glsl: analyze TES usage of gl_ClipDistance
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->fields.array,
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->fields.array;
249 return visit_continue;
250 }
251 };
252
253 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
254 public:
255 unsigned num_vertices;
256 gl_shader_program *prog;
257
258 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
259 {
260 this->num_vertices = num_vertices;
261 this->prog = prog;
262 }
263
264 virtual ~tess_eval_array_resize_visitor()
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit(ir_variable *var)
270 {
271 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
272 return visit_continue;
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280
281 /* Dereferences of input variables need to be updated so that their type
282 * matches the newly assigned type of the variable they are accessing. */
283 virtual ir_visitor_status visit(ir_dereference_variable *ir)
284 {
285 ir->type = ir->var->type;
286 return visit_continue;
287 }
288
289 /* Dereferences of 2D input arrays need to be updated so that their type
290 * matches the newly assigned type of the array they are accessing. */
291 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
292 {
293 const glsl_type *const vt = ir->array->type;
294 if (vt->is_array())
295 ir->type = vt->fields.array;
296 return visit_continue;
297 }
298 };
299
300 /**
301 * Visitor that determines the highest stream id to which a (geometry) shader
302 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
303 */
304 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
305 public:
306 find_emit_vertex_visitor(int max_allowed)
307 : max_stream_allowed(max_allowed),
308 invalid_stream_id(0),
309 invalid_stream_id_from_emit_vertex(false),
310 end_primitive_found(false),
311 uses_non_zero_stream(false)
312 {
313 /* empty */
314 }
315
316 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
317 {
318 int stream_id = ir->stream_id();
319
320 if (stream_id < 0) {
321 invalid_stream_id = stream_id;
322 invalid_stream_id_from_emit_vertex = true;
323 return visit_stop;
324 }
325
326 if (stream_id > max_stream_allowed) {
327 invalid_stream_id = stream_id;
328 invalid_stream_id_from_emit_vertex = true;
329 return visit_stop;
330 }
331
332 if (stream_id != 0)
333 uses_non_zero_stream = true;
334
335 return visit_continue;
336 }
337
338 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
339 {
340 end_primitive_found = true;
341
342 int stream_id = ir->stream_id();
343
344 if (stream_id < 0) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = false;
347 return visit_stop;
348 }
349
350 if (stream_id > max_stream_allowed) {
351 invalid_stream_id = stream_id;
352 invalid_stream_id_from_emit_vertex = false;
353 return visit_stop;
354 }
355
356 if (stream_id != 0)
357 uses_non_zero_stream = true;
358
359 return visit_continue;
360 }
361
362 bool error()
363 {
364 return invalid_stream_id != 0;
365 }
366
367 const char *error_func()
368 {
369 return invalid_stream_id_from_emit_vertex ?
370 "EmitStreamVertex" : "EndStreamPrimitive";
371 }
372
373 int error_stream()
374 {
375 return invalid_stream_id;
376 }
377
378 bool uses_streams()
379 {
380 return uses_non_zero_stream;
381 }
382
383 bool uses_end_primitive()
384 {
385 return end_primitive_found;
386 }
387
388 private:
389 int max_stream_allowed;
390 int invalid_stream_id;
391 bool invalid_stream_id_from_emit_vertex;
392 bool end_primitive_found;
393 bool uses_non_zero_stream;
394 };
395
396 /* Class that finds array derefs and check if indexes are dynamic. */
397 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
398 {
399 public:
400 dynamic_sampler_array_indexing_visitor() :
401 dynamic_sampler_array_indexing(false)
402 {
403 }
404
405 ir_visitor_status visit_enter(ir_dereference_array *ir)
406 {
407 if (!ir->variable_referenced())
408 return visit_continue;
409
410 if (!ir->variable_referenced()->type->contains_sampler())
411 return visit_continue;
412
413 if (!ir->array_index->constant_expression_value()) {
414 dynamic_sampler_array_indexing = true;
415 return visit_stop;
416 }
417 return visit_continue;
418 }
419
420 bool uses_dynamic_sampler_array_indexing()
421 {
422 return dynamic_sampler_array_indexing;
423 }
424
425 private:
426 bool dynamic_sampler_array_indexing;
427 };
428
429 } /* anonymous namespace */
430
431 void
432 linker_error(gl_shader_program *prog, const char *fmt, ...)
433 {
434 va_list ap;
435
436 ralloc_strcat(&prog->InfoLog, "error: ");
437 va_start(ap, fmt);
438 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
439 va_end(ap);
440
441 prog->LinkStatus = false;
442 }
443
444
445 void
446 linker_warning(gl_shader_program *prog, const char *fmt, ...)
447 {
448 va_list ap;
449
450 ralloc_strcat(&prog->InfoLog, "warning: ");
451 va_start(ap, fmt);
452 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
453 va_end(ap);
454
455 }
456
457
458 /**
459 * Given a string identifying a program resource, break it into a base name
460 * and an optional array index in square brackets.
461 *
462 * If an array index is present, \c out_base_name_end is set to point to the
463 * "[" that precedes the array index, and the array index itself is returned
464 * as a long.
465 *
466 * If no array index is present (or if the array index is negative or
467 * mal-formed), \c out_base_name_end, is set to point to the null terminator
468 * at the end of the input string, and -1 is returned.
469 *
470 * Only the final array index is parsed; if the string contains other array
471 * indices (or structure field accesses), they are left in the base name.
472 *
473 * No attempt is made to check that the base name is properly formed;
474 * typically the caller will look up the base name in a hash table, so
475 * ill-formed base names simply turn into hash table lookup failures.
476 */
477 long
478 parse_program_resource_name(const GLchar *name,
479 const GLchar **out_base_name_end)
480 {
481 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
482 *
483 * "When an integer array element or block instance number is part of
484 * the name string, it will be specified in decimal form without a "+"
485 * or "-" sign or any extra leading zeroes. Additionally, the name
486 * string will not include white space anywhere in the string."
487 */
488
489 const size_t len = strlen(name);
490 *out_base_name_end = name + len;
491
492 if (len == 0 || name[len-1] != ']')
493 return -1;
494
495 /* Walk backwards over the string looking for a non-digit character. This
496 * had better be the opening bracket for an array index.
497 *
498 * Initially, i specifies the location of the ']'. Since the string may
499 * contain only the ']' charcater, walk backwards very carefully.
500 */
501 unsigned i;
502 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
503 /* empty */ ;
504
505 if ((i == 0) || name[i-1] != '[')
506 return -1;
507
508 long array_index = strtol(&name[i], NULL, 10);
509 if (array_index < 0)
510 return -1;
511
512 /* Check for leading zero */
513 if (name[i] == '0' && name[i+1] != ']')
514 return -1;
515
516 *out_base_name_end = name + (i - 1);
517 return array_index;
518 }
519
520
521 void
522 link_invalidate_variable_locations(exec_list *ir)
523 {
524 foreach_in_list(ir_instruction, node, ir) {
525 ir_variable *const var = node->as_variable();
526
527 if (var == NULL)
528 continue;
529
530 /* Only assign locations for variables that lack an explicit location.
531 * Explicit locations are set for all built-in variables, generic vertex
532 * shader inputs (via layout(location=...)), and generic fragment shader
533 * outputs (also via layout(location=...)).
534 */
535 if (!var->data.explicit_location) {
536 var->data.location = -1;
537 var->data.location_frac = 0;
538 }
539
540 /* ir_variable::is_unmatched_generic_inout is used by the linker while
541 * connecting outputs from one stage to inputs of the next stage.
542 *
543 * There are two implicit assumptions here. First, we assume that any
544 * built-in variable (i.e., non-generic in or out) will have
545 * explicit_location set. Second, we assume that any generic in or out
546 * will not have explicit_location set.
547 *
548 * This second assumption will only be valid until
549 * GL_ARB_separate_shader_objects is supported. When that extension is
550 * implemented, this function will need some modifications.
551 */
552 if (!var->data.explicit_location) {
553 var->data.is_unmatched_generic_inout = 1;
554 } else {
555 var->data.is_unmatched_generic_inout = 0;
556 }
557 }
558 }
559
560
561 /**
562 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
563 *
564 * Also check for errors based on incorrect usage of gl_ClipVertex and
565 * gl_ClipDistance.
566 *
567 * Return false if an error was reported.
568 */
569 static void
570 analyze_clip_usage(struct gl_shader_program *prog,
571 struct gl_shader *shader, GLboolean *UsesClipDistance,
572 GLuint *ClipDistanceArraySize)
573 {
574 *ClipDistanceArraySize = 0;
575
576 if (!prog->IsES && prog->Version >= 130) {
577 /* From section 7.1 (Vertex Shader Special Variables) of the
578 * GLSL 1.30 spec:
579 *
580 * "It is an error for a shader to statically write both
581 * gl_ClipVertex and gl_ClipDistance."
582 *
583 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
584 * gl_ClipVertex nor gl_ClipDistance.
585 */
586 find_assignment_visitor clip_vertex("gl_ClipVertex");
587 find_assignment_visitor clip_distance("gl_ClipDistance");
588
589 clip_vertex.run(shader->ir);
590 clip_distance.run(shader->ir);
591 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
592 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
593 "and `gl_ClipDistance'\n",
594 _mesa_shader_stage_to_string(shader->Stage));
595 return;
596 }
597 *UsesClipDistance = clip_distance.variable_found();
598 ir_variable *clip_distance_var =
599 shader->symbols->get_variable("gl_ClipDistance");
600 if (clip_distance_var)
601 *ClipDistanceArraySize = clip_distance_var->type->length;
602 } else {
603 *UsesClipDistance = false;
604 }
605 }
606
607
608 /**
609 * Verify that a vertex shader executable meets all semantic requirements.
610 *
611 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
612 * as a side effect.
613 *
614 * \param shader Vertex shader executable to be verified
615 */
616 void
617 validate_vertex_shader_executable(struct gl_shader_program *prog,
618 struct gl_shader *shader)
619 {
620 if (shader == NULL)
621 return;
622
623 /* From the GLSL 1.10 spec, page 48:
624 *
625 * "The variable gl_Position is available only in the vertex
626 * language and is intended for writing the homogeneous vertex
627 * position. All executions of a well-formed vertex shader
628 * executable must write a value into this variable. [...] The
629 * variable gl_Position is available only in the vertex
630 * language and is intended for writing the homogeneous vertex
631 * position. All executions of a well-formed vertex shader
632 * executable must write a value into this variable."
633 *
634 * while in GLSL 1.40 this text is changed to:
635 *
636 * "The variable gl_Position is available only in the vertex
637 * language and is intended for writing the homogeneous vertex
638 * position. It can be written at any time during shader
639 * execution. It may also be read back by a vertex shader
640 * after being written. This value will be used by primitive
641 * assembly, clipping, culling, and other fixed functionality
642 * operations, if present, that operate on primitives after
643 * vertex processing has occurred. Its value is undefined if
644 * the vertex shader executable does not write gl_Position."
645 *
646 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
647 * gl_Position is not an error.
648 */
649 if (prog->Version < (prog->IsES ? 300 : 140)) {
650 find_assignment_visitor find("gl_Position");
651 find.run(shader->ir);
652 if (!find.variable_found()) {
653 if (prog->IsES) {
654 linker_warning(prog,
655 "vertex shader does not write to `gl_Position'."
656 "It's value is undefined. \n");
657 } else {
658 linker_error(prog,
659 "vertex shader does not write to `gl_Position'. \n");
660 }
661 return;
662 }
663 }
664
665 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
666 &prog->Vert.ClipDistanceArraySize);
667 }
668
669 void
670 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
671 struct gl_shader *shader)
672 {
673 if (shader == NULL)
674 return;
675
676 analyze_clip_usage(prog, shader, &prog->TessEval.UsesClipDistance,
677 &prog->TessEval.ClipDistanceArraySize);
678 }
679
680
681 /**
682 * Verify that a fragment shader executable meets all semantic requirements
683 *
684 * \param shader Fragment shader executable to be verified
685 */
686 void
687 validate_fragment_shader_executable(struct gl_shader_program *prog,
688 struct gl_shader *shader)
689 {
690 if (shader == NULL)
691 return;
692
693 find_assignment_visitor frag_color("gl_FragColor");
694 find_assignment_visitor frag_data("gl_FragData");
695
696 frag_color.run(shader->ir);
697 frag_data.run(shader->ir);
698
699 if (frag_color.variable_found() && frag_data.variable_found()) {
700 linker_error(prog, "fragment shader writes to both "
701 "`gl_FragColor' and `gl_FragData'\n");
702 }
703 }
704
705 /**
706 * Verify that a geometry shader executable meets all semantic requirements
707 *
708 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
709 * prog->Geom.ClipDistanceArraySize as a side effect.
710 *
711 * \param shader Geometry shader executable to be verified
712 */
713 void
714 validate_geometry_shader_executable(struct gl_shader_program *prog,
715 struct gl_shader *shader)
716 {
717 if (shader == NULL)
718 return;
719
720 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
721 prog->Geom.VerticesIn = num_vertices;
722
723 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
724 &prog->Geom.ClipDistanceArraySize);
725 }
726
727 /**
728 * Check if geometry shaders emit to non-zero streams and do corresponding
729 * validations.
730 */
731 static void
732 validate_geometry_shader_emissions(struct gl_context *ctx,
733 struct gl_shader_program *prog)
734 {
735 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
736 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
737 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
738 if (emit_vertex.error()) {
739 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
740 "stream parameter are in the range [0, %d].\n",
741 emit_vertex.error_func(),
742 emit_vertex.error_stream(),
743 ctx->Const.MaxVertexStreams - 1);
744 }
745 prog->Geom.UsesStreams = emit_vertex.uses_streams();
746 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
747
748 /* From the ARB_gpu_shader5 spec:
749 *
750 * "Multiple vertex streams are supported only if the output primitive
751 * type is declared to be "points". A program will fail to link if it
752 * contains a geometry shader calling EmitStreamVertex() or
753 * EndStreamPrimitive() if its output primitive type is not "points".
754 *
755 * However, in the same spec:
756 *
757 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
758 * with <stream> set to zero."
759 *
760 * And:
761 *
762 * "The function EndPrimitive() is equivalent to calling
763 * EndStreamPrimitive() with <stream> set to zero."
764 *
765 * Since we can call EmitVertex() and EndPrimitive() when we output
766 * primitives other than points, calling EmitStreamVertex(0) or
767 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
768 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
769 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
770 * stream.
771 */
772 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
773 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
774 "with n>0 requires point output\n");
775 }
776 }
777 }
778
779 bool
780 validate_intrastage_arrays(struct gl_shader_program *prog,
781 ir_variable *const var,
782 ir_variable *const existing)
783 {
784 /* Consider the types to be "the same" if both types are arrays
785 * of the same type and one of the arrays is implicitly sized.
786 * In addition, set the type of the linked variable to the
787 * explicitly sized array.
788 */
789 if (var->type->is_array() && existing->type->is_array() &&
790 (var->type->fields.array == existing->type->fields.array) &&
791 ((var->type->length == 0)|| (existing->type->length == 0))) {
792 if (var->type->length != 0) {
793 if (var->type->length <= existing->data.max_array_access) {
794 linker_error(prog, "%s `%s' declared as type "
795 "`%s' but outermost dimension has an index"
796 " of `%i'\n",
797 mode_string(var),
798 var->name, var->type->name,
799 existing->data.max_array_access);
800 }
801 existing->type = var->type;
802 return true;
803 } else if (existing->type->length != 0) {
804 if(existing->type->length <= var->data.max_array_access) {
805 linker_error(prog, "%s `%s' declared as type "
806 "`%s' but outermost dimension has an index"
807 " of `%i'\n",
808 mode_string(var),
809 var->name, existing->type->name,
810 var->data.max_array_access);
811 }
812 return true;
813 }
814 }
815 return false;
816 }
817
818
819 /**
820 * Perform validation of global variables used across multiple shaders
821 */
822 void
823 cross_validate_globals(struct gl_shader_program *prog,
824 struct gl_shader **shader_list,
825 unsigned num_shaders,
826 bool uniforms_only)
827 {
828 /* Examine all of the uniforms in all of the shaders and cross validate
829 * them.
830 */
831 glsl_symbol_table variables;
832 for (unsigned i = 0; i < num_shaders; i++) {
833 if (shader_list[i] == NULL)
834 continue;
835
836 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
837 ir_variable *const var = node->as_variable();
838
839 if (var == NULL)
840 continue;
841
842 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
843 continue;
844
845 /* Don't cross validate temporaries that are at global scope. These
846 * will eventually get pulled into the shaders 'main'.
847 */
848 if (var->data.mode == ir_var_temporary)
849 continue;
850
851 /* If a global with this name has already been seen, verify that the
852 * new instance has the same type. In addition, if the globals have
853 * initializers, the values of the initializers must be the same.
854 */
855 ir_variable *const existing = variables.get_variable(var->name);
856 if (existing != NULL) {
857 /* Check if types match. Interface blocks have some special
858 * rules so we handle those elsewhere.
859 */
860 if (var->type != existing->type &&
861 !var->is_interface_instance()) {
862 if (!validate_intrastage_arrays(prog, var, existing)) {
863 if (var->type->is_record() && existing->type->is_record()
864 && existing->type->record_compare(var->type)) {
865 existing->type = var->type;
866 } else {
867 linker_error(prog, "%s `%s' declared as type "
868 "`%s' and type `%s'\n",
869 mode_string(var),
870 var->name, var->type->name,
871 existing->type->name);
872 return;
873 }
874 }
875 }
876
877 if (var->data.explicit_location) {
878 if (existing->data.explicit_location
879 && (var->data.location != existing->data.location)) {
880 linker_error(prog, "explicit locations for %s "
881 "`%s' have differing values\n",
882 mode_string(var), var->name);
883 return;
884 }
885
886 existing->data.location = var->data.location;
887 existing->data.explicit_location = true;
888 }
889
890 /* From the GLSL 4.20 specification:
891 * "A link error will result if two compilation units in a program
892 * specify different integer-constant bindings for the same
893 * opaque-uniform name. However, it is not an error to specify a
894 * binding on some but not all declarations for the same name"
895 */
896 if (var->data.explicit_binding) {
897 if (existing->data.explicit_binding &&
898 var->data.binding != existing->data.binding) {
899 linker_error(prog, "explicit bindings for %s "
900 "`%s' have differing values\n",
901 mode_string(var), var->name);
902 return;
903 }
904
905 existing->data.binding = var->data.binding;
906 existing->data.explicit_binding = true;
907 }
908
909 if (var->type->contains_atomic() &&
910 var->data.atomic.offset != existing->data.atomic.offset) {
911 linker_error(prog, "offset specifications for %s "
912 "`%s' have differing values\n",
913 mode_string(var), var->name);
914 return;
915 }
916
917 /* Validate layout qualifiers for gl_FragDepth.
918 *
919 * From the AMD/ARB_conservative_depth specs:
920 *
921 * "If gl_FragDepth is redeclared in any fragment shader in a
922 * program, it must be redeclared in all fragment shaders in
923 * that program that have static assignments to
924 * gl_FragDepth. All redeclarations of gl_FragDepth in all
925 * fragment shaders in a single program must have the same set
926 * of qualifiers."
927 */
928 if (strcmp(var->name, "gl_FragDepth") == 0) {
929 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
930 bool layout_differs =
931 var->data.depth_layout != existing->data.depth_layout;
932
933 if (layout_declared && layout_differs) {
934 linker_error(prog,
935 "All redeclarations of gl_FragDepth in all "
936 "fragment shaders in a single program must have "
937 "the same set of qualifiers.\n");
938 }
939
940 if (var->data.used && layout_differs) {
941 linker_error(prog,
942 "If gl_FragDepth is redeclared with a layout "
943 "qualifier in any fragment shader, it must be "
944 "redeclared with the same layout qualifier in "
945 "all fragment shaders that have assignments to "
946 "gl_FragDepth\n");
947 }
948 }
949
950 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
951 *
952 * "If a shared global has multiple initializers, the
953 * initializers must all be constant expressions, and they
954 * must all have the same value. Otherwise, a link error will
955 * result. (A shared global having only one initializer does
956 * not require that initializer to be a constant expression.)"
957 *
958 * Previous to 4.20 the GLSL spec simply said that initializers
959 * must have the same value. In this case of non-constant
960 * initializers, this was impossible to determine. As a result,
961 * no vendor actually implemented that behavior. The 4.20
962 * behavior matches the implemented behavior of at least one other
963 * vendor, so we'll implement that for all GLSL versions.
964 */
965 if (var->constant_initializer != NULL) {
966 if (existing->constant_initializer != NULL) {
967 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
968 linker_error(prog, "initializers for %s "
969 "`%s' have differing values\n",
970 mode_string(var), var->name);
971 return;
972 }
973 } else {
974 /* If the first-seen instance of a particular uniform did not
975 * have an initializer but a later instance does, copy the
976 * initializer to the version stored in the symbol table.
977 */
978 /* FINISHME: This is wrong. The constant_value field should
979 * FINISHME: not be modified! Imagine a case where a shader
980 * FINISHME: without an initializer is linked in two different
981 * FINISHME: programs with shaders that have differing
982 * FINISHME: initializers. Linking with the first will
983 * FINISHME: modify the shader, and linking with the second
984 * FINISHME: will fail.
985 */
986 existing->constant_initializer =
987 var->constant_initializer->clone(ralloc_parent(existing),
988 NULL);
989 }
990 }
991
992 if (var->data.has_initializer) {
993 if (existing->data.has_initializer
994 && (var->constant_initializer == NULL
995 || existing->constant_initializer == NULL)) {
996 linker_error(prog,
997 "shared global variable `%s' has multiple "
998 "non-constant initializers.\n",
999 var->name);
1000 return;
1001 }
1002
1003 /* Some instance had an initializer, so keep track of that. In
1004 * this location, all sorts of initializers (constant or
1005 * otherwise) will propagate the existence to the variable
1006 * stored in the symbol table.
1007 */
1008 existing->data.has_initializer = true;
1009 }
1010
1011 if (existing->data.invariant != var->data.invariant) {
1012 linker_error(prog, "declarations for %s `%s' have "
1013 "mismatching invariant qualifiers\n",
1014 mode_string(var), var->name);
1015 return;
1016 }
1017 if (existing->data.centroid != var->data.centroid) {
1018 linker_error(prog, "declarations for %s `%s' have "
1019 "mismatching centroid qualifiers\n",
1020 mode_string(var), var->name);
1021 return;
1022 }
1023 if (existing->data.sample != var->data.sample) {
1024 linker_error(prog, "declarations for %s `%s` have "
1025 "mismatching sample qualifiers\n",
1026 mode_string(var), var->name);
1027 return;
1028 }
1029 } else
1030 variables.add_variable(var);
1031 }
1032 }
1033 }
1034
1035
1036 /**
1037 * Perform validation of uniforms used across multiple shader stages
1038 */
1039 void
1040 cross_validate_uniforms(struct gl_shader_program *prog)
1041 {
1042 cross_validate_globals(prog, prog->_LinkedShaders,
1043 MESA_SHADER_STAGES, true);
1044 }
1045
1046 /**
1047 * Accumulates the array of prog->UniformBlocks and checks that all
1048 * definitons of blocks agree on their contents.
1049 */
1050 static bool
1051 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
1052 {
1053 unsigned max_num_uniform_blocks = 0;
1054 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1055 if (prog->_LinkedShaders[i])
1056 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
1057 }
1058
1059 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1060 struct gl_shader *sh = prog->_LinkedShaders[i];
1061
1062 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
1063 max_num_uniform_blocks);
1064 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1065 prog->UniformBlockStageIndex[i][j] = -1;
1066
1067 if (sh == NULL)
1068 continue;
1069
1070 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
1071 int index = link_cross_validate_uniform_block(prog,
1072 &prog->UniformBlocks,
1073 &prog->NumUniformBlocks,
1074 &sh->UniformBlocks[j]);
1075
1076 if (index == -1) {
1077 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1078 sh->UniformBlocks[j].Name);
1079 return false;
1080 }
1081
1082 prog->UniformBlockStageIndex[i][index] = j;
1083 }
1084 }
1085
1086 return true;
1087 }
1088
1089
1090 /**
1091 * Populates a shaders symbol table with all global declarations
1092 */
1093 static void
1094 populate_symbol_table(gl_shader *sh)
1095 {
1096 sh->symbols = new(sh) glsl_symbol_table;
1097
1098 foreach_in_list(ir_instruction, inst, sh->ir) {
1099 ir_variable *var;
1100 ir_function *func;
1101
1102 if ((func = inst->as_function()) != NULL) {
1103 sh->symbols->add_function(func);
1104 } else if ((var = inst->as_variable()) != NULL) {
1105 if (var->data.mode != ir_var_temporary)
1106 sh->symbols->add_variable(var);
1107 }
1108 }
1109 }
1110
1111
1112 /**
1113 * Remap variables referenced in an instruction tree
1114 *
1115 * This is used when instruction trees are cloned from one shader and placed in
1116 * another. These trees will contain references to \c ir_variable nodes that
1117 * do not exist in the target shader. This function finds these \c ir_variable
1118 * references and replaces the references with matching variables in the target
1119 * shader.
1120 *
1121 * If there is no matching variable in the target shader, a clone of the
1122 * \c ir_variable is made and added to the target shader. The new variable is
1123 * added to \b both the instruction stream and the symbol table.
1124 *
1125 * \param inst IR tree that is to be processed.
1126 * \param symbols Symbol table containing global scope symbols in the
1127 * linked shader.
1128 * \param instructions Instruction stream where new variable declarations
1129 * should be added.
1130 */
1131 void
1132 remap_variables(ir_instruction *inst, struct gl_shader *target,
1133 hash_table *temps)
1134 {
1135 class remap_visitor : public ir_hierarchical_visitor {
1136 public:
1137 remap_visitor(struct gl_shader *target,
1138 hash_table *temps)
1139 {
1140 this->target = target;
1141 this->symbols = target->symbols;
1142 this->instructions = target->ir;
1143 this->temps = temps;
1144 }
1145
1146 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1147 {
1148 if (ir->var->data.mode == ir_var_temporary) {
1149 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1150
1151 assert(var != NULL);
1152 ir->var = var;
1153 return visit_continue;
1154 }
1155
1156 ir_variable *const existing =
1157 this->symbols->get_variable(ir->var->name);
1158 if (existing != NULL)
1159 ir->var = existing;
1160 else {
1161 ir_variable *copy = ir->var->clone(this->target, NULL);
1162
1163 this->symbols->add_variable(copy);
1164 this->instructions->push_head(copy);
1165 ir->var = copy;
1166 }
1167
1168 return visit_continue;
1169 }
1170
1171 private:
1172 struct gl_shader *target;
1173 glsl_symbol_table *symbols;
1174 exec_list *instructions;
1175 hash_table *temps;
1176 };
1177
1178 remap_visitor v(target, temps);
1179
1180 inst->accept(&v);
1181 }
1182
1183
1184 /**
1185 * Move non-declarations from one instruction stream to another
1186 *
1187 * The intended usage pattern of this function is to pass the pointer to the
1188 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1189 * pointer) for \c last and \c false for \c make_copies on the first
1190 * call. Successive calls pass the return value of the previous call for
1191 * \c last and \c true for \c make_copies.
1192 *
1193 * \param instructions Source instruction stream
1194 * \param last Instruction after which new instructions should be
1195 * inserted in the target instruction stream
1196 * \param make_copies Flag selecting whether instructions in \c instructions
1197 * should be copied (via \c ir_instruction::clone) into the
1198 * target list or moved.
1199 *
1200 * \return
1201 * The new "last" instruction in the target instruction stream. This pointer
1202 * is suitable for use as the \c last parameter of a later call to this
1203 * function.
1204 */
1205 exec_node *
1206 move_non_declarations(exec_list *instructions, exec_node *last,
1207 bool make_copies, gl_shader *target)
1208 {
1209 hash_table *temps = NULL;
1210
1211 if (make_copies)
1212 temps = hash_table_ctor(0, hash_table_pointer_hash,
1213 hash_table_pointer_compare);
1214
1215 foreach_in_list_safe(ir_instruction, inst, instructions) {
1216 if (inst->as_function())
1217 continue;
1218
1219 ir_variable *var = inst->as_variable();
1220 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1221 continue;
1222
1223 assert(inst->as_assignment()
1224 || inst->as_call()
1225 || inst->as_if() /* for initializers with the ?: operator */
1226 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1227
1228 if (make_copies) {
1229 inst = inst->clone(target, NULL);
1230
1231 if (var != NULL)
1232 hash_table_insert(temps, inst, var);
1233 else
1234 remap_variables(inst, target, temps);
1235 } else {
1236 inst->remove();
1237 }
1238
1239 last->insert_after(inst);
1240 last = inst;
1241 }
1242
1243 if (make_copies)
1244 hash_table_dtor(temps);
1245
1246 return last;
1247 }
1248
1249 /**
1250 * Get the function signature for main from a shader
1251 */
1252 ir_function_signature *
1253 link_get_main_function_signature(gl_shader *sh)
1254 {
1255 ir_function *const f = sh->symbols->get_function("main");
1256 if (f != NULL) {
1257 exec_list void_parameters;
1258
1259 /* Look for the 'void main()' signature and ensure that it's defined.
1260 * This keeps the linker from accidentally pick a shader that just
1261 * contains a prototype for main.
1262 *
1263 * We don't have to check for multiple definitions of main (in multiple
1264 * shaders) because that would have already been caught above.
1265 */
1266 ir_function_signature *sig =
1267 f->matching_signature(NULL, &void_parameters, false);
1268 if ((sig != NULL) && sig->is_defined) {
1269 return sig;
1270 }
1271 }
1272
1273 return NULL;
1274 }
1275
1276
1277 /**
1278 * This class is only used in link_intrastage_shaders() below but declaring
1279 * it inside that function leads to compiler warnings with some versions of
1280 * gcc.
1281 */
1282 class array_sizing_visitor : public ir_hierarchical_visitor {
1283 public:
1284 array_sizing_visitor()
1285 : mem_ctx(ralloc_context(NULL)),
1286 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1287 hash_table_pointer_compare))
1288 {
1289 }
1290
1291 ~array_sizing_visitor()
1292 {
1293 hash_table_dtor(this->unnamed_interfaces);
1294 ralloc_free(this->mem_ctx);
1295 }
1296
1297 virtual ir_visitor_status visit(ir_variable *var)
1298 {
1299 fixup_type(&var->type, var->data.max_array_access);
1300 if (var->type->is_interface()) {
1301 if (interface_contains_unsized_arrays(var->type)) {
1302 const glsl_type *new_type =
1303 resize_interface_members(var->type,
1304 var->get_max_ifc_array_access());
1305 var->type = new_type;
1306 var->change_interface_type(new_type);
1307 }
1308 } else if (var->type->is_array() &&
1309 var->type->fields.array->is_interface()) {
1310 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1311 const glsl_type *new_type =
1312 resize_interface_members(var->type->fields.array,
1313 var->get_max_ifc_array_access());
1314 var->change_interface_type(new_type);
1315 var->type = update_interface_members_array(var->type, new_type);
1316 }
1317 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1318 /* Store a pointer to the variable in the unnamed_interfaces
1319 * hashtable.
1320 */
1321 ir_variable **interface_vars = (ir_variable **)
1322 hash_table_find(this->unnamed_interfaces, ifc_type);
1323 if (interface_vars == NULL) {
1324 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1325 ifc_type->length);
1326 hash_table_insert(this->unnamed_interfaces, interface_vars,
1327 ifc_type);
1328 }
1329 unsigned index = ifc_type->field_index(var->name);
1330 assert(index < ifc_type->length);
1331 assert(interface_vars[index] == NULL);
1332 interface_vars[index] = var;
1333 }
1334 return visit_continue;
1335 }
1336
1337 /**
1338 * For each unnamed interface block that was discovered while running the
1339 * visitor, adjust the interface type to reflect the newly assigned array
1340 * sizes, and fix up the ir_variable nodes to point to the new interface
1341 * type.
1342 */
1343 void fixup_unnamed_interface_types()
1344 {
1345 hash_table_call_foreach(this->unnamed_interfaces,
1346 fixup_unnamed_interface_type, NULL);
1347 }
1348
1349 private:
1350 /**
1351 * If the type pointed to by \c type represents an unsized array, replace
1352 * it with a sized array whose size is determined by max_array_access.
1353 */
1354 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1355 {
1356 if ((*type)->is_unsized_array()) {
1357 *type = glsl_type::get_array_instance((*type)->fields.array,
1358 max_array_access + 1);
1359 assert(*type != NULL);
1360 }
1361 }
1362
1363 static const glsl_type *
1364 update_interface_members_array(const glsl_type *type,
1365 const glsl_type *new_interface_type)
1366 {
1367 const glsl_type *element_type = type->fields.array;
1368 if (element_type->is_array()) {
1369 const glsl_type *new_array_type =
1370 update_interface_members_array(element_type, new_interface_type);
1371 return glsl_type::get_array_instance(new_array_type, type->length);
1372 } else {
1373 return glsl_type::get_array_instance(new_interface_type,
1374 type->length);
1375 }
1376 }
1377
1378 /**
1379 * Determine whether the given interface type contains unsized arrays (if
1380 * it doesn't, array_sizing_visitor doesn't need to process it).
1381 */
1382 static bool interface_contains_unsized_arrays(const glsl_type *type)
1383 {
1384 for (unsigned i = 0; i < type->length; i++) {
1385 const glsl_type *elem_type = type->fields.structure[i].type;
1386 if (elem_type->is_unsized_array())
1387 return true;
1388 }
1389 return false;
1390 }
1391
1392 /**
1393 * Create a new interface type based on the given type, with unsized arrays
1394 * replaced by sized arrays whose size is determined by
1395 * max_ifc_array_access.
1396 */
1397 static const glsl_type *
1398 resize_interface_members(const glsl_type *type,
1399 const unsigned *max_ifc_array_access)
1400 {
1401 unsigned num_fields = type->length;
1402 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1403 memcpy(fields, type->fields.structure,
1404 num_fields * sizeof(*fields));
1405 for (unsigned i = 0; i < num_fields; i++) {
1406 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1407 }
1408 glsl_interface_packing packing =
1409 (glsl_interface_packing) type->interface_packing;
1410 const glsl_type *new_ifc_type =
1411 glsl_type::get_interface_instance(fields, num_fields,
1412 packing, type->name);
1413 delete [] fields;
1414 return new_ifc_type;
1415 }
1416
1417 static void fixup_unnamed_interface_type(const void *key, void *data,
1418 void *)
1419 {
1420 const glsl_type *ifc_type = (const glsl_type *) key;
1421 ir_variable **interface_vars = (ir_variable **) data;
1422 unsigned num_fields = ifc_type->length;
1423 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1424 memcpy(fields, ifc_type->fields.structure,
1425 num_fields * sizeof(*fields));
1426 bool interface_type_changed = false;
1427 for (unsigned i = 0; i < num_fields; i++) {
1428 if (interface_vars[i] != NULL &&
1429 fields[i].type != interface_vars[i]->type) {
1430 fields[i].type = interface_vars[i]->type;
1431 interface_type_changed = true;
1432 }
1433 }
1434 if (!interface_type_changed) {
1435 delete [] fields;
1436 return;
1437 }
1438 glsl_interface_packing packing =
1439 (glsl_interface_packing) ifc_type->interface_packing;
1440 const glsl_type *new_ifc_type =
1441 glsl_type::get_interface_instance(fields, num_fields, packing,
1442 ifc_type->name);
1443 delete [] fields;
1444 for (unsigned i = 0; i < num_fields; i++) {
1445 if (interface_vars[i] != NULL)
1446 interface_vars[i]->change_interface_type(new_ifc_type);
1447 }
1448 }
1449
1450 /**
1451 * Memory context used to allocate the data in \c unnamed_interfaces.
1452 */
1453 void *mem_ctx;
1454
1455 /**
1456 * Hash table from const glsl_type * to an array of ir_variable *'s
1457 * pointing to the ir_variables constituting each unnamed interface block.
1458 */
1459 hash_table *unnamed_interfaces;
1460 };
1461
1462
1463 /**
1464 * Performs the cross-validation of tessellation control shader vertices and
1465 * layout qualifiers for the attached tessellation control shaders,
1466 * and propagates them to the linked TCS and linked shader program.
1467 */
1468 static void
1469 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1470 struct gl_shader *linked_shader,
1471 struct gl_shader **shader_list,
1472 unsigned num_shaders)
1473 {
1474 linked_shader->TessCtrl.VerticesOut = 0;
1475
1476 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1477 return;
1478
1479 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1480 *
1481 * "All tessellation control shader layout declarations in a program
1482 * must specify the same output patch vertex count. There must be at
1483 * least one layout qualifier specifying an output patch vertex count
1484 * in any program containing tessellation control shaders; however,
1485 * such a declaration is not required in all tessellation control
1486 * shaders."
1487 */
1488
1489 for (unsigned i = 0; i < num_shaders; i++) {
1490 struct gl_shader *shader = shader_list[i];
1491
1492 if (shader->TessCtrl.VerticesOut != 0) {
1493 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1494 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1495 linker_error(prog, "tessellation control shader defined with "
1496 "conflicting output vertex count (%d and %d)\n",
1497 linked_shader->TessCtrl.VerticesOut,
1498 shader->TessCtrl.VerticesOut);
1499 return;
1500 }
1501 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1502 }
1503 }
1504
1505 /* Just do the intrastage -> interstage propagation right now,
1506 * since we already know we're in the right type of shader program
1507 * for doing it.
1508 */
1509 if (linked_shader->TessCtrl.VerticesOut == 0) {
1510 linker_error(prog, "tessellation control shader didn't declare "
1511 "vertices out layout qualifier\n");
1512 return;
1513 }
1514 prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
1515 }
1516
1517
1518 /**
1519 * Performs the cross-validation of tessellation evaluation shader
1520 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1521 * for the attached tessellation evaluation shaders, and propagates them
1522 * to the linked TES and linked shader program.
1523 */
1524 static void
1525 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1526 struct gl_shader *linked_shader,
1527 struct gl_shader **shader_list,
1528 unsigned num_shaders)
1529 {
1530 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1531 linked_shader->TessEval.Spacing = 0;
1532 linked_shader->TessEval.VertexOrder = 0;
1533 linked_shader->TessEval.PointMode = -1;
1534
1535 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1536 return;
1537
1538 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1539 *
1540 * "At least one tessellation evaluation shader (compilation unit) in
1541 * a program must declare a primitive mode in its input layout.
1542 * Declaration vertex spacing, ordering, and point mode identifiers is
1543 * optional. It is not required that all tessellation evaluation
1544 * shaders in a program declare a primitive mode. If spacing or
1545 * vertex ordering declarations are omitted, the tessellation
1546 * primitive generator will use equal spacing or counter-clockwise
1547 * vertex ordering, respectively. If a point mode declaration is
1548 * omitted, the tessellation primitive generator will produce lines or
1549 * triangles according to the primitive mode."
1550 */
1551
1552 for (unsigned i = 0; i < num_shaders; i++) {
1553 struct gl_shader *shader = shader_list[i];
1554
1555 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1556 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1557 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1558 linker_error(prog, "tessellation evaluation shader defined with "
1559 "conflicting input primitive modes.\n");
1560 return;
1561 }
1562 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1563 }
1564
1565 if (shader->TessEval.Spacing != 0) {
1566 if (linked_shader->TessEval.Spacing != 0 &&
1567 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1568 linker_error(prog, "tessellation evaluation shader defined with "
1569 "conflicting vertex spacing.\n");
1570 return;
1571 }
1572 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1573 }
1574
1575 if (shader->TessEval.VertexOrder != 0) {
1576 if (linked_shader->TessEval.VertexOrder != 0 &&
1577 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1578 linker_error(prog, "tessellation evaluation shader defined with "
1579 "conflicting ordering.\n");
1580 return;
1581 }
1582 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1583 }
1584
1585 if (shader->TessEval.PointMode != -1) {
1586 if (linked_shader->TessEval.PointMode != -1 &&
1587 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1588 linker_error(prog, "tessellation evaluation shader defined with "
1589 "conflicting point modes.\n");
1590 return;
1591 }
1592 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1593 }
1594
1595 }
1596
1597 /* Just do the intrastage -> interstage propagation right now,
1598 * since we already know we're in the right type of shader program
1599 * for doing it.
1600 */
1601 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1602 linker_error(prog,
1603 "tessellation evaluation shader didn't declare input "
1604 "primitive modes.\n");
1605 return;
1606 }
1607 prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
1608
1609 if (linked_shader->TessEval.Spacing == 0)
1610 linked_shader->TessEval.Spacing = GL_EQUAL;
1611 prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
1612
1613 if (linked_shader->TessEval.VertexOrder == 0)
1614 linked_shader->TessEval.VertexOrder = GL_CCW;
1615 prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
1616
1617 if (linked_shader->TessEval.PointMode == -1)
1618 linked_shader->TessEval.PointMode = GL_FALSE;
1619 prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
1620 }
1621
1622
1623 /**
1624 * Performs the cross-validation of layout qualifiers specified in
1625 * redeclaration of gl_FragCoord for the attached fragment shaders,
1626 * and propagates them to the linked FS and linked shader program.
1627 */
1628 static void
1629 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1630 struct gl_shader *linked_shader,
1631 struct gl_shader **shader_list,
1632 unsigned num_shaders)
1633 {
1634 linked_shader->redeclares_gl_fragcoord = false;
1635 linked_shader->uses_gl_fragcoord = false;
1636 linked_shader->origin_upper_left = false;
1637 linked_shader->pixel_center_integer = false;
1638
1639 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1640 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1641 return;
1642
1643 for (unsigned i = 0; i < num_shaders; i++) {
1644 struct gl_shader *shader = shader_list[i];
1645 /* From the GLSL 1.50 spec, page 39:
1646 *
1647 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1648 * it must be redeclared in all the fragment shaders in that program
1649 * that have a static use gl_FragCoord."
1650 */
1651 if ((linked_shader->redeclares_gl_fragcoord
1652 && !shader->redeclares_gl_fragcoord
1653 && shader->uses_gl_fragcoord)
1654 || (shader->redeclares_gl_fragcoord
1655 && !linked_shader->redeclares_gl_fragcoord
1656 && linked_shader->uses_gl_fragcoord)) {
1657 linker_error(prog, "fragment shader defined with conflicting "
1658 "layout qualifiers for gl_FragCoord\n");
1659 }
1660
1661 /* From the GLSL 1.50 spec, page 39:
1662 *
1663 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1664 * single program must have the same set of qualifiers."
1665 */
1666 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1667 && (shader->origin_upper_left != linked_shader->origin_upper_left
1668 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1669 linker_error(prog, "fragment shader defined with conflicting "
1670 "layout qualifiers for gl_FragCoord\n");
1671 }
1672
1673 /* Update the linked shader state. Note that uses_gl_fragcoord should
1674 * accumulate the results. The other values should replace. If there
1675 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1676 * are already known to be the same.
1677 */
1678 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1679 linked_shader->redeclares_gl_fragcoord =
1680 shader->redeclares_gl_fragcoord;
1681 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1682 || shader->uses_gl_fragcoord;
1683 linked_shader->origin_upper_left = shader->origin_upper_left;
1684 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1685 }
1686
1687 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1688 }
1689 }
1690
1691 /**
1692 * Performs the cross-validation of geometry shader max_vertices and
1693 * primitive type layout qualifiers for the attached geometry shaders,
1694 * and propagates them to the linked GS and linked shader program.
1695 */
1696 static void
1697 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1698 struct gl_shader *linked_shader,
1699 struct gl_shader **shader_list,
1700 unsigned num_shaders)
1701 {
1702 linked_shader->Geom.VerticesOut = 0;
1703 linked_shader->Geom.Invocations = 0;
1704 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1705 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1706
1707 /* No in/out qualifiers defined for anything but GLSL 1.50+
1708 * geometry shaders so far.
1709 */
1710 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1711 return;
1712
1713 /* From the GLSL 1.50 spec, page 46:
1714 *
1715 * "All geometry shader output layout declarations in a program
1716 * must declare the same layout and same value for
1717 * max_vertices. There must be at least one geometry output
1718 * layout declaration somewhere in a program, but not all
1719 * geometry shaders (compilation units) are required to
1720 * declare it."
1721 */
1722
1723 for (unsigned i = 0; i < num_shaders; i++) {
1724 struct gl_shader *shader = shader_list[i];
1725
1726 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1727 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1728 linked_shader->Geom.InputType != shader->Geom.InputType) {
1729 linker_error(prog, "geometry shader defined with conflicting "
1730 "input types\n");
1731 return;
1732 }
1733 linked_shader->Geom.InputType = shader->Geom.InputType;
1734 }
1735
1736 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1737 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1738 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1739 linker_error(prog, "geometry shader defined with conflicting "
1740 "output types\n");
1741 return;
1742 }
1743 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1744 }
1745
1746 if (shader->Geom.VerticesOut != 0) {
1747 if (linked_shader->Geom.VerticesOut != 0 &&
1748 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1749 linker_error(prog, "geometry shader defined with conflicting "
1750 "output vertex count (%d and %d)\n",
1751 linked_shader->Geom.VerticesOut,
1752 shader->Geom.VerticesOut);
1753 return;
1754 }
1755 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1756 }
1757
1758 if (shader->Geom.Invocations != 0) {
1759 if (linked_shader->Geom.Invocations != 0 &&
1760 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1761 linker_error(prog, "geometry shader defined with conflicting "
1762 "invocation count (%d and %d)\n",
1763 linked_shader->Geom.Invocations,
1764 shader->Geom.Invocations);
1765 return;
1766 }
1767 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1768 }
1769 }
1770
1771 /* Just do the intrastage -> interstage propagation right now,
1772 * since we already know we're in the right type of shader program
1773 * for doing it.
1774 */
1775 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1776 linker_error(prog,
1777 "geometry shader didn't declare primitive input type\n");
1778 return;
1779 }
1780 prog->Geom.InputType = linked_shader->Geom.InputType;
1781
1782 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1783 linker_error(prog,
1784 "geometry shader didn't declare primitive output type\n");
1785 return;
1786 }
1787 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1788
1789 if (linked_shader->Geom.VerticesOut == 0) {
1790 linker_error(prog,
1791 "geometry shader didn't declare max_vertices\n");
1792 return;
1793 }
1794 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1795
1796 if (linked_shader->Geom.Invocations == 0)
1797 linked_shader->Geom.Invocations = 1;
1798
1799 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1800 }
1801
1802
1803 /**
1804 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1805 * qualifiers for the attached compute shaders, and propagate them to the
1806 * linked CS and linked shader program.
1807 */
1808 static void
1809 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1810 struct gl_shader *linked_shader,
1811 struct gl_shader **shader_list,
1812 unsigned num_shaders)
1813 {
1814 for (int i = 0; i < 3; i++)
1815 linked_shader->Comp.LocalSize[i] = 0;
1816
1817 /* This function is called for all shader stages, but it only has an effect
1818 * for compute shaders.
1819 */
1820 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1821 return;
1822
1823 /* From the ARB_compute_shader spec, in the section describing local size
1824 * declarations:
1825 *
1826 * If multiple compute shaders attached to a single program object
1827 * declare local work-group size, the declarations must be identical;
1828 * otherwise a link-time error results. Furthermore, if a program
1829 * object contains any compute shaders, at least one must contain an
1830 * input layout qualifier specifying the local work sizes of the
1831 * program, or a link-time error will occur.
1832 */
1833 for (unsigned sh = 0; sh < num_shaders; sh++) {
1834 struct gl_shader *shader = shader_list[sh];
1835
1836 if (shader->Comp.LocalSize[0] != 0) {
1837 if (linked_shader->Comp.LocalSize[0] != 0) {
1838 for (int i = 0; i < 3; i++) {
1839 if (linked_shader->Comp.LocalSize[i] !=
1840 shader->Comp.LocalSize[i]) {
1841 linker_error(prog, "compute shader defined with conflicting "
1842 "local sizes\n");
1843 return;
1844 }
1845 }
1846 }
1847 for (int i = 0; i < 3; i++)
1848 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1849 }
1850 }
1851
1852 /* Just do the intrastage -> interstage propagation right now,
1853 * since we already know we're in the right type of shader program
1854 * for doing it.
1855 */
1856 if (linked_shader->Comp.LocalSize[0] == 0) {
1857 linker_error(prog, "compute shader didn't declare local size\n");
1858 return;
1859 }
1860 for (int i = 0; i < 3; i++)
1861 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1862 }
1863
1864
1865 /**
1866 * Combine a group of shaders for a single stage to generate a linked shader
1867 *
1868 * \note
1869 * If this function is supplied a single shader, it is cloned, and the new
1870 * shader is returned.
1871 */
1872 static struct gl_shader *
1873 link_intrastage_shaders(void *mem_ctx,
1874 struct gl_context *ctx,
1875 struct gl_shader_program *prog,
1876 struct gl_shader **shader_list,
1877 unsigned num_shaders)
1878 {
1879 struct gl_uniform_block *uniform_blocks = NULL;
1880
1881 /* Check that global variables defined in multiple shaders are consistent.
1882 */
1883 cross_validate_globals(prog, shader_list, num_shaders, false);
1884 if (!prog->LinkStatus)
1885 return NULL;
1886
1887 /* Check that interface blocks defined in multiple shaders are consistent.
1888 */
1889 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1890 num_shaders);
1891 if (!prog->LinkStatus)
1892 return NULL;
1893
1894 /* Link up uniform blocks defined within this stage. */
1895 const unsigned num_uniform_blocks =
1896 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1897 &uniform_blocks);
1898 if (!prog->LinkStatus)
1899 return NULL;
1900
1901 /* Check that there is only a single definition of each function signature
1902 * across all shaders.
1903 */
1904 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1905 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1906 ir_function *const f = node->as_function();
1907
1908 if (f == NULL)
1909 continue;
1910
1911 for (unsigned j = i + 1; j < num_shaders; j++) {
1912 ir_function *const other =
1913 shader_list[j]->symbols->get_function(f->name);
1914
1915 /* If the other shader has no function (and therefore no function
1916 * signatures) with the same name, skip to the next shader.
1917 */
1918 if (other == NULL)
1919 continue;
1920
1921 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1922 if (!sig->is_defined || sig->is_builtin())
1923 continue;
1924
1925 ir_function_signature *other_sig =
1926 other->exact_matching_signature(NULL, &sig->parameters);
1927
1928 if ((other_sig != NULL) && other_sig->is_defined
1929 && !other_sig->is_builtin()) {
1930 linker_error(prog, "function `%s' is multiply defined\n",
1931 f->name);
1932 return NULL;
1933 }
1934 }
1935 }
1936 }
1937 }
1938
1939 /* Find the shader that defines main, and make a clone of it.
1940 *
1941 * Starting with the clone, search for undefined references. If one is
1942 * found, find the shader that defines it. Clone the reference and add
1943 * it to the shader. Repeat until there are no undefined references or
1944 * until a reference cannot be resolved.
1945 */
1946 gl_shader *main = NULL;
1947 for (unsigned i = 0; i < num_shaders; i++) {
1948 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1949 main = shader_list[i];
1950 break;
1951 }
1952 }
1953
1954 if (main == NULL) {
1955 linker_error(prog, "%s shader lacks `main'\n",
1956 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1957 return NULL;
1958 }
1959
1960 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1961 linked->ir = new(linked) exec_list;
1962 clone_ir_list(mem_ctx, linked->ir, main->ir);
1963
1964 linked->UniformBlocks = uniform_blocks;
1965 linked->NumUniformBlocks = num_uniform_blocks;
1966 ralloc_steal(linked, linked->UniformBlocks);
1967
1968 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1969 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
1970 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
1971 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1972 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1973
1974 populate_symbol_table(linked);
1975
1976 /* The pointer to the main function in the final linked shader (i.e., the
1977 * copy of the original shader that contained the main function).
1978 */
1979 ir_function_signature *const main_sig =
1980 link_get_main_function_signature(linked);
1981
1982 /* Move any instructions other than variable declarations or function
1983 * declarations into main.
1984 */
1985 exec_node *insertion_point =
1986 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1987 linked);
1988
1989 for (unsigned i = 0; i < num_shaders; i++) {
1990 if (shader_list[i] == main)
1991 continue;
1992
1993 insertion_point = move_non_declarations(shader_list[i]->ir,
1994 insertion_point, true, linked);
1995 }
1996
1997 /* Check if any shader needs built-in functions. */
1998 bool need_builtins = false;
1999 for (unsigned i = 0; i < num_shaders; i++) {
2000 if (shader_list[i]->uses_builtin_functions) {
2001 need_builtins = true;
2002 break;
2003 }
2004 }
2005
2006 bool ok;
2007 if (need_builtins) {
2008 /* Make a temporary array one larger than shader_list, which will hold
2009 * the built-in function shader as well.
2010 */
2011 gl_shader **linking_shaders = (gl_shader **)
2012 calloc(num_shaders + 1, sizeof(gl_shader *));
2013
2014 ok = linking_shaders != NULL;
2015
2016 if (ok) {
2017 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2018 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2019
2020 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2021
2022 free(linking_shaders);
2023 } else {
2024 _mesa_error_no_memory(__func__);
2025 }
2026 } else {
2027 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2028 }
2029
2030
2031 if (!ok) {
2032 ctx->Driver.DeleteShader(ctx, linked);
2033 return NULL;
2034 }
2035
2036 /* At this point linked should contain all of the linked IR, so
2037 * validate it to make sure nothing went wrong.
2038 */
2039 validate_ir_tree(linked->ir);
2040
2041 /* Set the size of geometry shader input arrays */
2042 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2043 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
2044 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2045 foreach_in_list(ir_instruction, ir, linked->ir) {
2046 ir->accept(&input_resize_visitor);
2047 }
2048 }
2049
2050 if (ctx->Const.VertexID_is_zero_based)
2051 lower_vertex_id(linked);
2052
2053 /* Make a pass over all variable declarations to ensure that arrays with
2054 * unspecified sizes have a size specified. The size is inferred from the
2055 * max_array_access field.
2056 */
2057 array_sizing_visitor v;
2058 v.run(linked->ir);
2059 v.fixup_unnamed_interface_types();
2060
2061 return linked;
2062 }
2063
2064 /**
2065 * Update the sizes of linked shader uniform arrays to the maximum
2066 * array index used.
2067 *
2068 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2069 *
2070 * If one or more elements of an array are active,
2071 * GetActiveUniform will return the name of the array in name,
2072 * subject to the restrictions listed above. The type of the array
2073 * is returned in type. The size parameter contains the highest
2074 * array element index used, plus one. The compiler or linker
2075 * determines the highest index used. There will be only one
2076 * active uniform reported by the GL per uniform array.
2077
2078 */
2079 static void
2080 update_array_sizes(struct gl_shader_program *prog)
2081 {
2082 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2083 if (prog->_LinkedShaders[i] == NULL)
2084 continue;
2085
2086 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2087 ir_variable *const var = node->as_variable();
2088
2089 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2090 !var->type->is_array())
2091 continue;
2092
2093 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2094 * will not be eliminated. Since we always do std140, just
2095 * don't resize arrays in UBOs.
2096 *
2097 * Atomic counters are supposed to get deterministic
2098 * locations assigned based on the declaration ordering and
2099 * sizes, array compaction would mess that up.
2100 */
2101 if (var->is_in_buffer_block() || var->type->contains_atomic())
2102 continue;
2103
2104 unsigned int size = var->data.max_array_access;
2105 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2106 if (prog->_LinkedShaders[j] == NULL)
2107 continue;
2108
2109 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2110 ir_variable *other_var = node2->as_variable();
2111 if (!other_var)
2112 continue;
2113
2114 if (strcmp(var->name, other_var->name) == 0 &&
2115 other_var->data.max_array_access > size) {
2116 size = other_var->data.max_array_access;
2117 }
2118 }
2119 }
2120
2121 if (size + 1 != var->type->length) {
2122 /* If this is a built-in uniform (i.e., it's backed by some
2123 * fixed-function state), adjust the number of state slots to
2124 * match the new array size. The number of slots per array entry
2125 * is not known. It seems safe to assume that the total number of
2126 * slots is an integer multiple of the number of array elements.
2127 * Determine the number of slots per array element by dividing by
2128 * the old (total) size.
2129 */
2130 const unsigned num_slots = var->get_num_state_slots();
2131 if (num_slots > 0) {
2132 var->set_num_state_slots((size + 1)
2133 * (num_slots / var->type->length));
2134 }
2135
2136 var->type = glsl_type::get_array_instance(var->type->fields.array,
2137 size + 1);
2138 /* FINISHME: We should update the types of array
2139 * dereferences of this variable now.
2140 */
2141 }
2142 }
2143 }
2144 }
2145
2146 /**
2147 * Resize tessellation evaluation per-vertex inputs to the size of
2148 * tessellation control per-vertex outputs.
2149 */
2150 static void
2151 resize_tes_inputs(struct gl_context *ctx,
2152 struct gl_shader_program *prog)
2153 {
2154 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2155 return;
2156
2157 gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2158 gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2159
2160 /* If no control shader is present, then the TES inputs are statically
2161 * sized to MaxPatchVertices; the actual size of the arrays won't be
2162 * known until draw time.
2163 */
2164 const int num_vertices = tcs
2165 ? tcs->TessCtrl.VerticesOut
2166 : ctx->Const.MaxPatchVertices;
2167
2168 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2169 foreach_in_list(ir_instruction, ir, tes->ir) {
2170 ir->accept(&input_resize_visitor);
2171 }
2172 }
2173
2174 /**
2175 * Find a contiguous set of available bits in a bitmask.
2176 *
2177 * \param used_mask Bits representing used (1) and unused (0) locations
2178 * \param needed_count Number of contiguous bits needed.
2179 *
2180 * \return
2181 * Base location of the available bits on success or -1 on failure.
2182 */
2183 int
2184 find_available_slots(unsigned used_mask, unsigned needed_count)
2185 {
2186 unsigned needed_mask = (1 << needed_count) - 1;
2187 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2188
2189 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2190 * cannot optimize possibly infinite loops" for the loop below.
2191 */
2192 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2193 return -1;
2194
2195 for (int i = 0; i <= max_bit_to_test; i++) {
2196 if ((needed_mask & ~used_mask) == needed_mask)
2197 return i;
2198
2199 needed_mask <<= 1;
2200 }
2201
2202 return -1;
2203 }
2204
2205
2206 /**
2207 * Assign locations for either VS inputs or FS outputs
2208 *
2209 * \param prog Shader program whose variables need locations assigned
2210 * \param target_index Selector for the program target to receive location
2211 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2212 * \c MESA_SHADER_FRAGMENT.
2213 * \param max_index Maximum number of generic locations. This corresponds
2214 * to either the maximum number of draw buffers or the
2215 * maximum number of generic attributes.
2216 *
2217 * \return
2218 * If locations are successfully assigned, true is returned. Otherwise an
2219 * error is emitted to the shader link log and false is returned.
2220 */
2221 bool
2222 assign_attribute_or_color_locations(gl_shader_program *prog,
2223 unsigned target_index,
2224 unsigned max_index)
2225 {
2226 /* Mark invalid locations as being used.
2227 */
2228 unsigned used_locations = (max_index >= 32)
2229 ? ~0 : ~((1 << max_index) - 1);
2230
2231 assert((target_index == MESA_SHADER_VERTEX)
2232 || (target_index == MESA_SHADER_FRAGMENT));
2233
2234 gl_shader *const sh = prog->_LinkedShaders[target_index];
2235 if (sh == NULL)
2236 return true;
2237
2238 /* Operate in a total of four passes.
2239 *
2240 * 1. Invalidate the location assignments for all vertex shader inputs.
2241 *
2242 * 2. Assign locations for inputs that have user-defined (via
2243 * glBindVertexAttribLocation) locations and outputs that have
2244 * user-defined locations (via glBindFragDataLocation).
2245 *
2246 * 3. Sort the attributes without assigned locations by number of slots
2247 * required in decreasing order. Fragmentation caused by attribute
2248 * locations assigned by the application may prevent large attributes
2249 * from having enough contiguous space.
2250 *
2251 * 4. Assign locations to any inputs without assigned locations.
2252 */
2253
2254 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2255 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2256
2257 const enum ir_variable_mode direction =
2258 (target_index == MESA_SHADER_VERTEX)
2259 ? ir_var_shader_in : ir_var_shader_out;
2260
2261
2262 /* Temporary storage for the set of attributes that need locations assigned.
2263 */
2264 struct temp_attr {
2265 unsigned slots;
2266 ir_variable *var;
2267
2268 /* Used below in the call to qsort. */
2269 static int compare(const void *a, const void *b)
2270 {
2271 const temp_attr *const l = (const temp_attr *) a;
2272 const temp_attr *const r = (const temp_attr *) b;
2273
2274 /* Reversed because we want a descending order sort below. */
2275 return r->slots - l->slots;
2276 }
2277 } to_assign[16];
2278
2279 unsigned num_attr = 0;
2280 unsigned total_attribs_size = 0;
2281
2282 foreach_in_list(ir_instruction, node, sh->ir) {
2283 ir_variable *const var = node->as_variable();
2284
2285 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2286 continue;
2287
2288 if (var->data.explicit_location) {
2289 if ((var->data.location >= (int)(max_index + generic_base))
2290 || (var->data.location < 0)) {
2291 linker_error(prog,
2292 "invalid explicit location %d specified for `%s'\n",
2293 (var->data.location < 0)
2294 ? var->data.location
2295 : var->data.location - generic_base,
2296 var->name);
2297 return false;
2298 }
2299 } else if (target_index == MESA_SHADER_VERTEX) {
2300 unsigned binding;
2301
2302 if (prog->AttributeBindings->get(binding, var->name)) {
2303 assert(binding >= VERT_ATTRIB_GENERIC0);
2304 var->data.location = binding;
2305 var->data.is_unmatched_generic_inout = 0;
2306 }
2307 } else if (target_index == MESA_SHADER_FRAGMENT) {
2308 unsigned binding;
2309 unsigned index;
2310
2311 if (prog->FragDataBindings->get(binding, var->name)) {
2312 assert(binding >= FRAG_RESULT_DATA0);
2313 var->data.location = binding;
2314 var->data.is_unmatched_generic_inout = 0;
2315
2316 if (prog->FragDataIndexBindings->get(index, var->name)) {
2317 var->data.index = index;
2318 }
2319 }
2320 }
2321
2322 const unsigned slots = var->type->count_attribute_slots();
2323
2324 /* From GL4.5 core spec, section 11.1.1 (Vertex Attributes):
2325 *
2326 * "A program with more than the value of MAX_VERTEX_ATTRIBS active
2327 * attribute variables may fail to link, unless device-dependent
2328 * optimizations are able to make the program fit within available
2329 * hardware resources. For the purposes of this test, attribute variables
2330 * of the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3,
2331 * and dmat4 may count as consuming twice as many attributes as equivalent
2332 * single-precision types. While these types use the same number of
2333 * generic attributes as their single-precision equivalents,
2334 * implementations are permitted to consume two single-precision vectors
2335 * of internal storage for each three- or four-component double-precision
2336 * vector."
2337 * Until someone has a good reason in Mesa, enforce that now.
2338 */
2339 if (target_index == MESA_SHADER_VERTEX) {
2340 total_attribs_size += slots;
2341 if (var->type->without_array() == glsl_type::dvec3_type ||
2342 var->type->without_array() == glsl_type::dvec4_type ||
2343 var->type->without_array() == glsl_type::dmat2x3_type ||
2344 var->type->without_array() == glsl_type::dmat2x4_type ||
2345 var->type->without_array() == glsl_type::dmat3_type ||
2346 var->type->without_array() == glsl_type::dmat3x4_type ||
2347 var->type->without_array() == glsl_type::dmat4x3_type ||
2348 var->type->without_array() == glsl_type::dmat4_type)
2349 total_attribs_size += slots;
2350 }
2351
2352 /* If the variable is not a built-in and has a location statically
2353 * assigned in the shader (presumably via a layout qualifier), make sure
2354 * that it doesn't collide with other assigned locations. Otherwise,
2355 * add it to the list of variables that need linker-assigned locations.
2356 */
2357 if (var->data.location != -1) {
2358 if (var->data.location >= generic_base && var->data.index < 1) {
2359 /* From page 61 of the OpenGL 4.0 spec:
2360 *
2361 * "LinkProgram will fail if the attribute bindings assigned
2362 * by BindAttribLocation do not leave not enough space to
2363 * assign a location for an active matrix attribute or an
2364 * active attribute array, both of which require multiple
2365 * contiguous generic attributes."
2366 *
2367 * I think above text prohibits the aliasing of explicit and
2368 * automatic assignments. But, aliasing is allowed in manual
2369 * assignments of attribute locations. See below comments for
2370 * the details.
2371 *
2372 * From OpenGL 4.0 spec, page 61:
2373 *
2374 * "It is possible for an application to bind more than one
2375 * attribute name to the same location. This is referred to as
2376 * aliasing. This will only work if only one of the aliased
2377 * attributes is active in the executable program, or if no
2378 * path through the shader consumes more than one attribute of
2379 * a set of attributes aliased to the same location. A link
2380 * error can occur if the linker determines that every path
2381 * through the shader consumes multiple aliased attributes,
2382 * but implementations are not required to generate an error
2383 * in this case."
2384 *
2385 * From GLSL 4.30 spec, page 54:
2386 *
2387 * "A program will fail to link if any two non-vertex shader
2388 * input variables are assigned to the same location. For
2389 * vertex shaders, multiple input variables may be assigned
2390 * to the same location using either layout qualifiers or via
2391 * the OpenGL API. However, such aliasing is intended only to
2392 * support vertex shaders where each execution path accesses
2393 * at most one input per each location. Implementations are
2394 * permitted, but not required, to generate link-time errors
2395 * if they detect that every path through the vertex shader
2396 * executable accesses multiple inputs assigned to any single
2397 * location. For all shader types, a program will fail to link
2398 * if explicit location assignments leave the linker unable
2399 * to find space for other variables without explicit
2400 * assignments."
2401 *
2402 * From OpenGL ES 3.0 spec, page 56:
2403 *
2404 * "Binding more than one attribute name to the same location
2405 * is referred to as aliasing, and is not permitted in OpenGL
2406 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2407 * fail when this condition exists. However, aliasing is
2408 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2409 * This will only work if only one of the aliased attributes
2410 * is active in the executable program, or if no path through
2411 * the shader consumes more than one attribute of a set of
2412 * attributes aliased to the same location. A link error can
2413 * occur if the linker determines that every path through the
2414 * shader consumes multiple aliased attributes, but implemen-
2415 * tations are not required to generate an error in this case."
2416 *
2417 * After looking at above references from OpenGL, OpenGL ES and
2418 * GLSL specifications, we allow aliasing of vertex input variables
2419 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2420 *
2421 * NOTE: This is not required by the spec but its worth mentioning
2422 * here that we're not doing anything to make sure that no path
2423 * through the vertex shader executable accesses multiple inputs
2424 * assigned to any single location.
2425 */
2426
2427 /* Mask representing the contiguous slots that will be used by
2428 * this attribute.
2429 */
2430 const unsigned attr = var->data.location - generic_base;
2431 const unsigned use_mask = (1 << slots) - 1;
2432 const char *const string = (target_index == MESA_SHADER_VERTEX)
2433 ? "vertex shader input" : "fragment shader output";
2434
2435 /* Generate a link error if the requested locations for this
2436 * attribute exceed the maximum allowed attribute location.
2437 */
2438 if (attr + slots > max_index) {
2439 linker_error(prog,
2440 "insufficient contiguous locations "
2441 "available for %s `%s' %d %d %d\n", string,
2442 var->name, used_locations, use_mask, attr);
2443 return false;
2444 }
2445
2446 /* Generate a link error if the set of bits requested for this
2447 * attribute overlaps any previously allocated bits.
2448 */
2449 if ((~(use_mask << attr) & used_locations) != used_locations) {
2450 if (target_index == MESA_SHADER_FRAGMENT ||
2451 (prog->IsES && prog->Version >= 300)) {
2452 linker_error(prog,
2453 "overlapping location is assigned "
2454 "to %s `%s' %d %d %d\n", string,
2455 var->name, used_locations, use_mask, attr);
2456 return false;
2457 } else {
2458 linker_warning(prog,
2459 "overlapping location is assigned "
2460 "to %s `%s' %d %d %d\n", string,
2461 var->name, used_locations, use_mask, attr);
2462 }
2463 }
2464
2465 used_locations |= (use_mask << attr);
2466 }
2467
2468 continue;
2469 }
2470
2471 to_assign[num_attr].slots = slots;
2472 to_assign[num_attr].var = var;
2473 num_attr++;
2474 }
2475
2476 if (target_index == MESA_SHADER_VERTEX) {
2477 if (total_attribs_size > max_index) {
2478 linker_error(prog,
2479 "attempt to use %d vertex attribute slots only %d available ",
2480 total_attribs_size, max_index);
2481 return false;
2482 }
2483 }
2484
2485 /* If all of the attributes were assigned locations by the application (or
2486 * are built-in attributes with fixed locations), return early. This should
2487 * be the common case.
2488 */
2489 if (num_attr == 0)
2490 return true;
2491
2492 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2493
2494 if (target_index == MESA_SHADER_VERTEX) {
2495 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2496 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2497 * reserved to prevent it from being automatically allocated below.
2498 */
2499 find_deref_visitor find("gl_Vertex");
2500 find.run(sh->ir);
2501 if (find.variable_found())
2502 used_locations |= (1 << 0);
2503 }
2504
2505 for (unsigned i = 0; i < num_attr; i++) {
2506 /* Mask representing the contiguous slots that will be used by this
2507 * attribute.
2508 */
2509 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2510
2511 int location = find_available_slots(used_locations, to_assign[i].slots);
2512
2513 if (location < 0) {
2514 const char *const string = (target_index == MESA_SHADER_VERTEX)
2515 ? "vertex shader input" : "fragment shader output";
2516
2517 linker_error(prog,
2518 "insufficient contiguous locations "
2519 "available for %s `%s'\n",
2520 string, to_assign[i].var->name);
2521 return false;
2522 }
2523
2524 to_assign[i].var->data.location = generic_base + location;
2525 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2526 used_locations |= (use_mask << location);
2527 }
2528
2529 return true;
2530 }
2531
2532
2533 /**
2534 * Demote shader inputs and outputs that are not used in other stages
2535 */
2536 void
2537 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2538 {
2539 foreach_in_list(ir_instruction, node, sh->ir) {
2540 ir_variable *const var = node->as_variable();
2541
2542 if ((var == NULL) || (var->data.mode != int(mode)))
2543 continue;
2544
2545 /* A shader 'in' or 'out' variable is only really an input or output if
2546 * its value is used by other shader stages. This will cause the variable
2547 * to have a location assigned.
2548 */
2549 if (var->data.is_unmatched_generic_inout) {
2550 assert(var->data.mode != ir_var_temporary);
2551 var->data.mode = ir_var_auto;
2552 }
2553 }
2554 }
2555
2556
2557 /**
2558 * Store the gl_FragDepth layout in the gl_shader_program struct.
2559 */
2560 static void
2561 store_fragdepth_layout(struct gl_shader_program *prog)
2562 {
2563 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2564 return;
2565 }
2566
2567 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2568
2569 /* We don't look up the gl_FragDepth symbol directly because if
2570 * gl_FragDepth is not used in the shader, it's removed from the IR.
2571 * However, the symbol won't be removed from the symbol table.
2572 *
2573 * We're only interested in the cases where the variable is NOT removed
2574 * from the IR.
2575 */
2576 foreach_in_list(ir_instruction, node, ir) {
2577 ir_variable *const var = node->as_variable();
2578
2579 if (var == NULL || var->data.mode != ir_var_shader_out) {
2580 continue;
2581 }
2582
2583 if (strcmp(var->name, "gl_FragDepth") == 0) {
2584 switch (var->data.depth_layout) {
2585 case ir_depth_layout_none:
2586 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2587 return;
2588 case ir_depth_layout_any:
2589 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2590 return;
2591 case ir_depth_layout_greater:
2592 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2593 return;
2594 case ir_depth_layout_less:
2595 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2596 return;
2597 case ir_depth_layout_unchanged:
2598 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2599 return;
2600 default:
2601 assert(0);
2602 return;
2603 }
2604 }
2605 }
2606 }
2607
2608 /**
2609 * Validate the resources used by a program versus the implementation limits
2610 */
2611 static void
2612 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2613 {
2614 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2615 struct gl_shader *sh = prog->_LinkedShaders[i];
2616
2617 if (sh == NULL)
2618 continue;
2619
2620 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2621 linker_error(prog, "Too many %s shader texture samplers\n",
2622 _mesa_shader_stage_to_string(i));
2623 }
2624
2625 if (sh->num_uniform_components >
2626 ctx->Const.Program[i].MaxUniformComponents) {
2627 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2628 linker_warning(prog, "Too many %s shader default uniform block "
2629 "components, but the driver will try to optimize "
2630 "them out; this is non-portable out-of-spec "
2631 "behavior\n",
2632 _mesa_shader_stage_to_string(i));
2633 } else {
2634 linker_error(prog, "Too many %s shader default uniform block "
2635 "components\n",
2636 _mesa_shader_stage_to_string(i));
2637 }
2638 }
2639
2640 if (sh->num_combined_uniform_components >
2641 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2642 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2643 linker_warning(prog, "Too many %s shader uniform components, "
2644 "but the driver will try to optimize them out; "
2645 "this is non-portable out-of-spec behavior\n",
2646 _mesa_shader_stage_to_string(i));
2647 } else {
2648 linker_error(prog, "Too many %s shader uniform components\n",
2649 _mesa_shader_stage_to_string(i));
2650 }
2651 }
2652 }
2653
2654 unsigned blocks[MESA_SHADER_STAGES] = {0};
2655 unsigned total_uniform_blocks = 0;
2656
2657 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2658 if (prog->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2659 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2660 prog->UniformBlocks[i].Name,
2661 prog->UniformBlocks[i].UniformBufferSize,
2662 ctx->Const.MaxUniformBlockSize);
2663 }
2664
2665 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2666 if (prog->UniformBlockStageIndex[j][i] != -1) {
2667 blocks[j]++;
2668 total_uniform_blocks++;
2669 }
2670 }
2671
2672 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2673 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2674 prog->NumUniformBlocks,
2675 ctx->Const.MaxCombinedUniformBlocks);
2676 } else {
2677 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2678 const unsigned max_uniform_blocks =
2679 ctx->Const.Program[i].MaxUniformBlocks;
2680 if (blocks[i] > max_uniform_blocks) {
2681 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2682 _mesa_shader_stage_to_string(i),
2683 blocks[i],
2684 max_uniform_blocks);
2685 break;
2686 }
2687 }
2688 }
2689 }
2690 }
2691
2692 /**
2693 * Validate shader image resources.
2694 */
2695 static void
2696 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2697 {
2698 unsigned total_image_units = 0;
2699 unsigned fragment_outputs = 0;
2700
2701 if (!ctx->Extensions.ARB_shader_image_load_store)
2702 return;
2703
2704 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2705 struct gl_shader *sh = prog->_LinkedShaders[i];
2706
2707 if (sh) {
2708 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2709 linker_error(prog, "Too many %s shader image uniforms\n",
2710 _mesa_shader_stage_to_string(i));
2711
2712 total_image_units += sh->NumImages;
2713
2714 if (i == MESA_SHADER_FRAGMENT) {
2715 foreach_in_list(ir_instruction, node, sh->ir) {
2716 ir_variable *var = node->as_variable();
2717 if (var && var->data.mode == ir_var_shader_out)
2718 fragment_outputs += var->type->count_attribute_slots();
2719 }
2720 }
2721 }
2722 }
2723
2724 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2725 linker_error(prog, "Too many combined image uniforms\n");
2726
2727 if (total_image_units + fragment_outputs >
2728 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2729 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2730 }
2731
2732
2733 /**
2734 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2735 * for a variable, checks for overlaps between other uniforms using explicit
2736 * locations.
2737 */
2738 static bool
2739 reserve_explicit_locations(struct gl_shader_program *prog,
2740 string_to_uint_map *map, ir_variable *var)
2741 {
2742 unsigned slots = var->type->uniform_locations();
2743 unsigned max_loc = var->data.location + slots - 1;
2744
2745 /* Resize remap table if locations do not fit in the current one. */
2746 if (max_loc + 1 > prog->NumUniformRemapTable) {
2747 prog->UniformRemapTable =
2748 reralloc(prog, prog->UniformRemapTable,
2749 gl_uniform_storage *,
2750 max_loc + 1);
2751
2752 if (!prog->UniformRemapTable) {
2753 linker_error(prog, "Out of memory during linking.\n");
2754 return false;
2755 }
2756
2757 /* Initialize allocated space. */
2758 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2759 prog->UniformRemapTable[i] = NULL;
2760
2761 prog->NumUniformRemapTable = max_loc + 1;
2762 }
2763
2764 for (unsigned i = 0; i < slots; i++) {
2765 unsigned loc = var->data.location + i;
2766
2767 /* Check if location is already used. */
2768 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2769
2770 /* Possibly same uniform from a different stage, this is ok. */
2771 unsigned hash_loc;
2772 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2773 continue;
2774
2775 /* ARB_explicit_uniform_location specification states:
2776 *
2777 * "No two default-block uniform variables in the program can have
2778 * the same location, even if they are unused, otherwise a compiler
2779 * or linker error will be generated."
2780 */
2781 linker_error(prog,
2782 "location qualifier for uniform %s overlaps "
2783 "previously used location\n",
2784 var->name);
2785 return false;
2786 }
2787
2788 /* Initialize location as inactive before optimization
2789 * rounds and location assignment.
2790 */
2791 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2792 }
2793
2794 /* Note, base location used for arrays. */
2795 map->put(var->data.location, var->name);
2796
2797 return true;
2798 }
2799
2800 /**
2801 * Check and reserve all explicit uniform locations, called before
2802 * any optimizations happen to handle also inactive uniforms and
2803 * inactive array elements that may get trimmed away.
2804 */
2805 static void
2806 check_explicit_uniform_locations(struct gl_context *ctx,
2807 struct gl_shader_program *prog)
2808 {
2809 if (!ctx->Extensions.ARB_explicit_uniform_location)
2810 return;
2811
2812 /* This map is used to detect if overlapping explicit locations
2813 * occur with the same uniform (from different stage) or a different one.
2814 */
2815 string_to_uint_map *uniform_map = new string_to_uint_map;
2816
2817 if (!uniform_map) {
2818 linker_error(prog, "Out of memory during linking.\n");
2819 return;
2820 }
2821
2822 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2823 struct gl_shader *sh = prog->_LinkedShaders[i];
2824
2825 if (!sh)
2826 continue;
2827
2828 foreach_in_list(ir_instruction, node, sh->ir) {
2829 ir_variable *var = node->as_variable();
2830 if (var && (var->data.mode == ir_var_uniform || var->data.mode == ir_var_shader_storage) &&
2831 var->data.explicit_location) {
2832 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2833 delete uniform_map;
2834 return;
2835 }
2836 }
2837 }
2838 }
2839
2840 delete uniform_map;
2841 }
2842
2843 static bool
2844 add_program_resource(struct gl_shader_program *prog, GLenum type,
2845 const void *data, uint8_t stages)
2846 {
2847 assert(data);
2848
2849 /* If resource already exists, do not add it again. */
2850 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
2851 if (prog->ProgramResourceList[i].Data == data)
2852 return true;
2853
2854 prog->ProgramResourceList =
2855 reralloc(prog,
2856 prog->ProgramResourceList,
2857 gl_program_resource,
2858 prog->NumProgramResourceList + 1);
2859
2860 if (!prog->ProgramResourceList) {
2861 linker_error(prog, "Out of memory during linking.\n");
2862 return false;
2863 }
2864
2865 struct gl_program_resource *res =
2866 &prog->ProgramResourceList[prog->NumProgramResourceList];
2867
2868 res->Type = type;
2869 res->Data = data;
2870 res->StageReferences = stages;
2871
2872 prog->NumProgramResourceList++;
2873
2874 return true;
2875 }
2876
2877 /**
2878 * Function builds a stage reference bitmask from variable name.
2879 */
2880 static uint8_t
2881 build_stageref(struct gl_shader_program *shProg, const char *name)
2882 {
2883 uint8_t stages = 0;
2884
2885 /* Note, that we assume MAX 8 stages, if there will be more stages, type
2886 * used for reference mask in gl_program_resource will need to be changed.
2887 */
2888 assert(MESA_SHADER_STAGES < 8);
2889
2890 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2891 struct gl_shader *sh = shProg->_LinkedShaders[i];
2892 if (!sh)
2893 continue;
2894
2895 /* Shader symbol table may contain variables that have
2896 * been optimized away. Search IR for the variable instead.
2897 */
2898 foreach_in_list(ir_instruction, node, sh->ir) {
2899 ir_variable *var = node->as_variable();
2900 if (var && strcmp(var->name, name) == 0) {
2901 stages |= (1 << i);
2902 break;
2903 }
2904 }
2905 }
2906 return stages;
2907 }
2908
2909 static bool
2910 add_interface_variables(struct gl_shader_program *shProg,
2911 struct gl_shader *sh, GLenum programInterface)
2912 {
2913 foreach_in_list(ir_instruction, node, sh->ir) {
2914 ir_variable *var = node->as_variable();
2915 uint8_t mask = 0;
2916
2917 if (!var)
2918 continue;
2919
2920 switch (var->data.mode) {
2921 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
2922 * "For GetActiveAttrib, all active vertex shader input variables
2923 * are enumerated, including the special built-in inputs gl_VertexID
2924 * and gl_InstanceID."
2925 */
2926 case ir_var_system_value:
2927 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
2928 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
2929 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
2930 continue;
2931 /* Mark special built-in inputs referenced by the vertex stage so
2932 * that they are considered active by the shader queries.
2933 */
2934 mask = (1 << (MESA_SHADER_VERTEX));
2935 /* FALLTHROUGH */
2936 case ir_var_shader_in:
2937 if (programInterface != GL_PROGRAM_INPUT)
2938 continue;
2939 break;
2940 case ir_var_shader_out:
2941 if (programInterface != GL_PROGRAM_OUTPUT)
2942 continue;
2943 break;
2944 default:
2945 continue;
2946 };
2947
2948 if (!add_program_resource(shProg, programInterface, var,
2949 build_stageref(shProg, var->name) | mask))
2950 return false;
2951 }
2952 return true;
2953 }
2954
2955 /**
2956 * Builds up a list of program resources that point to existing
2957 * resource data.
2958 */
2959 void
2960 build_program_resource_list(struct gl_context *ctx,
2961 struct gl_shader_program *shProg)
2962 {
2963 /* Rebuild resource list. */
2964 if (shProg->ProgramResourceList) {
2965 ralloc_free(shProg->ProgramResourceList);
2966 shProg->ProgramResourceList = NULL;
2967 shProg->NumProgramResourceList = 0;
2968 }
2969
2970 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
2971
2972 /* Determine first input and final output stage. These are used to
2973 * detect which variables should be enumerated in the resource list
2974 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
2975 */
2976 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2977 if (!shProg->_LinkedShaders[i])
2978 continue;
2979 if (input_stage == MESA_SHADER_STAGES)
2980 input_stage = i;
2981 output_stage = i;
2982 }
2983
2984 /* Empty shader, no resources. */
2985 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
2986 return;
2987
2988 /* Add inputs and outputs to the resource list. */
2989 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage],
2990 GL_PROGRAM_INPUT))
2991 return;
2992
2993 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage],
2994 GL_PROGRAM_OUTPUT))
2995 return;
2996
2997 /* Add transform feedback varyings. */
2998 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
2999 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
3000 uint8_t stageref =
3001 build_stageref(shProg,
3002 shProg->LinkedTransformFeedback.Varyings[i].Name);
3003 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
3004 &shProg->LinkedTransformFeedback.Varyings[i],
3005 stageref))
3006 return;
3007 }
3008 }
3009
3010 /* Add uniforms from uniform storage. */
3011 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3012 /* Do not add uniforms internally used by Mesa. */
3013 if (shProg->UniformStorage[i].hidden)
3014 continue;
3015
3016 uint8_t stageref =
3017 build_stageref(shProg, shProg->UniformStorage[i].name);
3018
3019 /* Add stagereferences for uniforms in a uniform block. */
3020 int block_index = shProg->UniformStorage[i].block_index;
3021 if (block_index != -1) {
3022 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
3023 if (shProg->UniformBlockStageIndex[j][block_index] != -1)
3024 stageref |= (1 << j);
3025 }
3026 }
3027
3028 if (!add_program_resource(shProg, GL_UNIFORM,
3029 &shProg->UniformStorage[i], stageref))
3030 return;
3031 }
3032
3033 /* Add program uniform blocks. */
3034 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
3035 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
3036 &shProg->UniformBlocks[i], 0))
3037 return;
3038 }
3039
3040 /* Add atomic counter buffers. */
3041 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
3042 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
3043 &shProg->AtomicBuffers[i], 0))
3044 return;
3045 }
3046
3047 /* TODO - following extensions will require more resource types:
3048 *
3049 * GL_ARB_shader_storage_buffer_object
3050 * GL_ARB_shader_subroutine
3051 */
3052 }
3053
3054 /**
3055 * This check is done to make sure we allow only constant expression
3056 * indexing and "constant-index-expression" (indexing with an expression
3057 * that includes loop induction variable).
3058 */
3059 static bool
3060 validate_sampler_array_indexing(struct gl_context *ctx,
3061 struct gl_shader_program *prog)
3062 {
3063 dynamic_sampler_array_indexing_visitor v;
3064 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3065 if (prog->_LinkedShaders[i] == NULL)
3066 continue;
3067
3068 bool no_dynamic_indexing =
3069 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
3070
3071 /* Search for array derefs in shader. */
3072 v.run(prog->_LinkedShaders[i]->ir);
3073 if (v.uses_dynamic_sampler_array_indexing()) {
3074 const char *msg = "sampler arrays indexed with non-constant "
3075 "expressions is forbidden in GLSL %s %u";
3076 /* Backend has indicated that it has no dynamic indexing support. */
3077 if (no_dynamic_indexing) {
3078 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3079 return false;
3080 } else {
3081 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3082 }
3083 }
3084 }
3085 return true;
3086 }
3087
3088
3089 void
3090 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
3091 {
3092 tfeedback_decl *tfeedback_decls = NULL;
3093 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
3094
3095 void *mem_ctx = ralloc_context(NULL); // temporary linker context
3096
3097 prog->LinkStatus = true; /* All error paths will set this to false */
3098 prog->Validated = false;
3099 prog->_Used = false;
3100
3101 prog->ARB_fragment_coord_conventions_enable = false;
3102
3103 /* Separate the shaders into groups based on their type.
3104 */
3105 struct gl_shader **shader_list[MESA_SHADER_STAGES];
3106 unsigned num_shaders[MESA_SHADER_STAGES];
3107
3108 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
3109 shader_list[i] = (struct gl_shader **)
3110 calloc(prog->NumShaders, sizeof(struct gl_shader *));
3111 num_shaders[i] = 0;
3112 }
3113
3114 unsigned min_version = UINT_MAX;
3115 unsigned max_version = 0;
3116 const bool is_es_prog =
3117 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
3118 for (unsigned i = 0; i < prog->NumShaders; i++) {
3119 min_version = MIN2(min_version, prog->Shaders[i]->Version);
3120 max_version = MAX2(max_version, prog->Shaders[i]->Version);
3121
3122 if (prog->Shaders[i]->IsES != is_es_prog) {
3123 linker_error(prog, "all shaders must use same shading "
3124 "language version\n");
3125 goto done;
3126 }
3127
3128 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
3129 prog->ARB_fragment_coord_conventions_enable = true;
3130 }
3131
3132 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
3133 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
3134 num_shaders[shader_type]++;
3135 }
3136
3137 /* In desktop GLSL, different shader versions may be linked together. In
3138 * GLSL ES, all shader versions must be the same.
3139 */
3140 if (is_es_prog && min_version != max_version) {
3141 linker_error(prog, "all shaders must use same shading "
3142 "language version\n");
3143 goto done;
3144 }
3145
3146 prog->Version = max_version;
3147 prog->IsES = is_es_prog;
3148
3149 /* Some shaders have to be linked with some other shaders present.
3150 */
3151 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
3152 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3153 !prog->SeparateShader) {
3154 linker_error(prog, "Geometry shader must be linked with "
3155 "vertex shader\n");
3156 goto done;
3157 }
3158 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
3159 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3160 !prog->SeparateShader) {
3161 linker_error(prog, "Tessellation evaluation shader must be linked with "
3162 "vertex shader\n");
3163 goto done;
3164 }
3165 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
3166 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3167 !prog->SeparateShader) {
3168 linker_error(prog, "Tessellation control shader must be linked with "
3169 "vertex shader\n");
3170 goto done;
3171 }
3172
3173 /* The spec is self-contradictory here. It allows linking without a tess
3174 * eval shader, but that can only be used with transform feedback and
3175 * rasterization disabled. However, transform feedback isn't allowed
3176 * with GL_PATCHES, so it can't be used.
3177 *
3178 * More investigation showed that the idea of transform feedback after
3179 * a tess control shader was dropped, because some hw vendors couldn't
3180 * support tessellation without a tess eval shader, but the linker section
3181 * wasn't updated to reflect that.
3182 *
3183 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
3184 * spec bug.
3185 *
3186 * Do what's reasonable and always require a tess eval shader if a tess
3187 * control shader is present.
3188 */
3189 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
3190 num_shaders[MESA_SHADER_TESS_EVAL] == 0 &&
3191 !prog->SeparateShader) {
3192 linker_error(prog, "Tessellation control shader must be linked with "
3193 "tessellation evaluation shader\n");
3194 goto done;
3195 }
3196
3197 /* Compute shaders have additional restrictions. */
3198 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
3199 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
3200 linker_error(prog, "Compute shaders may not be linked with any other "
3201 "type of shader\n");
3202 }
3203
3204 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3205 if (prog->_LinkedShaders[i] != NULL)
3206 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
3207
3208 prog->_LinkedShaders[i] = NULL;
3209 }
3210
3211 /* Link all shaders for a particular stage and validate the result.
3212 */
3213 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
3214 if (num_shaders[stage] > 0) {
3215 gl_shader *const sh =
3216 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
3217 num_shaders[stage]);
3218
3219 if (!prog->LinkStatus) {
3220 if (sh)
3221 ctx->Driver.DeleteShader(ctx, sh);
3222 goto done;
3223 }
3224
3225 switch (stage) {
3226 case MESA_SHADER_VERTEX:
3227 validate_vertex_shader_executable(prog, sh);
3228 break;
3229 case MESA_SHADER_TESS_CTRL:
3230 /* nothing to be done */
3231 break;
3232 case MESA_SHADER_TESS_EVAL:
3233 validate_tess_eval_shader_executable(prog, sh);
3234 break;
3235 case MESA_SHADER_GEOMETRY:
3236 validate_geometry_shader_executable(prog, sh);
3237 break;
3238 case MESA_SHADER_FRAGMENT:
3239 validate_fragment_shader_executable(prog, sh);
3240 break;
3241 }
3242 if (!prog->LinkStatus) {
3243 if (sh)
3244 ctx->Driver.DeleteShader(ctx, sh);
3245 goto done;
3246 }
3247
3248 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
3249 }
3250 }
3251
3252 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
3253 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
3254 else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0)
3255 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
3256 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
3257 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
3258 else
3259 prog->LastClipDistanceArraySize = 0; /* Not used */
3260
3261 /* Here begins the inter-stage linking phase. Some initial validation is
3262 * performed, then locations are assigned for uniforms, attributes, and
3263 * varyings.
3264 */
3265 cross_validate_uniforms(prog);
3266 if (!prog->LinkStatus)
3267 goto done;
3268
3269 unsigned prev;
3270
3271 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
3272 if (prog->_LinkedShaders[prev] != NULL)
3273 break;
3274 }
3275
3276 check_explicit_uniform_locations(ctx, prog);
3277 if (!prog->LinkStatus)
3278 goto done;
3279
3280 resize_tes_inputs(ctx, prog);
3281
3282 /* Validate the inputs of each stage with the output of the preceding
3283 * stage.
3284 */
3285 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
3286 if (prog->_LinkedShaders[i] == NULL)
3287 continue;
3288
3289 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
3290 prog->_LinkedShaders[i]);
3291 if (!prog->LinkStatus)
3292 goto done;
3293
3294 cross_validate_outputs_to_inputs(prog,
3295 prog->_LinkedShaders[prev],
3296 prog->_LinkedShaders[i]);
3297 if (!prog->LinkStatus)
3298 goto done;
3299
3300 prev = i;
3301 }
3302
3303 /* Cross-validate uniform blocks between shader stages */
3304 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
3305 MESA_SHADER_STAGES);
3306 if (!prog->LinkStatus)
3307 goto done;
3308
3309 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3310 if (prog->_LinkedShaders[i] != NULL)
3311 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
3312 }
3313
3314 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
3315 * it before optimization because we want most of the checks to get
3316 * dropped thanks to constant propagation.
3317 *
3318 * This rule also applies to GLSL ES 3.00.
3319 */
3320 if (max_version >= (is_es_prog ? 300 : 130)) {
3321 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3322 if (sh) {
3323 lower_discard_flow(sh->ir);
3324 }
3325 }
3326
3327 if (!interstage_cross_validate_uniform_blocks(prog))
3328 goto done;
3329
3330 /* Do common optimization before assigning storage for attributes,
3331 * uniforms, and varyings. Later optimization could possibly make
3332 * some of that unused.
3333 */
3334 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3335 if (prog->_LinkedShaders[i] == NULL)
3336 continue;
3337
3338 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
3339 if (!prog->LinkStatus)
3340 goto done;
3341
3342 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
3343 lower_clip_distance(prog->_LinkedShaders[i]);
3344 }
3345
3346 if (ctx->Const.LowerTessLevel) {
3347 lower_tess_level(prog->_LinkedShaders[i]);
3348 }
3349
3350 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
3351 &ctx->Const.ShaderCompilerOptions[i],
3352 ctx->Const.NativeIntegers))
3353 ;
3354
3355 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
3356 }
3357
3358 /* Validation for special cases where we allow sampler array indexing
3359 * with loop induction variable. This check emits a warning or error
3360 * depending if backend can handle dynamic indexing.
3361 */
3362 if ((!prog->IsES && prog->Version < 130) ||
3363 (prog->IsES && prog->Version < 300)) {
3364 if (!validate_sampler_array_indexing(ctx, prog))
3365 goto done;
3366 }
3367
3368 /* Check and validate stream emissions in geometry shaders */
3369 validate_geometry_shader_emissions(ctx, prog);
3370
3371 /* Mark all generic shader inputs and outputs as unpaired. */
3372 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
3373 if (prog->_LinkedShaders[i] != NULL) {
3374 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
3375 }
3376 }
3377
3378 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX,
3379 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)) {
3380 goto done;
3381 }
3382
3383 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
3384 goto done;
3385 }
3386
3387 unsigned first, last;
3388
3389 first = MESA_SHADER_STAGES;
3390 last = 0;
3391
3392 /* Determine first and last stage. */
3393 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3394 if (!prog->_LinkedShaders[i])
3395 continue;
3396 if (first == MESA_SHADER_STAGES)
3397 first = i;
3398 last = i;
3399 }
3400
3401 if (num_tfeedback_decls != 0) {
3402 /* From GL_EXT_transform_feedback:
3403 * A program will fail to link if:
3404 *
3405 * * the <count> specified by TransformFeedbackVaryingsEXT is
3406 * non-zero, but the program object has no vertex or geometry
3407 * shader;
3408 */
3409 if (first == MESA_SHADER_FRAGMENT) {
3410 linker_error(prog, "Transform feedback varyings specified, but "
3411 "no vertex or geometry shader is present.\n");
3412 goto done;
3413 }
3414
3415 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
3416 prog->TransformFeedback.NumVarying);
3417 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
3418 prog->TransformFeedback.VaryingNames,
3419 tfeedback_decls))
3420 goto done;
3421 }
3422
3423 /* Linking the stages in the opposite order (from fragment to vertex)
3424 * ensures that inter-shader outputs written to in an earlier stage are
3425 * eliminated if they are (transitively) not used in a later stage.
3426 */
3427 int next;
3428
3429 if (first < MESA_SHADER_FRAGMENT) {
3430 gl_shader *const sh = prog->_LinkedShaders[last];
3431
3432 if (first == MESA_SHADER_GEOMETRY) {
3433 /* There was no vertex shader, but we still have to assign varying
3434 * locations for use by geometry shader inputs in SSO.
3435 *
3436 * If the shader is not separable (i.e., prog->SeparateShader is
3437 * false), linking will have already failed when first is
3438 * MESA_SHADER_GEOMETRY.
3439 */
3440 if (!assign_varying_locations(ctx, mem_ctx, prog,
3441 NULL, prog->_LinkedShaders[first],
3442 num_tfeedback_decls, tfeedback_decls))
3443 goto done;
3444 }
3445
3446 if (last != MESA_SHADER_FRAGMENT &&
3447 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
3448 /* There was no fragment shader, but we still have to assign varying
3449 * locations for use by transform feedback.
3450 */
3451 if (!assign_varying_locations(ctx, mem_ctx, prog,
3452 sh, NULL,
3453 num_tfeedback_decls, tfeedback_decls))
3454 goto done;
3455 }
3456
3457 do_dead_builtin_varyings(ctx, sh, NULL,
3458 num_tfeedback_decls, tfeedback_decls);
3459
3460 if (!prog->SeparateShader)
3461 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
3462
3463 /* Eliminate code that is now dead due to unused outputs being demoted.
3464 */
3465 while (do_dead_code(sh->ir, false))
3466 ;
3467 }
3468 else if (first == MESA_SHADER_FRAGMENT) {
3469 /* If the program only contains a fragment shader...
3470 */
3471 gl_shader *const sh = prog->_LinkedShaders[first];
3472
3473 do_dead_builtin_varyings(ctx, NULL, sh,
3474 num_tfeedback_decls, tfeedback_decls);
3475
3476 if (prog->SeparateShader) {
3477 if (!assign_varying_locations(ctx, mem_ctx, prog,
3478 NULL /* producer */,
3479 sh /* consumer */,
3480 0 /* num_tfeedback_decls */,
3481 NULL /* tfeedback_decls */))
3482 goto done;
3483 } else
3484 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
3485
3486 while (do_dead_code(sh->ir, false))
3487 ;
3488 }
3489
3490 next = last;
3491 for (int i = next - 1; i >= 0; i--) {
3492 if (prog->_LinkedShaders[i] == NULL)
3493 continue;
3494
3495 gl_shader *const sh_i = prog->_LinkedShaders[i];
3496 gl_shader *const sh_next = prog->_LinkedShaders[next];
3497
3498 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3499 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3500 tfeedback_decls))
3501 goto done;
3502
3503 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3504 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3505 tfeedback_decls);
3506
3507 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
3508 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
3509
3510 /* Eliminate code that is now dead due to unused outputs being demoted.
3511 */
3512 while (do_dead_code(sh_i->ir, false))
3513 ;
3514 while (do_dead_code(sh_next->ir, false))
3515 ;
3516
3517 /* This must be done after all dead varyings are eliminated. */
3518 if (!check_against_output_limit(ctx, prog, sh_i))
3519 goto done;
3520 if (!check_against_input_limit(ctx, prog, sh_next))
3521 goto done;
3522
3523 next = i;
3524 }
3525
3526 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
3527 goto done;
3528
3529 update_array_sizes(prog);
3530 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
3531 link_assign_atomic_counter_resources(ctx, prog);
3532 store_fragdepth_layout(prog);
3533
3534 check_resources(ctx, prog);
3535 check_image_resources(ctx, prog);
3536 link_check_atomic_counter_resources(ctx, prog);
3537
3538 if (!prog->LinkStatus)
3539 goto done;
3540
3541 /* OpenGL ES requires that a vertex shader and a fragment shader both be
3542 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
3543 * anything about shader linking when one of the shaders (vertex or
3544 * fragment shader) is absent. So, the extension shouldn't change the
3545 * behavior specified in GLSL specification.
3546 */
3547 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
3548 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
3549 linker_error(prog, "program lacks a vertex shader\n");
3550 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3551 linker_error(prog, "program lacks a fragment shader\n");
3552 }
3553 }
3554
3555 /* FINISHME: Assign fragment shader output locations. */
3556
3557 done:
3558 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3559 free(shader_list[i]);
3560 if (prog->_LinkedShaders[i] == NULL)
3561 continue;
3562
3563 /* Do a final validation step to make sure that the IR wasn't
3564 * invalidated by any modifications performed after intrastage linking.
3565 */
3566 validate_ir_tree(prog->_LinkedShaders[i]->ir);
3567
3568 /* Retain any live IR, but trash the rest. */
3569 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
3570
3571 /* The symbol table in the linked shaders may contain references to
3572 * variables that were removed (e.g., unused uniforms). Since it may
3573 * contain junk, there is no possible valid use. Delete it and set the
3574 * pointer to NULL.
3575 */
3576 delete prog->_LinkedShaders[i]->symbols;
3577 prog->_LinkedShaders[i]->symbols = NULL;
3578 }
3579
3580 ralloc_free(mem_ctx);
3581 }