glsl/gs: Fix transform feedback of gl_ClipDistance.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77
78 extern "C" {
79 #include "main/shaderobj.h"
80 #include "main/enums.h"
81 }
82
83 void linker_error(gl_shader_program *, const char *, ...);
84
85 namespace {
86
87 /**
88 * Visitor that determines whether or not a variable is ever written.
89 */
90 class find_assignment_visitor : public ir_hierarchical_visitor {
91 public:
92 find_assignment_visitor(const char *name)
93 : name(name), found(false)
94 {
95 /* empty */
96 }
97
98 virtual ir_visitor_status visit_enter(ir_assignment *ir)
99 {
100 ir_variable *const var = ir->lhs->variable_referenced();
101
102 if (strcmp(name, var->name) == 0) {
103 found = true;
104 return visit_stop;
105 }
106
107 return visit_continue_with_parent;
108 }
109
110 virtual ir_visitor_status visit_enter(ir_call *ir)
111 {
112 exec_list_iterator sig_iter = ir->callee->parameters.iterator();
113 foreach_iter(exec_list_iterator, iter, *ir) {
114 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
115 ir_variable *sig_param = (ir_variable *)sig_iter.get();
116
117 if (sig_param->mode == ir_var_function_out ||
118 sig_param->mode == ir_var_function_inout) {
119 ir_variable *var = param_rval->variable_referenced();
120 if (var && strcmp(name, var->name) == 0) {
121 found = true;
122 return visit_stop;
123 }
124 }
125 sig_iter.next();
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->element_type(),
228 this->num_vertices);
229 var->max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->element_type();
249 return visit_continue;
250 }
251 };
252
253
254 /**
255 * Visitor that determines whether or not a shader uses ir_end_primitive.
256 */
257 class find_end_primitive_visitor : public ir_hierarchical_visitor {
258 public:
259 find_end_primitive_visitor()
260 : found(false)
261 {
262 /* empty */
263 }
264
265 virtual ir_visitor_status visit(ir_end_primitive *)
266 {
267 found = true;
268 return visit_stop;
269 }
270
271 bool end_primitive_found()
272 {
273 return found;
274 }
275
276 private:
277 bool found;
278 };
279
280 } /* anonymous namespace */
281
282 void
283 linker_error(gl_shader_program *prog, const char *fmt, ...)
284 {
285 va_list ap;
286
287 ralloc_strcat(&prog->InfoLog, "error: ");
288 va_start(ap, fmt);
289 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
290 va_end(ap);
291
292 prog->LinkStatus = false;
293 }
294
295
296 void
297 linker_warning(gl_shader_program *prog, const char *fmt, ...)
298 {
299 va_list ap;
300
301 ralloc_strcat(&prog->InfoLog, "error: ");
302 va_start(ap, fmt);
303 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
304 va_end(ap);
305
306 }
307
308
309 /**
310 * Given a string identifying a program resource, break it into a base name
311 * and an optional array index in square brackets.
312 *
313 * If an array index is present, \c out_base_name_end is set to point to the
314 * "[" that precedes the array index, and the array index itself is returned
315 * as a long.
316 *
317 * If no array index is present (or if the array index is negative or
318 * mal-formed), \c out_base_name_end, is set to point to the null terminator
319 * at the end of the input string, and -1 is returned.
320 *
321 * Only the final array index is parsed; if the string contains other array
322 * indices (or structure field accesses), they are left in the base name.
323 *
324 * No attempt is made to check that the base name is properly formed;
325 * typically the caller will look up the base name in a hash table, so
326 * ill-formed base names simply turn into hash table lookup failures.
327 */
328 long
329 parse_program_resource_name(const GLchar *name,
330 const GLchar **out_base_name_end)
331 {
332 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
333 *
334 * "When an integer array element or block instance number is part of
335 * the name string, it will be specified in decimal form without a "+"
336 * or "-" sign or any extra leading zeroes. Additionally, the name
337 * string will not include white space anywhere in the string."
338 */
339
340 const size_t len = strlen(name);
341 *out_base_name_end = name + len;
342
343 if (len == 0 || name[len-1] != ']')
344 return -1;
345
346 /* Walk backwards over the string looking for a non-digit character. This
347 * had better be the opening bracket for an array index.
348 *
349 * Initially, i specifies the location of the ']'. Since the string may
350 * contain only the ']' charcater, walk backwards very carefully.
351 */
352 unsigned i;
353 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
354 /* empty */ ;
355
356 if ((i == 0) || name[i-1] != '[')
357 return -1;
358
359 long array_index = strtol(&name[i], NULL, 10);
360 if (array_index < 0)
361 return -1;
362
363 *out_base_name_end = name + (i - 1);
364 return array_index;
365 }
366
367
368 void
369 link_invalidate_variable_locations(exec_list *ir)
370 {
371 foreach_list(node, ir) {
372 ir_variable *const var = ((ir_instruction *) node)->as_variable();
373
374 if (var == NULL)
375 continue;
376
377 /* Only assign locations for variables that lack an explicit location.
378 * Explicit locations are set for all built-in variables, generic vertex
379 * shader inputs (via layout(location=...)), and generic fragment shader
380 * outputs (also via layout(location=...)).
381 */
382 if (!var->explicit_location) {
383 var->location = -1;
384 var->location_frac = 0;
385 }
386
387 /* ir_variable::is_unmatched_generic_inout is used by the linker while
388 * connecting outputs from one stage to inputs of the next stage.
389 *
390 * There are two implicit assumptions here. First, we assume that any
391 * built-in variable (i.e., non-generic in or out) will have
392 * explicit_location set. Second, we assume that any generic in or out
393 * will not have explicit_location set.
394 *
395 * This second assumption will only be valid until
396 * GL_ARB_separate_shader_objects is supported. When that extension is
397 * implemented, this function will need some modifications.
398 */
399 if (!var->explicit_location) {
400 var->is_unmatched_generic_inout = 1;
401 } else {
402 var->is_unmatched_generic_inout = 0;
403 }
404 }
405 }
406
407
408 /**
409 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
410 *
411 * Also check for errors based on incorrect usage of gl_ClipVertex and
412 * gl_ClipDistance.
413 *
414 * Return false if an error was reported.
415 */
416 static void
417 analyze_clip_usage(const char *shader_type, struct gl_shader_program *prog,
418 struct gl_shader *shader, GLboolean *UsesClipDistance,
419 GLuint *ClipDistanceArraySize)
420 {
421 *ClipDistanceArraySize = 0;
422
423 if (!prog->IsES && prog->Version >= 130) {
424 /* From section 7.1 (Vertex Shader Special Variables) of the
425 * GLSL 1.30 spec:
426 *
427 * "It is an error for a shader to statically write both
428 * gl_ClipVertex and gl_ClipDistance."
429 *
430 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
431 * gl_ClipVertex nor gl_ClipDistance.
432 */
433 find_assignment_visitor clip_vertex("gl_ClipVertex");
434 find_assignment_visitor clip_distance("gl_ClipDistance");
435
436 clip_vertex.run(shader->ir);
437 clip_distance.run(shader->ir);
438 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
439 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
440 "and `gl_ClipDistance'\n", shader_type);
441 return;
442 }
443 *UsesClipDistance = clip_distance.variable_found();
444 ir_variable *clip_distance_var =
445 shader->symbols->get_variable("gl_ClipDistance");
446 if (clip_distance_var)
447 *ClipDistanceArraySize = clip_distance_var->type->length;
448 } else {
449 *UsesClipDistance = false;
450 }
451 }
452
453
454 /**
455 * Verify that a vertex shader executable meets all semantic requirements.
456 *
457 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
458 * as a side effect.
459 *
460 * \param shader Vertex shader executable to be verified
461 */
462 void
463 validate_vertex_shader_executable(struct gl_shader_program *prog,
464 struct gl_shader *shader)
465 {
466 if (shader == NULL)
467 return;
468
469 /* From the GLSL 1.10 spec, page 48:
470 *
471 * "The variable gl_Position is available only in the vertex
472 * language and is intended for writing the homogeneous vertex
473 * position. All executions of a well-formed vertex shader
474 * executable must write a value into this variable. [...] The
475 * variable gl_Position is available only in the vertex
476 * language and is intended for writing the homogeneous vertex
477 * position. All executions of a well-formed vertex shader
478 * executable must write a value into this variable."
479 *
480 * while in GLSL 1.40 this text is changed to:
481 *
482 * "The variable gl_Position is available only in the vertex
483 * language and is intended for writing the homogeneous vertex
484 * position. It can be written at any time during shader
485 * execution. It may also be read back by a vertex shader
486 * after being written. This value will be used by primitive
487 * assembly, clipping, culling, and other fixed functionality
488 * operations, if present, that operate on primitives after
489 * vertex processing has occurred. Its value is undefined if
490 * the vertex shader executable does not write gl_Position."
491 *
492 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
493 * not an error.
494 */
495 if (prog->Version < (prog->IsES ? 300 : 140)) {
496 find_assignment_visitor find("gl_Position");
497 find.run(shader->ir);
498 if (!find.variable_found()) {
499 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
500 return;
501 }
502 }
503
504 analyze_clip_usage("vertex", prog, shader, &prog->Vert.UsesClipDistance,
505 &prog->Vert.ClipDistanceArraySize);
506 }
507
508
509 /**
510 * Verify that a fragment shader executable meets all semantic requirements
511 *
512 * \param shader Fragment shader executable to be verified
513 */
514 void
515 validate_fragment_shader_executable(struct gl_shader_program *prog,
516 struct gl_shader *shader)
517 {
518 if (shader == NULL)
519 return;
520
521 find_assignment_visitor frag_color("gl_FragColor");
522 find_assignment_visitor frag_data("gl_FragData");
523
524 frag_color.run(shader->ir);
525 frag_data.run(shader->ir);
526
527 if (frag_color.variable_found() && frag_data.variable_found()) {
528 linker_error(prog, "fragment shader writes to both "
529 "`gl_FragColor' and `gl_FragData'\n");
530 }
531 }
532
533 /**
534 * Verify that a geometry shader executable meets all semantic requirements
535 *
536 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
537 * prog->Geom.ClipDistanceArraySize as a side effect.
538 *
539 * \param shader Geometry shader executable to be verified
540 */
541 void
542 validate_geometry_shader_executable(struct gl_shader_program *prog,
543 struct gl_shader *shader)
544 {
545 if (shader == NULL)
546 return;
547
548 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
549 prog->Geom.VerticesIn = num_vertices;
550
551 analyze_clip_usage("geometry", prog, shader, &prog->Geom.UsesClipDistance,
552 &prog->Geom.ClipDistanceArraySize);
553
554 find_end_primitive_visitor end_primitive;
555 end_primitive.run(shader->ir);
556 prog->Geom.UsesEndPrimitive = end_primitive.end_primitive_found();
557 }
558
559
560 /**
561 * Generate a string describing the mode of a variable
562 */
563 static const char *
564 mode_string(const ir_variable *var)
565 {
566 switch (var->mode) {
567 case ir_var_auto:
568 return (var->read_only) ? "global constant" : "global variable";
569
570 case ir_var_uniform: return "uniform";
571 case ir_var_shader_in: return "shader input";
572 case ir_var_shader_out: return "shader output";
573
574 case ir_var_const_in:
575 case ir_var_temporary:
576 default:
577 assert(!"Should not get here.");
578 return "invalid variable";
579 }
580 }
581
582
583 /**
584 * Perform validation of global variables used across multiple shaders
585 */
586 void
587 cross_validate_globals(struct gl_shader_program *prog,
588 struct gl_shader **shader_list,
589 unsigned num_shaders,
590 bool uniforms_only)
591 {
592 /* Examine all of the uniforms in all of the shaders and cross validate
593 * them.
594 */
595 glsl_symbol_table variables;
596 for (unsigned i = 0; i < num_shaders; i++) {
597 if (shader_list[i] == NULL)
598 continue;
599
600 foreach_list(node, shader_list[i]->ir) {
601 ir_variable *const var = ((ir_instruction *) node)->as_variable();
602
603 if (var == NULL)
604 continue;
605
606 if (uniforms_only && (var->mode != ir_var_uniform))
607 continue;
608
609 /* Don't cross validate temporaries that are at global scope. These
610 * will eventually get pulled into the shaders 'main'.
611 */
612 if (var->mode == ir_var_temporary)
613 continue;
614
615 /* If a global with this name has already been seen, verify that the
616 * new instance has the same type. In addition, if the globals have
617 * initializers, the values of the initializers must be the same.
618 */
619 ir_variable *const existing = variables.get_variable(var->name);
620 if (existing != NULL) {
621 if (var->type != existing->type) {
622 /* Consider the types to be "the same" if both types are arrays
623 * of the same type and one of the arrays is implicitly sized.
624 * In addition, set the type of the linked variable to the
625 * explicitly sized array.
626 */
627 if (var->type->is_array()
628 && existing->type->is_array()
629 && (var->type->fields.array == existing->type->fields.array)
630 && ((var->type->length == 0)
631 || (existing->type->length == 0))) {
632 if (var->type->length != 0) {
633 existing->type = var->type;
634 }
635 } else {
636 linker_error(prog, "%s `%s' declared as type "
637 "`%s' and type `%s'\n",
638 mode_string(var),
639 var->name, var->type->name,
640 existing->type->name);
641 return;
642 }
643 }
644
645 if (var->explicit_location) {
646 if (existing->explicit_location
647 && (var->location != existing->location)) {
648 linker_error(prog, "explicit locations for %s "
649 "`%s' have differing values\n",
650 mode_string(var), var->name);
651 return;
652 }
653
654 existing->location = var->location;
655 existing->explicit_location = true;
656 }
657
658 /* From the GLSL 4.20 specification:
659 * "A link error will result if two compilation units in a program
660 * specify different integer-constant bindings for the same
661 * opaque-uniform name. However, it is not an error to specify a
662 * binding on some but not all declarations for the same name"
663 */
664 if (var->explicit_binding) {
665 if (existing->explicit_binding &&
666 var->binding != existing->binding) {
667 linker_error(prog, "explicit bindings for %s "
668 "`%s' have differing values\n",
669 mode_string(var), var->name);
670 return;
671 }
672
673 existing->binding = var->binding;
674 existing->explicit_binding = true;
675 }
676
677 /* Validate layout qualifiers for gl_FragDepth.
678 *
679 * From the AMD/ARB_conservative_depth specs:
680 *
681 * "If gl_FragDepth is redeclared in any fragment shader in a
682 * program, it must be redeclared in all fragment shaders in
683 * that program that have static assignments to
684 * gl_FragDepth. All redeclarations of gl_FragDepth in all
685 * fragment shaders in a single program must have the same set
686 * of qualifiers."
687 */
688 if (strcmp(var->name, "gl_FragDepth") == 0) {
689 bool layout_declared = var->depth_layout != ir_depth_layout_none;
690 bool layout_differs =
691 var->depth_layout != existing->depth_layout;
692
693 if (layout_declared && layout_differs) {
694 linker_error(prog,
695 "All redeclarations of gl_FragDepth in all "
696 "fragment shaders in a single program must have "
697 "the same set of qualifiers.");
698 }
699
700 if (var->used && layout_differs) {
701 linker_error(prog,
702 "If gl_FragDepth is redeclared with a layout "
703 "qualifier in any fragment shader, it must be "
704 "redeclared with the same layout qualifier in "
705 "all fragment shaders that have assignments to "
706 "gl_FragDepth");
707 }
708 }
709
710 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
711 *
712 * "If a shared global has multiple initializers, the
713 * initializers must all be constant expressions, and they
714 * must all have the same value. Otherwise, a link error will
715 * result. (A shared global having only one initializer does
716 * not require that initializer to be a constant expression.)"
717 *
718 * Previous to 4.20 the GLSL spec simply said that initializers
719 * must have the same value. In this case of non-constant
720 * initializers, this was impossible to determine. As a result,
721 * no vendor actually implemented that behavior. The 4.20
722 * behavior matches the implemented behavior of at least one other
723 * vendor, so we'll implement that for all GLSL versions.
724 */
725 if (var->constant_initializer != NULL) {
726 if (existing->constant_initializer != NULL) {
727 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
728 linker_error(prog, "initializers for %s "
729 "`%s' have differing values\n",
730 mode_string(var), var->name);
731 return;
732 }
733 } else {
734 /* If the first-seen instance of a particular uniform did not
735 * have an initializer but a later instance does, copy the
736 * initializer to the version stored in the symbol table.
737 */
738 /* FINISHME: This is wrong. The constant_value field should
739 * FINISHME: not be modified! Imagine a case where a shader
740 * FINISHME: without an initializer is linked in two different
741 * FINISHME: programs with shaders that have differing
742 * FINISHME: initializers. Linking with the first will
743 * FINISHME: modify the shader, and linking with the second
744 * FINISHME: will fail.
745 */
746 existing->constant_initializer =
747 var->constant_initializer->clone(ralloc_parent(existing),
748 NULL);
749 }
750 }
751
752 if (var->has_initializer) {
753 if (existing->has_initializer
754 && (var->constant_initializer == NULL
755 || existing->constant_initializer == NULL)) {
756 linker_error(prog,
757 "shared global variable `%s' has multiple "
758 "non-constant initializers.\n",
759 var->name);
760 return;
761 }
762
763 /* Some instance had an initializer, so keep track of that. In
764 * this location, all sorts of initializers (constant or
765 * otherwise) will propagate the existence to the variable
766 * stored in the symbol table.
767 */
768 existing->has_initializer = true;
769 }
770
771 if (existing->invariant != var->invariant) {
772 linker_error(prog, "declarations for %s `%s' have "
773 "mismatching invariant qualifiers\n",
774 mode_string(var), var->name);
775 return;
776 }
777 if (existing->centroid != var->centroid) {
778 linker_error(prog, "declarations for %s `%s' have "
779 "mismatching centroid qualifiers\n",
780 mode_string(var), var->name);
781 return;
782 }
783 } else
784 variables.add_variable(var);
785 }
786 }
787 }
788
789
790 /**
791 * Perform validation of uniforms used across multiple shader stages
792 */
793 void
794 cross_validate_uniforms(struct gl_shader_program *prog)
795 {
796 cross_validate_globals(prog, prog->_LinkedShaders,
797 MESA_SHADER_TYPES, true);
798 }
799
800 /**
801 * Accumulates the array of prog->UniformBlocks and checks that all
802 * definitons of blocks agree on their contents.
803 */
804 static bool
805 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
806 {
807 unsigned max_num_uniform_blocks = 0;
808 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
809 if (prog->_LinkedShaders[i])
810 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
811 }
812
813 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
814 struct gl_shader *sh = prog->_LinkedShaders[i];
815
816 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
817 max_num_uniform_blocks);
818 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
819 prog->UniformBlockStageIndex[i][j] = -1;
820
821 if (sh == NULL)
822 continue;
823
824 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
825 int index = link_cross_validate_uniform_block(prog,
826 &prog->UniformBlocks,
827 &prog->NumUniformBlocks,
828 &sh->UniformBlocks[j]);
829
830 if (index == -1) {
831 linker_error(prog, "uniform block `%s' has mismatching definitions",
832 sh->UniformBlocks[j].Name);
833 return false;
834 }
835
836 prog->UniformBlockStageIndex[i][index] = j;
837 }
838 }
839
840 return true;
841 }
842
843
844 /**
845 * Populates a shaders symbol table with all global declarations
846 */
847 static void
848 populate_symbol_table(gl_shader *sh)
849 {
850 sh->symbols = new(sh) glsl_symbol_table;
851
852 foreach_list(node, sh->ir) {
853 ir_instruction *const inst = (ir_instruction *) node;
854 ir_variable *var;
855 ir_function *func;
856
857 if ((func = inst->as_function()) != NULL) {
858 sh->symbols->add_function(func);
859 } else if ((var = inst->as_variable()) != NULL) {
860 sh->symbols->add_variable(var);
861 }
862 }
863 }
864
865
866 /**
867 * Remap variables referenced in an instruction tree
868 *
869 * This is used when instruction trees are cloned from one shader and placed in
870 * another. These trees will contain references to \c ir_variable nodes that
871 * do not exist in the target shader. This function finds these \c ir_variable
872 * references and replaces the references with matching variables in the target
873 * shader.
874 *
875 * If there is no matching variable in the target shader, a clone of the
876 * \c ir_variable is made and added to the target shader. The new variable is
877 * added to \b both the instruction stream and the symbol table.
878 *
879 * \param inst IR tree that is to be processed.
880 * \param symbols Symbol table containing global scope symbols in the
881 * linked shader.
882 * \param instructions Instruction stream where new variable declarations
883 * should be added.
884 */
885 void
886 remap_variables(ir_instruction *inst, struct gl_shader *target,
887 hash_table *temps)
888 {
889 class remap_visitor : public ir_hierarchical_visitor {
890 public:
891 remap_visitor(struct gl_shader *target,
892 hash_table *temps)
893 {
894 this->target = target;
895 this->symbols = target->symbols;
896 this->instructions = target->ir;
897 this->temps = temps;
898 }
899
900 virtual ir_visitor_status visit(ir_dereference_variable *ir)
901 {
902 if (ir->var->mode == ir_var_temporary) {
903 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
904
905 assert(var != NULL);
906 ir->var = var;
907 return visit_continue;
908 }
909
910 ir_variable *const existing =
911 this->symbols->get_variable(ir->var->name);
912 if (existing != NULL)
913 ir->var = existing;
914 else {
915 ir_variable *copy = ir->var->clone(this->target, NULL);
916
917 this->symbols->add_variable(copy);
918 this->instructions->push_head(copy);
919 ir->var = copy;
920 }
921
922 return visit_continue;
923 }
924
925 private:
926 struct gl_shader *target;
927 glsl_symbol_table *symbols;
928 exec_list *instructions;
929 hash_table *temps;
930 };
931
932 remap_visitor v(target, temps);
933
934 inst->accept(&v);
935 }
936
937
938 /**
939 * Move non-declarations from one instruction stream to another
940 *
941 * The intended usage pattern of this function is to pass the pointer to the
942 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
943 * pointer) for \c last and \c false for \c make_copies on the first
944 * call. Successive calls pass the return value of the previous call for
945 * \c last and \c true for \c make_copies.
946 *
947 * \param instructions Source instruction stream
948 * \param last Instruction after which new instructions should be
949 * inserted in the target instruction stream
950 * \param make_copies Flag selecting whether instructions in \c instructions
951 * should be copied (via \c ir_instruction::clone) into the
952 * target list or moved.
953 *
954 * \return
955 * The new "last" instruction in the target instruction stream. This pointer
956 * is suitable for use as the \c last parameter of a later call to this
957 * function.
958 */
959 exec_node *
960 move_non_declarations(exec_list *instructions, exec_node *last,
961 bool make_copies, gl_shader *target)
962 {
963 hash_table *temps = NULL;
964
965 if (make_copies)
966 temps = hash_table_ctor(0, hash_table_pointer_hash,
967 hash_table_pointer_compare);
968
969 foreach_list_safe(node, instructions) {
970 ir_instruction *inst = (ir_instruction *) node;
971
972 if (inst->as_function())
973 continue;
974
975 ir_variable *var = inst->as_variable();
976 if ((var != NULL) && (var->mode != ir_var_temporary))
977 continue;
978
979 assert(inst->as_assignment()
980 || inst->as_call()
981 || inst->as_if() /* for initializers with the ?: operator */
982 || ((var != NULL) && (var->mode == ir_var_temporary)));
983
984 if (make_copies) {
985 inst = inst->clone(target, NULL);
986
987 if (var != NULL)
988 hash_table_insert(temps, inst, var);
989 else
990 remap_variables(inst, target, temps);
991 } else {
992 inst->remove();
993 }
994
995 last->insert_after(inst);
996 last = inst;
997 }
998
999 if (make_copies)
1000 hash_table_dtor(temps);
1001
1002 return last;
1003 }
1004
1005 /**
1006 * Get the function signature for main from a shader
1007 */
1008 static ir_function_signature *
1009 get_main_function_signature(gl_shader *sh)
1010 {
1011 ir_function *const f = sh->symbols->get_function("main");
1012 if (f != NULL) {
1013 exec_list void_parameters;
1014
1015 /* Look for the 'void main()' signature and ensure that it's defined.
1016 * This keeps the linker from accidentally pick a shader that just
1017 * contains a prototype for main.
1018 *
1019 * We don't have to check for multiple definitions of main (in multiple
1020 * shaders) because that would have already been caught above.
1021 */
1022 ir_function_signature *sig = f->matching_signature(NULL, &void_parameters);
1023 if ((sig != NULL) && sig->is_defined) {
1024 return sig;
1025 }
1026 }
1027
1028 return NULL;
1029 }
1030
1031
1032 /**
1033 * This class is only used in link_intrastage_shaders() below but declaring
1034 * it inside that function leads to compiler warnings with some versions of
1035 * gcc.
1036 */
1037 class array_sizing_visitor : public ir_hierarchical_visitor {
1038 public:
1039 array_sizing_visitor()
1040 : mem_ctx(ralloc_context(NULL)),
1041 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1042 hash_table_pointer_compare))
1043 {
1044 }
1045
1046 ~array_sizing_visitor()
1047 {
1048 hash_table_dtor(this->unnamed_interfaces);
1049 ralloc_free(this->mem_ctx);
1050 }
1051
1052 virtual ir_visitor_status visit(ir_variable *var)
1053 {
1054 fixup_type(&var->type, var->max_array_access);
1055 if (var->type->is_interface()) {
1056 if (interface_contains_unsized_arrays(var->type)) {
1057 const glsl_type *new_type =
1058 resize_interface_members(var->type, var->max_ifc_array_access);
1059 var->type = new_type;
1060 var->change_interface_type(new_type);
1061 }
1062 } else if (var->type->is_array() &&
1063 var->type->fields.array->is_interface()) {
1064 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1065 const glsl_type *new_type =
1066 resize_interface_members(var->type->fields.array,
1067 var->max_ifc_array_access);
1068 var->change_interface_type(new_type);
1069 var->type =
1070 glsl_type::get_array_instance(new_type, var->type->length);
1071 }
1072 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1073 /* Store a pointer to the variable in the unnamed_interfaces
1074 * hashtable.
1075 */
1076 ir_variable **interface_vars = (ir_variable **)
1077 hash_table_find(this->unnamed_interfaces, ifc_type);
1078 if (interface_vars == NULL) {
1079 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1080 ifc_type->length);
1081 hash_table_insert(this->unnamed_interfaces, interface_vars,
1082 ifc_type);
1083 }
1084 unsigned index = ifc_type->field_index(var->name);
1085 assert(index < ifc_type->length);
1086 assert(interface_vars[index] == NULL);
1087 interface_vars[index] = var;
1088 }
1089 return visit_continue;
1090 }
1091
1092 /**
1093 * For each unnamed interface block that was discovered while running the
1094 * visitor, adjust the interface type to reflect the newly assigned array
1095 * sizes, and fix up the ir_variable nodes to point to the new interface
1096 * type.
1097 */
1098 void fixup_unnamed_interface_types()
1099 {
1100 hash_table_call_foreach(this->unnamed_interfaces,
1101 fixup_unnamed_interface_type, NULL);
1102 }
1103
1104 private:
1105 /**
1106 * If the type pointed to by \c type represents an unsized array, replace
1107 * it with a sized array whose size is determined by max_array_access.
1108 */
1109 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1110 {
1111 if ((*type)->is_array() && (*type)->length == 0) {
1112 *type = glsl_type::get_array_instance((*type)->fields.array,
1113 max_array_access + 1);
1114 assert(*type != NULL);
1115 }
1116 }
1117
1118 /**
1119 * Determine whether the given interface type contains unsized arrays (if
1120 * it doesn't, array_sizing_visitor doesn't need to process it).
1121 */
1122 static bool interface_contains_unsized_arrays(const glsl_type *type)
1123 {
1124 for (unsigned i = 0; i < type->length; i++) {
1125 const glsl_type *elem_type = type->fields.structure[i].type;
1126 if (elem_type->is_array() && elem_type->length == 0)
1127 return true;
1128 }
1129 return false;
1130 }
1131
1132 /**
1133 * Create a new interface type based on the given type, with unsized arrays
1134 * replaced by sized arrays whose size is determined by
1135 * max_ifc_array_access.
1136 */
1137 static const glsl_type *
1138 resize_interface_members(const glsl_type *type,
1139 const unsigned *max_ifc_array_access)
1140 {
1141 unsigned num_fields = type->length;
1142 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1143 memcpy(fields, type->fields.structure,
1144 num_fields * sizeof(*fields));
1145 for (unsigned i = 0; i < num_fields; i++) {
1146 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1147 }
1148 glsl_interface_packing packing =
1149 (glsl_interface_packing) type->interface_packing;
1150 const glsl_type *new_ifc_type =
1151 glsl_type::get_interface_instance(fields, num_fields,
1152 packing, type->name);
1153 delete [] fields;
1154 return new_ifc_type;
1155 }
1156
1157 static void fixup_unnamed_interface_type(const void *key, void *data,
1158 void *)
1159 {
1160 const glsl_type *ifc_type = (const glsl_type *) key;
1161 ir_variable **interface_vars = (ir_variable **) data;
1162 unsigned num_fields = ifc_type->length;
1163 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1164 memcpy(fields, ifc_type->fields.structure,
1165 num_fields * sizeof(*fields));
1166 bool interface_type_changed = false;
1167 for (unsigned i = 0; i < num_fields; i++) {
1168 if (interface_vars[i] != NULL &&
1169 fields[i].type != interface_vars[i]->type) {
1170 fields[i].type = interface_vars[i]->type;
1171 interface_type_changed = true;
1172 }
1173 }
1174 if (!interface_type_changed) {
1175 delete [] fields;
1176 return;
1177 }
1178 glsl_interface_packing packing =
1179 (glsl_interface_packing) ifc_type->interface_packing;
1180 const glsl_type *new_ifc_type =
1181 glsl_type::get_interface_instance(fields, num_fields, packing,
1182 ifc_type->name);
1183 delete [] fields;
1184 for (unsigned i = 0; i < num_fields; i++) {
1185 if (interface_vars[i] != NULL)
1186 interface_vars[i]->change_interface_type(new_ifc_type);
1187 }
1188 }
1189
1190 /**
1191 * Memory context used to allocate the data in \c unnamed_interfaces.
1192 */
1193 void *mem_ctx;
1194
1195 /**
1196 * Hash table from const glsl_type * to an array of ir_variable *'s
1197 * pointing to the ir_variables constituting each unnamed interface block.
1198 */
1199 hash_table *unnamed_interfaces;
1200 };
1201
1202 /**
1203 * Performs the cross-validation of geometry shader max_vertices and
1204 * primitive type layout qualifiers for the attached geometry shaders,
1205 * and propagates them to the linked GS and linked shader program.
1206 */
1207 static void
1208 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1209 struct gl_shader *linked_shader,
1210 struct gl_shader **shader_list,
1211 unsigned num_shaders)
1212 {
1213 linked_shader->Geom.VerticesOut = 0;
1214 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1215 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1216
1217 /* No in/out qualifiers defined for anything but GLSL 1.50+
1218 * geometry shaders so far.
1219 */
1220 if (linked_shader->Type != GL_GEOMETRY_SHADER || prog->Version < 150)
1221 return;
1222
1223 /* From the GLSL 1.50 spec, page 46:
1224 *
1225 * "All geometry shader output layout declarations in a program
1226 * must declare the same layout and same value for
1227 * max_vertices. There must be at least one geometry output
1228 * layout declaration somewhere in a program, but not all
1229 * geometry shaders (compilation units) are required to
1230 * declare it."
1231 */
1232
1233 for (unsigned i = 0; i < num_shaders; i++) {
1234 struct gl_shader *shader = shader_list[i];
1235
1236 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1237 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1238 linked_shader->Geom.InputType != shader->Geom.InputType) {
1239 linker_error(prog, "geometry shader defined with conflicting "
1240 "input types\n");
1241 return;
1242 }
1243 linked_shader->Geom.InputType = shader->Geom.InputType;
1244 }
1245
1246 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1247 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1248 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1249 linker_error(prog, "geometry shader defined with conflicting "
1250 "output types\n");
1251 return;
1252 }
1253 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1254 }
1255
1256 if (shader->Geom.VerticesOut != 0) {
1257 if (linked_shader->Geom.VerticesOut != 0 &&
1258 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1259 linker_error(prog, "geometry shader defined with conflicting "
1260 "output vertex count (%d and %d)\n",
1261 linked_shader->Geom.VerticesOut,
1262 shader->Geom.VerticesOut);
1263 return;
1264 }
1265 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1266 }
1267 }
1268
1269 /* Just do the intrastage -> interstage propagation right now,
1270 * since we already know we're in the right type of shader program
1271 * for doing it.
1272 */
1273 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1274 linker_error(prog,
1275 "geometry shader didn't declare primitive input type\n");
1276 return;
1277 }
1278 prog->Geom.InputType = linked_shader->Geom.InputType;
1279
1280 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1281 linker_error(prog,
1282 "geometry shader didn't declare primitive output type\n");
1283 return;
1284 }
1285 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1286
1287 if (linked_shader->Geom.VerticesOut == 0) {
1288 linker_error(prog,
1289 "geometry shader didn't declare max_vertices\n");
1290 return;
1291 }
1292 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1293 }
1294
1295 /**
1296 * Combine a group of shaders for a single stage to generate a linked shader
1297 *
1298 * \note
1299 * If this function is supplied a single shader, it is cloned, and the new
1300 * shader is returned.
1301 */
1302 static struct gl_shader *
1303 link_intrastage_shaders(void *mem_ctx,
1304 struct gl_context *ctx,
1305 struct gl_shader_program *prog,
1306 struct gl_shader **shader_list,
1307 unsigned num_shaders)
1308 {
1309 struct gl_uniform_block *uniform_blocks = NULL;
1310
1311 /* Check that global variables defined in multiple shaders are consistent.
1312 */
1313 cross_validate_globals(prog, shader_list, num_shaders, false);
1314 if (!prog->LinkStatus)
1315 return NULL;
1316
1317 /* Check that interface blocks defined in multiple shaders are consistent.
1318 */
1319 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1320 num_shaders);
1321 if (!prog->LinkStatus)
1322 return NULL;
1323
1324 /* Link up uniform blocks defined within this stage. */
1325 const unsigned num_uniform_blocks =
1326 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1327 &uniform_blocks);
1328
1329 /* Check that there is only a single definition of each function signature
1330 * across all shaders.
1331 */
1332 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1333 foreach_list(node, shader_list[i]->ir) {
1334 ir_function *const f = ((ir_instruction *) node)->as_function();
1335
1336 if (f == NULL)
1337 continue;
1338
1339 for (unsigned j = i + 1; j < num_shaders; j++) {
1340 ir_function *const other =
1341 shader_list[j]->symbols->get_function(f->name);
1342
1343 /* If the other shader has no function (and therefore no function
1344 * signatures) with the same name, skip to the next shader.
1345 */
1346 if (other == NULL)
1347 continue;
1348
1349 foreach_iter (exec_list_iterator, iter, *f) {
1350 ir_function_signature *sig =
1351 (ir_function_signature *) iter.get();
1352
1353 if (!sig->is_defined || sig->is_builtin())
1354 continue;
1355
1356 ir_function_signature *other_sig =
1357 other->exact_matching_signature(NULL, &sig->parameters);
1358
1359 if ((other_sig != NULL) && other_sig->is_defined
1360 && !other_sig->is_builtin()) {
1361 linker_error(prog, "function `%s' is multiply defined",
1362 f->name);
1363 return NULL;
1364 }
1365 }
1366 }
1367 }
1368 }
1369
1370 /* Find the shader that defines main, and make a clone of it.
1371 *
1372 * Starting with the clone, search for undefined references. If one is
1373 * found, find the shader that defines it. Clone the reference and add
1374 * it to the shader. Repeat until there are no undefined references or
1375 * until a reference cannot be resolved.
1376 */
1377 gl_shader *main = NULL;
1378 for (unsigned i = 0; i < num_shaders; i++) {
1379 if (get_main_function_signature(shader_list[i]) != NULL) {
1380 main = shader_list[i];
1381 break;
1382 }
1383 }
1384
1385 if (main == NULL) {
1386 linker_error(prog, "%s shader lacks `main'\n",
1387 _mesa_glsl_shader_target_name(shader_list[0]->Type));
1388 return NULL;
1389 }
1390
1391 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1392 linked->ir = new(linked) exec_list;
1393 clone_ir_list(mem_ctx, linked->ir, main->ir);
1394
1395 linked->UniformBlocks = uniform_blocks;
1396 linked->NumUniformBlocks = num_uniform_blocks;
1397 ralloc_steal(linked, linked->UniformBlocks);
1398
1399 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1400
1401 populate_symbol_table(linked);
1402
1403 /* The a pointer to the main function in the final linked shader (i.e., the
1404 * copy of the original shader that contained the main function).
1405 */
1406 ir_function_signature *const main_sig = get_main_function_signature(linked);
1407
1408 /* Move any instructions other than variable declarations or function
1409 * declarations into main.
1410 */
1411 exec_node *insertion_point =
1412 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1413 linked);
1414
1415 for (unsigned i = 0; i < num_shaders; i++) {
1416 if (shader_list[i] == main)
1417 continue;
1418
1419 insertion_point = move_non_declarations(shader_list[i]->ir,
1420 insertion_point, true, linked);
1421 }
1422
1423 /* Resolve initializers for global variables in the linked shader.
1424 */
1425 unsigned num_linking_shaders = num_shaders;
1426 for (unsigned i = 0; i < num_shaders; i++)
1427 num_linking_shaders += shader_list[i]->num_builtins_to_link;
1428
1429 gl_shader **linking_shaders =
1430 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
1431
1432 memcpy(linking_shaders, shader_list,
1433 sizeof(linking_shaders[0]) * num_shaders);
1434
1435 unsigned idx = num_shaders;
1436 for (unsigned i = 0; i < num_shaders; i++) {
1437 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
1438 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
1439 idx += shader_list[i]->num_builtins_to_link;
1440 }
1441
1442 assert(idx == num_linking_shaders);
1443
1444 if (!link_function_calls(prog, linked, linking_shaders,
1445 num_linking_shaders)) {
1446 ctx->Driver.DeleteShader(ctx, linked);
1447 free(linking_shaders);
1448 return NULL;
1449 }
1450
1451 free(linking_shaders);
1452
1453 /* At this point linked should contain all of the linked IR, so
1454 * validate it to make sure nothing went wrong.
1455 */
1456 validate_ir_tree(linked->ir);
1457
1458 /* Set the size of geometry shader input arrays */
1459 if (linked->Type == GL_GEOMETRY_SHADER) {
1460 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1461 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1462 foreach_iter(exec_list_iterator, iter, *linked->ir) {
1463 ir_instruction *ir = (ir_instruction *)iter.get();
1464 ir->accept(&input_resize_visitor);
1465 }
1466 }
1467
1468 /* Make a pass over all variable declarations to ensure that arrays with
1469 * unspecified sizes have a size specified. The size is inferred from the
1470 * max_array_access field.
1471 */
1472 array_sizing_visitor v;
1473 v.run(linked->ir);
1474 v.fixup_unnamed_interface_types();
1475
1476 return linked;
1477 }
1478
1479 /**
1480 * Update the sizes of linked shader uniform arrays to the maximum
1481 * array index used.
1482 *
1483 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1484 *
1485 * If one or more elements of an array are active,
1486 * GetActiveUniform will return the name of the array in name,
1487 * subject to the restrictions listed above. The type of the array
1488 * is returned in type. The size parameter contains the highest
1489 * array element index used, plus one. The compiler or linker
1490 * determines the highest index used. There will be only one
1491 * active uniform reported by the GL per uniform array.
1492
1493 */
1494 static void
1495 update_array_sizes(struct gl_shader_program *prog)
1496 {
1497 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1498 if (prog->_LinkedShaders[i] == NULL)
1499 continue;
1500
1501 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1502 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1503
1504 if ((var == NULL) || (var->mode != ir_var_uniform) ||
1505 !var->type->is_array())
1506 continue;
1507
1508 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1509 * will not be eliminated. Since we always do std140, just
1510 * don't resize arrays in UBOs.
1511 */
1512 if (var->is_in_uniform_block())
1513 continue;
1514
1515 unsigned int size = var->max_array_access;
1516 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1517 if (prog->_LinkedShaders[j] == NULL)
1518 continue;
1519
1520 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1521 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1522 if (!other_var)
1523 continue;
1524
1525 if (strcmp(var->name, other_var->name) == 0 &&
1526 other_var->max_array_access > size) {
1527 size = other_var->max_array_access;
1528 }
1529 }
1530 }
1531
1532 if (size + 1 != var->type->length) {
1533 /* If this is a built-in uniform (i.e., it's backed by some
1534 * fixed-function state), adjust the number of state slots to
1535 * match the new array size. The number of slots per array entry
1536 * is not known. It seems safe to assume that the total number of
1537 * slots is an integer multiple of the number of array elements.
1538 * Determine the number of slots per array element by dividing by
1539 * the old (total) size.
1540 */
1541 if (var->num_state_slots > 0) {
1542 var->num_state_slots = (size + 1)
1543 * (var->num_state_slots / var->type->length);
1544 }
1545
1546 var->type = glsl_type::get_array_instance(var->type->fields.array,
1547 size + 1);
1548 /* FINISHME: We should update the types of array
1549 * dereferences of this variable now.
1550 */
1551 }
1552 }
1553 }
1554 }
1555
1556 /**
1557 * Find a contiguous set of available bits in a bitmask.
1558 *
1559 * \param used_mask Bits representing used (1) and unused (0) locations
1560 * \param needed_count Number of contiguous bits needed.
1561 *
1562 * \return
1563 * Base location of the available bits on success or -1 on failure.
1564 */
1565 int
1566 find_available_slots(unsigned used_mask, unsigned needed_count)
1567 {
1568 unsigned needed_mask = (1 << needed_count) - 1;
1569 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1570
1571 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1572 * cannot optimize possibly infinite loops" for the loop below.
1573 */
1574 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1575 return -1;
1576
1577 for (int i = 0; i <= max_bit_to_test; i++) {
1578 if ((needed_mask & ~used_mask) == needed_mask)
1579 return i;
1580
1581 needed_mask <<= 1;
1582 }
1583
1584 return -1;
1585 }
1586
1587
1588 /**
1589 * Assign locations for either VS inputs for FS outputs
1590 *
1591 * \param prog Shader program whose variables need locations assigned
1592 * \param target_index Selector for the program target to receive location
1593 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1594 * \c MESA_SHADER_FRAGMENT.
1595 * \param max_index Maximum number of generic locations. This corresponds
1596 * to either the maximum number of draw buffers or the
1597 * maximum number of generic attributes.
1598 *
1599 * \return
1600 * If locations are successfully assigned, true is returned. Otherwise an
1601 * error is emitted to the shader link log and false is returned.
1602 */
1603 bool
1604 assign_attribute_or_color_locations(gl_shader_program *prog,
1605 unsigned target_index,
1606 unsigned max_index)
1607 {
1608 /* Mark invalid locations as being used.
1609 */
1610 unsigned used_locations = (max_index >= 32)
1611 ? ~0 : ~((1 << max_index) - 1);
1612
1613 assert((target_index == MESA_SHADER_VERTEX)
1614 || (target_index == MESA_SHADER_FRAGMENT));
1615
1616 gl_shader *const sh = prog->_LinkedShaders[target_index];
1617 if (sh == NULL)
1618 return true;
1619
1620 /* Operate in a total of four passes.
1621 *
1622 * 1. Invalidate the location assignments for all vertex shader inputs.
1623 *
1624 * 2. Assign locations for inputs that have user-defined (via
1625 * glBindVertexAttribLocation) locations and outputs that have
1626 * user-defined locations (via glBindFragDataLocation).
1627 *
1628 * 3. Sort the attributes without assigned locations by number of slots
1629 * required in decreasing order. Fragmentation caused by attribute
1630 * locations assigned by the application may prevent large attributes
1631 * from having enough contiguous space.
1632 *
1633 * 4. Assign locations to any inputs without assigned locations.
1634 */
1635
1636 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1637 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1638
1639 const enum ir_variable_mode direction =
1640 (target_index == MESA_SHADER_VERTEX)
1641 ? ir_var_shader_in : ir_var_shader_out;
1642
1643
1644 /* Temporary storage for the set of attributes that need locations assigned.
1645 */
1646 struct temp_attr {
1647 unsigned slots;
1648 ir_variable *var;
1649
1650 /* Used below in the call to qsort. */
1651 static int compare(const void *a, const void *b)
1652 {
1653 const temp_attr *const l = (const temp_attr *) a;
1654 const temp_attr *const r = (const temp_attr *) b;
1655
1656 /* Reversed because we want a descending order sort below. */
1657 return r->slots - l->slots;
1658 }
1659 } to_assign[16];
1660
1661 unsigned num_attr = 0;
1662
1663 foreach_list(node, sh->ir) {
1664 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1665
1666 if ((var == NULL) || (var->mode != (unsigned) direction))
1667 continue;
1668
1669 if (var->explicit_location) {
1670 if ((var->location >= (int)(max_index + generic_base))
1671 || (var->location < 0)) {
1672 linker_error(prog,
1673 "invalid explicit location %d specified for `%s'\n",
1674 (var->location < 0)
1675 ? var->location : var->location - generic_base,
1676 var->name);
1677 return false;
1678 }
1679 } else if (target_index == MESA_SHADER_VERTEX) {
1680 unsigned binding;
1681
1682 if (prog->AttributeBindings->get(binding, var->name)) {
1683 assert(binding >= VERT_ATTRIB_GENERIC0);
1684 var->location = binding;
1685 var->is_unmatched_generic_inout = 0;
1686 }
1687 } else if (target_index == MESA_SHADER_FRAGMENT) {
1688 unsigned binding;
1689 unsigned index;
1690
1691 if (prog->FragDataBindings->get(binding, var->name)) {
1692 assert(binding >= FRAG_RESULT_DATA0);
1693 var->location = binding;
1694 var->is_unmatched_generic_inout = 0;
1695
1696 if (prog->FragDataIndexBindings->get(index, var->name)) {
1697 var->index = index;
1698 }
1699 }
1700 }
1701
1702 /* If the variable is not a built-in and has a location statically
1703 * assigned in the shader (presumably via a layout qualifier), make sure
1704 * that it doesn't collide with other assigned locations. Otherwise,
1705 * add it to the list of variables that need linker-assigned locations.
1706 */
1707 const unsigned slots = var->type->count_attribute_slots();
1708 if (var->location != -1) {
1709 if (var->location >= generic_base && var->index < 1) {
1710 /* From page 61 of the OpenGL 4.0 spec:
1711 *
1712 * "LinkProgram will fail if the attribute bindings assigned
1713 * by BindAttribLocation do not leave not enough space to
1714 * assign a location for an active matrix attribute or an
1715 * active attribute array, both of which require multiple
1716 * contiguous generic attributes."
1717 *
1718 * Previous versions of the spec contain similar language but omit
1719 * the bit about attribute arrays.
1720 *
1721 * Page 61 of the OpenGL 4.0 spec also says:
1722 *
1723 * "It is possible for an application to bind more than one
1724 * attribute name to the same location. This is referred to as
1725 * aliasing. This will only work if only one of the aliased
1726 * attributes is active in the executable program, or if no
1727 * path through the shader consumes more than one attribute of
1728 * a set of attributes aliased to the same location. A link
1729 * error can occur if the linker determines that every path
1730 * through the shader consumes multiple aliased attributes,
1731 * but implementations are not required to generate an error
1732 * in this case."
1733 *
1734 * These two paragraphs are either somewhat contradictory, or I
1735 * don't fully understand one or both of them.
1736 */
1737 /* FINISHME: The code as currently written does not support
1738 * FINISHME: attribute location aliasing (see comment above).
1739 */
1740 /* Mask representing the contiguous slots that will be used by
1741 * this attribute.
1742 */
1743 const unsigned attr = var->location - generic_base;
1744 const unsigned use_mask = (1 << slots) - 1;
1745
1746 /* Generate a link error if the set of bits requested for this
1747 * attribute overlaps any previously allocated bits.
1748 */
1749 if ((~(use_mask << attr) & used_locations) != used_locations) {
1750 const char *const string = (target_index == MESA_SHADER_VERTEX)
1751 ? "vertex shader input" : "fragment shader output";
1752 linker_error(prog,
1753 "insufficient contiguous locations "
1754 "available for %s `%s' %d %d %d", string,
1755 var->name, used_locations, use_mask, attr);
1756 return false;
1757 }
1758
1759 used_locations |= (use_mask << attr);
1760 }
1761
1762 continue;
1763 }
1764
1765 to_assign[num_attr].slots = slots;
1766 to_assign[num_attr].var = var;
1767 num_attr++;
1768 }
1769
1770 /* If all of the attributes were assigned locations by the application (or
1771 * are built-in attributes with fixed locations), return early. This should
1772 * be the common case.
1773 */
1774 if (num_attr == 0)
1775 return true;
1776
1777 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1778
1779 if (target_index == MESA_SHADER_VERTEX) {
1780 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1781 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1782 * reserved to prevent it from being automatically allocated below.
1783 */
1784 find_deref_visitor find("gl_Vertex");
1785 find.run(sh->ir);
1786 if (find.variable_found())
1787 used_locations |= (1 << 0);
1788 }
1789
1790 for (unsigned i = 0; i < num_attr; i++) {
1791 /* Mask representing the contiguous slots that will be used by this
1792 * attribute.
1793 */
1794 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1795
1796 int location = find_available_slots(used_locations, to_assign[i].slots);
1797
1798 if (location < 0) {
1799 const char *const string = (target_index == MESA_SHADER_VERTEX)
1800 ? "vertex shader input" : "fragment shader output";
1801
1802 linker_error(prog,
1803 "insufficient contiguous locations "
1804 "available for %s `%s'",
1805 string, to_assign[i].var->name);
1806 return false;
1807 }
1808
1809 to_assign[i].var->location = generic_base + location;
1810 to_assign[i].var->is_unmatched_generic_inout = 0;
1811 used_locations |= (use_mask << location);
1812 }
1813
1814 return true;
1815 }
1816
1817
1818 /**
1819 * Demote shader inputs and outputs that are not used in other stages
1820 */
1821 void
1822 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1823 {
1824 foreach_list(node, sh->ir) {
1825 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1826
1827 if ((var == NULL) || (var->mode != int(mode)))
1828 continue;
1829
1830 /* A shader 'in' or 'out' variable is only really an input or output if
1831 * its value is used by other shader stages. This will cause the variable
1832 * to have a location assigned.
1833 */
1834 if (var->is_unmatched_generic_inout) {
1835 var->mode = ir_var_auto;
1836 }
1837 }
1838 }
1839
1840
1841 /**
1842 * Store the gl_FragDepth layout in the gl_shader_program struct.
1843 */
1844 static void
1845 store_fragdepth_layout(struct gl_shader_program *prog)
1846 {
1847 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1848 return;
1849 }
1850
1851 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1852
1853 /* We don't look up the gl_FragDepth symbol directly because if
1854 * gl_FragDepth is not used in the shader, it's removed from the IR.
1855 * However, the symbol won't be removed from the symbol table.
1856 *
1857 * We're only interested in the cases where the variable is NOT removed
1858 * from the IR.
1859 */
1860 foreach_list(node, ir) {
1861 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1862
1863 if (var == NULL || var->mode != ir_var_shader_out) {
1864 continue;
1865 }
1866
1867 if (strcmp(var->name, "gl_FragDepth") == 0) {
1868 switch (var->depth_layout) {
1869 case ir_depth_layout_none:
1870 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1871 return;
1872 case ir_depth_layout_any:
1873 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1874 return;
1875 case ir_depth_layout_greater:
1876 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1877 return;
1878 case ir_depth_layout_less:
1879 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1880 return;
1881 case ir_depth_layout_unchanged:
1882 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1883 return;
1884 default:
1885 assert(0);
1886 return;
1887 }
1888 }
1889 }
1890 }
1891
1892 /**
1893 * Validate the resources used by a program versus the implementation limits
1894 */
1895 static void
1896 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1897 {
1898 static const char *const shader_names[MESA_SHADER_TYPES] = {
1899 "vertex", "geometry", "fragment"
1900 };
1901
1902 const unsigned max_samplers[MESA_SHADER_TYPES] = {
1903 ctx->Const.VertexProgram.MaxTextureImageUnits,
1904 ctx->Const.GeometryProgram.MaxTextureImageUnits,
1905 ctx->Const.FragmentProgram.MaxTextureImageUnits
1906 };
1907
1908 const unsigned max_default_uniform_components[MESA_SHADER_TYPES] = {
1909 ctx->Const.VertexProgram.MaxUniformComponents,
1910 ctx->Const.GeometryProgram.MaxUniformComponents,
1911 ctx->Const.FragmentProgram.MaxUniformComponents
1912 };
1913
1914 const unsigned max_combined_uniform_components[MESA_SHADER_TYPES] = {
1915 ctx->Const.VertexProgram.MaxCombinedUniformComponents,
1916 ctx->Const.GeometryProgram.MaxCombinedUniformComponents,
1917 ctx->Const.FragmentProgram.MaxCombinedUniformComponents
1918 };
1919
1920 const unsigned max_uniform_blocks[MESA_SHADER_TYPES] = {
1921 ctx->Const.VertexProgram.MaxUniformBlocks,
1922 ctx->Const.GeometryProgram.MaxUniformBlocks,
1923 ctx->Const.FragmentProgram.MaxUniformBlocks
1924 };
1925
1926 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1927 struct gl_shader *sh = prog->_LinkedShaders[i];
1928
1929 if (sh == NULL)
1930 continue;
1931
1932 if (sh->num_samplers > max_samplers[i]) {
1933 linker_error(prog, "Too many %s shader texture samplers",
1934 shader_names[i]);
1935 }
1936
1937 if (sh->num_uniform_components > max_default_uniform_components[i]) {
1938 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1939 linker_warning(prog, "Too many %s shader default uniform block "
1940 "components, but the driver will try to optimize "
1941 "them out; this is non-portable out-of-spec "
1942 "behavior\n",
1943 shader_names[i]);
1944 } else {
1945 linker_error(prog, "Too many %s shader default uniform block "
1946 "components",
1947 shader_names[i]);
1948 }
1949 }
1950
1951 if (sh->num_combined_uniform_components >
1952 max_combined_uniform_components[i]) {
1953 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1954 linker_warning(prog, "Too many %s shader uniform components, "
1955 "but the driver will try to optimize them out; "
1956 "this is non-portable out-of-spec behavior\n",
1957 shader_names[i]);
1958 } else {
1959 linker_error(prog, "Too many %s shader uniform components",
1960 shader_names[i]);
1961 }
1962 }
1963 }
1964
1965 unsigned blocks[MESA_SHADER_TYPES] = {0};
1966 unsigned total_uniform_blocks = 0;
1967
1968 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
1969 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1970 if (prog->UniformBlockStageIndex[j][i] != -1) {
1971 blocks[j]++;
1972 total_uniform_blocks++;
1973 }
1974 }
1975
1976 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
1977 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
1978 prog->NumUniformBlocks,
1979 ctx->Const.MaxCombinedUniformBlocks);
1980 } else {
1981 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1982 if (blocks[i] > max_uniform_blocks[i]) {
1983 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
1984 shader_names[i],
1985 blocks[i],
1986 max_uniform_blocks[i]);
1987 break;
1988 }
1989 }
1990 }
1991 }
1992 }
1993
1994 void
1995 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1996 {
1997 tfeedback_decl *tfeedback_decls = NULL;
1998 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
1999
2000 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2001
2002 prog->LinkStatus = true; /* All error paths will set this to false */
2003 prog->Validated = false;
2004 prog->_Used = false;
2005
2006 ralloc_free(prog->InfoLog);
2007 prog->InfoLog = ralloc_strdup(NULL, "");
2008
2009 ralloc_free(prog->UniformBlocks);
2010 prog->UniformBlocks = NULL;
2011 prog->NumUniformBlocks = 0;
2012 for (int i = 0; i < MESA_SHADER_TYPES; i++) {
2013 ralloc_free(prog->UniformBlockStageIndex[i]);
2014 prog->UniformBlockStageIndex[i] = NULL;
2015 }
2016
2017 /* Separate the shaders into groups based on their type.
2018 */
2019 struct gl_shader **vert_shader_list;
2020 unsigned num_vert_shaders = 0;
2021 struct gl_shader **frag_shader_list;
2022 unsigned num_frag_shaders = 0;
2023 struct gl_shader **geom_shader_list;
2024 unsigned num_geom_shaders = 0;
2025
2026 vert_shader_list = (struct gl_shader **)
2027 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2028 frag_shader_list = (struct gl_shader **)
2029 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2030 geom_shader_list = (struct gl_shader **)
2031 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2032
2033 unsigned min_version = UINT_MAX;
2034 unsigned max_version = 0;
2035 const bool is_es_prog =
2036 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2037 for (unsigned i = 0; i < prog->NumShaders; i++) {
2038 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2039 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2040
2041 if (prog->Shaders[i]->IsES != is_es_prog) {
2042 linker_error(prog, "all shaders must use same shading "
2043 "language version\n");
2044 goto done;
2045 }
2046
2047 switch (prog->Shaders[i]->Type) {
2048 case GL_VERTEX_SHADER:
2049 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
2050 num_vert_shaders++;
2051 break;
2052 case GL_FRAGMENT_SHADER:
2053 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
2054 num_frag_shaders++;
2055 break;
2056 case GL_GEOMETRY_SHADER:
2057 geom_shader_list[num_geom_shaders] = prog->Shaders[i];
2058 num_geom_shaders++;
2059 break;
2060 }
2061 }
2062
2063 /* In desktop GLSL, different shader versions may be linked together. In
2064 * GLSL ES, all shader versions must be the same.
2065 */
2066 if (is_es_prog && min_version != max_version) {
2067 linker_error(prog, "all shaders must use same shading "
2068 "language version\n");
2069 goto done;
2070 }
2071
2072 prog->Version = max_version;
2073 prog->IsES = is_es_prog;
2074
2075 /* Geometry shaders have to be linked with vertex shaders.
2076 */
2077 if (num_geom_shaders > 0 && num_vert_shaders == 0) {
2078 linker_error(prog, "Geometry shader must be linked with "
2079 "vertex shader\n");
2080 goto done;
2081 }
2082
2083 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2084 if (prog->_LinkedShaders[i] != NULL)
2085 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2086
2087 prog->_LinkedShaders[i] = NULL;
2088 }
2089
2090 /* Link all shaders for a particular stage and validate the result.
2091 */
2092 if (num_vert_shaders > 0) {
2093 gl_shader *const sh =
2094 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
2095 num_vert_shaders);
2096
2097 if (!prog->LinkStatus)
2098 goto done;
2099
2100 validate_vertex_shader_executable(prog, sh);
2101 if (!prog->LinkStatus)
2102 goto done;
2103 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2104
2105 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
2106 sh);
2107 }
2108
2109 if (num_frag_shaders > 0) {
2110 gl_shader *const sh =
2111 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
2112 num_frag_shaders);
2113
2114 if (!prog->LinkStatus)
2115 goto done;
2116
2117 validate_fragment_shader_executable(prog, sh);
2118 if (!prog->LinkStatus)
2119 goto done;
2120
2121 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
2122 sh);
2123 }
2124
2125 if (num_geom_shaders > 0) {
2126 gl_shader *const sh =
2127 link_intrastage_shaders(mem_ctx, ctx, prog, geom_shader_list,
2128 num_geom_shaders);
2129
2130 if (!prog->LinkStatus)
2131 goto done;
2132
2133 validate_geometry_shader_executable(prog, sh);
2134 if (!prog->LinkStatus)
2135 goto done;
2136 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2137
2138 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_GEOMETRY],
2139 sh);
2140 }
2141
2142 /* Here begins the inter-stage linking phase. Some initial validation is
2143 * performed, then locations are assigned for uniforms, attributes, and
2144 * varyings.
2145 */
2146 cross_validate_uniforms(prog);
2147 if (!prog->LinkStatus)
2148 goto done;
2149
2150 unsigned prev;
2151
2152 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2153 if (prog->_LinkedShaders[prev] != NULL)
2154 break;
2155 }
2156
2157 /* Validate the inputs of each stage with the output of the preceding
2158 * stage.
2159 */
2160 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2161 if (prog->_LinkedShaders[i] == NULL)
2162 continue;
2163
2164 validate_interstage_interface_blocks(prog, prog->_LinkedShaders[prev],
2165 prog->_LinkedShaders[i]);
2166 if (!prog->LinkStatus)
2167 goto done;
2168
2169 cross_validate_outputs_to_inputs(prog,
2170 prog->_LinkedShaders[prev],
2171 prog->_LinkedShaders[i]);
2172 if (!prog->LinkStatus)
2173 goto done;
2174
2175 prev = i;
2176 }
2177
2178
2179 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2180 if (prog->_LinkedShaders[i] != NULL)
2181 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2182 }
2183
2184 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2185 * it before optimization because we want most of the checks to get
2186 * dropped thanks to constant propagation.
2187 *
2188 * This rule also applies to GLSL ES 3.00.
2189 */
2190 if (max_version >= (is_es_prog ? 300 : 130)) {
2191 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2192 if (sh) {
2193 lower_discard_flow(sh->ir);
2194 }
2195 }
2196
2197 if (!interstage_cross_validate_uniform_blocks(prog))
2198 goto done;
2199
2200 /* Do common optimization before assigning storage for attributes,
2201 * uniforms, and varyings. Later optimization could possibly make
2202 * some of that unused.
2203 */
2204 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2205 if (prog->_LinkedShaders[i] == NULL)
2206 continue;
2207
2208 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2209 if (!prog->LinkStatus)
2210 goto done;
2211
2212 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
2213 lower_clip_distance(prog->_LinkedShaders[i]);
2214 }
2215
2216 unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
2217
2218 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll, &ctx->ShaderCompilerOptions[i]))
2219 ;
2220 }
2221
2222 /* Mark all generic shader inputs and outputs as unpaired. */
2223 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2224 link_invalidate_variable_locations(
2225 prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir);
2226 }
2227 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2228 link_invalidate_variable_locations(
2229 prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
2230 }
2231 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2232 link_invalidate_variable_locations(
2233 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir);
2234 }
2235
2236 /* FINISHME: The value of the max_attribute_index parameter is
2237 * FINISHME: implementation dependent based on the value of
2238 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2239 * FINISHME: at least 16, so hardcode 16 for now.
2240 */
2241 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2242 goto done;
2243 }
2244
2245 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2246 goto done;
2247 }
2248
2249 unsigned first;
2250 for (first = 0; first < MESA_SHADER_TYPES; first++) {
2251 if (prog->_LinkedShaders[first] != NULL)
2252 break;
2253 }
2254
2255 if (num_tfeedback_decls != 0) {
2256 /* From GL_EXT_transform_feedback:
2257 * A program will fail to link if:
2258 *
2259 * * the <count> specified by TransformFeedbackVaryingsEXT is
2260 * non-zero, but the program object has no vertex or geometry
2261 * shader;
2262 */
2263 if (first == MESA_SHADER_FRAGMENT) {
2264 linker_error(prog, "Transform feedback varyings specified, but "
2265 "no vertex or geometry shader is present.");
2266 goto done;
2267 }
2268
2269 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2270 prog->TransformFeedback.NumVarying);
2271 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2272 prog->TransformFeedback.VaryingNames,
2273 tfeedback_decls))
2274 goto done;
2275 }
2276
2277 /* Linking the stages in the opposite order (from fragment to vertex)
2278 * ensures that inter-shader outputs written to in an earlier stage are
2279 * eliminated if they are (transitively) not used in a later stage.
2280 */
2281 int last, next;
2282 for (last = MESA_SHADER_TYPES-1; last >= 0; last--) {
2283 if (prog->_LinkedShaders[last] != NULL)
2284 break;
2285 }
2286
2287 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2288 gl_shader *const sh = prog->_LinkedShaders[last];
2289
2290 if (num_tfeedback_decls != 0) {
2291 /* There was no fragment shader, but we still have to assign varying
2292 * locations for use by transform feedback.
2293 */
2294 if (!assign_varying_locations(ctx, mem_ctx, prog,
2295 sh, NULL,
2296 num_tfeedback_decls, tfeedback_decls,
2297 0))
2298 goto done;
2299 }
2300
2301 do_dead_builtin_varyings(ctx, sh, NULL,
2302 num_tfeedback_decls, tfeedback_decls);
2303
2304 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2305
2306 /* Eliminate code that is now dead due to unused outputs being demoted.
2307 */
2308 while (do_dead_code(sh->ir, false))
2309 ;
2310 }
2311 else if (first == MESA_SHADER_FRAGMENT) {
2312 /* If the program only contains a fragment shader...
2313 */
2314 gl_shader *const sh = prog->_LinkedShaders[first];
2315
2316 do_dead_builtin_varyings(ctx, NULL, sh,
2317 num_tfeedback_decls, tfeedback_decls);
2318
2319 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2320
2321 while (do_dead_code(sh->ir, false))
2322 ;
2323 }
2324
2325 next = last;
2326 for (int i = next - 1; i >= 0; i--) {
2327 if (prog->_LinkedShaders[i] == NULL)
2328 continue;
2329
2330 gl_shader *const sh_i = prog->_LinkedShaders[i];
2331 gl_shader *const sh_next = prog->_LinkedShaders[next];
2332 unsigned gs_input_vertices =
2333 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2334
2335 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2336 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2337 tfeedback_decls, gs_input_vertices))
2338 goto done;
2339
2340 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2341 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2342 tfeedback_decls);
2343
2344 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2345 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2346
2347 /* Eliminate code that is now dead due to unused outputs being demoted.
2348 */
2349 while (do_dead_code(sh_i->ir, false))
2350 ;
2351 while (do_dead_code(sh_next->ir, false))
2352 ;
2353
2354 /* This must be done after all dead varyings are eliminated. */
2355 if (!check_against_output_limit(ctx, prog, sh_i))
2356 goto done;
2357 if (!check_against_input_limit(ctx, prog, sh_next))
2358 goto done;
2359
2360 next = i;
2361 }
2362
2363 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2364 goto done;
2365
2366 update_array_sizes(prog);
2367 link_assign_uniform_locations(prog);
2368 store_fragdepth_layout(prog);
2369
2370 check_resources(ctx, prog);
2371 if (!prog->LinkStatus)
2372 goto done;
2373
2374 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2375 * present in a linked program. By checking prog->IsES, we also
2376 * catch the GL_ARB_ES2_compatibility case.
2377 */
2378 if (!prog->InternalSeparateShader &&
2379 (ctx->API == API_OPENGLES2 || prog->IsES)) {
2380 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2381 linker_error(prog, "program lacks a vertex shader\n");
2382 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2383 linker_error(prog, "program lacks a fragment shader\n");
2384 }
2385 }
2386
2387 /* FINISHME: Assign fragment shader output locations. */
2388
2389 done:
2390 free(vert_shader_list);
2391 free(frag_shader_list);
2392 free(geom_shader_list);
2393
2394 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2395 if (prog->_LinkedShaders[i] == NULL)
2396 continue;
2397
2398 /* Retain any live IR, but trash the rest. */
2399 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2400
2401 /* The symbol table in the linked shaders may contain references to
2402 * variables that were removed (e.g., unused uniforms). Since it may
2403 * contain junk, there is no possible valid use. Delete it and set the
2404 * pointer to NULL.
2405 */
2406 delete prog->_LinkedShaders[i]->symbols;
2407 prog->_LinkedShaders[i]->symbols = NULL;
2408 }
2409
2410 ralloc_free(mem_ctx);
2411 }