETRY_SHADER:
1062 n->u->GeomPos = *next_shader_pos;
1063 break;
1064 }
1065
1066 (*next_shader_pos) += vec4_slots;
1067 }
1068 }
1069
1070 void
1071 assign_uniform_locations(struct gl_shader_program *prog)
1072 {
1073 /* */
1074 exec_list uniforms;
1075 unsigned total_uniforms = 0;
1076 hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
1077 hash_table_string_compare);
1078 void *mem_ctx = talloc_new(NULL);
1079
1080 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1081 if (prog->_LinkedShaders[i] == NULL)
1082 continue;
1083
1084 unsigned next_position = 0;
1085
1086 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1087 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1088
1089 if ((var == NULL) || (var->mode != ir_var_uniform))
1090 continue;
1091
1092 if (strncmp(var->name, "gl_", 3) == 0) {
1093 /* At the moment, we don't allocate uniform locations for
1094 * builtin uniforms. It's permitted by spec, and we'll
1095 * likely switch to doing that at some point, but not yet.
1096 */
1097 continue;
1098 }
1099
1100 var->location = next_position;
1101 add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
1102 prog->_LinkedShaders[i]->Type,
1103 &next_position, &total_uniforms);
1104 }
1105 }
1106
1107 talloc_free(mem_ctx);
1108
1109 gl_uniform_list *ul = (gl_uniform_list *)
1110 calloc(1, sizeof(gl_uniform_list));
1111
1112 ul->Size = total_uniforms;
1113 ul->NumUniforms = total_uniforms;
1114 ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
1115
1116 unsigned idx = 0;
1117 uniform_node *next;
1118 for (uniform_node *node = (uniform_node *) uniforms.head
1119 ; node->link.next != NULL
1120 ; node = next) {
1121 next = (uniform_node *) node->link.next;
1122
1123 node->link.remove();
1124 memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
1125 idx++;
1126
1127 free(node->u);
1128 free(node);
1129 }
1130
1131 hash_table_dtor(ht);
1132
1133 prog->Uniforms = ul;
1134 }
1135
1136
1137 /**
1138 * Find a contiguous set of available bits in a bitmask
1139 *
1140 * \param used_mask Bits representing used (1) and unused (0) locations
1141 * \param needed_count Number of contiguous bits needed.
1142 *
1143 * \return
1144 * Base location of the available bits on success or -1 on failure.
1145 */
1146 int
1147 find_available_slots(unsigned used_mask, unsigned needed_count)
1148 {
1149 unsigned needed_mask = (1 << needed_count) - 1;
1150 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1151
1152 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1153 * cannot optimize possibly infinite loops" for the loop below.
1154 */
1155 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1156 return -1;
1157
1158 for (int i = 0; i <= max_bit_to_test; i++) {
1159 if ((needed_mask & ~used_mask) == needed_mask)
1160 return i;
1161
1162 needed_mask <<= 1;
1163 }
1164
1165 return -1;
1166 }
1167
1168
1169 bool
1170 assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
1171 {
1172 /* Mark invalid attribute locations as being used.
1173 */
1174 unsigned used_locations = (max_attribute_index >= 32)
1175 ? ~0 : ~((1 << max_attribute_index) - 1);
1176
1177 gl_shader *const sh = prog->_LinkedShaders[0];
1178 assert(sh->Type == GL_VERTEX_SHADER);
1179
1180 /* Operate in a total of four passes.
1181 *
1182 * 1. Invalidate the location assignments for all vertex shader inputs.
1183 *
1184 * 2. Assign locations for inputs that have user-defined (via
1185 * glBindVertexAttribLocation) locatoins.
1186 *
1187 * 3. Sort the attributes without assigned locations by number of slots
1188 * required in decreasing order. Fragmentation caused by attribute
1189 * locations assigned by the application may prevent large attributes
1190 * from having enough contiguous space.
1191 *
1192 * 4. Assign locations to any inputs without assigned locations.
1193 */
1194
1195 invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
1196
1197 if (prog->Attributes != NULL) {
1198 for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
1199 ir_variable *const var =
1200 sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
1201
1202 /* Note: attributes that occupy multiple slots, such as arrays or
1203 * matrices, may appear in the attrib array multiple times.
1204 */
1205 if ((var == NULL) || (var->location != -1))
1206 continue;
1207
1208 /* From page 61 of the OpenGL 4.0 spec:
1209 *
1210 * "LinkProgram will fail if the attribute bindings assigned by
1211 * BindAttribLocation do not leave not enough space to assign a
1212 * location for an active matrix attribute or an active attribute
1213 * array, both of which require multiple contiguous generic
1214 * attributes."
1215 *
1216 * Previous versions of the spec contain similar language but omit the
1217 * bit about attribute arrays.
1218 *
1219 * Page 61 of the OpenGL 4.0 spec also says:
1220 *
1221 * "It is possible for an application to bind more than one
1222 * attribute name to the same location. This is referred to as
1223 * aliasing. This will only work if only one of the aliased
1224 * attributes is active in the executable program, or if no path
1225 * through the shader consumes more than one attribute of a set
1226 * of attributes aliased to the same location. A link error can
1227 * occur if the linker determines that every path through the
1228 * shader consumes multiple aliased attributes, but
1229 * implementations are not required to generate an error in this
1230 * case."
1231 *
1232 * These two paragraphs are either somewhat contradictory, or I don't
1233 * fully understand one or both of them.
1234 */
1235 /* FINISHME: The code as currently written does not support attribute
1236 * FINISHME: location aliasing (see comment above).
1237 */
1238 const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
1239 const unsigned slots = count_attribute_slots(var->type);
1240
1241 /* Mask representing the contiguous slots that will be used by this
1242 * attribute.
1243 */
1244 const unsigned use_mask = (1 << slots) - 1;
1245
1246 /* Generate a link error if the set of bits requested for this
1247 * attribute overlaps any previously allocated bits.
1248 */
1249 if ((~(use_mask << attr) & used_locations) != used_locations) {
1250 linker_error_printf(prog,
1251 "insufficient contiguous attribute locations "
1252 "available for vertex shader input `%s'",
1253 var->name);
1254 return false;
1255 }
1256
1257 var->location = VERT_ATTRIB_GENERIC0 + attr;
1258 used_locations |= (use_mask << attr);
1259 }
1260 }
1261
1262 /* Temporary storage for the set of attributes that need locations assigned.
1263 */
1264 struct temp_attr {
1265 unsigned slots;
1266 ir_variable *var;
1267
1268 /* Used below in the call to qsort. */
1269 static int compare(const void *a, const void *b)
1270 {
1271 const temp_attr *const l = (const temp_attr *) a;
1272 const temp_attr *const r = (const temp_attr *) b;
1273
1274 /* Reversed because we want a descending order sort below. */
1275 return r->slots - l->slots;
1276 }
1277 } to_assign[16];
1278
1279 unsigned num_attr = 0;
1280
1281 foreach_list(node, sh->ir) {
1282 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1283
1284 if ((var == NULL) || (var->mode != ir_var_in))
1285 continue;
1286
1287 if (var->explicit_location) {
1288 const unsigned slots = count_attribute_slots(var->type);
1289 const unsigned use_mask = (1 << slots) - 1;
1290 const int attr = var->location - VERT_ATTRIB_GENERIC0;
1291
1292 if ((var->location >= (int)(max_attribute_index + VERT_ATTRIB_GENERIC0))
1293 || (var->location < 0)) {
1294 linker_error_printf(prog,
1295 "invalid explicit location %d specified for "
1296 "`%s'\n",
1297 (var->location < 0) ? var->location : attr,
1298 var->name);
1299 return false;
1300 } else if (var->location >= VERT_ATTRIB_GENERIC0) {
1301 used_locations |= (use_mask << attr);
1302 }
1303 }
1304
1305 /* The location was explicitly assigned, nothing to do here.
1306 */
1307 if (var->location != -1)
1308 continue;
1309
1310 to_assign[num_attr].slots = count_attribute_slots(var->type);
1311 to_assign[num_attr].var = var;
1312 num_attr++;
1313 }
1314
1315 /* If all of the attributes were assigned locations by the application (or
1316 * are built-in attributes with fixed locations), return early. This should
1317 * be the common case.
1318 */
1319 if (num_attr == 0)
1320 return true;
1321
1322 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1323
1324 /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only
1325 * be explicitly assigned by via glBindAttribLocation. Mark it as reserved
1326 * to prevent it from being automatically allocated below.
1327 */
1328 find_deref_visitor find("gl_Vertex");
1329 find.run(sh->ir);
1330 if (find.variable_found())
1331 used_locations |= (1 << 0);
1332
1333 for (unsigned i = 0; i < num_attr; i++) {
1334 /* Mask representing the contiguous slots that will be used by this
1335 * attribute.
1336 */
1337 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1338
1339 int location = find_available_slots(used_locations, to_assign[i].slots);
1340
1341 if (location < 0) {
1342 linker_error_printf(prog,
1343 "insufficient contiguous attribute locations "
1344 "available for vertex shader input `%s'",
1345 to_assign[i].var->name);
1346 return false;
1347 }
1348
1349 to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location;
1350 used_locations |= (use_mask << location);
1351 }
1352
1353 return true;
1354 }
1355
1356
1357 /**
1358 * Demote shader inputs and outputs that are not used in other stages
1359 */
1360 void
1361 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1362 {
1363 foreach_list(node, sh->ir) {
1364 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1365
1366 if ((var == NULL) || (var->mode != int(mode)))
1367 continue;
1368
1369 /* A shader 'in' or 'out' variable is only really an input or output if
1370 * its value is used by other shader stages. This will cause the variable
1371 * to have a location assigned.
1372 */
1373 if (var->location == -1) {
1374 var->mode = ir_var_auto;
1375 }
1376 }
1377 }
1378
1379
1380 void
1381 assign_varying_locations(struct gl_shader_program *prog,
1382 gl_shader *producer, gl_shader *consumer)
1383 {
1384 /* FINISHME: Set dynamically when geometry shader support is added. */
1385 unsigned output_index = VERT_RESULT_VAR0;
1386 unsigned input_index = FRAG_ATTRIB_VAR0;
1387
1388 /* Operate in a total of three passes.
1389 *
1390 * 1. Assign locations for any matching inputs and outputs.
1391 *
1392 * 2. Mark output variables in the producer that do not have locations as
1393 * not being outputs. This lets the optimizer eliminate them.
1394 *
1395 * 3. Mark input variables in the consumer that do not have locations as
1396 * not being inputs. This lets the optimizer eliminate them.
1397 */
1398
1399 invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1400 invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1401
1402 foreach_list(node, producer->ir) {
1403 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1404
1405 if ((output_var == NULL) || (output_var->mode != ir_var_out)
1406 || (output_var->location != -1))
1407 continue;
1408
1409 ir_variable *const input_var =
1410 consumer->symbols->get_variable(output_var->name);
1411
1412 if ((input_var == NULL) || (input_var->mode != ir_var_in))
1413 continue;
1414
1415 assert(input_var->location == -1);
1416
1417 output_var->location = output_index;
1418 input_var->location = input_index;
1419
1420 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1421 assert(!output_var->type->is_record());
1422
1423 if (output_var->type->is_array()) {
1424 const unsigned slots = output_var->type->length
1425 * output_var->type->fields.array->matrix_columns;
1426
1427 output_index += slots;
1428 input_index += slots;
1429 } else {
1430 const unsigned slots = output_var->type->matrix_columns;
1431
1432 output_index += slots;
1433 input_index += slots;
1434 }
1435 }
1436
1437 foreach_list(node, consumer->ir) {
1438 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1439
1440 if ((var == NULL) || (var->mode != ir_var_in))
1441 continue;
1442
1443 if (var->location == -1) {
1444 if (prog->Version <= 120) {
1445 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1446 *
1447 * Only those varying variables used (i.e. read) in
1448 * the fragment shader executable must be written to
1449 * by the vertex shader executable; declaring
1450 * superfluous varying variables in a vertex shader is
1451 * permissible.
1452 *
1453 * We interpret this text as meaning that the VS must
1454 * write the variable for the FS to read it. See
1455 * "glsl1-varying read but not written" in piglit.
1456 */
1457
1458 linker_error_printf(prog, "fragment shader varying %s not written "
1459 "by vertex shader\n.", var->name);
1460 prog->LinkStatus = false;
1461 }
1462
1463 /* An 'in' variable is only really a shader input if its
1464 * value is written by the previous stage.
1465 */
1466 var->mode = ir_var_auto;
1467 }
1468 }
1469 }
1470
1471
1472 void
1473 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1474 {
1475 void *mem_ctx = talloc_init("temporary linker context");
1476
1477 prog->LinkStatus = false;
1478 prog->Validated = false;
1479 prog->_Used = false;
1480
1481 if (prog->InfoLog != NULL)
1482 talloc_free(prog->InfoLog);
1483
1484 prog->InfoLog = talloc_strdup(NULL, "");
1485
1486 /* Separate the shaders into groups based on their type.
1487 */
1488 struct gl_shader **vert_shader_list;
1489 unsigned num_vert_shaders = 0;
1490 struct gl_shader **frag_shader_list;
1491 unsigned num_frag_shaders = 0;
1492
1493 vert_shader_list = (struct gl_shader **)
1494 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1495 frag_shader_list = &vert_shader_list[prog->NumShaders];
1496
1497 unsigned min_version = UINT_MAX;
1498 unsigned max_version = 0;
1499 for (unsigned i = 0; i < prog->NumShaders; i++) {
1500 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1501 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1502
1503 switch (prog->Shaders[i]->Type) {
1504 case GL_VERTEX_SHADER:
1505 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1506 num_vert_shaders++;
1507 break;
1508 case GL_FRAGMENT_SHADER:
1509 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1510 num_frag_shaders++;
1511 break;
1512 case GL_GEOMETRY_SHADER:
1513 /* FINISHME: Support geometry shaders. */
1514 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1515 break;
1516 }
1517 }
1518
1519 /* Previous to GLSL version 1.30, different compilation units could mix and
1520 * match shading language versions. With GLSL 1.30 and later, the versions
1521 * of all shaders must match.
1522 */
1523 assert(min_version >= 100);
1524 assert(max_version <= 130);
1525 if ((max_version >= 130 || min_version == 100)
1526 && min_version != max_version) {
1527 linker_error_printf(prog, "all shaders must use same shading "
1528 "language version\n");
1529 goto done;
1530 }
1531
1532 prog->Version = max_version;
1533
1534 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1535 if (prog->_LinkedShaders[i] != NULL)
1536 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1537
1538 prog->_LinkedShaders[i] = NULL;
1539 }
1540
1541 /* Link all shaders for a particular stage and validate the result.
1542 */
1543 if (num_vert_shaders > 0) {
1544 gl_shader *const sh =
1545 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1546 num_vert_shaders);
1547
1548 if (sh == NULL)
1549 goto done;
1550
1551 if (!validate_vertex_shader_executable(prog, sh))
1552 goto done;
1553
1554 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1555 sh);
1556 }
1557
1558 if (num_frag_shaders > 0) {
1559 gl_shader *const sh =
1560 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1561 num_frag_shaders);
1562
1563 if (sh == NULL)
1564 goto done;
1565
1566 if (!validate_fragment_shader_executable(prog, sh))
1567 goto done;
1568
1569 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1570 sh);
1571 }
1572
1573 /* Here begins the inter-stage linking phase. Some initial validation is
1574 * performed, then locations are assigned for uniforms, attributes, and
1575 * varyings.
1576 */
1577 if (cross_validate_uniforms(prog)) {
1578 unsigned prev;
1579
1580 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1581 if (prog->_LinkedShaders[prev] != NULL)
1582 break;
1583 }
1584
1585 /* Validate the inputs of each stage with the output of the preceeding
1586 * stage.
1587 */
1588 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1589 if (prog->_LinkedShaders[i] == NULL)
1590 continue;
1591
1592 if (!cross_validate_outputs_to_inputs(prog,
1593 prog->_LinkedShaders[prev],
1594 prog->_LinkedShaders[i]))
1595 goto done;
1596
1597 prev = i;
1598 }
1599
1600 prog->LinkStatus = true;
1601 }
1602
1603 /* Do common optimization before assigning storage for attributes,
1604 * uniforms, and varyings. Later optimization could possibly make
1605 * some of that unused.
1606 */
1607 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1608 if (prog->_LinkedShaders[i] == NULL)
1609 continue;
1610
1611 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
1612 ;
1613 }
1614
1615 update_array_sizes(prog);
1616
1617 assign_uniform_locations(prog);
1618
1619 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1620 /* FINISHME: The value of the max_attribute_index parameter is
1621 * FINISHME: implementation dependent based on the value of
1622 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1623 * FINISHME: at least 16, so hardcode 16 for now.
1624 */
1625 if (!assign_attribute_locations(prog, 16)) {
1626 prog->LinkStatus = false;
1627 goto done;
1628 }
1629 }
1630
1631 unsigned prev;
1632 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1633 if (prog->_LinkedShaders[prev] != NULL)
1634 break;
1635 }
1636
1637 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1638 if (prog->_LinkedShaders[i] == NULL)
1639 continue;
1640
1641 assign_varying_locations(prog,
1642 prog->_LinkedShaders[prev],
1643 prog->_LinkedShaders[i]);
1644 prev = i;
1645 }
1646
1647 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1648 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1649 ir_var_out);
1650 }
1651
1652 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1653 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1654
1655 demote_shader_inputs_and_outputs(sh, ir_var_in);
1656 demote_shader_inputs_and_outputs(sh, ir_var_inout);
1657 demote_shader_inputs_and_outputs(sh, ir_var_out);
1658 }
1659
1660 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1661 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1662
1663 demote_shader_inputs_and_outputs(sh, ir_var_in);
1664 }
1665
1666 /* FINISHME: Assign fragment shader output locations. */
1667
1668 done:
1669 free(vert_shader_list);
1670
1671 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1672 if (prog->_LinkedShaders[i] == NULL)
1673 continue;
1674
1675 /* Retain any live IR, but trash the rest. */
1676 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1677 }
1678
1679 talloc_free(mem_ctx);
1680 }