glsl: move array validation into its own function
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->element_type(),
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->element_type();
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 } /* anonymous namespace */
350
351 void
352 linker_error(gl_shader_program *prog, const char *fmt, ...)
353 {
354 va_list ap;
355
356 ralloc_strcat(&prog->InfoLog, "error: ");
357 va_start(ap, fmt);
358 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
359 va_end(ap);
360
361 prog->LinkStatus = false;
362 }
363
364
365 void
366 linker_warning(gl_shader_program *prog, const char *fmt, ...)
367 {
368 va_list ap;
369
370 ralloc_strcat(&prog->InfoLog, "warning: ");
371 va_start(ap, fmt);
372 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
373 va_end(ap);
374
375 }
376
377
378 /**
379 * Given a string identifying a program resource, break it into a base name
380 * and an optional array index in square brackets.
381 *
382 * If an array index is present, \c out_base_name_end is set to point to the
383 * "[" that precedes the array index, and the array index itself is returned
384 * as a long.
385 *
386 * If no array index is present (or if the array index is negative or
387 * mal-formed), \c out_base_name_end, is set to point to the null terminator
388 * at the end of the input string, and -1 is returned.
389 *
390 * Only the final array index is parsed; if the string contains other array
391 * indices (or structure field accesses), they are left in the base name.
392 *
393 * No attempt is made to check that the base name is properly formed;
394 * typically the caller will look up the base name in a hash table, so
395 * ill-formed base names simply turn into hash table lookup failures.
396 */
397 long
398 parse_program_resource_name(const GLchar *name,
399 const GLchar **out_base_name_end)
400 {
401 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
402 *
403 * "When an integer array element or block instance number is part of
404 * the name string, it will be specified in decimal form without a "+"
405 * or "-" sign or any extra leading zeroes. Additionally, the name
406 * string will not include white space anywhere in the string."
407 */
408
409 const size_t len = strlen(name);
410 *out_base_name_end = name + len;
411
412 if (len == 0 || name[len-1] != ']')
413 return -1;
414
415 /* Walk backwards over the string looking for a non-digit character. This
416 * had better be the opening bracket for an array index.
417 *
418 * Initially, i specifies the location of the ']'. Since the string may
419 * contain only the ']' charcater, walk backwards very carefully.
420 */
421 unsigned i;
422 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
423 /* empty */ ;
424
425 if ((i == 0) || name[i-1] != '[')
426 return -1;
427
428 long array_index = strtol(&name[i], NULL, 10);
429 if (array_index < 0)
430 return -1;
431
432 *out_base_name_end = name + (i - 1);
433 return array_index;
434 }
435
436
437 void
438 link_invalidate_variable_locations(exec_list *ir)
439 {
440 foreach_in_list(ir_instruction, node, ir) {
441 ir_variable *const var = node->as_variable();
442
443 if (var == NULL)
444 continue;
445
446 /* Only assign locations for variables that lack an explicit location.
447 * Explicit locations are set for all built-in variables, generic vertex
448 * shader inputs (via layout(location=...)), and generic fragment shader
449 * outputs (also via layout(location=...)).
450 */
451 if (!var->data.explicit_location) {
452 var->data.location = -1;
453 var->data.location_frac = 0;
454 }
455
456 /* ir_variable::is_unmatched_generic_inout is used by the linker while
457 * connecting outputs from one stage to inputs of the next stage.
458 *
459 * There are two implicit assumptions here. First, we assume that any
460 * built-in variable (i.e., non-generic in or out) will have
461 * explicit_location set. Second, we assume that any generic in or out
462 * will not have explicit_location set.
463 *
464 * This second assumption will only be valid until
465 * GL_ARB_separate_shader_objects is supported. When that extension is
466 * implemented, this function will need some modifications.
467 */
468 if (!var->data.explicit_location) {
469 var->data.is_unmatched_generic_inout = 1;
470 } else {
471 var->data.is_unmatched_generic_inout = 0;
472 }
473 }
474 }
475
476
477 /**
478 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
479 *
480 * Also check for errors based on incorrect usage of gl_ClipVertex and
481 * gl_ClipDistance.
482 *
483 * Return false if an error was reported.
484 */
485 static void
486 analyze_clip_usage(struct gl_shader_program *prog,
487 struct gl_shader *shader, GLboolean *UsesClipDistance,
488 GLuint *ClipDistanceArraySize)
489 {
490 *ClipDistanceArraySize = 0;
491
492 if (!prog->IsES && prog->Version >= 130) {
493 /* From section 7.1 (Vertex Shader Special Variables) of the
494 * GLSL 1.30 spec:
495 *
496 * "It is an error for a shader to statically write both
497 * gl_ClipVertex and gl_ClipDistance."
498 *
499 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
500 * gl_ClipVertex nor gl_ClipDistance.
501 */
502 find_assignment_visitor clip_vertex("gl_ClipVertex");
503 find_assignment_visitor clip_distance("gl_ClipDistance");
504
505 clip_vertex.run(shader->ir);
506 clip_distance.run(shader->ir);
507 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
508 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
509 "and `gl_ClipDistance'\n",
510 _mesa_shader_stage_to_string(shader->Stage));
511 return;
512 }
513 *UsesClipDistance = clip_distance.variable_found();
514 ir_variable *clip_distance_var =
515 shader->symbols->get_variable("gl_ClipDistance");
516 if (clip_distance_var)
517 *ClipDistanceArraySize = clip_distance_var->type->length;
518 } else {
519 *UsesClipDistance = false;
520 }
521 }
522
523
524 /**
525 * Verify that a vertex shader executable meets all semantic requirements.
526 *
527 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
528 * as a side effect.
529 *
530 * \param shader Vertex shader executable to be verified
531 */
532 void
533 validate_vertex_shader_executable(struct gl_shader_program *prog,
534 struct gl_shader *shader)
535 {
536 if (shader == NULL)
537 return;
538
539 /* From the GLSL 1.10 spec, page 48:
540 *
541 * "The variable gl_Position is available only in the vertex
542 * language and is intended for writing the homogeneous vertex
543 * position. All executions of a well-formed vertex shader
544 * executable must write a value into this variable. [...] The
545 * variable gl_Position is available only in the vertex
546 * language and is intended for writing the homogeneous vertex
547 * position. All executions of a well-formed vertex shader
548 * executable must write a value into this variable."
549 *
550 * while in GLSL 1.40 this text is changed to:
551 *
552 * "The variable gl_Position is available only in the vertex
553 * language and is intended for writing the homogeneous vertex
554 * position. It can be written at any time during shader
555 * execution. It may also be read back by a vertex shader
556 * after being written. This value will be used by primitive
557 * assembly, clipping, culling, and other fixed functionality
558 * operations, if present, that operate on primitives after
559 * vertex processing has occurred. Its value is undefined if
560 * the vertex shader executable does not write gl_Position."
561 *
562 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
563 * gl_Position is not an error.
564 */
565 if (prog->Version < (prog->IsES ? 300 : 140)) {
566 find_assignment_visitor find("gl_Position");
567 find.run(shader->ir);
568 if (!find.variable_found()) {
569 if (prog->IsES) {
570 linker_warning(prog,
571 "vertex shader does not write to `gl_Position'."
572 "It's value is undefined. \n");
573 } else {
574 linker_error(prog,
575 "vertex shader does not write to `gl_Position'. \n");
576 }
577 return;
578 }
579 }
580
581 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
582 &prog->Vert.ClipDistanceArraySize);
583 }
584
585
586 /**
587 * Verify that a fragment shader executable meets all semantic requirements
588 *
589 * \param shader Fragment shader executable to be verified
590 */
591 void
592 validate_fragment_shader_executable(struct gl_shader_program *prog,
593 struct gl_shader *shader)
594 {
595 if (shader == NULL)
596 return;
597
598 find_assignment_visitor frag_color("gl_FragColor");
599 find_assignment_visitor frag_data("gl_FragData");
600
601 frag_color.run(shader->ir);
602 frag_data.run(shader->ir);
603
604 if (frag_color.variable_found() && frag_data.variable_found()) {
605 linker_error(prog, "fragment shader writes to both "
606 "`gl_FragColor' and `gl_FragData'\n");
607 }
608 }
609
610 /**
611 * Verify that a geometry shader executable meets all semantic requirements
612 *
613 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
614 * prog->Geom.ClipDistanceArraySize as a side effect.
615 *
616 * \param shader Geometry shader executable to be verified
617 */
618 void
619 validate_geometry_shader_executable(struct gl_shader_program *prog,
620 struct gl_shader *shader)
621 {
622 if (shader == NULL)
623 return;
624
625 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
626 prog->Geom.VerticesIn = num_vertices;
627
628 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
629 &prog->Geom.ClipDistanceArraySize);
630 }
631
632 /**
633 * Check if geometry shaders emit to non-zero streams and do corresponding
634 * validations.
635 */
636 static void
637 validate_geometry_shader_emissions(struct gl_context *ctx,
638 struct gl_shader_program *prog)
639 {
640 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
641 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
642 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
643 if (emit_vertex.error()) {
644 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
645 "stream parameter are in the range [0, %d].\n",
646 emit_vertex.error_func(),
647 emit_vertex.error_stream(),
648 ctx->Const.MaxVertexStreams - 1);
649 }
650 prog->Geom.UsesStreams = emit_vertex.uses_streams();
651 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
652
653 /* From the ARB_gpu_shader5 spec:
654 *
655 * "Multiple vertex streams are supported only if the output primitive
656 * type is declared to be "points". A program will fail to link if it
657 * contains a geometry shader calling EmitStreamVertex() or
658 * EndStreamPrimitive() if its output primitive type is not "points".
659 *
660 * However, in the same spec:
661 *
662 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
663 * with <stream> set to zero."
664 *
665 * And:
666 *
667 * "The function EndPrimitive() is equivalent to calling
668 * EndStreamPrimitive() with <stream> set to zero."
669 *
670 * Since we can call EmitVertex() and EndPrimitive() when we output
671 * primitives other than points, calling EmitStreamVertex(0) or
672 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
673 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
674 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
675 * stream.
676 */
677 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
678 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
679 "with n>0 requires point output\n");
680 }
681 }
682 }
683
684 bool
685 validate_intrastage_arrays(struct gl_shader_program *prog,
686 ir_variable *const var,
687 ir_variable *const existing)
688 {
689 /* Consider the types to be "the same" if both types are arrays
690 * of the same type and one of the arrays is implicitly sized.
691 * In addition, set the type of the linked variable to the
692 * explicitly sized array.
693 */
694 if (var->type->is_array() && existing->type->is_array() &&
695 (var->type->fields.array == existing->type->fields.array) &&
696 ((var->type->length == 0)|| (existing->type->length == 0))) {
697 if (var->type->length != 0) {
698 if (var->type->length <= existing->data.max_array_access) {
699 linker_error(prog, "%s `%s' declared as type "
700 "`%s' but outermost dimension has an index"
701 " of `%i'\n",
702 mode_string(var),
703 var->name, var->type->name,
704 existing->data.max_array_access);
705 }
706 existing->type = var->type;
707 return true;
708 } else if (existing->type->length != 0) {
709 if(existing->type->length <= var->data.max_array_access) {
710 linker_error(prog, "%s `%s' declared as type "
711 "`%s' but outermost dimension has an index"
712 " of `%i'\n",
713 mode_string(var),
714 var->name, existing->type->name,
715 var->data.max_array_access);
716 }
717 return true;
718 }
719 }
720 return false;
721 }
722
723
724 /**
725 * Perform validation of global variables used across multiple shaders
726 */
727 void
728 cross_validate_globals(struct gl_shader_program *prog,
729 struct gl_shader **shader_list,
730 unsigned num_shaders,
731 bool uniforms_only)
732 {
733 /* Examine all of the uniforms in all of the shaders and cross validate
734 * them.
735 */
736 glsl_symbol_table variables;
737 for (unsigned i = 0; i < num_shaders; i++) {
738 if (shader_list[i] == NULL)
739 continue;
740
741 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
742 ir_variable *const var = node->as_variable();
743
744 if (var == NULL)
745 continue;
746
747 if (uniforms_only && (var->data.mode != ir_var_uniform))
748 continue;
749
750 /* Don't cross validate temporaries that are at global scope. These
751 * will eventually get pulled into the shaders 'main'.
752 */
753 if (var->data.mode == ir_var_temporary)
754 continue;
755
756 /* If a global with this name has already been seen, verify that the
757 * new instance has the same type. In addition, if the globals have
758 * initializers, the values of the initializers must be the same.
759 */
760 ir_variable *const existing = variables.get_variable(var->name);
761 if (existing != NULL) {
762 /* Check if types match. Interface blocks have some special
763 * rules so we handle those elsewhere.
764 */
765 if (var->type != existing->type) {
766 if (!validate_intrastage_arrays(prog, var, existing)) {
767 if (var->type->is_record() && existing->type->is_record()
768 && existing->type->record_compare(var->type)) {
769 existing->type = var->type;
770 } else {
771 linker_error(prog, "%s `%s' declared as type "
772 "`%s' and type `%s'\n",
773 mode_string(var),
774 var->name, var->type->name,
775 existing->type->name);
776 return;
777 }
778 }
779 }
780
781 if (var->data.explicit_location) {
782 if (existing->data.explicit_location
783 && (var->data.location != existing->data.location)) {
784 linker_error(prog, "explicit locations for %s "
785 "`%s' have differing values\n",
786 mode_string(var), var->name);
787 return;
788 }
789
790 existing->data.location = var->data.location;
791 existing->data.explicit_location = true;
792 }
793
794 /* From the GLSL 4.20 specification:
795 * "A link error will result if two compilation units in a program
796 * specify different integer-constant bindings for the same
797 * opaque-uniform name. However, it is not an error to specify a
798 * binding on some but not all declarations for the same name"
799 */
800 if (var->data.explicit_binding) {
801 if (existing->data.explicit_binding &&
802 var->data.binding != existing->data.binding) {
803 linker_error(prog, "explicit bindings for %s "
804 "`%s' have differing values\n",
805 mode_string(var), var->name);
806 return;
807 }
808
809 existing->data.binding = var->data.binding;
810 existing->data.explicit_binding = true;
811 }
812
813 if (var->type->contains_atomic() &&
814 var->data.atomic.offset != existing->data.atomic.offset) {
815 linker_error(prog, "offset specifications for %s "
816 "`%s' have differing values\n",
817 mode_string(var), var->name);
818 return;
819 }
820
821 /* Validate layout qualifiers for gl_FragDepth.
822 *
823 * From the AMD/ARB_conservative_depth specs:
824 *
825 * "If gl_FragDepth is redeclared in any fragment shader in a
826 * program, it must be redeclared in all fragment shaders in
827 * that program that have static assignments to
828 * gl_FragDepth. All redeclarations of gl_FragDepth in all
829 * fragment shaders in a single program must have the same set
830 * of qualifiers."
831 */
832 if (strcmp(var->name, "gl_FragDepth") == 0) {
833 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
834 bool layout_differs =
835 var->data.depth_layout != existing->data.depth_layout;
836
837 if (layout_declared && layout_differs) {
838 linker_error(prog,
839 "All redeclarations of gl_FragDepth in all "
840 "fragment shaders in a single program must have "
841 "the same set of qualifiers.\n");
842 }
843
844 if (var->data.used && layout_differs) {
845 linker_error(prog,
846 "If gl_FragDepth is redeclared with a layout "
847 "qualifier in any fragment shader, it must be "
848 "redeclared with the same layout qualifier in "
849 "all fragment shaders that have assignments to "
850 "gl_FragDepth\n");
851 }
852 }
853
854 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
855 *
856 * "If a shared global has multiple initializers, the
857 * initializers must all be constant expressions, and they
858 * must all have the same value. Otherwise, a link error will
859 * result. (A shared global having only one initializer does
860 * not require that initializer to be a constant expression.)"
861 *
862 * Previous to 4.20 the GLSL spec simply said that initializers
863 * must have the same value. In this case of non-constant
864 * initializers, this was impossible to determine. As a result,
865 * no vendor actually implemented that behavior. The 4.20
866 * behavior matches the implemented behavior of at least one other
867 * vendor, so we'll implement that for all GLSL versions.
868 */
869 if (var->constant_initializer != NULL) {
870 if (existing->constant_initializer != NULL) {
871 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
872 linker_error(prog, "initializers for %s "
873 "`%s' have differing values\n",
874 mode_string(var), var->name);
875 return;
876 }
877 } else {
878 /* If the first-seen instance of a particular uniform did not
879 * have an initializer but a later instance does, copy the
880 * initializer to the version stored in the symbol table.
881 */
882 /* FINISHME: This is wrong. The constant_value field should
883 * FINISHME: not be modified! Imagine a case where a shader
884 * FINISHME: without an initializer is linked in two different
885 * FINISHME: programs with shaders that have differing
886 * FINISHME: initializers. Linking with the first will
887 * FINISHME: modify the shader, and linking with the second
888 * FINISHME: will fail.
889 */
890 existing->constant_initializer =
891 var->constant_initializer->clone(ralloc_parent(existing),
892 NULL);
893 }
894 }
895
896 if (var->data.has_initializer) {
897 if (existing->data.has_initializer
898 && (var->constant_initializer == NULL
899 || existing->constant_initializer == NULL)) {
900 linker_error(prog,
901 "shared global variable `%s' has multiple "
902 "non-constant initializers.\n",
903 var->name);
904 return;
905 }
906
907 /* Some instance had an initializer, so keep track of that. In
908 * this location, all sorts of initializers (constant or
909 * otherwise) will propagate the existence to the variable
910 * stored in the symbol table.
911 */
912 existing->data.has_initializer = true;
913 }
914
915 if (existing->data.invariant != var->data.invariant) {
916 linker_error(prog, "declarations for %s `%s' have "
917 "mismatching invariant qualifiers\n",
918 mode_string(var), var->name);
919 return;
920 }
921 if (existing->data.centroid != var->data.centroid) {
922 linker_error(prog, "declarations for %s `%s' have "
923 "mismatching centroid qualifiers\n",
924 mode_string(var), var->name);
925 return;
926 }
927 if (existing->data.sample != var->data.sample) {
928 linker_error(prog, "declarations for %s `%s` have "
929 "mismatching sample qualifiers\n",
930 mode_string(var), var->name);
931 return;
932 }
933 } else
934 variables.add_variable(var);
935 }
936 }
937 }
938
939
940 /**
941 * Perform validation of uniforms used across multiple shader stages
942 */
943 void
944 cross_validate_uniforms(struct gl_shader_program *prog)
945 {
946 cross_validate_globals(prog, prog->_LinkedShaders,
947 MESA_SHADER_STAGES, true);
948 }
949
950 /**
951 * Accumulates the array of prog->UniformBlocks and checks that all
952 * definitons of blocks agree on their contents.
953 */
954 static bool
955 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
956 {
957 unsigned max_num_uniform_blocks = 0;
958 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
959 if (prog->_LinkedShaders[i])
960 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
961 }
962
963 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
964 struct gl_shader *sh = prog->_LinkedShaders[i];
965
966 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
967 max_num_uniform_blocks);
968 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
969 prog->UniformBlockStageIndex[i][j] = -1;
970
971 if (sh == NULL)
972 continue;
973
974 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
975 int index = link_cross_validate_uniform_block(prog,
976 &prog->UniformBlocks,
977 &prog->NumUniformBlocks,
978 &sh->UniformBlocks[j]);
979
980 if (index == -1) {
981 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
982 sh->UniformBlocks[j].Name);
983 return false;
984 }
985
986 prog->UniformBlockStageIndex[i][index] = j;
987 }
988 }
989
990 return true;
991 }
992
993
994 /**
995 * Populates a shaders symbol table with all global declarations
996 */
997 static void
998 populate_symbol_table(gl_shader *sh)
999 {
1000 sh->symbols = new(sh) glsl_symbol_table;
1001
1002 foreach_in_list(ir_instruction, inst, sh->ir) {
1003 ir_variable *var;
1004 ir_function *func;
1005
1006 if ((func = inst->as_function()) != NULL) {
1007 sh->symbols->add_function(func);
1008 } else if ((var = inst->as_variable()) != NULL) {
1009 if (var->data.mode != ir_var_temporary)
1010 sh->symbols->add_variable(var);
1011 }
1012 }
1013 }
1014
1015
1016 /**
1017 * Remap variables referenced in an instruction tree
1018 *
1019 * This is used when instruction trees are cloned from one shader and placed in
1020 * another. These trees will contain references to \c ir_variable nodes that
1021 * do not exist in the target shader. This function finds these \c ir_variable
1022 * references and replaces the references with matching variables in the target
1023 * shader.
1024 *
1025 * If there is no matching variable in the target shader, a clone of the
1026 * \c ir_variable is made and added to the target shader. The new variable is
1027 * added to \b both the instruction stream and the symbol table.
1028 *
1029 * \param inst IR tree that is to be processed.
1030 * \param symbols Symbol table containing global scope symbols in the
1031 * linked shader.
1032 * \param instructions Instruction stream where new variable declarations
1033 * should be added.
1034 */
1035 void
1036 remap_variables(ir_instruction *inst, struct gl_shader *target,
1037 hash_table *temps)
1038 {
1039 class remap_visitor : public ir_hierarchical_visitor {
1040 public:
1041 remap_visitor(struct gl_shader *target,
1042 hash_table *temps)
1043 {
1044 this->target = target;
1045 this->symbols = target->symbols;
1046 this->instructions = target->ir;
1047 this->temps = temps;
1048 }
1049
1050 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1051 {
1052 if (ir->var->data.mode == ir_var_temporary) {
1053 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1054
1055 assert(var != NULL);
1056 ir->var = var;
1057 return visit_continue;
1058 }
1059
1060 ir_variable *const existing =
1061 this->symbols->get_variable(ir->var->name);
1062 if (existing != NULL)
1063 ir->var = existing;
1064 else {
1065 ir_variable *copy = ir->var->clone(this->target, NULL);
1066
1067 this->symbols->add_variable(copy);
1068 this->instructions->push_head(copy);
1069 ir->var = copy;
1070 }
1071
1072 return visit_continue;
1073 }
1074
1075 private:
1076 struct gl_shader *target;
1077 glsl_symbol_table *symbols;
1078 exec_list *instructions;
1079 hash_table *temps;
1080 };
1081
1082 remap_visitor v(target, temps);
1083
1084 inst->accept(&v);
1085 }
1086
1087
1088 /**
1089 * Move non-declarations from one instruction stream to another
1090 *
1091 * The intended usage pattern of this function is to pass the pointer to the
1092 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1093 * pointer) for \c last and \c false for \c make_copies on the first
1094 * call. Successive calls pass the return value of the previous call for
1095 * \c last and \c true for \c make_copies.
1096 *
1097 * \param instructions Source instruction stream
1098 * \param last Instruction after which new instructions should be
1099 * inserted in the target instruction stream
1100 * \param make_copies Flag selecting whether instructions in \c instructions
1101 * should be copied (via \c ir_instruction::clone) into the
1102 * target list or moved.
1103 *
1104 * \return
1105 * The new "last" instruction in the target instruction stream. This pointer
1106 * is suitable for use as the \c last parameter of a later call to this
1107 * function.
1108 */
1109 exec_node *
1110 move_non_declarations(exec_list *instructions, exec_node *last,
1111 bool make_copies, gl_shader *target)
1112 {
1113 hash_table *temps = NULL;
1114
1115 if (make_copies)
1116 temps = hash_table_ctor(0, hash_table_pointer_hash,
1117 hash_table_pointer_compare);
1118
1119 foreach_in_list_safe(ir_instruction, inst, instructions) {
1120 if (inst->as_function())
1121 continue;
1122
1123 ir_variable *var = inst->as_variable();
1124 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1125 continue;
1126
1127 assert(inst->as_assignment()
1128 || inst->as_call()
1129 || inst->as_if() /* for initializers with the ?: operator */
1130 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1131
1132 if (make_copies) {
1133 inst = inst->clone(target, NULL);
1134
1135 if (var != NULL)
1136 hash_table_insert(temps, inst, var);
1137 else
1138 remap_variables(inst, target, temps);
1139 } else {
1140 inst->remove();
1141 }
1142
1143 last->insert_after(inst);
1144 last = inst;
1145 }
1146
1147 if (make_copies)
1148 hash_table_dtor(temps);
1149
1150 return last;
1151 }
1152
1153 /**
1154 * Get the function signature for main from a shader
1155 */
1156 ir_function_signature *
1157 link_get_main_function_signature(gl_shader *sh)
1158 {
1159 ir_function *const f = sh->symbols->get_function("main");
1160 if (f != NULL) {
1161 exec_list void_parameters;
1162
1163 /* Look for the 'void main()' signature and ensure that it's defined.
1164 * This keeps the linker from accidentally pick a shader that just
1165 * contains a prototype for main.
1166 *
1167 * We don't have to check for multiple definitions of main (in multiple
1168 * shaders) because that would have already been caught above.
1169 */
1170 ir_function_signature *sig =
1171 f->matching_signature(NULL, &void_parameters, false);
1172 if ((sig != NULL) && sig->is_defined) {
1173 return sig;
1174 }
1175 }
1176
1177 return NULL;
1178 }
1179
1180
1181 /**
1182 * This class is only used in link_intrastage_shaders() below but declaring
1183 * it inside that function leads to compiler warnings with some versions of
1184 * gcc.
1185 */
1186 class array_sizing_visitor : public ir_hierarchical_visitor {
1187 public:
1188 array_sizing_visitor()
1189 : mem_ctx(ralloc_context(NULL)),
1190 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1191 hash_table_pointer_compare))
1192 {
1193 }
1194
1195 ~array_sizing_visitor()
1196 {
1197 hash_table_dtor(this->unnamed_interfaces);
1198 ralloc_free(this->mem_ctx);
1199 }
1200
1201 virtual ir_visitor_status visit(ir_variable *var)
1202 {
1203 fixup_type(&var->type, var->data.max_array_access);
1204 if (var->type->is_interface()) {
1205 if (interface_contains_unsized_arrays(var->type)) {
1206 const glsl_type *new_type =
1207 resize_interface_members(var->type,
1208 var->get_max_ifc_array_access());
1209 var->type = new_type;
1210 var->change_interface_type(new_type);
1211 }
1212 } else if (var->type->is_array() &&
1213 var->type->fields.array->is_interface()) {
1214 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1215 const glsl_type *new_type =
1216 resize_interface_members(var->type->fields.array,
1217 var->get_max_ifc_array_access());
1218 var->change_interface_type(new_type);
1219 var->type =
1220 glsl_type::get_array_instance(new_type, var->type->length);
1221 }
1222 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1223 /* Store a pointer to the variable in the unnamed_interfaces
1224 * hashtable.
1225 */
1226 ir_variable **interface_vars = (ir_variable **)
1227 hash_table_find(this->unnamed_interfaces, ifc_type);
1228 if (interface_vars == NULL) {
1229 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1230 ifc_type->length);
1231 hash_table_insert(this->unnamed_interfaces, interface_vars,
1232 ifc_type);
1233 }
1234 unsigned index = ifc_type->field_index(var->name);
1235 assert(index < ifc_type->length);
1236 assert(interface_vars[index] == NULL);
1237 interface_vars[index] = var;
1238 }
1239 return visit_continue;
1240 }
1241
1242 /**
1243 * For each unnamed interface block that was discovered while running the
1244 * visitor, adjust the interface type to reflect the newly assigned array
1245 * sizes, and fix up the ir_variable nodes to point to the new interface
1246 * type.
1247 */
1248 void fixup_unnamed_interface_types()
1249 {
1250 hash_table_call_foreach(this->unnamed_interfaces,
1251 fixup_unnamed_interface_type, NULL);
1252 }
1253
1254 private:
1255 /**
1256 * If the type pointed to by \c type represents an unsized array, replace
1257 * it with a sized array whose size is determined by max_array_access.
1258 */
1259 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1260 {
1261 if ((*type)->is_unsized_array()) {
1262 *type = glsl_type::get_array_instance((*type)->fields.array,
1263 max_array_access + 1);
1264 assert(*type != NULL);
1265 }
1266 }
1267
1268 /**
1269 * Determine whether the given interface type contains unsized arrays (if
1270 * it doesn't, array_sizing_visitor doesn't need to process it).
1271 */
1272 static bool interface_contains_unsized_arrays(const glsl_type *type)
1273 {
1274 for (unsigned i = 0; i < type->length; i++) {
1275 const glsl_type *elem_type = type->fields.structure[i].type;
1276 if (elem_type->is_unsized_array())
1277 return true;
1278 }
1279 return false;
1280 }
1281
1282 /**
1283 * Create a new interface type based on the given type, with unsized arrays
1284 * replaced by sized arrays whose size is determined by
1285 * max_ifc_array_access.
1286 */
1287 static const glsl_type *
1288 resize_interface_members(const glsl_type *type,
1289 const unsigned *max_ifc_array_access)
1290 {
1291 unsigned num_fields = type->length;
1292 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1293 memcpy(fields, type->fields.structure,
1294 num_fields * sizeof(*fields));
1295 for (unsigned i = 0; i < num_fields; i++) {
1296 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1297 }
1298 glsl_interface_packing packing =
1299 (glsl_interface_packing) type->interface_packing;
1300 const glsl_type *new_ifc_type =
1301 glsl_type::get_interface_instance(fields, num_fields,
1302 packing, type->name);
1303 delete [] fields;
1304 return new_ifc_type;
1305 }
1306
1307 static void fixup_unnamed_interface_type(const void *key, void *data,
1308 void *)
1309 {
1310 const glsl_type *ifc_type = (const glsl_type *) key;
1311 ir_variable **interface_vars = (ir_variable **) data;
1312 unsigned num_fields = ifc_type->length;
1313 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1314 memcpy(fields, ifc_type->fields.structure,
1315 num_fields * sizeof(*fields));
1316 bool interface_type_changed = false;
1317 for (unsigned i = 0; i < num_fields; i++) {
1318 if (interface_vars[i] != NULL &&
1319 fields[i].type != interface_vars[i]->type) {
1320 fields[i].type = interface_vars[i]->type;
1321 interface_type_changed = true;
1322 }
1323 }
1324 if (!interface_type_changed) {
1325 delete [] fields;
1326 return;
1327 }
1328 glsl_interface_packing packing =
1329 (glsl_interface_packing) ifc_type->interface_packing;
1330 const glsl_type *new_ifc_type =
1331 glsl_type::get_interface_instance(fields, num_fields, packing,
1332 ifc_type->name);
1333 delete [] fields;
1334 for (unsigned i = 0; i < num_fields; i++) {
1335 if (interface_vars[i] != NULL)
1336 interface_vars[i]->change_interface_type(new_ifc_type);
1337 }
1338 }
1339
1340 /**
1341 * Memory context used to allocate the data in \c unnamed_interfaces.
1342 */
1343 void *mem_ctx;
1344
1345 /**
1346 * Hash table from const glsl_type * to an array of ir_variable *'s
1347 * pointing to the ir_variables constituting each unnamed interface block.
1348 */
1349 hash_table *unnamed_interfaces;
1350 };
1351
1352 /**
1353 * Performs the cross-validation of layout qualifiers specified in
1354 * redeclaration of gl_FragCoord for the attached fragment shaders,
1355 * and propagates them to the linked FS and linked shader program.
1356 */
1357 static void
1358 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1359 struct gl_shader *linked_shader,
1360 struct gl_shader **shader_list,
1361 unsigned num_shaders)
1362 {
1363 linked_shader->redeclares_gl_fragcoord = false;
1364 linked_shader->uses_gl_fragcoord = false;
1365 linked_shader->origin_upper_left = false;
1366 linked_shader->pixel_center_integer = false;
1367
1368 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1369 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1370 return;
1371
1372 for (unsigned i = 0; i < num_shaders; i++) {
1373 struct gl_shader *shader = shader_list[i];
1374 /* From the GLSL 1.50 spec, page 39:
1375 *
1376 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1377 * it must be redeclared in all the fragment shaders in that program
1378 * that have a static use gl_FragCoord."
1379 *
1380 * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
1381 * gl_FragCoord with no layout qualifiers but the other one doesn't
1382 * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
1383 * should be a link error. But, generating link error for this case will
1384 * be a wrong behaviour which spec didn't intend to do and it could also
1385 * break some applications.
1386 */
1387 if ((linked_shader->redeclares_gl_fragcoord
1388 && !shader->redeclares_gl_fragcoord
1389 && shader->uses_gl_fragcoord
1390 && (linked_shader->origin_upper_left
1391 || linked_shader->pixel_center_integer))
1392 || (shader->redeclares_gl_fragcoord
1393 && !linked_shader->redeclares_gl_fragcoord
1394 && linked_shader->uses_gl_fragcoord
1395 && (shader->origin_upper_left
1396 || shader->pixel_center_integer))) {
1397 linker_error(prog, "fragment shader defined with conflicting "
1398 "layout qualifiers for gl_FragCoord\n");
1399 }
1400
1401 /* From the GLSL 1.50 spec, page 39:
1402 *
1403 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1404 * single program must have the same set of qualifiers."
1405 */
1406 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1407 && (shader->origin_upper_left != linked_shader->origin_upper_left
1408 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1409 linker_error(prog, "fragment shader defined with conflicting "
1410 "layout qualifiers for gl_FragCoord\n");
1411 }
1412
1413 /* Update the linked shader state.  Note that uses_gl_fragcoord should
1414 * accumulate the results.  The other values should replace.  If there
1415 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1416 * are already known to be the same.
1417 */
1418 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1419 linked_shader->redeclares_gl_fragcoord =
1420 shader->redeclares_gl_fragcoord;
1421 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1422 || shader->uses_gl_fragcoord;
1423 linked_shader->origin_upper_left = shader->origin_upper_left;
1424 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1425 }
1426 }
1427 }
1428
1429 /**
1430 * Performs the cross-validation of geometry shader max_vertices and
1431 * primitive type layout qualifiers for the attached geometry shaders,
1432 * and propagates them to the linked GS and linked shader program.
1433 */
1434 static void
1435 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1436 struct gl_shader *linked_shader,
1437 struct gl_shader **shader_list,
1438 unsigned num_shaders)
1439 {
1440 linked_shader->Geom.VerticesOut = 0;
1441 linked_shader->Geom.Invocations = 0;
1442 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1443 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1444
1445 /* No in/out qualifiers defined for anything but GLSL 1.50+
1446 * geometry shaders so far.
1447 */
1448 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1449 return;
1450
1451 /* From the GLSL 1.50 spec, page 46:
1452 *
1453 * "All geometry shader output layout declarations in a program
1454 * must declare the same layout and same value for
1455 * max_vertices. There must be at least one geometry output
1456 * layout declaration somewhere in a program, but not all
1457 * geometry shaders (compilation units) are required to
1458 * declare it."
1459 */
1460
1461 for (unsigned i = 0; i < num_shaders; i++) {
1462 struct gl_shader *shader = shader_list[i];
1463
1464 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1465 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1466 linked_shader->Geom.InputType != shader->Geom.InputType) {
1467 linker_error(prog, "geometry shader defined with conflicting "
1468 "input types\n");
1469 return;
1470 }
1471 linked_shader->Geom.InputType = shader->Geom.InputType;
1472 }
1473
1474 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1475 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1476 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1477 linker_error(prog, "geometry shader defined with conflicting "
1478 "output types\n");
1479 return;
1480 }
1481 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1482 }
1483
1484 if (shader->Geom.VerticesOut != 0) {
1485 if (linked_shader->Geom.VerticesOut != 0 &&
1486 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1487 linker_error(prog, "geometry shader defined with conflicting "
1488 "output vertex count (%d and %d)\n",
1489 linked_shader->Geom.VerticesOut,
1490 shader->Geom.VerticesOut);
1491 return;
1492 }
1493 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1494 }
1495
1496 if (shader->Geom.Invocations != 0) {
1497 if (linked_shader->Geom.Invocations != 0 &&
1498 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1499 linker_error(prog, "geometry shader defined with conflicting "
1500 "invocation count (%d and %d)\n",
1501 linked_shader->Geom.Invocations,
1502 shader->Geom.Invocations);
1503 return;
1504 }
1505 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1506 }
1507 }
1508
1509 /* Just do the intrastage -> interstage propagation right now,
1510 * since we already know we're in the right type of shader program
1511 * for doing it.
1512 */
1513 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1514 linker_error(prog,
1515 "geometry shader didn't declare primitive input type\n");
1516 return;
1517 }
1518 prog->Geom.InputType = linked_shader->Geom.InputType;
1519
1520 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1521 linker_error(prog,
1522 "geometry shader didn't declare primitive output type\n");
1523 return;
1524 }
1525 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1526
1527 if (linked_shader->Geom.VerticesOut == 0) {
1528 linker_error(prog,
1529 "geometry shader didn't declare max_vertices\n");
1530 return;
1531 }
1532 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1533
1534 if (linked_shader->Geom.Invocations == 0)
1535 linked_shader->Geom.Invocations = 1;
1536
1537 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1538 }
1539
1540
1541 /**
1542 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1543 * qualifiers for the attached compute shaders, and propagate them to the
1544 * linked CS and linked shader program.
1545 */
1546 static void
1547 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1548 struct gl_shader *linked_shader,
1549 struct gl_shader **shader_list,
1550 unsigned num_shaders)
1551 {
1552 for (int i = 0; i < 3; i++)
1553 linked_shader->Comp.LocalSize[i] = 0;
1554
1555 /* This function is called for all shader stages, but it only has an effect
1556 * for compute shaders.
1557 */
1558 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1559 return;
1560
1561 /* From the ARB_compute_shader spec, in the section describing local size
1562 * declarations:
1563 *
1564 * If multiple compute shaders attached to a single program object
1565 * declare local work-group size, the declarations must be identical;
1566 * otherwise a link-time error results. Furthermore, if a program
1567 * object contains any compute shaders, at least one must contain an
1568 * input layout qualifier specifying the local work sizes of the
1569 * program, or a link-time error will occur.
1570 */
1571 for (unsigned sh = 0; sh < num_shaders; sh++) {
1572 struct gl_shader *shader = shader_list[sh];
1573
1574 if (shader->Comp.LocalSize[0] != 0) {
1575 if (linked_shader->Comp.LocalSize[0] != 0) {
1576 for (int i = 0; i < 3; i++) {
1577 if (linked_shader->Comp.LocalSize[i] !=
1578 shader->Comp.LocalSize[i]) {
1579 linker_error(prog, "compute shader defined with conflicting "
1580 "local sizes\n");
1581 return;
1582 }
1583 }
1584 }
1585 for (int i = 0; i < 3; i++)
1586 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1587 }
1588 }
1589
1590 /* Just do the intrastage -> interstage propagation right now,
1591 * since we already know we're in the right type of shader program
1592 * for doing it.
1593 */
1594 if (linked_shader->Comp.LocalSize[0] == 0) {
1595 linker_error(prog, "compute shader didn't declare local size\n");
1596 return;
1597 }
1598 for (int i = 0; i < 3; i++)
1599 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1600 }
1601
1602
1603 /**
1604 * Combine a group of shaders for a single stage to generate a linked shader
1605 *
1606 * \note
1607 * If this function is supplied a single shader, it is cloned, and the new
1608 * shader is returned.
1609 */
1610 static struct gl_shader *
1611 link_intrastage_shaders(void *mem_ctx,
1612 struct gl_context *ctx,
1613 struct gl_shader_program *prog,
1614 struct gl_shader **shader_list,
1615 unsigned num_shaders)
1616 {
1617 struct gl_uniform_block *uniform_blocks = NULL;
1618
1619 /* Check that global variables defined in multiple shaders are consistent.
1620 */
1621 cross_validate_globals(prog, shader_list, num_shaders, false);
1622 if (!prog->LinkStatus)
1623 return NULL;
1624
1625 /* Check that interface blocks defined in multiple shaders are consistent.
1626 */
1627 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1628 num_shaders);
1629 if (!prog->LinkStatus)
1630 return NULL;
1631
1632 /* Link up uniform blocks defined within this stage. */
1633 const unsigned num_uniform_blocks =
1634 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1635 &uniform_blocks);
1636 if (!prog->LinkStatus)
1637 return NULL;
1638
1639 /* Check that there is only a single definition of each function signature
1640 * across all shaders.
1641 */
1642 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1643 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1644 ir_function *const f = node->as_function();
1645
1646 if (f == NULL)
1647 continue;
1648
1649 for (unsigned j = i + 1; j < num_shaders; j++) {
1650 ir_function *const other =
1651 shader_list[j]->symbols->get_function(f->name);
1652
1653 /* If the other shader has no function (and therefore no function
1654 * signatures) with the same name, skip to the next shader.
1655 */
1656 if (other == NULL)
1657 continue;
1658
1659 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1660 if (!sig->is_defined || sig->is_builtin())
1661 continue;
1662
1663 ir_function_signature *other_sig =
1664 other->exact_matching_signature(NULL, &sig->parameters);
1665
1666 if ((other_sig != NULL) && other_sig->is_defined
1667 && !other_sig->is_builtin()) {
1668 linker_error(prog, "function `%s' is multiply defined\n",
1669 f->name);
1670 return NULL;
1671 }
1672 }
1673 }
1674 }
1675 }
1676
1677 /* Find the shader that defines main, and make a clone of it.
1678 *
1679 * Starting with the clone, search for undefined references. If one is
1680 * found, find the shader that defines it. Clone the reference and add
1681 * it to the shader. Repeat until there are no undefined references or
1682 * until a reference cannot be resolved.
1683 */
1684 gl_shader *main = NULL;
1685 for (unsigned i = 0; i < num_shaders; i++) {
1686 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1687 main = shader_list[i];
1688 break;
1689 }
1690 }
1691
1692 if (main == NULL) {
1693 linker_error(prog, "%s shader lacks `main'\n",
1694 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1695 return NULL;
1696 }
1697
1698 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1699 linked->ir = new(linked) exec_list;
1700 clone_ir_list(mem_ctx, linked->ir, main->ir);
1701
1702 linked->UniformBlocks = uniform_blocks;
1703 linked->NumUniformBlocks = num_uniform_blocks;
1704 ralloc_steal(linked, linked->UniformBlocks);
1705
1706 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1707 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1708 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1709
1710 populate_symbol_table(linked);
1711
1712 /* The pointer to the main function in the final linked shader (i.e., the
1713 * copy of the original shader that contained the main function).
1714 */
1715 ir_function_signature *const main_sig =
1716 link_get_main_function_signature(linked);
1717
1718 /* Move any instructions other than variable declarations or function
1719 * declarations into main.
1720 */
1721 exec_node *insertion_point =
1722 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1723 linked);
1724
1725 for (unsigned i = 0; i < num_shaders; i++) {
1726 if (shader_list[i] == main)
1727 continue;
1728
1729 insertion_point = move_non_declarations(shader_list[i]->ir,
1730 insertion_point, true, linked);
1731 }
1732
1733 /* Check if any shader needs built-in functions. */
1734 bool need_builtins = false;
1735 for (unsigned i = 0; i < num_shaders; i++) {
1736 if (shader_list[i]->uses_builtin_functions) {
1737 need_builtins = true;
1738 break;
1739 }
1740 }
1741
1742 bool ok;
1743 if (need_builtins) {
1744 /* Make a temporary array one larger than shader_list, which will hold
1745 * the built-in function shader as well.
1746 */
1747 gl_shader **linking_shaders = (gl_shader **)
1748 calloc(num_shaders + 1, sizeof(gl_shader *));
1749
1750 ok = linking_shaders != NULL;
1751
1752 if (ok) {
1753 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1754 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1755
1756 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1757
1758 free(linking_shaders);
1759 } else {
1760 _mesa_error_no_memory(__func__);
1761 }
1762 } else {
1763 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1764 }
1765
1766
1767 if (!ok) {
1768 ctx->Driver.DeleteShader(ctx, linked);
1769 return NULL;
1770 }
1771
1772 /* At this point linked should contain all of the linked IR, so
1773 * validate it to make sure nothing went wrong.
1774 */
1775 validate_ir_tree(linked->ir);
1776
1777 /* Set the size of geometry shader input arrays */
1778 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1779 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1780 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1781 foreach_in_list(ir_instruction, ir, linked->ir) {
1782 ir->accept(&input_resize_visitor);
1783 }
1784 }
1785
1786 if (ctx->Const.VertexID_is_zero_based)
1787 lower_vertex_id(linked);
1788
1789 /* Make a pass over all variable declarations to ensure that arrays with
1790 * unspecified sizes have a size specified. The size is inferred from the
1791 * max_array_access field.
1792 */
1793 array_sizing_visitor v;
1794 v.run(linked->ir);
1795 v.fixup_unnamed_interface_types();
1796
1797 return linked;
1798 }
1799
1800 /**
1801 * Update the sizes of linked shader uniform arrays to the maximum
1802 * array index used.
1803 *
1804 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1805 *
1806 * If one or more elements of an array are active,
1807 * GetActiveUniform will return the name of the array in name,
1808 * subject to the restrictions listed above. The type of the array
1809 * is returned in type. The size parameter contains the highest
1810 * array element index used, plus one. The compiler or linker
1811 * determines the highest index used. There will be only one
1812 * active uniform reported by the GL per uniform array.
1813
1814 */
1815 static void
1816 update_array_sizes(struct gl_shader_program *prog)
1817 {
1818 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1819 if (prog->_LinkedShaders[i] == NULL)
1820 continue;
1821
1822 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1823 ir_variable *const var = node->as_variable();
1824
1825 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1826 !var->type->is_array())
1827 continue;
1828
1829 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1830 * will not be eliminated. Since we always do std140, just
1831 * don't resize arrays in UBOs.
1832 *
1833 * Atomic counters are supposed to get deterministic
1834 * locations assigned based on the declaration ordering and
1835 * sizes, array compaction would mess that up.
1836 */
1837 if (var->is_in_uniform_block() || var->type->contains_atomic())
1838 continue;
1839
1840 unsigned int size = var->data.max_array_access;
1841 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1842 if (prog->_LinkedShaders[j] == NULL)
1843 continue;
1844
1845 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1846 ir_variable *other_var = node2->as_variable();
1847 if (!other_var)
1848 continue;
1849
1850 if (strcmp(var->name, other_var->name) == 0 &&
1851 other_var->data.max_array_access > size) {
1852 size = other_var->data.max_array_access;
1853 }
1854 }
1855 }
1856
1857 if (size + 1 != var->type->length) {
1858 /* If this is a built-in uniform (i.e., it's backed by some
1859 * fixed-function state), adjust the number of state slots to
1860 * match the new array size. The number of slots per array entry
1861 * is not known. It seems safe to assume that the total number of
1862 * slots is an integer multiple of the number of array elements.
1863 * Determine the number of slots per array element by dividing by
1864 * the old (total) size.
1865 */
1866 const unsigned num_slots = var->get_num_state_slots();
1867 if (num_slots > 0) {
1868 var->set_num_state_slots((size + 1)
1869 * (num_slots / var->type->length));
1870 }
1871
1872 var->type = glsl_type::get_array_instance(var->type->fields.array,
1873 size + 1);
1874 /* FINISHME: We should update the types of array
1875 * dereferences of this variable now.
1876 */
1877 }
1878 }
1879 }
1880 }
1881
1882 /**
1883 * Find a contiguous set of available bits in a bitmask.
1884 *
1885 * \param used_mask Bits representing used (1) and unused (0) locations
1886 * \param needed_count Number of contiguous bits needed.
1887 *
1888 * \return
1889 * Base location of the available bits on success or -1 on failure.
1890 */
1891 int
1892 find_available_slots(unsigned used_mask, unsigned needed_count)
1893 {
1894 unsigned needed_mask = (1 << needed_count) - 1;
1895 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1896
1897 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1898 * cannot optimize possibly infinite loops" for the loop below.
1899 */
1900 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1901 return -1;
1902
1903 for (int i = 0; i <= max_bit_to_test; i++) {
1904 if ((needed_mask & ~used_mask) == needed_mask)
1905 return i;
1906
1907 needed_mask <<= 1;
1908 }
1909
1910 return -1;
1911 }
1912
1913
1914 /**
1915 * Assign locations for either VS inputs or FS outputs
1916 *
1917 * \param prog Shader program whose variables need locations assigned
1918 * \param target_index Selector for the program target to receive location
1919 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1920 * \c MESA_SHADER_FRAGMENT.
1921 * \param max_index Maximum number of generic locations. This corresponds
1922 * to either the maximum number of draw buffers or the
1923 * maximum number of generic attributes.
1924 *
1925 * \return
1926 * If locations are successfully assigned, true is returned. Otherwise an
1927 * error is emitted to the shader link log and false is returned.
1928 */
1929 bool
1930 assign_attribute_or_color_locations(gl_shader_program *prog,
1931 unsigned target_index,
1932 unsigned max_index)
1933 {
1934 /* Mark invalid locations as being used.
1935 */
1936 unsigned used_locations = (max_index >= 32)
1937 ? ~0 : ~((1 << max_index) - 1);
1938
1939 assert((target_index == MESA_SHADER_VERTEX)
1940 || (target_index == MESA_SHADER_FRAGMENT));
1941
1942 gl_shader *const sh = prog->_LinkedShaders[target_index];
1943 if (sh == NULL)
1944 return true;
1945
1946 /* Operate in a total of four passes.
1947 *
1948 * 1. Invalidate the location assignments for all vertex shader inputs.
1949 *
1950 * 2. Assign locations for inputs that have user-defined (via
1951 * glBindVertexAttribLocation) locations and outputs that have
1952 * user-defined locations (via glBindFragDataLocation).
1953 *
1954 * 3. Sort the attributes without assigned locations by number of slots
1955 * required in decreasing order. Fragmentation caused by attribute
1956 * locations assigned by the application may prevent large attributes
1957 * from having enough contiguous space.
1958 *
1959 * 4. Assign locations to any inputs without assigned locations.
1960 */
1961
1962 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1963 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1964
1965 const enum ir_variable_mode direction =
1966 (target_index == MESA_SHADER_VERTEX)
1967 ? ir_var_shader_in : ir_var_shader_out;
1968
1969
1970 /* Temporary storage for the set of attributes that need locations assigned.
1971 */
1972 struct temp_attr {
1973 unsigned slots;
1974 ir_variable *var;
1975
1976 /* Used below in the call to qsort. */
1977 static int compare(const void *a, const void *b)
1978 {
1979 const temp_attr *const l = (const temp_attr *) a;
1980 const temp_attr *const r = (const temp_attr *) b;
1981
1982 /* Reversed because we want a descending order sort below. */
1983 return r->slots - l->slots;
1984 }
1985 } to_assign[16];
1986
1987 unsigned num_attr = 0;
1988
1989 foreach_in_list(ir_instruction, node, sh->ir) {
1990 ir_variable *const var = node->as_variable();
1991
1992 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1993 continue;
1994
1995 if (var->data.explicit_location) {
1996 if ((var->data.location >= (int)(max_index + generic_base))
1997 || (var->data.location < 0)) {
1998 linker_error(prog,
1999 "invalid explicit location %d specified for `%s'\n",
2000 (var->data.location < 0)
2001 ? var->data.location
2002 : var->data.location - generic_base,
2003 var->name);
2004 return false;
2005 }
2006 } else if (target_index == MESA_SHADER_VERTEX) {
2007 unsigned binding;
2008
2009 if (prog->AttributeBindings->get(binding, var->name)) {
2010 assert(binding >= VERT_ATTRIB_GENERIC0);
2011 var->data.location = binding;
2012 var->data.is_unmatched_generic_inout = 0;
2013 }
2014 } else if (target_index == MESA_SHADER_FRAGMENT) {
2015 unsigned binding;
2016 unsigned index;
2017
2018 if (prog->FragDataBindings->get(binding, var->name)) {
2019 assert(binding >= FRAG_RESULT_DATA0);
2020 var->data.location = binding;
2021 var->data.is_unmatched_generic_inout = 0;
2022
2023 if (prog->FragDataIndexBindings->get(index, var->name)) {
2024 var->data.index = index;
2025 }
2026 }
2027 }
2028
2029 /* If the variable is not a built-in and has a location statically
2030 * assigned in the shader (presumably via a layout qualifier), make sure
2031 * that it doesn't collide with other assigned locations. Otherwise,
2032 * add it to the list of variables that need linker-assigned locations.
2033 */
2034 const unsigned slots = var->type->count_attribute_slots();
2035 if (var->data.location != -1) {
2036 if (var->data.location >= generic_base && var->data.index < 1) {
2037 /* From page 61 of the OpenGL 4.0 spec:
2038 *
2039 * "LinkProgram will fail if the attribute bindings assigned
2040 * by BindAttribLocation do not leave not enough space to
2041 * assign a location for an active matrix attribute or an
2042 * active attribute array, both of which require multiple
2043 * contiguous generic attributes."
2044 *
2045 * I think above text prohibits the aliasing of explicit and
2046 * automatic assignments. But, aliasing is allowed in manual
2047 * assignments of attribute locations. See below comments for
2048 * the details.
2049 *
2050 * From OpenGL 4.0 spec, page 61:
2051 *
2052 * "It is possible for an application to bind more than one
2053 * attribute name to the same location. This is referred to as
2054 * aliasing. This will only work if only one of the aliased
2055 * attributes is active in the executable program, or if no
2056 * path through the shader consumes more than one attribute of
2057 * a set of attributes aliased to the same location. A link
2058 * error can occur if the linker determines that every path
2059 * through the shader consumes multiple aliased attributes,
2060 * but implementations are not required to generate an error
2061 * in this case."
2062 *
2063 * From GLSL 4.30 spec, page 54:
2064 *
2065 * "A program will fail to link if any two non-vertex shader
2066 * input variables are assigned to the same location. For
2067 * vertex shaders, multiple input variables may be assigned
2068 * to the same location using either layout qualifiers or via
2069 * the OpenGL API. However, such aliasing is intended only to
2070 * support vertex shaders where each execution path accesses
2071 * at most one input per each location. Implementations are
2072 * permitted, but not required, to generate link-time errors
2073 * if they detect that every path through the vertex shader
2074 * executable accesses multiple inputs assigned to any single
2075 * location. For all shader types, a program will fail to link
2076 * if explicit location assignments leave the linker unable
2077 * to find space for other variables without explicit
2078 * assignments."
2079 *
2080 * From OpenGL ES 3.0 spec, page 56:
2081 *
2082 * "Binding more than one attribute name to the same location
2083 * is referred to as aliasing, and is not permitted in OpenGL
2084 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2085 * fail when this condition exists. However, aliasing is
2086 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2087 * This will only work if only one of the aliased attributes
2088 * is active in the executable program, or if no path through
2089 * the shader consumes more than one attribute of a set of
2090 * attributes aliased to the same location. A link error can
2091 * occur if the linker determines that every path through the
2092 * shader consumes multiple aliased attributes, but implemen-
2093 * tations are not required to generate an error in this case."
2094 *
2095 * After looking at above references from OpenGL, OpenGL ES and
2096 * GLSL specifications, we allow aliasing of vertex input variables
2097 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2098 *
2099 * NOTE: This is not required by the spec but its worth mentioning
2100 * here that we're not doing anything to make sure that no path
2101 * through the vertex shader executable accesses multiple inputs
2102 * assigned to any single location.
2103 */
2104
2105 /* Mask representing the contiguous slots that will be used by
2106 * this attribute.
2107 */
2108 const unsigned attr = var->data.location - generic_base;
2109 const unsigned use_mask = (1 << slots) - 1;
2110 const char *const string = (target_index == MESA_SHADER_VERTEX)
2111 ? "vertex shader input" : "fragment shader output";
2112
2113 /* Generate a link error if the requested locations for this
2114 * attribute exceed the maximum allowed attribute location.
2115 */
2116 if (attr + slots > max_index) {
2117 linker_error(prog,
2118 "insufficient contiguous locations "
2119 "available for %s `%s' %d %d %d\n", string,
2120 var->name, used_locations, use_mask, attr);
2121 return false;
2122 }
2123
2124 /* Generate a link error if the set of bits requested for this
2125 * attribute overlaps any previously allocated bits.
2126 */
2127 if ((~(use_mask << attr) & used_locations) != used_locations) {
2128 if (target_index == MESA_SHADER_FRAGMENT ||
2129 (prog->IsES && prog->Version >= 300)) {
2130 linker_error(prog,
2131 "overlapping location is assigned "
2132 "to %s `%s' %d %d %d\n", string,
2133 var->name, used_locations, use_mask, attr);
2134 return false;
2135 } else {
2136 linker_warning(prog,
2137 "overlapping location is assigned "
2138 "to %s `%s' %d %d %d\n", string,
2139 var->name, used_locations, use_mask, attr);
2140 }
2141 }
2142
2143 used_locations |= (use_mask << attr);
2144 }
2145
2146 continue;
2147 }
2148
2149 to_assign[num_attr].slots = slots;
2150 to_assign[num_attr].var = var;
2151 num_attr++;
2152 }
2153
2154 /* If all of the attributes were assigned locations by the application (or
2155 * are built-in attributes with fixed locations), return early. This should
2156 * be the common case.
2157 */
2158 if (num_attr == 0)
2159 return true;
2160
2161 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2162
2163 if (target_index == MESA_SHADER_VERTEX) {
2164 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2165 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2166 * reserved to prevent it from being automatically allocated below.
2167 */
2168 find_deref_visitor find("gl_Vertex");
2169 find.run(sh->ir);
2170 if (find.variable_found())
2171 used_locations |= (1 << 0);
2172 }
2173
2174 for (unsigned i = 0; i < num_attr; i++) {
2175 /* Mask representing the contiguous slots that will be used by this
2176 * attribute.
2177 */
2178 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2179
2180 int location = find_available_slots(used_locations, to_assign[i].slots);
2181
2182 if (location < 0) {
2183 const char *const string = (target_index == MESA_SHADER_VERTEX)
2184 ? "vertex shader input" : "fragment shader output";
2185
2186 linker_error(prog,
2187 "insufficient contiguous locations "
2188 "available for %s `%s'\n",
2189 string, to_assign[i].var->name);
2190 return false;
2191 }
2192
2193 to_assign[i].var->data.location = generic_base + location;
2194 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2195 used_locations |= (use_mask << location);
2196 }
2197
2198 return true;
2199 }
2200
2201
2202 /**
2203 * Demote shader inputs and outputs that are not used in other stages
2204 */
2205 void
2206 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2207 {
2208 foreach_in_list(ir_instruction, node, sh->ir) {
2209 ir_variable *const var = node->as_variable();
2210
2211 if ((var == NULL) || (var->data.mode != int(mode)))
2212 continue;
2213
2214 /* A shader 'in' or 'out' variable is only really an input or output if
2215 * its value is used by other shader stages. This will cause the variable
2216 * to have a location assigned.
2217 */
2218 if (var->data.is_unmatched_generic_inout) {
2219 assert(var->data.mode != ir_var_temporary);
2220 var->data.mode = ir_var_auto;
2221 }
2222 }
2223 }
2224
2225
2226 /**
2227 * Store the gl_FragDepth layout in the gl_shader_program struct.
2228 */
2229 static void
2230 store_fragdepth_layout(struct gl_shader_program *prog)
2231 {
2232 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2233 return;
2234 }
2235
2236 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2237
2238 /* We don't look up the gl_FragDepth symbol directly because if
2239 * gl_FragDepth is not used in the shader, it's removed from the IR.
2240 * However, the symbol won't be removed from the symbol table.
2241 *
2242 * We're only interested in the cases where the variable is NOT removed
2243 * from the IR.
2244 */
2245 foreach_in_list(ir_instruction, node, ir) {
2246 ir_variable *const var = node->as_variable();
2247
2248 if (var == NULL || var->data.mode != ir_var_shader_out) {
2249 continue;
2250 }
2251
2252 if (strcmp(var->name, "gl_FragDepth") == 0) {
2253 switch (var->data.depth_layout) {
2254 case ir_depth_layout_none:
2255 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2256 return;
2257 case ir_depth_layout_any:
2258 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2259 return;
2260 case ir_depth_layout_greater:
2261 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2262 return;
2263 case ir_depth_layout_less:
2264 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2265 return;
2266 case ir_depth_layout_unchanged:
2267 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2268 return;
2269 default:
2270 assert(0);
2271 return;
2272 }
2273 }
2274 }
2275 }
2276
2277 /**
2278 * Validate the resources used by a program versus the implementation limits
2279 */
2280 static void
2281 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2282 {
2283 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2284 struct gl_shader *sh = prog->_LinkedShaders[i];
2285
2286 if (sh == NULL)
2287 continue;
2288
2289 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2290 linker_error(prog, "Too many %s shader texture samplers\n",
2291 _mesa_shader_stage_to_string(i));
2292 }
2293
2294 if (sh->num_uniform_components >
2295 ctx->Const.Program[i].MaxUniformComponents) {
2296 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2297 linker_warning(prog, "Too many %s shader default uniform block "
2298 "components, but the driver will try to optimize "
2299 "them out; this is non-portable out-of-spec "
2300 "behavior\n",
2301 _mesa_shader_stage_to_string(i));
2302 } else {
2303 linker_error(prog, "Too many %s shader default uniform block "
2304 "components\n",
2305 _mesa_shader_stage_to_string(i));
2306 }
2307 }
2308
2309 if (sh->num_combined_uniform_components >
2310 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2311 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2312 linker_warning(prog, "Too many %s shader uniform components, "
2313 "but the driver will try to optimize them out; "
2314 "this is non-portable out-of-spec behavior\n",
2315 _mesa_shader_stage_to_string(i));
2316 } else {
2317 linker_error(prog, "Too many %s shader uniform components\n",
2318 _mesa_shader_stage_to_string(i));
2319 }
2320 }
2321 }
2322
2323 unsigned blocks[MESA_SHADER_STAGES] = {0};
2324 unsigned total_uniform_blocks = 0;
2325
2326 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2327 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2328 if (prog->UniformBlockStageIndex[j][i] != -1) {
2329 blocks[j]++;
2330 total_uniform_blocks++;
2331 }
2332 }
2333
2334 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2335 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2336 prog->NumUniformBlocks,
2337 ctx->Const.MaxCombinedUniformBlocks);
2338 } else {
2339 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2340 const unsigned max_uniform_blocks =
2341 ctx->Const.Program[i].MaxUniformBlocks;
2342 if (blocks[i] > max_uniform_blocks) {
2343 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2344 _mesa_shader_stage_to_string(i),
2345 blocks[i],
2346 max_uniform_blocks);
2347 break;
2348 }
2349 }
2350 }
2351 }
2352 }
2353
2354 /**
2355 * Validate shader image resources.
2356 */
2357 static void
2358 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2359 {
2360 unsigned total_image_units = 0;
2361 unsigned fragment_outputs = 0;
2362
2363 if (!ctx->Extensions.ARB_shader_image_load_store)
2364 return;
2365
2366 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2367 struct gl_shader *sh = prog->_LinkedShaders[i];
2368
2369 if (sh) {
2370 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2371 linker_error(prog, "Too many %s shader image uniforms\n",
2372 _mesa_shader_stage_to_string(i));
2373
2374 total_image_units += sh->NumImages;
2375
2376 if (i == MESA_SHADER_FRAGMENT) {
2377 foreach_in_list(ir_instruction, node, sh->ir) {
2378 ir_variable *var = node->as_variable();
2379 if (var && var->data.mode == ir_var_shader_out)
2380 fragment_outputs += var->type->count_attribute_slots();
2381 }
2382 }
2383 }
2384 }
2385
2386 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2387 linker_error(prog, "Too many combined image uniforms\n");
2388
2389 if (total_image_units + fragment_outputs >
2390 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2391 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2392 }
2393
2394
2395 /**
2396 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2397 * for a variable, checks for overlaps between other uniforms using explicit
2398 * locations.
2399 */
2400 static bool
2401 reserve_explicit_locations(struct gl_shader_program *prog,
2402 string_to_uint_map *map, ir_variable *var)
2403 {
2404 unsigned slots = var->type->uniform_locations();
2405 unsigned max_loc = var->data.location + slots - 1;
2406
2407 /* Resize remap table if locations do not fit in the current one. */
2408 if (max_loc + 1 > prog->NumUniformRemapTable) {
2409 prog->UniformRemapTable =
2410 reralloc(prog, prog->UniformRemapTable,
2411 gl_uniform_storage *,
2412 max_loc + 1);
2413
2414 if (!prog->UniformRemapTable) {
2415 linker_error(prog, "Out of memory during linking.\n");
2416 return false;
2417 }
2418
2419 /* Initialize allocated space. */
2420 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2421 prog->UniformRemapTable[i] = NULL;
2422
2423 prog->NumUniformRemapTable = max_loc + 1;
2424 }
2425
2426 for (unsigned i = 0; i < slots; i++) {
2427 unsigned loc = var->data.location + i;
2428
2429 /* Check if location is already used. */
2430 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2431
2432 /* Possibly same uniform from a different stage, this is ok. */
2433 unsigned hash_loc;
2434 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2435 continue;
2436
2437 /* ARB_explicit_uniform_location specification states:
2438 *
2439 * "No two default-block uniform variables in the program can have
2440 * the same location, even if they are unused, otherwise a compiler
2441 * or linker error will be generated."
2442 */
2443 linker_error(prog,
2444 "location qualifier for uniform %s overlaps "
2445 "previously used location\n",
2446 var->name);
2447 return false;
2448 }
2449
2450 /* Initialize location as inactive before optimization
2451 * rounds and location assignment.
2452 */
2453 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2454 }
2455
2456 /* Note, base location used for arrays. */
2457 map->put(var->data.location, var->name);
2458
2459 return true;
2460 }
2461
2462 /**
2463 * Check and reserve all explicit uniform locations, called before
2464 * any optimizations happen to handle also inactive uniforms and
2465 * inactive array elements that may get trimmed away.
2466 */
2467 static void
2468 check_explicit_uniform_locations(struct gl_context *ctx,
2469 struct gl_shader_program *prog)
2470 {
2471 if (!ctx->Extensions.ARB_explicit_uniform_location)
2472 return;
2473
2474 /* This map is used to detect if overlapping explicit locations
2475 * occur with the same uniform (from different stage) or a different one.
2476 */
2477 string_to_uint_map *uniform_map = new string_to_uint_map;
2478
2479 if (!uniform_map) {
2480 linker_error(prog, "Out of memory during linking.\n");
2481 return;
2482 }
2483
2484 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2485 struct gl_shader *sh = prog->_LinkedShaders[i];
2486
2487 if (!sh)
2488 continue;
2489
2490 foreach_in_list(ir_instruction, node, sh->ir) {
2491 ir_variable *var = node->as_variable();
2492 if ((var && var->data.mode == ir_var_uniform) &&
2493 var->data.explicit_location) {
2494 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2495 delete uniform_map;
2496 return;
2497 }
2498 }
2499 }
2500 }
2501
2502 delete uniform_map;
2503 }
2504
2505 void
2506 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2507 {
2508 tfeedback_decl *tfeedback_decls = NULL;
2509 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2510
2511 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2512
2513 prog->LinkStatus = true; /* All error paths will set this to false */
2514 prog->Validated = false;
2515 prog->_Used = false;
2516
2517 prog->ARB_fragment_coord_conventions_enable = false;
2518
2519 /* Separate the shaders into groups based on their type.
2520 */
2521 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2522 unsigned num_shaders[MESA_SHADER_STAGES];
2523
2524 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2525 shader_list[i] = (struct gl_shader **)
2526 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2527 num_shaders[i] = 0;
2528 }
2529
2530 unsigned min_version = UINT_MAX;
2531 unsigned max_version = 0;
2532 const bool is_es_prog =
2533 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2534 for (unsigned i = 0; i < prog->NumShaders; i++) {
2535 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2536 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2537
2538 if (prog->Shaders[i]->IsES != is_es_prog) {
2539 linker_error(prog, "all shaders must use same shading "
2540 "language version\n");
2541 goto done;
2542 }
2543
2544 prog->ARB_fragment_coord_conventions_enable |=
2545 prog->Shaders[i]->ARB_fragment_coord_conventions_enable;
2546
2547 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2548 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2549 num_shaders[shader_type]++;
2550 }
2551
2552 /* In desktop GLSL, different shader versions may be linked together. In
2553 * GLSL ES, all shader versions must be the same.
2554 */
2555 if (is_es_prog && min_version != max_version) {
2556 linker_error(prog, "all shaders must use same shading "
2557 "language version\n");
2558 goto done;
2559 }
2560
2561 prog->Version = max_version;
2562 prog->IsES = is_es_prog;
2563
2564 /* Geometry shaders have to be linked with vertex shaders.
2565 */
2566 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2567 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2568 !prog->SeparateShader) {
2569 linker_error(prog, "Geometry shader must be linked with "
2570 "vertex shader\n");
2571 goto done;
2572 }
2573
2574 /* Compute shaders have additional restrictions. */
2575 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2576 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2577 linker_error(prog, "Compute shaders may not be linked with any other "
2578 "type of shader\n");
2579 }
2580
2581 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2582 if (prog->_LinkedShaders[i] != NULL)
2583 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2584
2585 prog->_LinkedShaders[i] = NULL;
2586 }
2587
2588 /* Link all shaders for a particular stage and validate the result.
2589 */
2590 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2591 if (num_shaders[stage] > 0) {
2592 gl_shader *const sh =
2593 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2594 num_shaders[stage]);
2595
2596 if (!prog->LinkStatus)
2597 goto done;
2598
2599 switch (stage) {
2600 case MESA_SHADER_VERTEX:
2601 validate_vertex_shader_executable(prog, sh);
2602 break;
2603 case MESA_SHADER_GEOMETRY:
2604 validate_geometry_shader_executable(prog, sh);
2605 break;
2606 case MESA_SHADER_FRAGMENT:
2607 validate_fragment_shader_executable(prog, sh);
2608 break;
2609 }
2610 if (!prog->LinkStatus)
2611 goto done;
2612
2613 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2614 }
2615 }
2616
2617 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2618 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2619 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2620 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2621 else
2622 prog->LastClipDistanceArraySize = 0; /* Not used */
2623
2624 /* Here begins the inter-stage linking phase. Some initial validation is
2625 * performed, then locations are assigned for uniforms, attributes, and
2626 * varyings.
2627 */
2628 cross_validate_uniforms(prog);
2629 if (!prog->LinkStatus)
2630 goto done;
2631
2632 unsigned prev;
2633
2634 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2635 if (prog->_LinkedShaders[prev] != NULL)
2636 break;
2637 }
2638
2639 check_explicit_uniform_locations(ctx, prog);
2640 if (!prog->LinkStatus)
2641 goto done;
2642
2643 /* Validate the inputs of each stage with the output of the preceding
2644 * stage.
2645 */
2646 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2647 if (prog->_LinkedShaders[i] == NULL)
2648 continue;
2649
2650 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2651 prog->_LinkedShaders[i]);
2652 if (!prog->LinkStatus)
2653 goto done;
2654
2655 cross_validate_outputs_to_inputs(prog,
2656 prog->_LinkedShaders[prev],
2657 prog->_LinkedShaders[i]);
2658 if (!prog->LinkStatus)
2659 goto done;
2660
2661 prev = i;
2662 }
2663
2664 /* Cross-validate uniform blocks between shader stages */
2665 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2666 MESA_SHADER_STAGES);
2667 if (!prog->LinkStatus)
2668 goto done;
2669
2670 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2671 if (prog->_LinkedShaders[i] != NULL)
2672 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2673 }
2674
2675 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2676 * it before optimization because we want most of the checks to get
2677 * dropped thanks to constant propagation.
2678 *
2679 * This rule also applies to GLSL ES 3.00.
2680 */
2681 if (max_version >= (is_es_prog ? 300 : 130)) {
2682 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2683 if (sh) {
2684 lower_discard_flow(sh->ir);
2685 }
2686 }
2687
2688 if (!interstage_cross_validate_uniform_blocks(prog))
2689 goto done;
2690
2691 /* Do common optimization before assigning storage for attributes,
2692 * uniforms, and varyings. Later optimization could possibly make
2693 * some of that unused.
2694 */
2695 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2696 if (prog->_LinkedShaders[i] == NULL)
2697 continue;
2698
2699 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2700 if (!prog->LinkStatus)
2701 goto done;
2702
2703 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
2704 lower_clip_distance(prog->_LinkedShaders[i]);
2705 }
2706
2707 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2708 &ctx->Const.ShaderCompilerOptions[i],
2709 ctx->Const.NativeIntegers))
2710 ;
2711
2712 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
2713 }
2714
2715 /* Check and validate stream emissions in geometry shaders */
2716 validate_geometry_shader_emissions(ctx, prog);
2717
2718 /* Mark all generic shader inputs and outputs as unpaired. */
2719 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2720 if (prog->_LinkedShaders[i] != NULL) {
2721 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2722 }
2723 }
2724
2725 /* FINISHME: The value of the max_attribute_index parameter is
2726 * FINISHME: implementation dependent based on the value of
2727 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2728 * FINISHME: at least 16, so hardcode 16 for now.
2729 */
2730 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2731 goto done;
2732 }
2733
2734 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2735 goto done;
2736 }
2737
2738 unsigned first;
2739 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2740 if (prog->_LinkedShaders[first] != NULL)
2741 break;
2742 }
2743
2744 if (num_tfeedback_decls != 0) {
2745 /* From GL_EXT_transform_feedback:
2746 * A program will fail to link if:
2747 *
2748 * * the <count> specified by TransformFeedbackVaryingsEXT is
2749 * non-zero, but the program object has no vertex or geometry
2750 * shader;
2751 */
2752 if (first == MESA_SHADER_FRAGMENT) {
2753 linker_error(prog, "Transform feedback varyings specified, but "
2754 "no vertex or geometry shader is present.\n");
2755 goto done;
2756 }
2757
2758 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2759 prog->TransformFeedback.NumVarying);
2760 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2761 prog->TransformFeedback.VaryingNames,
2762 tfeedback_decls))
2763 goto done;
2764 }
2765
2766 /* Linking the stages in the opposite order (from fragment to vertex)
2767 * ensures that inter-shader outputs written to in an earlier stage are
2768 * eliminated if they are (transitively) not used in a later stage.
2769 */
2770 int last, next;
2771 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2772 if (prog->_LinkedShaders[last] != NULL)
2773 break;
2774 }
2775
2776 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2777 gl_shader *const sh = prog->_LinkedShaders[last];
2778
2779 if (first == MESA_SHADER_GEOMETRY) {
2780 /* There was no vertex shader, but we still have to assign varying
2781 * locations for use by geometry shader inputs in SSO.
2782 *
2783 * If the shader is not separable (i.e., prog->SeparateShader is
2784 * false), linking will have already failed when first is
2785 * MESA_SHADER_GEOMETRY.
2786 */
2787 if (!assign_varying_locations(ctx, mem_ctx, prog,
2788 NULL, sh,
2789 num_tfeedback_decls, tfeedback_decls,
2790 prog->Geom.VerticesIn))
2791 goto done;
2792 }
2793
2794 if (num_tfeedback_decls != 0 || prog->SeparateShader) {
2795 /* There was no fragment shader, but we still have to assign varying
2796 * locations for use by transform feedback.
2797 */
2798 if (!assign_varying_locations(ctx, mem_ctx, prog,
2799 sh, NULL,
2800 num_tfeedback_decls, tfeedback_decls,
2801 0))
2802 goto done;
2803 }
2804
2805 do_dead_builtin_varyings(ctx, sh, NULL,
2806 num_tfeedback_decls, tfeedback_decls);
2807
2808 if (!prog->SeparateShader)
2809 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2810
2811 /* Eliminate code that is now dead due to unused outputs being demoted.
2812 */
2813 while (do_dead_code(sh->ir, false))
2814 ;
2815 }
2816 else if (first == MESA_SHADER_FRAGMENT) {
2817 /* If the program only contains a fragment shader...
2818 */
2819 gl_shader *const sh = prog->_LinkedShaders[first];
2820
2821 do_dead_builtin_varyings(ctx, NULL, sh,
2822 num_tfeedback_decls, tfeedback_decls);
2823
2824 if (prog->SeparateShader) {
2825 if (!assign_varying_locations(ctx, mem_ctx, prog,
2826 NULL /* producer */,
2827 sh /* consumer */,
2828 0 /* num_tfeedback_decls */,
2829 NULL /* tfeedback_decls */,
2830 0 /* gs_input_vertices */))
2831 goto done;
2832 } else
2833 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2834
2835 while (do_dead_code(sh->ir, false))
2836 ;
2837 }
2838
2839 next = last;
2840 for (int i = next - 1; i >= 0; i--) {
2841 if (prog->_LinkedShaders[i] == NULL)
2842 continue;
2843
2844 gl_shader *const sh_i = prog->_LinkedShaders[i];
2845 gl_shader *const sh_next = prog->_LinkedShaders[next];
2846 unsigned gs_input_vertices =
2847 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2848
2849 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2850 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2851 tfeedback_decls, gs_input_vertices))
2852 goto done;
2853
2854 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2855 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2856 tfeedback_decls);
2857
2858 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2859 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2860
2861 /* Eliminate code that is now dead due to unused outputs being demoted.
2862 */
2863 while (do_dead_code(sh_i->ir, false))
2864 ;
2865 while (do_dead_code(sh_next->ir, false))
2866 ;
2867
2868 /* This must be done after all dead varyings are eliminated. */
2869 if (!check_against_output_limit(ctx, prog, sh_i))
2870 goto done;
2871 if (!check_against_input_limit(ctx, prog, sh_next))
2872 goto done;
2873
2874 next = i;
2875 }
2876
2877 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2878 goto done;
2879
2880 update_array_sizes(prog);
2881 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
2882 link_assign_atomic_counter_resources(ctx, prog);
2883 store_fragdepth_layout(prog);
2884
2885 check_resources(ctx, prog);
2886 check_image_resources(ctx, prog);
2887 link_check_atomic_counter_resources(ctx, prog);
2888
2889 if (!prog->LinkStatus)
2890 goto done;
2891
2892 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2893 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2894 * anything about shader linking when one of the shaders (vertex or
2895 * fragment shader) is absent. So, the extension shouldn't change the
2896 * behavior specified in GLSL specification.
2897 */
2898 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
2899 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2900 linker_error(prog, "program lacks a vertex shader\n");
2901 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2902 linker_error(prog, "program lacks a fragment shader\n");
2903 }
2904 }
2905
2906 /* FINISHME: Assign fragment shader output locations. */
2907
2908 done:
2909 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2910 free(shader_list[i]);
2911 if (prog->_LinkedShaders[i] == NULL)
2912 continue;
2913
2914 /* Do a final validation step to make sure that the IR wasn't
2915 * invalidated by any modifications performed after intrastage linking.
2916 */
2917 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2918
2919 /* Retain any live IR, but trash the rest. */
2920 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2921
2922 /* The symbol table in the linked shaders may contain references to
2923 * variables that were removed (e.g., unused uniforms). Since it may
2924 * contain junk, there is no possible valid use. Delete it and set the
2925 * pointer to NULL.
2926 */
2927 delete prog->_LinkedShaders[i]->symbols;
2928 prog->_LinkedShaders[i]->symbols = NULL;
2929 }
2930
2931 ralloc_free(mem_ctx);
2932 }