glsl: Use the without_array predicate to simplify some code
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77 #include "ir_uniform.h"
78
79 extern "C" {
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82 }
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->element_type(),
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->element_type();
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 } /* anonymous namespace */
350
351 void
352 linker_error(gl_shader_program *prog, const char *fmt, ...)
353 {
354 va_list ap;
355
356 ralloc_strcat(&prog->InfoLog, "error: ");
357 va_start(ap, fmt);
358 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
359 va_end(ap);
360
361 prog->LinkStatus = false;
362 }
363
364
365 void
366 linker_warning(gl_shader_program *prog, const char *fmt, ...)
367 {
368 va_list ap;
369
370 ralloc_strcat(&prog->InfoLog, "warning: ");
371 va_start(ap, fmt);
372 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
373 va_end(ap);
374
375 }
376
377
378 /**
379 * Given a string identifying a program resource, break it into a base name
380 * and an optional array index in square brackets.
381 *
382 * If an array index is present, \c out_base_name_end is set to point to the
383 * "[" that precedes the array index, and the array index itself is returned
384 * as a long.
385 *
386 * If no array index is present (or if the array index is negative or
387 * mal-formed), \c out_base_name_end, is set to point to the null terminator
388 * at the end of the input string, and -1 is returned.
389 *
390 * Only the final array index is parsed; if the string contains other array
391 * indices (or structure field accesses), they are left in the base name.
392 *
393 * No attempt is made to check that the base name is properly formed;
394 * typically the caller will look up the base name in a hash table, so
395 * ill-formed base names simply turn into hash table lookup failures.
396 */
397 long
398 parse_program_resource_name(const GLchar *name,
399 const GLchar **out_base_name_end)
400 {
401 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
402 *
403 * "When an integer array element or block instance number is part of
404 * the name string, it will be specified in decimal form without a "+"
405 * or "-" sign or any extra leading zeroes. Additionally, the name
406 * string will not include white space anywhere in the string."
407 */
408
409 const size_t len = strlen(name);
410 *out_base_name_end = name + len;
411
412 if (len == 0 || name[len-1] != ']')
413 return -1;
414
415 /* Walk backwards over the string looking for a non-digit character. This
416 * had better be the opening bracket for an array index.
417 *
418 * Initially, i specifies the location of the ']'. Since the string may
419 * contain only the ']' charcater, walk backwards very carefully.
420 */
421 unsigned i;
422 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
423 /* empty */ ;
424
425 if ((i == 0) || name[i-1] != '[')
426 return -1;
427
428 long array_index = strtol(&name[i], NULL, 10);
429 if (array_index < 0)
430 return -1;
431
432 *out_base_name_end = name + (i - 1);
433 return array_index;
434 }
435
436
437 void
438 link_invalidate_variable_locations(exec_list *ir)
439 {
440 foreach_in_list(ir_instruction, node, ir) {
441 ir_variable *const var = node->as_variable();
442
443 if (var == NULL)
444 continue;
445
446 /* Only assign locations for variables that lack an explicit location.
447 * Explicit locations are set for all built-in variables, generic vertex
448 * shader inputs (via layout(location=...)), and generic fragment shader
449 * outputs (also via layout(location=...)).
450 */
451 if (!var->data.explicit_location) {
452 var->data.location = -1;
453 var->data.location_frac = 0;
454 }
455
456 /* ir_variable::is_unmatched_generic_inout is used by the linker while
457 * connecting outputs from one stage to inputs of the next stage.
458 *
459 * There are two implicit assumptions here. First, we assume that any
460 * built-in variable (i.e., non-generic in or out) will have
461 * explicit_location set. Second, we assume that any generic in or out
462 * will not have explicit_location set.
463 *
464 * This second assumption will only be valid until
465 * GL_ARB_separate_shader_objects is supported. When that extension is
466 * implemented, this function will need some modifications.
467 */
468 if (!var->data.explicit_location) {
469 var->data.is_unmatched_generic_inout = 1;
470 } else {
471 var->data.is_unmatched_generic_inout = 0;
472 }
473 }
474 }
475
476
477 /**
478 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
479 *
480 * Also check for errors based on incorrect usage of gl_ClipVertex and
481 * gl_ClipDistance.
482 *
483 * Return false if an error was reported.
484 */
485 static void
486 analyze_clip_usage(struct gl_shader_program *prog,
487 struct gl_shader *shader, GLboolean *UsesClipDistance,
488 GLuint *ClipDistanceArraySize)
489 {
490 *ClipDistanceArraySize = 0;
491
492 if (!prog->IsES && prog->Version >= 130) {
493 /* From section 7.1 (Vertex Shader Special Variables) of the
494 * GLSL 1.30 spec:
495 *
496 * "It is an error for a shader to statically write both
497 * gl_ClipVertex and gl_ClipDistance."
498 *
499 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
500 * gl_ClipVertex nor gl_ClipDistance.
501 */
502 find_assignment_visitor clip_vertex("gl_ClipVertex");
503 find_assignment_visitor clip_distance("gl_ClipDistance");
504
505 clip_vertex.run(shader->ir);
506 clip_distance.run(shader->ir);
507 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
508 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
509 "and `gl_ClipDistance'\n",
510 _mesa_shader_stage_to_string(shader->Stage));
511 return;
512 }
513 *UsesClipDistance = clip_distance.variable_found();
514 ir_variable *clip_distance_var =
515 shader->symbols->get_variable("gl_ClipDistance");
516 if (clip_distance_var)
517 *ClipDistanceArraySize = clip_distance_var->type->length;
518 } else {
519 *UsesClipDistance = false;
520 }
521 }
522
523
524 /**
525 * Verify that a vertex shader executable meets all semantic requirements.
526 *
527 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
528 * as a side effect.
529 *
530 * \param shader Vertex shader executable to be verified
531 */
532 void
533 validate_vertex_shader_executable(struct gl_shader_program *prog,
534 struct gl_shader *shader)
535 {
536 if (shader == NULL)
537 return;
538
539 /* From the GLSL 1.10 spec, page 48:
540 *
541 * "The variable gl_Position is available only in the vertex
542 * language and is intended for writing the homogeneous vertex
543 * position. All executions of a well-formed vertex shader
544 * executable must write a value into this variable. [...] The
545 * variable gl_Position is available only in the vertex
546 * language and is intended for writing the homogeneous vertex
547 * position. All executions of a well-formed vertex shader
548 * executable must write a value into this variable."
549 *
550 * while in GLSL 1.40 this text is changed to:
551 *
552 * "The variable gl_Position is available only in the vertex
553 * language and is intended for writing the homogeneous vertex
554 * position. It can be written at any time during shader
555 * execution. It may also be read back by a vertex shader
556 * after being written. This value will be used by primitive
557 * assembly, clipping, culling, and other fixed functionality
558 * operations, if present, that operate on primitives after
559 * vertex processing has occurred. Its value is undefined if
560 * the vertex shader executable does not write gl_Position."
561 *
562 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
563 * not an error.
564 */
565 if (prog->Version < (prog->IsES ? 300 : 140)) {
566 find_assignment_visitor find("gl_Position");
567 find.run(shader->ir);
568 if (!find.variable_found()) {
569 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
570 return;
571 }
572 }
573
574 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
575 &prog->Vert.ClipDistanceArraySize);
576 }
577
578
579 /**
580 * Verify that a fragment shader executable meets all semantic requirements
581 *
582 * \param shader Fragment shader executable to be verified
583 */
584 void
585 validate_fragment_shader_executable(struct gl_shader_program *prog,
586 struct gl_shader *shader)
587 {
588 if (shader == NULL)
589 return;
590
591 find_assignment_visitor frag_color("gl_FragColor");
592 find_assignment_visitor frag_data("gl_FragData");
593
594 frag_color.run(shader->ir);
595 frag_data.run(shader->ir);
596
597 if (frag_color.variable_found() && frag_data.variable_found()) {
598 linker_error(prog, "fragment shader writes to both "
599 "`gl_FragColor' and `gl_FragData'\n");
600 }
601 }
602
603 /**
604 * Verify that a geometry shader executable meets all semantic requirements
605 *
606 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
607 * prog->Geom.ClipDistanceArraySize as a side effect.
608 *
609 * \param shader Geometry shader executable to be verified
610 */
611 void
612 validate_geometry_shader_executable(struct gl_shader_program *prog,
613 struct gl_shader *shader)
614 {
615 if (shader == NULL)
616 return;
617
618 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
619 prog->Geom.VerticesIn = num_vertices;
620
621 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
622 &prog->Geom.ClipDistanceArraySize);
623 }
624
625 /**
626 * Check if geometry shaders emit to non-zero streams and do corresponding
627 * validations.
628 */
629 static void
630 validate_geometry_shader_emissions(struct gl_context *ctx,
631 struct gl_shader_program *prog)
632 {
633 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
634 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
635 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
636 if (emit_vertex.error()) {
637 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
638 "stream parameter are in the range [0, %d].",
639 emit_vertex.error_func(),
640 emit_vertex.error_stream(),
641 ctx->Const.MaxVertexStreams - 1);
642 }
643 prog->Geom.UsesStreams = emit_vertex.uses_streams();
644 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
645
646 /* From the ARB_gpu_shader5 spec:
647 *
648 * "Multiple vertex streams are supported only if the output primitive
649 * type is declared to be "points". A program will fail to link if it
650 * contains a geometry shader calling EmitStreamVertex() or
651 * EndStreamPrimitive() if its output primitive type is not "points".
652 *
653 * However, in the same spec:
654 *
655 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
656 * with <stream> set to zero."
657 *
658 * And:
659 *
660 * "The function EndPrimitive() is equivalent to calling
661 * EndStreamPrimitive() with <stream> set to zero."
662 *
663 * Since we can call EmitVertex() and EndPrimitive() when we output
664 * primitives other than points, calling EmitStreamVertex(0) or
665 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
666 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
667 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
668 * stream.
669 */
670 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
671 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
672 "with n>0 requires point output");
673 }
674 }
675 }
676
677
678 /**
679 * Perform validation of global variables used across multiple shaders
680 */
681 void
682 cross_validate_globals(struct gl_shader_program *prog,
683 struct gl_shader **shader_list,
684 unsigned num_shaders,
685 bool uniforms_only)
686 {
687 /* Examine all of the uniforms in all of the shaders and cross validate
688 * them.
689 */
690 glsl_symbol_table variables;
691 for (unsigned i = 0; i < num_shaders; i++) {
692 if (shader_list[i] == NULL)
693 continue;
694
695 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
696 ir_variable *const var = node->as_variable();
697
698 if (var == NULL)
699 continue;
700
701 if (uniforms_only && (var->data.mode != ir_var_uniform))
702 continue;
703
704 /* Don't cross validate temporaries that are at global scope. These
705 * will eventually get pulled into the shaders 'main'.
706 */
707 if (var->data.mode == ir_var_temporary)
708 continue;
709
710 /* If a global with this name has already been seen, verify that the
711 * new instance has the same type. In addition, if the globals have
712 * initializers, the values of the initializers must be the same.
713 */
714 ir_variable *const existing = variables.get_variable(var->name);
715 if (existing != NULL) {
716 if (var->type != existing->type) {
717 /* Consider the types to be "the same" if both types are arrays
718 * of the same type and one of the arrays is implicitly sized.
719 * In addition, set the type of the linked variable to the
720 * explicitly sized array.
721 */
722 if (var->type->is_array()
723 && existing->type->is_array()
724 && (var->type->fields.array == existing->type->fields.array)
725 && ((var->type->length == 0)
726 || (existing->type->length == 0))) {
727 if (var->type->length != 0) {
728 existing->type = var->type;
729 }
730 } else if (var->type->is_record()
731 && existing->type->is_record()
732 && existing->type->record_compare(var->type)) {
733 existing->type = var->type;
734 } else {
735 linker_error(prog, "%s `%s' declared as type "
736 "`%s' and type `%s'\n",
737 mode_string(var),
738 var->name, var->type->name,
739 existing->type->name);
740 return;
741 }
742 }
743
744 if (var->data.explicit_location) {
745 if (existing->data.explicit_location
746 && (var->data.location != existing->data.location)) {
747 linker_error(prog, "explicit locations for %s "
748 "`%s' have differing values\n",
749 mode_string(var), var->name);
750 return;
751 }
752
753 existing->data.location = var->data.location;
754 existing->data.explicit_location = true;
755 }
756
757 /* From the GLSL 4.20 specification:
758 * "A link error will result if two compilation units in a program
759 * specify different integer-constant bindings for the same
760 * opaque-uniform name. However, it is not an error to specify a
761 * binding on some but not all declarations for the same name"
762 */
763 if (var->data.explicit_binding) {
764 if (existing->data.explicit_binding &&
765 var->data.binding != existing->data.binding) {
766 linker_error(prog, "explicit bindings for %s "
767 "`%s' have differing values\n",
768 mode_string(var), var->name);
769 return;
770 }
771
772 existing->data.binding = var->data.binding;
773 existing->data.explicit_binding = true;
774 }
775
776 if (var->type->contains_atomic() &&
777 var->data.atomic.offset != existing->data.atomic.offset) {
778 linker_error(prog, "offset specifications for %s "
779 "`%s' have differing values\n",
780 mode_string(var), var->name);
781 return;
782 }
783
784 /* Validate layout qualifiers for gl_FragDepth.
785 *
786 * From the AMD/ARB_conservative_depth specs:
787 *
788 * "If gl_FragDepth is redeclared in any fragment shader in a
789 * program, it must be redeclared in all fragment shaders in
790 * that program that have static assignments to
791 * gl_FragDepth. All redeclarations of gl_FragDepth in all
792 * fragment shaders in a single program must have the same set
793 * of qualifiers."
794 */
795 if (strcmp(var->name, "gl_FragDepth") == 0) {
796 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
797 bool layout_differs =
798 var->data.depth_layout != existing->data.depth_layout;
799
800 if (layout_declared && layout_differs) {
801 linker_error(prog,
802 "All redeclarations of gl_FragDepth in all "
803 "fragment shaders in a single program must have "
804 "the same set of qualifiers.");
805 }
806
807 if (var->data.used && layout_differs) {
808 linker_error(prog,
809 "If gl_FragDepth is redeclared with a layout "
810 "qualifier in any fragment shader, it must be "
811 "redeclared with the same layout qualifier in "
812 "all fragment shaders that have assignments to "
813 "gl_FragDepth");
814 }
815 }
816
817 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
818 *
819 * "If a shared global has multiple initializers, the
820 * initializers must all be constant expressions, and they
821 * must all have the same value. Otherwise, a link error will
822 * result. (A shared global having only one initializer does
823 * not require that initializer to be a constant expression.)"
824 *
825 * Previous to 4.20 the GLSL spec simply said that initializers
826 * must have the same value. In this case of non-constant
827 * initializers, this was impossible to determine. As a result,
828 * no vendor actually implemented that behavior. The 4.20
829 * behavior matches the implemented behavior of at least one other
830 * vendor, so we'll implement that for all GLSL versions.
831 */
832 if (var->constant_initializer != NULL) {
833 if (existing->constant_initializer != NULL) {
834 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
835 linker_error(prog, "initializers for %s "
836 "`%s' have differing values\n",
837 mode_string(var), var->name);
838 return;
839 }
840 } else {
841 /* If the first-seen instance of a particular uniform did not
842 * have an initializer but a later instance does, copy the
843 * initializer to the version stored in the symbol table.
844 */
845 /* FINISHME: This is wrong. The constant_value field should
846 * FINISHME: not be modified! Imagine a case where a shader
847 * FINISHME: without an initializer is linked in two different
848 * FINISHME: programs with shaders that have differing
849 * FINISHME: initializers. Linking with the first will
850 * FINISHME: modify the shader, and linking with the second
851 * FINISHME: will fail.
852 */
853 existing->constant_initializer =
854 var->constant_initializer->clone(ralloc_parent(existing),
855 NULL);
856 }
857 }
858
859 if (var->data.has_initializer) {
860 if (existing->data.has_initializer
861 && (var->constant_initializer == NULL
862 || existing->constant_initializer == NULL)) {
863 linker_error(prog,
864 "shared global variable `%s' has multiple "
865 "non-constant initializers.\n",
866 var->name);
867 return;
868 }
869
870 /* Some instance had an initializer, so keep track of that. In
871 * this location, all sorts of initializers (constant or
872 * otherwise) will propagate the existence to the variable
873 * stored in the symbol table.
874 */
875 existing->data.has_initializer = true;
876 }
877
878 if (existing->data.invariant != var->data.invariant) {
879 linker_error(prog, "declarations for %s `%s' have "
880 "mismatching invariant qualifiers\n",
881 mode_string(var), var->name);
882 return;
883 }
884 if (existing->data.centroid != var->data.centroid) {
885 linker_error(prog, "declarations for %s `%s' have "
886 "mismatching centroid qualifiers\n",
887 mode_string(var), var->name);
888 return;
889 }
890 if (existing->data.sample != var->data.sample) {
891 linker_error(prog, "declarations for %s `%s` have "
892 "mismatching sample qualifiers\n",
893 mode_string(var), var->name);
894 return;
895 }
896 } else
897 variables.add_variable(var);
898 }
899 }
900 }
901
902
903 /**
904 * Perform validation of uniforms used across multiple shader stages
905 */
906 void
907 cross_validate_uniforms(struct gl_shader_program *prog)
908 {
909 cross_validate_globals(prog, prog->_LinkedShaders,
910 MESA_SHADER_STAGES, true);
911 }
912
913 /**
914 * Accumulates the array of prog->UniformBlocks and checks that all
915 * definitons of blocks agree on their contents.
916 */
917 static bool
918 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
919 {
920 unsigned max_num_uniform_blocks = 0;
921 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
922 if (prog->_LinkedShaders[i])
923 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
924 }
925
926 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
927 struct gl_shader *sh = prog->_LinkedShaders[i];
928
929 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
930 max_num_uniform_blocks);
931 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
932 prog->UniformBlockStageIndex[i][j] = -1;
933
934 if (sh == NULL)
935 continue;
936
937 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
938 int index = link_cross_validate_uniform_block(prog,
939 &prog->UniformBlocks,
940 &prog->NumUniformBlocks,
941 &sh->UniformBlocks[j]);
942
943 if (index == -1) {
944 linker_error(prog, "uniform block `%s' has mismatching definitions",
945 sh->UniformBlocks[j].Name);
946 return false;
947 }
948
949 prog->UniformBlockStageIndex[i][index] = j;
950 }
951 }
952
953 return true;
954 }
955
956
957 /**
958 * Populates a shaders symbol table with all global declarations
959 */
960 static void
961 populate_symbol_table(gl_shader *sh)
962 {
963 sh->symbols = new(sh) glsl_symbol_table;
964
965 foreach_in_list(ir_instruction, inst, sh->ir) {
966 ir_variable *var;
967 ir_function *func;
968
969 if ((func = inst->as_function()) != NULL) {
970 sh->symbols->add_function(func);
971 } else if ((var = inst->as_variable()) != NULL) {
972 sh->symbols->add_variable(var);
973 }
974 }
975 }
976
977
978 /**
979 * Remap variables referenced in an instruction tree
980 *
981 * This is used when instruction trees are cloned from one shader and placed in
982 * another. These trees will contain references to \c ir_variable nodes that
983 * do not exist in the target shader. This function finds these \c ir_variable
984 * references and replaces the references with matching variables in the target
985 * shader.
986 *
987 * If there is no matching variable in the target shader, a clone of the
988 * \c ir_variable is made and added to the target shader. The new variable is
989 * added to \b both the instruction stream and the symbol table.
990 *
991 * \param inst IR tree that is to be processed.
992 * \param symbols Symbol table containing global scope symbols in the
993 * linked shader.
994 * \param instructions Instruction stream where new variable declarations
995 * should be added.
996 */
997 void
998 remap_variables(ir_instruction *inst, struct gl_shader *target,
999 hash_table *temps)
1000 {
1001 class remap_visitor : public ir_hierarchical_visitor {
1002 public:
1003 remap_visitor(struct gl_shader *target,
1004 hash_table *temps)
1005 {
1006 this->target = target;
1007 this->symbols = target->symbols;
1008 this->instructions = target->ir;
1009 this->temps = temps;
1010 }
1011
1012 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1013 {
1014 if (ir->var->data.mode == ir_var_temporary) {
1015 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1016
1017 assert(var != NULL);
1018 ir->var = var;
1019 return visit_continue;
1020 }
1021
1022 ir_variable *const existing =
1023 this->symbols->get_variable(ir->var->name);
1024 if (existing != NULL)
1025 ir->var = existing;
1026 else {
1027 ir_variable *copy = ir->var->clone(this->target, NULL);
1028
1029 this->symbols->add_variable(copy);
1030 this->instructions->push_head(copy);
1031 ir->var = copy;
1032 }
1033
1034 return visit_continue;
1035 }
1036
1037 private:
1038 struct gl_shader *target;
1039 glsl_symbol_table *symbols;
1040 exec_list *instructions;
1041 hash_table *temps;
1042 };
1043
1044 remap_visitor v(target, temps);
1045
1046 inst->accept(&v);
1047 }
1048
1049
1050 /**
1051 * Move non-declarations from one instruction stream to another
1052 *
1053 * The intended usage pattern of this function is to pass the pointer to the
1054 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1055 * pointer) for \c last and \c false for \c make_copies on the first
1056 * call. Successive calls pass the return value of the previous call for
1057 * \c last and \c true for \c make_copies.
1058 *
1059 * \param instructions Source instruction stream
1060 * \param last Instruction after which new instructions should be
1061 * inserted in the target instruction stream
1062 * \param make_copies Flag selecting whether instructions in \c instructions
1063 * should be copied (via \c ir_instruction::clone) into the
1064 * target list or moved.
1065 *
1066 * \return
1067 * The new "last" instruction in the target instruction stream. This pointer
1068 * is suitable for use as the \c last parameter of a later call to this
1069 * function.
1070 */
1071 exec_node *
1072 move_non_declarations(exec_list *instructions, exec_node *last,
1073 bool make_copies, gl_shader *target)
1074 {
1075 hash_table *temps = NULL;
1076
1077 if (make_copies)
1078 temps = hash_table_ctor(0, hash_table_pointer_hash,
1079 hash_table_pointer_compare);
1080
1081 foreach_in_list_safe(ir_instruction, inst, instructions) {
1082 if (inst->as_function())
1083 continue;
1084
1085 ir_variable *var = inst->as_variable();
1086 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1087 continue;
1088
1089 assert(inst->as_assignment()
1090 || inst->as_call()
1091 || inst->as_if() /* for initializers with the ?: operator */
1092 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1093
1094 if (make_copies) {
1095 inst = inst->clone(target, NULL);
1096
1097 if (var != NULL)
1098 hash_table_insert(temps, inst, var);
1099 else
1100 remap_variables(inst, target, temps);
1101 } else {
1102 inst->remove();
1103 }
1104
1105 last->insert_after(inst);
1106 last = inst;
1107 }
1108
1109 if (make_copies)
1110 hash_table_dtor(temps);
1111
1112 return last;
1113 }
1114
1115 /**
1116 * Get the function signature for main from a shader
1117 */
1118 static ir_function_signature *
1119 get_main_function_signature(gl_shader *sh)
1120 {
1121 ir_function *const f = sh->symbols->get_function("main");
1122 if (f != NULL) {
1123 exec_list void_parameters;
1124
1125 /* Look for the 'void main()' signature and ensure that it's defined.
1126 * This keeps the linker from accidentally pick a shader that just
1127 * contains a prototype for main.
1128 *
1129 * We don't have to check for multiple definitions of main (in multiple
1130 * shaders) because that would have already been caught above.
1131 */
1132 ir_function_signature *sig = f->matching_signature(NULL, &void_parameters);
1133 if ((sig != NULL) && sig->is_defined) {
1134 return sig;
1135 }
1136 }
1137
1138 return NULL;
1139 }
1140
1141
1142 /**
1143 * This class is only used in link_intrastage_shaders() below but declaring
1144 * it inside that function leads to compiler warnings with some versions of
1145 * gcc.
1146 */
1147 class array_sizing_visitor : public ir_hierarchical_visitor {
1148 public:
1149 array_sizing_visitor()
1150 : mem_ctx(ralloc_context(NULL)),
1151 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1152 hash_table_pointer_compare))
1153 {
1154 }
1155
1156 ~array_sizing_visitor()
1157 {
1158 hash_table_dtor(this->unnamed_interfaces);
1159 ralloc_free(this->mem_ctx);
1160 }
1161
1162 virtual ir_visitor_status visit(ir_variable *var)
1163 {
1164 fixup_type(&var->type, var->data.max_array_access);
1165 if (var->type->is_interface()) {
1166 if (interface_contains_unsized_arrays(var->type)) {
1167 const glsl_type *new_type =
1168 resize_interface_members(var->type, var->max_ifc_array_access);
1169 var->type = new_type;
1170 var->change_interface_type(new_type);
1171 }
1172 } else if (var->type->is_array() &&
1173 var->type->fields.array->is_interface()) {
1174 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1175 const glsl_type *new_type =
1176 resize_interface_members(var->type->fields.array,
1177 var->max_ifc_array_access);
1178 var->change_interface_type(new_type);
1179 var->type =
1180 glsl_type::get_array_instance(new_type, var->type->length);
1181 }
1182 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1183 /* Store a pointer to the variable in the unnamed_interfaces
1184 * hashtable.
1185 */
1186 ir_variable **interface_vars = (ir_variable **)
1187 hash_table_find(this->unnamed_interfaces, ifc_type);
1188 if (interface_vars == NULL) {
1189 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1190 ifc_type->length);
1191 hash_table_insert(this->unnamed_interfaces, interface_vars,
1192 ifc_type);
1193 }
1194 unsigned index = ifc_type->field_index(var->name);
1195 assert(index < ifc_type->length);
1196 assert(interface_vars[index] == NULL);
1197 interface_vars[index] = var;
1198 }
1199 return visit_continue;
1200 }
1201
1202 /**
1203 * For each unnamed interface block that was discovered while running the
1204 * visitor, adjust the interface type to reflect the newly assigned array
1205 * sizes, and fix up the ir_variable nodes to point to the new interface
1206 * type.
1207 */
1208 void fixup_unnamed_interface_types()
1209 {
1210 hash_table_call_foreach(this->unnamed_interfaces,
1211 fixup_unnamed_interface_type, NULL);
1212 }
1213
1214 private:
1215 /**
1216 * If the type pointed to by \c type represents an unsized array, replace
1217 * it with a sized array whose size is determined by max_array_access.
1218 */
1219 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1220 {
1221 if ((*type)->is_unsized_array()) {
1222 *type = glsl_type::get_array_instance((*type)->fields.array,
1223 max_array_access + 1);
1224 assert(*type != NULL);
1225 }
1226 }
1227
1228 /**
1229 * Determine whether the given interface type contains unsized arrays (if
1230 * it doesn't, array_sizing_visitor doesn't need to process it).
1231 */
1232 static bool interface_contains_unsized_arrays(const glsl_type *type)
1233 {
1234 for (unsigned i = 0; i < type->length; i++) {
1235 const glsl_type *elem_type = type->fields.structure[i].type;
1236 if (elem_type->is_unsized_array())
1237 return true;
1238 }
1239 return false;
1240 }
1241
1242 /**
1243 * Create a new interface type based on the given type, with unsized arrays
1244 * replaced by sized arrays whose size is determined by
1245 * max_ifc_array_access.
1246 */
1247 static const glsl_type *
1248 resize_interface_members(const glsl_type *type,
1249 const unsigned *max_ifc_array_access)
1250 {
1251 unsigned num_fields = type->length;
1252 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1253 memcpy(fields, type->fields.structure,
1254 num_fields * sizeof(*fields));
1255 for (unsigned i = 0; i < num_fields; i++) {
1256 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1257 }
1258 glsl_interface_packing packing =
1259 (glsl_interface_packing) type->interface_packing;
1260 const glsl_type *new_ifc_type =
1261 glsl_type::get_interface_instance(fields, num_fields,
1262 packing, type->name);
1263 delete [] fields;
1264 return new_ifc_type;
1265 }
1266
1267 static void fixup_unnamed_interface_type(const void *key, void *data,
1268 void *)
1269 {
1270 const glsl_type *ifc_type = (const glsl_type *) key;
1271 ir_variable **interface_vars = (ir_variable **) data;
1272 unsigned num_fields = ifc_type->length;
1273 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1274 memcpy(fields, ifc_type->fields.structure,
1275 num_fields * sizeof(*fields));
1276 bool interface_type_changed = false;
1277 for (unsigned i = 0; i < num_fields; i++) {
1278 if (interface_vars[i] != NULL &&
1279 fields[i].type != interface_vars[i]->type) {
1280 fields[i].type = interface_vars[i]->type;
1281 interface_type_changed = true;
1282 }
1283 }
1284 if (!interface_type_changed) {
1285 delete [] fields;
1286 return;
1287 }
1288 glsl_interface_packing packing =
1289 (glsl_interface_packing) ifc_type->interface_packing;
1290 const glsl_type *new_ifc_type =
1291 glsl_type::get_interface_instance(fields, num_fields, packing,
1292 ifc_type->name);
1293 delete [] fields;
1294 for (unsigned i = 0; i < num_fields; i++) {
1295 if (interface_vars[i] != NULL)
1296 interface_vars[i]->change_interface_type(new_ifc_type);
1297 }
1298 }
1299
1300 /**
1301 * Memory context used to allocate the data in \c unnamed_interfaces.
1302 */
1303 void *mem_ctx;
1304
1305 /**
1306 * Hash table from const glsl_type * to an array of ir_variable *'s
1307 * pointing to the ir_variables constituting each unnamed interface block.
1308 */
1309 hash_table *unnamed_interfaces;
1310 };
1311
1312 /**
1313 * Performs the cross-validation of layout qualifiers specified in
1314 * redeclaration of gl_FragCoord for the attached fragment shaders,
1315 * and propagates them to the linked FS and linked shader program.
1316 */
1317 static void
1318 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1319 struct gl_shader *linked_shader,
1320 struct gl_shader **shader_list,
1321 unsigned num_shaders)
1322 {
1323 linked_shader->redeclares_gl_fragcoord = false;
1324 linked_shader->uses_gl_fragcoord = false;
1325 linked_shader->origin_upper_left = false;
1326 linked_shader->pixel_center_integer = false;
1327
1328 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1329 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1330 return;
1331
1332 for (unsigned i = 0; i < num_shaders; i++) {
1333 struct gl_shader *shader = shader_list[i];
1334 /* From the GLSL 1.50 spec, page 39:
1335 *
1336 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1337 * it must be redeclared in all the fragment shaders in that program
1338 * that have a static use gl_FragCoord."
1339 *
1340 * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
1341 * gl_FragCoord with no layout qualifiers but the other one doesn't
1342 * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
1343 * should be a link error. But, generating link error for this case will
1344 * be a wrong behaviour which spec didn't intend to do and it could also
1345 * break some applications.
1346 */
1347 if ((linked_shader->redeclares_gl_fragcoord
1348 && !shader->redeclares_gl_fragcoord
1349 && shader->uses_gl_fragcoord
1350 && (linked_shader->origin_upper_left
1351 || linked_shader->pixel_center_integer))
1352 || (shader->redeclares_gl_fragcoord
1353 && !linked_shader->redeclares_gl_fragcoord
1354 && linked_shader->uses_gl_fragcoord
1355 && (shader->origin_upper_left
1356 || shader->pixel_center_integer))) {
1357 linker_error(prog, "fragment shader defined with conflicting "
1358 "layout qualifiers for gl_FragCoord\n");
1359 }
1360
1361 /* From the GLSL 1.50 spec, page 39:
1362 *
1363 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1364 * single program must have the same set of qualifiers."
1365 */
1366 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1367 && (shader->origin_upper_left != linked_shader->origin_upper_left
1368 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1369 linker_error(prog, "fragment shader defined with conflicting "
1370 "layout qualifiers for gl_FragCoord\n");
1371 }
1372
1373 /* Update the linked shader state.  Note that uses_gl_fragcoord should
1374 * accumulate the results.  The other values should replace.  If there
1375 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1376 * are already known to be the same.
1377 */
1378 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1379 linked_shader->redeclares_gl_fragcoord =
1380 shader->redeclares_gl_fragcoord;
1381 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1382 || shader->uses_gl_fragcoord;
1383 linked_shader->origin_upper_left = shader->origin_upper_left;
1384 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1385 }
1386 }
1387 }
1388
1389 /**
1390 * Performs the cross-validation of geometry shader max_vertices and
1391 * primitive type layout qualifiers for the attached geometry shaders,
1392 * and propagates them to the linked GS and linked shader program.
1393 */
1394 static void
1395 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1396 struct gl_shader *linked_shader,
1397 struct gl_shader **shader_list,
1398 unsigned num_shaders)
1399 {
1400 linked_shader->Geom.VerticesOut = 0;
1401 linked_shader->Geom.Invocations = 0;
1402 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1403 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1404
1405 /* No in/out qualifiers defined for anything but GLSL 1.50+
1406 * geometry shaders so far.
1407 */
1408 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1409 return;
1410
1411 /* From the GLSL 1.50 spec, page 46:
1412 *
1413 * "All geometry shader output layout declarations in a program
1414 * must declare the same layout and same value for
1415 * max_vertices. There must be at least one geometry output
1416 * layout declaration somewhere in a program, but not all
1417 * geometry shaders (compilation units) are required to
1418 * declare it."
1419 */
1420
1421 for (unsigned i = 0; i < num_shaders; i++) {
1422 struct gl_shader *shader = shader_list[i];
1423
1424 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1425 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1426 linked_shader->Geom.InputType != shader->Geom.InputType) {
1427 linker_error(prog, "geometry shader defined with conflicting "
1428 "input types\n");
1429 return;
1430 }
1431 linked_shader->Geom.InputType = shader->Geom.InputType;
1432 }
1433
1434 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1435 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1436 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1437 linker_error(prog, "geometry shader defined with conflicting "
1438 "output types\n");
1439 return;
1440 }
1441 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1442 }
1443
1444 if (shader->Geom.VerticesOut != 0) {
1445 if (linked_shader->Geom.VerticesOut != 0 &&
1446 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1447 linker_error(prog, "geometry shader defined with conflicting "
1448 "output vertex count (%d and %d)\n",
1449 linked_shader->Geom.VerticesOut,
1450 shader->Geom.VerticesOut);
1451 return;
1452 }
1453 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1454 }
1455
1456 if (shader->Geom.Invocations != 0) {
1457 if (linked_shader->Geom.Invocations != 0 &&
1458 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1459 linker_error(prog, "geometry shader defined with conflicting "
1460 "invocation count (%d and %d)\n",
1461 linked_shader->Geom.Invocations,
1462 shader->Geom.Invocations);
1463 return;
1464 }
1465 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1466 }
1467 }
1468
1469 /* Just do the intrastage -> interstage propagation right now,
1470 * since we already know we're in the right type of shader program
1471 * for doing it.
1472 */
1473 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1474 linker_error(prog,
1475 "geometry shader didn't declare primitive input type\n");
1476 return;
1477 }
1478 prog->Geom.InputType = linked_shader->Geom.InputType;
1479
1480 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1481 linker_error(prog,
1482 "geometry shader didn't declare primitive output type\n");
1483 return;
1484 }
1485 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1486
1487 if (linked_shader->Geom.VerticesOut == 0) {
1488 linker_error(prog,
1489 "geometry shader didn't declare max_vertices\n");
1490 return;
1491 }
1492 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1493
1494 if (linked_shader->Geom.Invocations == 0)
1495 linked_shader->Geom.Invocations = 1;
1496
1497 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1498 }
1499
1500
1501 /**
1502 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1503 * qualifiers for the attached compute shaders, and propagate them to the
1504 * linked CS and linked shader program.
1505 */
1506 static void
1507 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1508 struct gl_shader *linked_shader,
1509 struct gl_shader **shader_list,
1510 unsigned num_shaders)
1511 {
1512 for (int i = 0; i < 3; i++)
1513 linked_shader->Comp.LocalSize[i] = 0;
1514
1515 /* This function is called for all shader stages, but it only has an effect
1516 * for compute shaders.
1517 */
1518 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1519 return;
1520
1521 /* From the ARB_compute_shader spec, in the section describing local size
1522 * declarations:
1523 *
1524 * If multiple compute shaders attached to a single program object
1525 * declare local work-group size, the declarations must be identical;
1526 * otherwise a link-time error results. Furthermore, if a program
1527 * object contains any compute shaders, at least one must contain an
1528 * input layout qualifier specifying the local work sizes of the
1529 * program, or a link-time error will occur.
1530 */
1531 for (unsigned sh = 0; sh < num_shaders; sh++) {
1532 struct gl_shader *shader = shader_list[sh];
1533
1534 if (shader->Comp.LocalSize[0] != 0) {
1535 if (linked_shader->Comp.LocalSize[0] != 0) {
1536 for (int i = 0; i < 3; i++) {
1537 if (linked_shader->Comp.LocalSize[i] !=
1538 shader->Comp.LocalSize[i]) {
1539 linker_error(prog, "compute shader defined with conflicting "
1540 "local sizes\n");
1541 return;
1542 }
1543 }
1544 }
1545 for (int i = 0; i < 3; i++)
1546 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1547 }
1548 }
1549
1550 /* Just do the intrastage -> interstage propagation right now,
1551 * since we already know we're in the right type of shader program
1552 * for doing it.
1553 */
1554 if (linked_shader->Comp.LocalSize[0] == 0) {
1555 linker_error(prog, "compute shader didn't declare local size\n");
1556 return;
1557 }
1558 for (int i = 0; i < 3; i++)
1559 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1560 }
1561
1562
1563 /**
1564 * Combine a group of shaders for a single stage to generate a linked shader
1565 *
1566 * \note
1567 * If this function is supplied a single shader, it is cloned, and the new
1568 * shader is returned.
1569 */
1570 static struct gl_shader *
1571 link_intrastage_shaders(void *mem_ctx,
1572 struct gl_context *ctx,
1573 struct gl_shader_program *prog,
1574 struct gl_shader **shader_list,
1575 unsigned num_shaders)
1576 {
1577 struct gl_uniform_block *uniform_blocks = NULL;
1578
1579 /* Check that global variables defined in multiple shaders are consistent.
1580 */
1581 cross_validate_globals(prog, shader_list, num_shaders, false);
1582 if (!prog->LinkStatus)
1583 return NULL;
1584
1585 /* Check that interface blocks defined in multiple shaders are consistent.
1586 */
1587 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1588 num_shaders);
1589 if (!prog->LinkStatus)
1590 return NULL;
1591
1592 /* Link up uniform blocks defined within this stage. */
1593 const unsigned num_uniform_blocks =
1594 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1595 &uniform_blocks);
1596 if (!prog->LinkStatus)
1597 return NULL;
1598
1599 /* Check that there is only a single definition of each function signature
1600 * across all shaders.
1601 */
1602 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1603 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1604 ir_function *const f = node->as_function();
1605
1606 if (f == NULL)
1607 continue;
1608
1609 for (unsigned j = i + 1; j < num_shaders; j++) {
1610 ir_function *const other =
1611 shader_list[j]->symbols->get_function(f->name);
1612
1613 /* If the other shader has no function (and therefore no function
1614 * signatures) with the same name, skip to the next shader.
1615 */
1616 if (other == NULL)
1617 continue;
1618
1619 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1620 if (!sig->is_defined || sig->is_builtin())
1621 continue;
1622
1623 ir_function_signature *other_sig =
1624 other->exact_matching_signature(NULL, &sig->parameters);
1625
1626 if ((other_sig != NULL) && other_sig->is_defined
1627 && !other_sig->is_builtin()) {
1628 linker_error(prog, "function `%s' is multiply defined",
1629 f->name);
1630 return NULL;
1631 }
1632 }
1633 }
1634 }
1635 }
1636
1637 /* Find the shader that defines main, and make a clone of it.
1638 *
1639 * Starting with the clone, search for undefined references. If one is
1640 * found, find the shader that defines it. Clone the reference and add
1641 * it to the shader. Repeat until there are no undefined references or
1642 * until a reference cannot be resolved.
1643 */
1644 gl_shader *main = NULL;
1645 for (unsigned i = 0; i < num_shaders; i++) {
1646 if (get_main_function_signature(shader_list[i]) != NULL) {
1647 main = shader_list[i];
1648 break;
1649 }
1650 }
1651
1652 if (main == NULL) {
1653 linker_error(prog, "%s shader lacks `main'\n",
1654 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1655 return NULL;
1656 }
1657
1658 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1659 linked->ir = new(linked) exec_list;
1660 clone_ir_list(mem_ctx, linked->ir, main->ir);
1661
1662 linked->UniformBlocks = uniform_blocks;
1663 linked->NumUniformBlocks = num_uniform_blocks;
1664 ralloc_steal(linked, linked->UniformBlocks);
1665
1666 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1667 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1668 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1669
1670 populate_symbol_table(linked);
1671
1672 /* The a pointer to the main function in the final linked shader (i.e., the
1673 * copy of the original shader that contained the main function).
1674 */
1675 ir_function_signature *const main_sig = get_main_function_signature(linked);
1676
1677 /* Move any instructions other than variable declarations or function
1678 * declarations into main.
1679 */
1680 exec_node *insertion_point =
1681 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1682 linked);
1683
1684 for (unsigned i = 0; i < num_shaders; i++) {
1685 if (shader_list[i] == main)
1686 continue;
1687
1688 insertion_point = move_non_declarations(shader_list[i]->ir,
1689 insertion_point, true, linked);
1690 }
1691
1692 /* Check if any shader needs built-in functions. */
1693 bool need_builtins = false;
1694 for (unsigned i = 0; i < num_shaders; i++) {
1695 if (shader_list[i]->uses_builtin_functions) {
1696 need_builtins = true;
1697 break;
1698 }
1699 }
1700
1701 bool ok;
1702 if (need_builtins) {
1703 /* Make a temporary array one larger than shader_list, which will hold
1704 * the built-in function shader as well.
1705 */
1706 gl_shader **linking_shaders = (gl_shader **)
1707 calloc(num_shaders + 1, sizeof(gl_shader *));
1708 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1709 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1710
1711 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1712
1713 free(linking_shaders);
1714 } else {
1715 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1716 }
1717
1718
1719 if (!ok) {
1720 ctx->Driver.DeleteShader(ctx, linked);
1721 return NULL;
1722 }
1723
1724 /* At this point linked should contain all of the linked IR, so
1725 * validate it to make sure nothing went wrong.
1726 */
1727 validate_ir_tree(linked->ir);
1728
1729 /* Set the size of geometry shader input arrays */
1730 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1731 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1732 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1733 foreach_in_list(ir_instruction, ir, linked->ir) {
1734 ir->accept(&input_resize_visitor);
1735 }
1736 }
1737
1738 /* Make a pass over all variable declarations to ensure that arrays with
1739 * unspecified sizes have a size specified. The size is inferred from the
1740 * max_array_access field.
1741 */
1742 array_sizing_visitor v;
1743 v.run(linked->ir);
1744 v.fixup_unnamed_interface_types();
1745
1746 return linked;
1747 }
1748
1749 /**
1750 * Update the sizes of linked shader uniform arrays to the maximum
1751 * array index used.
1752 *
1753 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1754 *
1755 * If one or more elements of an array are active,
1756 * GetActiveUniform will return the name of the array in name,
1757 * subject to the restrictions listed above. The type of the array
1758 * is returned in type. The size parameter contains the highest
1759 * array element index used, plus one. The compiler or linker
1760 * determines the highest index used. There will be only one
1761 * active uniform reported by the GL per uniform array.
1762
1763 */
1764 static void
1765 update_array_sizes(struct gl_shader_program *prog)
1766 {
1767 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1768 if (prog->_LinkedShaders[i] == NULL)
1769 continue;
1770
1771 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1772 ir_variable *const var = node->as_variable();
1773
1774 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1775 !var->type->is_array())
1776 continue;
1777
1778 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1779 * will not be eliminated. Since we always do std140, just
1780 * don't resize arrays in UBOs.
1781 *
1782 * Atomic counters are supposed to get deterministic
1783 * locations assigned based on the declaration ordering and
1784 * sizes, array compaction would mess that up.
1785 */
1786 if (var->is_in_uniform_block() || var->type->contains_atomic())
1787 continue;
1788
1789 unsigned int size = var->data.max_array_access;
1790 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1791 if (prog->_LinkedShaders[j] == NULL)
1792 continue;
1793
1794 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1795 ir_variable *other_var = node2->as_variable();
1796 if (!other_var)
1797 continue;
1798
1799 if (strcmp(var->name, other_var->name) == 0 &&
1800 other_var->data.max_array_access > size) {
1801 size = other_var->data.max_array_access;
1802 }
1803 }
1804 }
1805
1806 if (size + 1 != var->type->length) {
1807 /* If this is a built-in uniform (i.e., it's backed by some
1808 * fixed-function state), adjust the number of state slots to
1809 * match the new array size. The number of slots per array entry
1810 * is not known. It seems safe to assume that the total number of
1811 * slots is an integer multiple of the number of array elements.
1812 * Determine the number of slots per array element by dividing by
1813 * the old (total) size.
1814 */
1815 if (var->num_state_slots > 0) {
1816 var->num_state_slots = (size + 1)
1817 * (var->num_state_slots / var->type->length);
1818 }
1819
1820 var->type = glsl_type::get_array_instance(var->type->fields.array,
1821 size + 1);
1822 /* FINISHME: We should update the types of array
1823 * dereferences of this variable now.
1824 */
1825 }
1826 }
1827 }
1828 }
1829
1830 /**
1831 * Find a contiguous set of available bits in a bitmask.
1832 *
1833 * \param used_mask Bits representing used (1) and unused (0) locations
1834 * \param needed_count Number of contiguous bits needed.
1835 *
1836 * \return
1837 * Base location of the available bits on success or -1 on failure.
1838 */
1839 int
1840 find_available_slots(unsigned used_mask, unsigned needed_count)
1841 {
1842 unsigned needed_mask = (1 << needed_count) - 1;
1843 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1844
1845 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1846 * cannot optimize possibly infinite loops" for the loop below.
1847 */
1848 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1849 return -1;
1850
1851 for (int i = 0; i <= max_bit_to_test; i++) {
1852 if ((needed_mask & ~used_mask) == needed_mask)
1853 return i;
1854
1855 needed_mask <<= 1;
1856 }
1857
1858 return -1;
1859 }
1860
1861
1862 /**
1863 * Assign locations for either VS inputs for FS outputs
1864 *
1865 * \param prog Shader program whose variables need locations assigned
1866 * \param target_index Selector for the program target to receive location
1867 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1868 * \c MESA_SHADER_FRAGMENT.
1869 * \param max_index Maximum number of generic locations. This corresponds
1870 * to either the maximum number of draw buffers or the
1871 * maximum number of generic attributes.
1872 *
1873 * \return
1874 * If locations are successfully assigned, true is returned. Otherwise an
1875 * error is emitted to the shader link log and false is returned.
1876 */
1877 bool
1878 assign_attribute_or_color_locations(gl_shader_program *prog,
1879 unsigned target_index,
1880 unsigned max_index)
1881 {
1882 /* Mark invalid locations as being used.
1883 */
1884 unsigned used_locations = (max_index >= 32)
1885 ? ~0 : ~((1 << max_index) - 1);
1886
1887 assert((target_index == MESA_SHADER_VERTEX)
1888 || (target_index == MESA_SHADER_FRAGMENT));
1889
1890 gl_shader *const sh = prog->_LinkedShaders[target_index];
1891 if (sh == NULL)
1892 return true;
1893
1894 /* Operate in a total of four passes.
1895 *
1896 * 1. Invalidate the location assignments for all vertex shader inputs.
1897 *
1898 * 2. Assign locations for inputs that have user-defined (via
1899 * glBindVertexAttribLocation) locations and outputs that have
1900 * user-defined locations (via glBindFragDataLocation).
1901 *
1902 * 3. Sort the attributes without assigned locations by number of slots
1903 * required in decreasing order. Fragmentation caused by attribute
1904 * locations assigned by the application may prevent large attributes
1905 * from having enough contiguous space.
1906 *
1907 * 4. Assign locations to any inputs without assigned locations.
1908 */
1909
1910 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1911 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1912
1913 const enum ir_variable_mode direction =
1914 (target_index == MESA_SHADER_VERTEX)
1915 ? ir_var_shader_in : ir_var_shader_out;
1916
1917
1918 /* Temporary storage for the set of attributes that need locations assigned.
1919 */
1920 struct temp_attr {
1921 unsigned slots;
1922 ir_variable *var;
1923
1924 /* Used below in the call to qsort. */
1925 static int compare(const void *a, const void *b)
1926 {
1927 const temp_attr *const l = (const temp_attr *) a;
1928 const temp_attr *const r = (const temp_attr *) b;
1929
1930 /* Reversed because we want a descending order sort below. */
1931 return r->slots - l->slots;
1932 }
1933 } to_assign[16];
1934
1935 unsigned num_attr = 0;
1936
1937 foreach_in_list(ir_instruction, node, sh->ir) {
1938 ir_variable *const var = node->as_variable();
1939
1940 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1941 continue;
1942
1943 if (var->data.explicit_location) {
1944 if ((var->data.location >= (int)(max_index + generic_base))
1945 || (var->data.location < 0)) {
1946 linker_error(prog,
1947 "invalid explicit location %d specified for `%s'\n",
1948 (var->data.location < 0)
1949 ? var->data.location
1950 : var->data.location - generic_base,
1951 var->name);
1952 return false;
1953 }
1954 } else if (target_index == MESA_SHADER_VERTEX) {
1955 unsigned binding;
1956
1957 if (prog->AttributeBindings->get(binding, var->name)) {
1958 assert(binding >= VERT_ATTRIB_GENERIC0);
1959 var->data.location = binding;
1960 var->data.is_unmatched_generic_inout = 0;
1961 }
1962 } else if (target_index == MESA_SHADER_FRAGMENT) {
1963 unsigned binding;
1964 unsigned index;
1965
1966 if (prog->FragDataBindings->get(binding, var->name)) {
1967 assert(binding >= FRAG_RESULT_DATA0);
1968 var->data.location = binding;
1969 var->data.is_unmatched_generic_inout = 0;
1970
1971 if (prog->FragDataIndexBindings->get(index, var->name)) {
1972 var->data.index = index;
1973 }
1974 }
1975 }
1976
1977 /* If the variable is not a built-in and has a location statically
1978 * assigned in the shader (presumably via a layout qualifier), make sure
1979 * that it doesn't collide with other assigned locations. Otherwise,
1980 * add it to the list of variables that need linker-assigned locations.
1981 */
1982 const unsigned slots = var->type->count_attribute_slots();
1983 if (var->data.location != -1) {
1984 if (var->data.location >= generic_base && var->data.index < 1) {
1985 /* From page 61 of the OpenGL 4.0 spec:
1986 *
1987 * "LinkProgram will fail if the attribute bindings assigned
1988 * by BindAttribLocation do not leave not enough space to
1989 * assign a location for an active matrix attribute or an
1990 * active attribute array, both of which require multiple
1991 * contiguous generic attributes."
1992 *
1993 * I think above text prohibits the aliasing of explicit and
1994 * automatic assignments. But, aliasing is allowed in manual
1995 * assignments of attribute locations. See below comments for
1996 * the details.
1997 *
1998 * From OpenGL 4.0 spec, page 61:
1999 *
2000 * "It is possible for an application to bind more than one
2001 * attribute name to the same location. This is referred to as
2002 * aliasing. This will only work if only one of the aliased
2003 * attributes is active in the executable program, or if no
2004 * path through the shader consumes more than one attribute of
2005 * a set of attributes aliased to the same location. A link
2006 * error can occur if the linker determines that every path
2007 * through the shader consumes multiple aliased attributes,
2008 * but implementations are not required to generate an error
2009 * in this case."
2010 *
2011 * From GLSL 4.30 spec, page 54:
2012 *
2013 * "A program will fail to link if any two non-vertex shader
2014 * input variables are assigned to the same location. For
2015 * vertex shaders, multiple input variables may be assigned
2016 * to the same location using either layout qualifiers or via
2017 * the OpenGL API. However, such aliasing is intended only to
2018 * support vertex shaders where each execution path accesses
2019 * at most one input per each location. Implementations are
2020 * permitted, but not required, to generate link-time errors
2021 * if they detect that every path through the vertex shader
2022 * executable accesses multiple inputs assigned to any single
2023 * location. For all shader types, a program will fail to link
2024 * if explicit location assignments leave the linker unable
2025 * to find space for other variables without explicit
2026 * assignments."
2027 *
2028 * From OpenGL ES 3.0 spec, page 56:
2029 *
2030 * "Binding more than one attribute name to the same location
2031 * is referred to as aliasing, and is not permitted in OpenGL
2032 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2033 * fail when this condition exists. However, aliasing is
2034 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2035 * This will only work if only one of the aliased attributes
2036 * is active in the executable program, or if no path through
2037 * the shader consumes more than one attribute of a set of
2038 * attributes aliased to the same location. A link error can
2039 * occur if the linker determines that every path through the
2040 * shader consumes multiple aliased attributes, but implemen-
2041 * tations are not required to generate an error in this case."
2042 *
2043 * After looking at above references from OpenGL, OpenGL ES and
2044 * GLSL specifications, we allow aliasing of vertex input variables
2045 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2046 *
2047 * NOTE: This is not required by the spec but its worth mentioning
2048 * here that we're not doing anything to make sure that no path
2049 * through the vertex shader executable accesses multiple inputs
2050 * assigned to any single location.
2051 */
2052
2053 /* Mask representing the contiguous slots that will be used by
2054 * this attribute.
2055 */
2056 const unsigned attr = var->data.location - generic_base;
2057 const unsigned use_mask = (1 << slots) - 1;
2058 const char *const string = (target_index == MESA_SHADER_VERTEX)
2059 ? "vertex shader input" : "fragment shader output";
2060
2061 /* Generate a link error if the requested locations for this
2062 * attribute exceed the maximum allowed attribute location.
2063 */
2064 if (attr + slots > max_index) {
2065 linker_error(prog,
2066 "insufficient contiguous locations "
2067 "available for %s `%s' %d %d %d", string,
2068 var->name, used_locations, use_mask, attr);
2069 return false;
2070 }
2071
2072 /* Generate a link error if the set of bits requested for this
2073 * attribute overlaps any previously allocated bits.
2074 */
2075 if ((~(use_mask << attr) & used_locations) != used_locations) {
2076 if (target_index == MESA_SHADER_FRAGMENT ||
2077 (prog->IsES && prog->Version >= 300)) {
2078 linker_error(prog,
2079 "overlapping location is assigned "
2080 "to %s `%s' %d %d %d\n", string,
2081 var->name, used_locations, use_mask, attr);
2082 return false;
2083 } else {
2084 linker_warning(prog,
2085 "overlapping location is assigned "
2086 "to %s `%s' %d %d %d\n", string,
2087 var->name, used_locations, use_mask, attr);
2088 }
2089 }
2090
2091 used_locations |= (use_mask << attr);
2092 }
2093
2094 continue;
2095 }
2096
2097 to_assign[num_attr].slots = slots;
2098 to_assign[num_attr].var = var;
2099 num_attr++;
2100 }
2101
2102 /* If all of the attributes were assigned locations by the application (or
2103 * are built-in attributes with fixed locations), return early. This should
2104 * be the common case.
2105 */
2106 if (num_attr == 0)
2107 return true;
2108
2109 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2110
2111 if (target_index == MESA_SHADER_VERTEX) {
2112 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2113 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2114 * reserved to prevent it from being automatically allocated below.
2115 */
2116 find_deref_visitor find("gl_Vertex");
2117 find.run(sh->ir);
2118 if (find.variable_found())
2119 used_locations |= (1 << 0);
2120 }
2121
2122 for (unsigned i = 0; i < num_attr; i++) {
2123 /* Mask representing the contiguous slots that will be used by this
2124 * attribute.
2125 */
2126 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2127
2128 int location = find_available_slots(used_locations, to_assign[i].slots);
2129
2130 if (location < 0) {
2131 const char *const string = (target_index == MESA_SHADER_VERTEX)
2132 ? "vertex shader input" : "fragment shader output";
2133
2134 linker_error(prog,
2135 "insufficient contiguous locations "
2136 "available for %s `%s'",
2137 string, to_assign[i].var->name);
2138 return false;
2139 }
2140
2141 to_assign[i].var->data.location = generic_base + location;
2142 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2143 used_locations |= (use_mask << location);
2144 }
2145
2146 return true;
2147 }
2148
2149
2150 /**
2151 * Demote shader inputs and outputs that are not used in other stages
2152 */
2153 void
2154 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2155 {
2156 foreach_in_list(ir_instruction, node, sh->ir) {
2157 ir_variable *const var = node->as_variable();
2158
2159 if ((var == NULL) || (var->data.mode != int(mode)))
2160 continue;
2161
2162 /* A shader 'in' or 'out' variable is only really an input or output if
2163 * its value is used by other shader stages. This will cause the variable
2164 * to have a location assigned.
2165 */
2166 if (var->data.is_unmatched_generic_inout) {
2167 var->data.mode = ir_var_auto;
2168 }
2169 }
2170 }
2171
2172
2173 /**
2174 * Store the gl_FragDepth layout in the gl_shader_program struct.
2175 */
2176 static void
2177 store_fragdepth_layout(struct gl_shader_program *prog)
2178 {
2179 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2180 return;
2181 }
2182
2183 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2184
2185 /* We don't look up the gl_FragDepth symbol directly because if
2186 * gl_FragDepth is not used in the shader, it's removed from the IR.
2187 * However, the symbol won't be removed from the symbol table.
2188 *
2189 * We're only interested in the cases where the variable is NOT removed
2190 * from the IR.
2191 */
2192 foreach_in_list(ir_instruction, node, ir) {
2193 ir_variable *const var = node->as_variable();
2194
2195 if (var == NULL || var->data.mode != ir_var_shader_out) {
2196 continue;
2197 }
2198
2199 if (strcmp(var->name, "gl_FragDepth") == 0) {
2200 switch (var->data.depth_layout) {
2201 case ir_depth_layout_none:
2202 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2203 return;
2204 case ir_depth_layout_any:
2205 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2206 return;
2207 case ir_depth_layout_greater:
2208 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2209 return;
2210 case ir_depth_layout_less:
2211 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2212 return;
2213 case ir_depth_layout_unchanged:
2214 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2215 return;
2216 default:
2217 assert(0);
2218 return;
2219 }
2220 }
2221 }
2222 }
2223
2224 /**
2225 * Validate the resources used by a program versus the implementation limits
2226 */
2227 static void
2228 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2229 {
2230 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2231 struct gl_shader *sh = prog->_LinkedShaders[i];
2232
2233 if (sh == NULL)
2234 continue;
2235
2236 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2237 linker_error(prog, "Too many %s shader texture samplers",
2238 _mesa_shader_stage_to_string(i));
2239 }
2240
2241 if (sh->num_uniform_components >
2242 ctx->Const.Program[i].MaxUniformComponents) {
2243 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2244 linker_warning(prog, "Too many %s shader default uniform block "
2245 "components, but the driver will try to optimize "
2246 "them out; this is non-portable out-of-spec "
2247 "behavior\n",
2248 _mesa_shader_stage_to_string(i));
2249 } else {
2250 linker_error(prog, "Too many %s shader default uniform block "
2251 "components",
2252 _mesa_shader_stage_to_string(i));
2253 }
2254 }
2255
2256 if (sh->num_combined_uniform_components >
2257 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2258 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2259 linker_warning(prog, "Too many %s shader uniform components, "
2260 "but the driver will try to optimize them out; "
2261 "this is non-portable out-of-spec behavior\n",
2262 _mesa_shader_stage_to_string(i));
2263 } else {
2264 linker_error(prog, "Too many %s shader uniform components",
2265 _mesa_shader_stage_to_string(i));
2266 }
2267 }
2268 }
2269
2270 unsigned blocks[MESA_SHADER_STAGES] = {0};
2271 unsigned total_uniform_blocks = 0;
2272
2273 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2274 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2275 if (prog->UniformBlockStageIndex[j][i] != -1) {
2276 blocks[j]++;
2277 total_uniform_blocks++;
2278 }
2279 }
2280
2281 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2282 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
2283 prog->NumUniformBlocks,
2284 ctx->Const.MaxCombinedUniformBlocks);
2285 } else {
2286 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2287 const unsigned max_uniform_blocks =
2288 ctx->Const.Program[i].MaxUniformBlocks;
2289 if (blocks[i] > max_uniform_blocks) {
2290 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
2291 _mesa_shader_stage_to_string(i),
2292 blocks[i],
2293 max_uniform_blocks);
2294 break;
2295 }
2296 }
2297 }
2298 }
2299 }
2300
2301 /**
2302 * Validate shader image resources.
2303 */
2304 static void
2305 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2306 {
2307 unsigned total_image_units = 0;
2308 unsigned fragment_outputs = 0;
2309
2310 if (!ctx->Extensions.ARB_shader_image_load_store)
2311 return;
2312
2313 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2314 struct gl_shader *sh = prog->_LinkedShaders[i];
2315
2316 if (sh) {
2317 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2318 linker_error(prog, "Too many %s shader image uniforms",
2319 _mesa_shader_stage_to_string(i));
2320
2321 total_image_units += sh->NumImages;
2322
2323 if (i == MESA_SHADER_FRAGMENT) {
2324 foreach_in_list(ir_instruction, node, sh->ir) {
2325 ir_variable *var = node->as_variable();
2326 if (var && var->data.mode == ir_var_shader_out)
2327 fragment_outputs += var->type->count_attribute_slots();
2328 }
2329 }
2330 }
2331 }
2332
2333 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2334 linker_error(prog, "Too many combined image uniforms");
2335
2336 if (total_image_units + fragment_outputs >
2337 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2338 linker_error(prog, "Too many combined image uniforms and fragment outputs");
2339 }
2340
2341
2342 /**
2343 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2344 * for a variable, checks for overlaps between other uniforms using explicit
2345 * locations.
2346 */
2347 static bool
2348 reserve_explicit_locations(struct gl_shader_program *prog,
2349 string_to_uint_map *map, ir_variable *var)
2350 {
2351 unsigned slots = var->type->uniform_locations();
2352 unsigned max_loc = var->data.location + slots - 1;
2353
2354 /* Resize remap table if locations do not fit in the current one. */
2355 if (max_loc + 1 > prog->NumUniformRemapTable) {
2356 prog->UniformRemapTable =
2357 reralloc(prog, prog->UniformRemapTable,
2358 gl_uniform_storage *,
2359 max_loc + 1);
2360
2361 if (!prog->UniformRemapTable) {
2362 linker_error(prog, "Out of memory during linking.");
2363 return false;
2364 }
2365
2366 /* Initialize allocated space. */
2367 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2368 prog->UniformRemapTable[i] = NULL;
2369
2370 prog->NumUniformRemapTable = max_loc + 1;
2371 }
2372
2373 for (unsigned i = 0; i < slots; i++) {
2374 unsigned loc = var->data.location + i;
2375
2376 /* Check if location is already used. */
2377 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2378
2379 /* Possibly same uniform from a different stage, this is ok. */
2380 unsigned hash_loc;
2381 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2382 continue;
2383
2384 /* ARB_explicit_uniform_location specification states:
2385 *
2386 * "No two default-block uniform variables in the program can have
2387 * the same location, even if they are unused, otherwise a compiler
2388 * or linker error will be generated."
2389 */
2390 linker_error(prog,
2391 "location qualifier for uniform %s overlaps"
2392 "previously used location",
2393 var->name);
2394 return false;
2395 }
2396
2397 /* Initialize location as inactive before optimization
2398 * rounds and location assignment.
2399 */
2400 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2401 }
2402
2403 /* Note, base location used for arrays. */
2404 map->put(var->data.location, var->name);
2405
2406 return true;
2407 }
2408
2409 /**
2410 * Check and reserve all explicit uniform locations, called before
2411 * any optimizations happen to handle also inactive uniforms and
2412 * inactive array elements that may get trimmed away.
2413 */
2414 static void
2415 check_explicit_uniform_locations(struct gl_context *ctx,
2416 struct gl_shader_program *prog)
2417 {
2418 if (!ctx->Extensions.ARB_explicit_uniform_location)
2419 return;
2420
2421 /* This map is used to detect if overlapping explicit locations
2422 * occur with the same uniform (from different stage) or a different one.
2423 */
2424 string_to_uint_map *uniform_map = new string_to_uint_map;
2425
2426 if (!uniform_map) {
2427 linker_error(prog, "Out of memory during linking.");
2428 return;
2429 }
2430
2431 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2432 struct gl_shader *sh = prog->_LinkedShaders[i];
2433
2434 if (!sh)
2435 continue;
2436
2437 foreach_in_list(ir_instruction, node, sh->ir) {
2438 ir_variable *var = node->as_variable();
2439 if ((var && var->data.mode == ir_var_uniform) &&
2440 var->data.explicit_location) {
2441 if (!reserve_explicit_locations(prog, uniform_map, var))
2442 return;
2443 }
2444 }
2445 }
2446
2447 delete uniform_map;
2448 }
2449
2450 void
2451 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2452 {
2453 tfeedback_decl *tfeedback_decls = NULL;
2454 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2455
2456 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2457
2458 prog->LinkStatus = true; /* All error paths will set this to false */
2459 prog->Validated = false;
2460 prog->_Used = false;
2461
2462 ralloc_free(prog->InfoLog);
2463 prog->InfoLog = ralloc_strdup(NULL, "");
2464
2465 ralloc_free(prog->UniformBlocks);
2466 prog->UniformBlocks = NULL;
2467 prog->NumUniformBlocks = 0;
2468 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2469 ralloc_free(prog->UniformBlockStageIndex[i]);
2470 prog->UniformBlockStageIndex[i] = NULL;
2471 }
2472
2473 ralloc_free(prog->AtomicBuffers);
2474 prog->AtomicBuffers = NULL;
2475 prog->NumAtomicBuffers = 0;
2476 prog->ARB_fragment_coord_conventions_enable = false;
2477
2478 /* Separate the shaders into groups based on their type.
2479 */
2480 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2481 unsigned num_shaders[MESA_SHADER_STAGES];
2482
2483 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2484 shader_list[i] = (struct gl_shader **)
2485 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2486 num_shaders[i] = 0;
2487 }
2488
2489 unsigned min_version = UINT_MAX;
2490 unsigned max_version = 0;
2491 const bool is_es_prog =
2492 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2493 for (unsigned i = 0; i < prog->NumShaders; i++) {
2494 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2495 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2496
2497 if (prog->Shaders[i]->IsES != is_es_prog) {
2498 linker_error(prog, "all shaders must use same shading "
2499 "language version\n");
2500 goto done;
2501 }
2502
2503 prog->ARB_fragment_coord_conventions_enable |=
2504 prog->Shaders[i]->ARB_fragment_coord_conventions_enable;
2505
2506 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2507 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2508 num_shaders[shader_type]++;
2509 }
2510
2511 /* In desktop GLSL, different shader versions may be linked together. In
2512 * GLSL ES, all shader versions must be the same.
2513 */
2514 if (is_es_prog && min_version != max_version) {
2515 linker_error(prog, "all shaders must use same shading "
2516 "language version\n");
2517 goto done;
2518 }
2519
2520 prog->Version = max_version;
2521 prog->IsES = is_es_prog;
2522
2523 /* Geometry shaders have to be linked with vertex shaders.
2524 */
2525 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2526 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2527 !prog->SeparateShader) {
2528 linker_error(prog, "Geometry shader must be linked with "
2529 "vertex shader\n");
2530 goto done;
2531 }
2532
2533 /* Compute shaders have additional restrictions. */
2534 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2535 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2536 linker_error(prog, "Compute shaders may not be linked with any other "
2537 "type of shader\n");
2538 }
2539
2540 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2541 if (prog->_LinkedShaders[i] != NULL)
2542 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2543
2544 prog->_LinkedShaders[i] = NULL;
2545 }
2546
2547 /* Link all shaders for a particular stage and validate the result.
2548 */
2549 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2550 if (num_shaders[stage] > 0) {
2551 gl_shader *const sh =
2552 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2553 num_shaders[stage]);
2554
2555 if (!prog->LinkStatus)
2556 goto done;
2557
2558 switch (stage) {
2559 case MESA_SHADER_VERTEX:
2560 validate_vertex_shader_executable(prog, sh);
2561 break;
2562 case MESA_SHADER_GEOMETRY:
2563 validate_geometry_shader_executable(prog, sh);
2564 break;
2565 case MESA_SHADER_FRAGMENT:
2566 validate_fragment_shader_executable(prog, sh);
2567 break;
2568 }
2569 if (!prog->LinkStatus)
2570 goto done;
2571
2572 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2573 }
2574 }
2575
2576 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2577 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2578 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2579 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2580 else
2581 prog->LastClipDistanceArraySize = 0; /* Not used */
2582
2583 /* Here begins the inter-stage linking phase. Some initial validation is
2584 * performed, then locations are assigned for uniforms, attributes, and
2585 * varyings.
2586 */
2587 cross_validate_uniforms(prog);
2588 if (!prog->LinkStatus)
2589 goto done;
2590
2591 unsigned prev;
2592
2593 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2594 if (prog->_LinkedShaders[prev] != NULL)
2595 break;
2596 }
2597
2598 check_explicit_uniform_locations(ctx, prog);
2599 if (!prog->LinkStatus)
2600 goto done;
2601
2602 /* Validate the inputs of each stage with the output of the preceding
2603 * stage.
2604 */
2605 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2606 if (prog->_LinkedShaders[i] == NULL)
2607 continue;
2608
2609 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2610 prog->_LinkedShaders[i]);
2611 if (!prog->LinkStatus)
2612 goto done;
2613
2614 cross_validate_outputs_to_inputs(prog,
2615 prog->_LinkedShaders[prev],
2616 prog->_LinkedShaders[i]);
2617 if (!prog->LinkStatus)
2618 goto done;
2619
2620 prev = i;
2621 }
2622
2623 /* Cross-validate uniform blocks between shader stages */
2624 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2625 MESA_SHADER_STAGES);
2626 if (!prog->LinkStatus)
2627 goto done;
2628
2629 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2630 if (prog->_LinkedShaders[i] != NULL)
2631 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2632 }
2633
2634 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2635 * it before optimization because we want most of the checks to get
2636 * dropped thanks to constant propagation.
2637 *
2638 * This rule also applies to GLSL ES 3.00.
2639 */
2640 if (max_version >= (is_es_prog ? 300 : 130)) {
2641 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2642 if (sh) {
2643 lower_discard_flow(sh->ir);
2644 }
2645 }
2646
2647 if (!interstage_cross_validate_uniform_blocks(prog))
2648 goto done;
2649
2650 /* Do common optimization before assigning storage for attributes,
2651 * uniforms, and varyings. Later optimization could possibly make
2652 * some of that unused.
2653 */
2654 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2655 if (prog->_LinkedShaders[i] == NULL)
2656 continue;
2657
2658 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2659 if (!prog->LinkStatus)
2660 goto done;
2661
2662 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
2663 lower_clip_distance(prog->_LinkedShaders[i]);
2664 }
2665
2666 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2667 &ctx->ShaderCompilerOptions[i],
2668 ctx->Const.NativeIntegers))
2669 ;
2670 }
2671
2672 /* Check and validate stream emissions in geometry shaders */
2673 validate_geometry_shader_emissions(ctx, prog);
2674
2675 /* Mark all generic shader inputs and outputs as unpaired. */
2676 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2677 if (prog->_LinkedShaders[i] != NULL) {
2678 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2679 }
2680 }
2681
2682 /* FINISHME: The value of the max_attribute_index parameter is
2683 * FINISHME: implementation dependent based on the value of
2684 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2685 * FINISHME: at least 16, so hardcode 16 for now.
2686 */
2687 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2688 goto done;
2689 }
2690
2691 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2692 goto done;
2693 }
2694
2695 unsigned first;
2696 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2697 if (prog->_LinkedShaders[first] != NULL)
2698 break;
2699 }
2700
2701 if (num_tfeedback_decls != 0) {
2702 /* From GL_EXT_transform_feedback:
2703 * A program will fail to link if:
2704 *
2705 * * the <count> specified by TransformFeedbackVaryingsEXT is
2706 * non-zero, but the program object has no vertex or geometry
2707 * shader;
2708 */
2709 if (first == MESA_SHADER_FRAGMENT) {
2710 linker_error(prog, "Transform feedback varyings specified, but "
2711 "no vertex or geometry shader is present.");
2712 goto done;
2713 }
2714
2715 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2716 prog->TransformFeedback.NumVarying);
2717 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2718 prog->TransformFeedback.VaryingNames,
2719 tfeedback_decls))
2720 goto done;
2721 }
2722
2723 /* Linking the stages in the opposite order (from fragment to vertex)
2724 * ensures that inter-shader outputs written to in an earlier stage are
2725 * eliminated if they are (transitively) not used in a later stage.
2726 */
2727 int last, next;
2728 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2729 if (prog->_LinkedShaders[last] != NULL)
2730 break;
2731 }
2732
2733 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2734 gl_shader *const sh = prog->_LinkedShaders[last];
2735
2736 if (num_tfeedback_decls != 0 || prog->SeparateShader) {
2737 /* There was no fragment shader, but we still have to assign varying
2738 * locations for use by transform feedback.
2739 */
2740 if (!assign_varying_locations(ctx, mem_ctx, prog,
2741 sh, NULL,
2742 num_tfeedback_decls, tfeedback_decls,
2743 0))
2744 goto done;
2745 }
2746
2747 do_dead_builtin_varyings(ctx, sh, NULL,
2748 num_tfeedback_decls, tfeedback_decls);
2749
2750 if (!prog->SeparateShader)
2751 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2752
2753 /* Eliminate code that is now dead due to unused outputs being demoted.
2754 */
2755 while (do_dead_code(sh->ir, false))
2756 ;
2757 }
2758 else if (first == MESA_SHADER_FRAGMENT) {
2759 /* If the program only contains a fragment shader...
2760 */
2761 gl_shader *const sh = prog->_LinkedShaders[first];
2762
2763 do_dead_builtin_varyings(ctx, NULL, sh,
2764 num_tfeedback_decls, tfeedback_decls);
2765
2766 if (prog->SeparateShader) {
2767 if (!assign_varying_locations(ctx, mem_ctx, prog,
2768 NULL /* producer */,
2769 sh /* consumer */,
2770 0 /* num_tfeedback_decls */,
2771 NULL /* tfeedback_decls */,
2772 0 /* gs_input_vertices */))
2773 goto done;
2774 } else
2775 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2776
2777 while (do_dead_code(sh->ir, false))
2778 ;
2779 }
2780
2781 next = last;
2782 for (int i = next - 1; i >= 0; i--) {
2783 if (prog->_LinkedShaders[i] == NULL)
2784 continue;
2785
2786 gl_shader *const sh_i = prog->_LinkedShaders[i];
2787 gl_shader *const sh_next = prog->_LinkedShaders[next];
2788 unsigned gs_input_vertices =
2789 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2790
2791 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2792 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2793 tfeedback_decls, gs_input_vertices))
2794 goto done;
2795
2796 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2797 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2798 tfeedback_decls);
2799
2800 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2801 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2802
2803 /* Eliminate code that is now dead due to unused outputs being demoted.
2804 */
2805 while (do_dead_code(sh_i->ir, false))
2806 ;
2807 while (do_dead_code(sh_next->ir, false))
2808 ;
2809
2810 /* This must be done after all dead varyings are eliminated. */
2811 if (!check_against_output_limit(ctx, prog, sh_i))
2812 goto done;
2813 if (!check_against_input_limit(ctx, prog, sh_next))
2814 goto done;
2815
2816 next = i;
2817 }
2818
2819 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2820 goto done;
2821
2822 update_array_sizes(prog);
2823 link_assign_uniform_locations(prog);
2824 link_assign_atomic_counter_resources(ctx, prog);
2825 store_fragdepth_layout(prog);
2826
2827 check_resources(ctx, prog);
2828 check_image_resources(ctx, prog);
2829 link_check_atomic_counter_resources(ctx, prog);
2830
2831 if (!prog->LinkStatus)
2832 goto done;
2833
2834 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2835 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2836 * anything about shader linking when one of the shaders (vertex or
2837 * fragment shader) is absent. So, the extension shouldn't change the
2838 * behavior specified in GLSL specification.
2839 */
2840 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
2841 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2842 linker_error(prog, "program lacks a vertex shader\n");
2843 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2844 linker_error(prog, "program lacks a fragment shader\n");
2845 }
2846 }
2847
2848 /* FINISHME: Assign fragment shader output locations. */
2849
2850 done:
2851 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2852 free(shader_list[i]);
2853 if (prog->_LinkedShaders[i] == NULL)
2854 continue;
2855
2856 /* Do a final validation step to make sure that the IR wasn't
2857 * invalidated by any modifications performed after intrastage linking.
2858 */
2859 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2860
2861 /* Retain any live IR, but trash the rest. */
2862 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2863
2864 /* The symbol table in the linked shaders may contain references to
2865 * variables that were removed (e.g., unused uniforms). Since it may
2866 * contain junk, there is no possible valid use. Delete it and set the
2867 * pointer to NULL.
2868 */
2869 delete prog->_LinkedShaders[i]->symbols;
2870 prog->_LinkedShaders[i]->symbols = NULL;
2871 }
2872
2873 ralloc_free(mem_ctx);
2874 }