linker: Make linker_error set LinkStatus to false
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "ir_optimization.h"
74
75 extern "C" {
76 #include "main/shaderobj.h"
77 }
78
79 /**
80 * Visitor that determines whether or not a variable is ever written.
81 */
82 class find_assignment_visitor : public ir_hierarchical_visitor {
83 public:
84 find_assignment_visitor(const char *name)
85 : name(name), found(false)
86 {
87 /* empty */
88 }
89
90 virtual ir_visitor_status visit_enter(ir_assignment *ir)
91 {
92 ir_variable *const var = ir->lhs->variable_referenced();
93
94 if (strcmp(name, var->name) == 0) {
95 found = true;
96 return visit_stop;
97 }
98
99 return visit_continue_with_parent;
100 }
101
102 virtual ir_visitor_status visit_enter(ir_call *ir)
103 {
104 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
105 foreach_iter(exec_list_iterator, iter, *ir) {
106 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
107 ir_variable *sig_param = (ir_variable *)sig_iter.get();
108
109 if (sig_param->mode == ir_var_out ||
110 sig_param->mode == ir_var_inout) {
111 ir_variable *var = param_rval->variable_referenced();
112 if (var && strcmp(name, var->name) == 0) {
113 found = true;
114 return visit_stop;
115 }
116 }
117 sig_iter.next();
118 }
119
120 return visit_continue_with_parent;
121 }
122
123 bool variable_found()
124 {
125 return found;
126 }
127
128 private:
129 const char *name; /**< Find writes to a variable with this name. */
130 bool found; /**< Was a write to the variable found? */
131 };
132
133
134 /**
135 * Visitor that determines whether or not a variable is ever read.
136 */
137 class find_deref_visitor : public ir_hierarchical_visitor {
138 public:
139 find_deref_visitor(const char *name)
140 : name(name), found(false)
141 {
142 /* empty */
143 }
144
145 virtual ir_visitor_status visit(ir_dereference_variable *ir)
146 {
147 if (strcmp(this->name, ir->var->name) == 0) {
148 this->found = true;
149 return visit_stop;
150 }
151
152 return visit_continue;
153 }
154
155 bool variable_found() const
156 {
157 return this->found;
158 }
159
160 private:
161 const char *name; /**< Find writes to a variable with this name. */
162 bool found; /**< Was a write to the variable found? */
163 };
164
165
166 void
167 linker_error(gl_shader_program *prog, const char *fmt, ...)
168 {
169 va_list ap;
170
171 ralloc_strcat(&prog->InfoLog, "error: ");
172 va_start(ap, fmt);
173 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
174 va_end(ap);
175
176 prog->LinkStatus = false;
177 }
178
179
180 void
181 invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
182 int generic_base)
183 {
184 foreach_list(node, sh->ir) {
185 ir_variable *const var = ((ir_instruction *) node)->as_variable();
186
187 if ((var == NULL) || (var->mode != (unsigned) mode))
188 continue;
189
190 /* Only assign locations for generic attributes / varyings / etc.
191 */
192 if ((var->location >= generic_base) && !var->explicit_location)
193 var->location = -1;
194 }
195 }
196
197
198 /**
199 * Determine the number of attribute slots required for a particular type
200 *
201 * This code is here because it implements the language rules of a specific
202 * GLSL version. Since it's a property of the language and not a property of
203 * types in general, it doesn't really belong in glsl_type.
204 */
205 unsigned
206 count_attribute_slots(const glsl_type *t)
207 {
208 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
209 *
210 * "A scalar input counts the same amount against this limit as a vec4,
211 * so applications may want to consider packing groups of four
212 * unrelated float inputs together into a vector to better utilize the
213 * capabilities of the underlying hardware. A matrix input will use up
214 * multiple locations. The number of locations used will equal the
215 * number of columns in the matrix."
216 *
217 * The spec does not explicitly say how arrays are counted. However, it
218 * should be safe to assume the total number of slots consumed by an array
219 * is the number of entries in the array multiplied by the number of slots
220 * consumed by a single element of the array.
221 */
222
223 if (t->is_array())
224 return t->array_size() * count_attribute_slots(t->element_type());
225
226 if (t->is_matrix())
227 return t->matrix_columns;
228
229 return 1;
230 }
231
232
233 /**
234 * Verify that a vertex shader executable meets all semantic requirements
235 *
236 * \param shader Vertex shader executable to be verified
237 */
238 bool
239 validate_vertex_shader_executable(struct gl_shader_program *prog,
240 struct gl_shader *shader)
241 {
242 if (shader == NULL)
243 return true;
244
245 find_assignment_visitor find("gl_Position");
246 find.run(shader->ir);
247 if (!find.variable_found()) {
248 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
249 return false;
250 }
251
252 return true;
253 }
254
255
256 /**
257 * Verify that a fragment shader executable meets all semantic requirements
258 *
259 * \param shader Fragment shader executable to be verified
260 */
261 bool
262 validate_fragment_shader_executable(struct gl_shader_program *prog,
263 struct gl_shader *shader)
264 {
265 if (shader == NULL)
266 return true;
267
268 find_assignment_visitor frag_color("gl_FragColor");
269 find_assignment_visitor frag_data("gl_FragData");
270
271 frag_color.run(shader->ir);
272 frag_data.run(shader->ir);
273
274 if (frag_color.variable_found() && frag_data.variable_found()) {
275 linker_error(prog, "fragment shader writes to both "
276 "`gl_FragColor' and `gl_FragData'\n");
277 return false;
278 }
279
280 return true;
281 }
282
283
284 /**
285 * Generate a string describing the mode of a variable
286 */
287 static const char *
288 mode_string(const ir_variable *var)
289 {
290 switch (var->mode) {
291 case ir_var_auto:
292 return (var->read_only) ? "global constant" : "global variable";
293
294 case ir_var_uniform: return "uniform";
295 case ir_var_in: return "shader input";
296 case ir_var_out: return "shader output";
297 case ir_var_inout: return "shader inout";
298
299 case ir_var_const_in:
300 case ir_var_temporary:
301 default:
302 assert(!"Should not get here.");
303 return "invalid variable";
304 }
305 }
306
307
308 /**
309 * Perform validation of global variables used across multiple shaders
310 */
311 bool
312 cross_validate_globals(struct gl_shader_program *prog,
313 struct gl_shader **shader_list,
314 unsigned num_shaders,
315 bool uniforms_only)
316 {
317 /* Examine all of the uniforms in all of the shaders and cross validate
318 * them.
319 */
320 glsl_symbol_table variables;
321 for (unsigned i = 0; i < num_shaders; i++) {
322 if (shader_list[i] == NULL)
323 continue;
324
325 foreach_list(node, shader_list[i]->ir) {
326 ir_variable *const var = ((ir_instruction *) node)->as_variable();
327
328 if (var == NULL)
329 continue;
330
331 if (uniforms_only && (var->mode != ir_var_uniform))
332 continue;
333
334 /* Don't cross validate temporaries that are at global scope. These
335 * will eventually get pulled into the shaders 'main'.
336 */
337 if (var->mode == ir_var_temporary)
338 continue;
339
340 /* If a global with this name has already been seen, verify that the
341 * new instance has the same type. In addition, if the globals have
342 * initializers, the values of the initializers must be the same.
343 */
344 ir_variable *const existing = variables.get_variable(var->name);
345 if (existing != NULL) {
346 if (var->type != existing->type) {
347 /* Consider the types to be "the same" if both types are arrays
348 * of the same type and one of the arrays is implicitly sized.
349 * In addition, set the type of the linked variable to the
350 * explicitly sized array.
351 */
352 if (var->type->is_array()
353 && existing->type->is_array()
354 && (var->type->fields.array == existing->type->fields.array)
355 && ((var->type->length == 0)
356 || (existing->type->length == 0))) {
357 if (var->type->length != 0) {
358 existing->type = var->type;
359 }
360 } else {
361 linker_error(prog, "%s `%s' declared as type "
362 "`%s' and type `%s'\n",
363 mode_string(var),
364 var->name, var->type->name,
365 existing->type->name);
366 return false;
367 }
368 }
369
370 if (var->explicit_location) {
371 if (existing->explicit_location
372 && (var->location != existing->location)) {
373 linker_error(prog, "explicit locations for %s "
374 "`%s' have differing values\n",
375 mode_string(var), var->name);
376 return false;
377 }
378
379 existing->location = var->location;
380 existing->explicit_location = true;
381 }
382
383 /* Validate layout qualifiers for gl_FragDepth.
384 *
385 * From the AMD_conservative_depth spec:
386 * "If gl_FragDepth is redeclared in any fragment shader in
387 * a program, it must be redeclared in all fragment shaders in that
388 * program that have static assignments to gl_FragDepth. All
389 * redeclarations of gl_FragDepth in all fragment shaders in
390 * a single program must have the same set of qualifiers."
391 */
392 if (strcmp(var->name, "gl_FragDepth") == 0) {
393 bool layout_declared = var->depth_layout != ir_depth_layout_none;
394 bool layout_differs = var->depth_layout != existing->depth_layout;
395 if (layout_declared && layout_differs) {
396 linker_error(prog,
397 "All redeclarations of gl_FragDepth in all fragment shaders "
398 "in a single program must have the same set of qualifiers.");
399 }
400 if (var->used && layout_differs) {
401 linker_error(prog,
402 "If gl_FragDepth is redeclared with a layout qualifier in"
403 "any fragment shader, it must be redeclared with the same"
404 "layout qualifier in all fragment shaders that have"
405 "assignments to gl_FragDepth");
406 }
407 }
408
409 /* FINISHME: Handle non-constant initializers.
410 */
411 if (var->constant_value != NULL) {
412 if (existing->constant_value != NULL) {
413 if (!var->constant_value->has_value(existing->constant_value)) {
414 linker_error(prog, "initializers for %s "
415 "`%s' have differing values\n",
416 mode_string(var), var->name);
417 return false;
418 }
419 } else
420 /* If the first-seen instance of a particular uniform did not
421 * have an initializer but a later instance does, copy the
422 * initializer to the version stored in the symbol table.
423 */
424 /* FINISHME: This is wrong. The constant_value field should
425 * FINISHME: not be modified! Imagine a case where a shader
426 * FINISHME: without an initializer is linked in two different
427 * FINISHME: programs with shaders that have differing
428 * FINISHME: initializers. Linking with the first will
429 * FINISHME: modify the shader, and linking with the second
430 * FINISHME: will fail.
431 */
432 existing->constant_value =
433 var->constant_value->clone(ralloc_parent(existing), NULL);
434 }
435
436 if (existing->invariant != var->invariant) {
437 linker_error(prog, "declarations for %s `%s' have "
438 "mismatching invariant qualifiers\n",
439 mode_string(var), var->name);
440 return false;
441 }
442 if (existing->centroid != var->centroid) {
443 linker_error(prog, "declarations for %s `%s' have "
444 "mismatching centroid qualifiers\n",
445 mode_string(var), var->name);
446 return false;
447 }
448 } else
449 variables.add_variable(var);
450 }
451 }
452
453 return true;
454 }
455
456
457 /**
458 * Perform validation of uniforms used across multiple shader stages
459 */
460 bool
461 cross_validate_uniforms(struct gl_shader_program *prog)
462 {
463 return cross_validate_globals(prog, prog->_LinkedShaders,
464 MESA_SHADER_TYPES, true);
465 }
466
467
468 /**
469 * Validate that outputs from one stage match inputs of another
470 */
471 bool
472 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
473 gl_shader *producer, gl_shader *consumer)
474 {
475 glsl_symbol_table parameters;
476 /* FINISHME: Figure these out dynamically. */
477 const char *const producer_stage = "vertex";
478 const char *const consumer_stage = "fragment";
479
480 /* Find all shader outputs in the "producer" stage.
481 */
482 foreach_list(node, producer->ir) {
483 ir_variable *const var = ((ir_instruction *) node)->as_variable();
484
485 /* FINISHME: For geometry shaders, this should also look for inout
486 * FINISHME: variables.
487 */
488 if ((var == NULL) || (var->mode != ir_var_out))
489 continue;
490
491 parameters.add_variable(var);
492 }
493
494
495 /* Find all shader inputs in the "consumer" stage. Any variables that have
496 * matching outputs already in the symbol table must have the same type and
497 * qualifiers.
498 */
499 foreach_list(node, consumer->ir) {
500 ir_variable *const input = ((ir_instruction *) node)->as_variable();
501
502 /* FINISHME: For geometry shaders, this should also look for inout
503 * FINISHME: variables.
504 */
505 if ((input == NULL) || (input->mode != ir_var_in))
506 continue;
507
508 ir_variable *const output = parameters.get_variable(input->name);
509 if (output != NULL) {
510 /* Check that the types match between stages.
511 */
512 if (input->type != output->type) {
513 /* There is a bit of a special case for gl_TexCoord. This
514 * built-in is unsized by default. Applications that variable
515 * access it must redeclare it with a size. There is some
516 * language in the GLSL spec that implies the fragment shader
517 * and vertex shader do not have to agree on this size. Other
518 * driver behave this way, and one or two applications seem to
519 * rely on it.
520 *
521 * Neither declaration needs to be modified here because the array
522 * sizes are fixed later when update_array_sizes is called.
523 *
524 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
525 *
526 * "Unlike user-defined varying variables, the built-in
527 * varying variables don't have a strict one-to-one
528 * correspondence between the vertex language and the
529 * fragment language."
530 */
531 if (!output->type->is_array()
532 || (strncmp("gl_", output->name, 3) != 0)) {
533 linker_error(prog,
534 "%s shader output `%s' declared as type `%s', "
535 "but %s shader input declared as type `%s'\n",
536 producer_stage, output->name,
537 output->type->name,
538 consumer_stage, input->type->name);
539 return false;
540 }
541 }
542
543 /* Check that all of the qualifiers match between stages.
544 */
545 if (input->centroid != output->centroid) {
546 linker_error(prog,
547 "%s shader output `%s' %s centroid qualifier, "
548 "but %s shader input %s centroid qualifier\n",
549 producer_stage,
550 output->name,
551 (output->centroid) ? "has" : "lacks",
552 consumer_stage,
553 (input->centroid) ? "has" : "lacks");
554 return false;
555 }
556
557 if (input->invariant != output->invariant) {
558 linker_error(prog,
559 "%s shader output `%s' %s invariant qualifier, "
560 "but %s shader input %s invariant qualifier\n",
561 producer_stage,
562 output->name,
563 (output->invariant) ? "has" : "lacks",
564 consumer_stage,
565 (input->invariant) ? "has" : "lacks");
566 return false;
567 }
568
569 if (input->interpolation != output->interpolation) {
570 linker_error(prog,
571 "%s shader output `%s' specifies %s "
572 "interpolation qualifier, "
573 "but %s shader input specifies %s "
574 "interpolation qualifier\n",
575 producer_stage,
576 output->name,
577 output->interpolation_string(),
578 consumer_stage,
579 input->interpolation_string());
580 return false;
581 }
582 }
583 }
584
585 return true;
586 }
587
588
589 /**
590 * Populates a shaders symbol table with all global declarations
591 */
592 static void
593 populate_symbol_table(gl_shader *sh)
594 {
595 sh->symbols = new(sh) glsl_symbol_table;
596
597 foreach_list(node, sh->ir) {
598 ir_instruction *const inst = (ir_instruction *) node;
599 ir_variable *var;
600 ir_function *func;
601
602 if ((func = inst->as_function()) != NULL) {
603 sh->symbols->add_function(func);
604 } else if ((var = inst->as_variable()) != NULL) {
605 sh->symbols->add_variable(var);
606 }
607 }
608 }
609
610
611 /**
612 * Remap variables referenced in an instruction tree
613 *
614 * This is used when instruction trees are cloned from one shader and placed in
615 * another. These trees will contain references to \c ir_variable nodes that
616 * do not exist in the target shader. This function finds these \c ir_variable
617 * references and replaces the references with matching variables in the target
618 * shader.
619 *
620 * If there is no matching variable in the target shader, a clone of the
621 * \c ir_variable is made and added to the target shader. The new variable is
622 * added to \b both the instruction stream and the symbol table.
623 *
624 * \param inst IR tree that is to be processed.
625 * \param symbols Symbol table containing global scope symbols in the
626 * linked shader.
627 * \param instructions Instruction stream where new variable declarations
628 * should be added.
629 */
630 void
631 remap_variables(ir_instruction *inst, struct gl_shader *target,
632 hash_table *temps)
633 {
634 class remap_visitor : public ir_hierarchical_visitor {
635 public:
636 remap_visitor(struct gl_shader *target,
637 hash_table *temps)
638 {
639 this->target = target;
640 this->symbols = target->symbols;
641 this->instructions = target->ir;
642 this->temps = temps;
643 }
644
645 virtual ir_visitor_status visit(ir_dereference_variable *ir)
646 {
647 if (ir->var->mode == ir_var_temporary) {
648 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
649
650 assert(var != NULL);
651 ir->var = var;
652 return visit_continue;
653 }
654
655 ir_variable *const existing =
656 this->symbols->get_variable(ir->var->name);
657 if (existing != NULL)
658 ir->var = existing;
659 else {
660 ir_variable *copy = ir->var->clone(this->target, NULL);
661
662 this->symbols->add_variable(copy);
663 this->instructions->push_head(copy);
664 ir->var = copy;
665 }
666
667 return visit_continue;
668 }
669
670 private:
671 struct gl_shader *target;
672 glsl_symbol_table *symbols;
673 exec_list *instructions;
674 hash_table *temps;
675 };
676
677 remap_visitor v(target, temps);
678
679 inst->accept(&v);
680 }
681
682
683 /**
684 * Move non-declarations from one instruction stream to another
685 *
686 * The intended usage pattern of this function is to pass the pointer to the
687 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
688 * pointer) for \c last and \c false for \c make_copies on the first
689 * call. Successive calls pass the return value of the previous call for
690 * \c last and \c true for \c make_copies.
691 *
692 * \param instructions Source instruction stream
693 * \param last Instruction after which new instructions should be
694 * inserted in the target instruction stream
695 * \param make_copies Flag selecting whether instructions in \c instructions
696 * should be copied (via \c ir_instruction::clone) into the
697 * target list or moved.
698 *
699 * \return
700 * The new "last" instruction in the target instruction stream. This pointer
701 * is suitable for use as the \c last parameter of a later call to this
702 * function.
703 */
704 exec_node *
705 move_non_declarations(exec_list *instructions, exec_node *last,
706 bool make_copies, gl_shader *target)
707 {
708 hash_table *temps = NULL;
709
710 if (make_copies)
711 temps = hash_table_ctor(0, hash_table_pointer_hash,
712 hash_table_pointer_compare);
713
714 foreach_list_safe(node, instructions) {
715 ir_instruction *inst = (ir_instruction *) node;
716
717 if (inst->as_function())
718 continue;
719
720 ir_variable *var = inst->as_variable();
721 if ((var != NULL) && (var->mode != ir_var_temporary))
722 continue;
723
724 assert(inst->as_assignment()
725 || ((var != NULL) && (var->mode == ir_var_temporary)));
726
727 if (make_copies) {
728 inst = inst->clone(target, NULL);
729
730 if (var != NULL)
731 hash_table_insert(temps, inst, var);
732 else
733 remap_variables(inst, target, temps);
734 } else {
735 inst->remove();
736 }
737
738 last->insert_after(inst);
739 last = inst;
740 }
741
742 if (make_copies)
743 hash_table_dtor(temps);
744
745 return last;
746 }
747
748 /**
749 * Get the function signature for main from a shader
750 */
751 static ir_function_signature *
752 get_main_function_signature(gl_shader *sh)
753 {
754 ir_function *const f = sh->symbols->get_function("main");
755 if (f != NULL) {
756 exec_list void_parameters;
757
758 /* Look for the 'void main()' signature and ensure that it's defined.
759 * This keeps the linker from accidentally pick a shader that just
760 * contains a prototype for main.
761 *
762 * We don't have to check for multiple definitions of main (in multiple
763 * shaders) because that would have already been caught above.
764 */
765 ir_function_signature *sig = f->matching_signature(&void_parameters);
766 if ((sig != NULL) && sig->is_defined) {
767 return sig;
768 }
769 }
770
771 return NULL;
772 }
773
774
775 /**
776 * Combine a group of shaders for a single stage to generate a linked shader
777 *
778 * \note
779 * If this function is supplied a single shader, it is cloned, and the new
780 * shader is returned.
781 */
782 static struct gl_shader *
783 link_intrastage_shaders(void *mem_ctx,
784 struct gl_context *ctx,
785 struct gl_shader_program *prog,
786 struct gl_shader **shader_list,
787 unsigned num_shaders)
788 {
789 /* Check that global variables defined in multiple shaders are consistent.
790 */
791 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
792 return NULL;
793
794 /* Check that there is only a single definition of each function signature
795 * across all shaders.
796 */
797 for (unsigned i = 0; i < (num_shaders - 1); i++) {
798 foreach_list(node, shader_list[i]->ir) {
799 ir_function *const f = ((ir_instruction *) node)->as_function();
800
801 if (f == NULL)
802 continue;
803
804 for (unsigned j = i + 1; j < num_shaders; j++) {
805 ir_function *const other =
806 shader_list[j]->symbols->get_function(f->name);
807
808 /* If the other shader has no function (and therefore no function
809 * signatures) with the same name, skip to the next shader.
810 */
811 if (other == NULL)
812 continue;
813
814 foreach_iter (exec_list_iterator, iter, *f) {
815 ir_function_signature *sig =
816 (ir_function_signature *) iter.get();
817
818 if (!sig->is_defined || sig->is_builtin)
819 continue;
820
821 ir_function_signature *other_sig =
822 other->exact_matching_signature(& sig->parameters);
823
824 if ((other_sig != NULL) && other_sig->is_defined
825 && !other_sig->is_builtin) {
826 linker_error(prog, "function `%s' is multiply defined",
827 f->name);
828 return NULL;
829 }
830 }
831 }
832 }
833 }
834
835 /* Find the shader that defines main, and make a clone of it.
836 *
837 * Starting with the clone, search for undefined references. If one is
838 * found, find the shader that defines it. Clone the reference and add
839 * it to the shader. Repeat until there are no undefined references or
840 * until a reference cannot be resolved.
841 */
842 gl_shader *main = NULL;
843 for (unsigned i = 0; i < num_shaders; i++) {
844 if (get_main_function_signature(shader_list[i]) != NULL) {
845 main = shader_list[i];
846 break;
847 }
848 }
849
850 if (main == NULL) {
851 linker_error(prog, "%s shader lacks `main'\n",
852 (shader_list[0]->Type == GL_VERTEX_SHADER)
853 ? "vertex" : "fragment");
854 return NULL;
855 }
856
857 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
858 linked->ir = new(linked) exec_list;
859 clone_ir_list(mem_ctx, linked->ir, main->ir);
860
861 populate_symbol_table(linked);
862
863 /* The a pointer to the main function in the final linked shader (i.e., the
864 * copy of the original shader that contained the main function).
865 */
866 ir_function_signature *const main_sig = get_main_function_signature(linked);
867
868 /* Move any instructions other than variable declarations or function
869 * declarations into main.
870 */
871 exec_node *insertion_point =
872 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
873 linked);
874
875 for (unsigned i = 0; i < num_shaders; i++) {
876 if (shader_list[i] == main)
877 continue;
878
879 insertion_point = move_non_declarations(shader_list[i]->ir,
880 insertion_point, true, linked);
881 }
882
883 /* Resolve initializers for global variables in the linked shader.
884 */
885 unsigned num_linking_shaders = num_shaders;
886 for (unsigned i = 0; i < num_shaders; i++)
887 num_linking_shaders += shader_list[i]->num_builtins_to_link;
888
889 gl_shader **linking_shaders =
890 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
891
892 memcpy(linking_shaders, shader_list,
893 sizeof(linking_shaders[0]) * num_shaders);
894
895 unsigned idx = num_shaders;
896 for (unsigned i = 0; i < num_shaders; i++) {
897 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
898 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
899 idx += shader_list[i]->num_builtins_to_link;
900 }
901
902 assert(idx == num_linking_shaders);
903
904 if (!link_function_calls(prog, linked, linking_shaders,
905 num_linking_shaders)) {
906 ctx->Driver.DeleteShader(ctx, linked);
907 linked = NULL;
908 }
909
910 free(linking_shaders);
911
912 /* Make a pass over all variable declarations to ensure that arrays with
913 * unspecified sizes have a size specified. The size is inferred from the
914 * max_array_access field.
915 */
916 if (linked != NULL) {
917 class array_sizing_visitor : public ir_hierarchical_visitor {
918 public:
919 virtual ir_visitor_status visit(ir_variable *var)
920 {
921 if (var->type->is_array() && (var->type->length == 0)) {
922 const glsl_type *type =
923 glsl_type::get_array_instance(var->type->fields.array,
924 var->max_array_access + 1);
925
926 assert(type != NULL);
927 var->type = type;
928 }
929
930 return visit_continue;
931 }
932 } v;
933
934 v.run(linked->ir);
935 }
936
937 return linked;
938 }
939
940
941 struct uniform_node {
942 exec_node link;
943 struct gl_uniform *u;
944 unsigned slots;
945 };
946
947 /**
948 * Update the sizes of linked shader uniform arrays to the maximum
949 * array index used.
950 *
951 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
952 *
953 * If one or more elements of an array are active,
954 * GetActiveUniform will return the name of the array in name,
955 * subject to the restrictions listed above. The type of the array
956 * is returned in type. The size parameter contains the highest
957 * array element index used, plus one. The compiler or linker
958 * determines the highest index used. There will be only one
959 * active uniform reported by the GL per uniform array.
960
961 */
962 static void
963 update_array_sizes(struct gl_shader_program *prog)
964 {
965 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
966 if (prog->_LinkedShaders[i] == NULL)
967 continue;
968
969 foreach_list(node, prog->_LinkedShaders[i]->ir) {
970 ir_variable *const var = ((ir_instruction *) node)->as_variable();
971
972 if ((var == NULL) || (var->mode != ir_var_uniform &&
973 var->mode != ir_var_in &&
974 var->mode != ir_var_out) ||
975 !var->type->is_array())
976 continue;
977
978 unsigned int size = var->max_array_access;
979 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
980 if (prog->_LinkedShaders[j] == NULL)
981 continue;
982
983 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
984 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
985 if (!other_var)
986 continue;
987
988 if (strcmp(var->name, other_var->name) == 0 &&
989 other_var->max_array_access > size) {
990 size = other_var->max_array_access;
991 }
992 }
993 }
994
995 if (size + 1 != var->type->fields.array->length) {
996 /* If this is a built-in uniform (i.e., it's backed by some
997 * fixed-function state), adjust the number of state slots to
998 * match the new array size. The number of slots per array entry
999 * is not known. It seems safe to assume that the total number of
1000 * slots is an integer multiple of the number of array elements.
1001 * Determine the number of slots per array element by dividing by
1002 * the old (total) size.
1003 */
1004 if (var->num_state_slots > 0) {
1005 var->num_state_slots = (size + 1)
1006 * (var->num_state_slots / var->type->length);
1007 }
1008
1009 var->type = glsl_type::get_array_instance(var->type->fields.array,
1010 size + 1);
1011 /* FINISHME: We should update the types of array
1012 * dereferences of this variable now.
1013 */
1014 }
1015 }
1016 }
1017 }
1018
1019 static void
1020 add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
1021 const char *name, const glsl_type *type, GLenum shader_type,
1022 unsigned *next_shader_pos, unsigned *total_uniforms)
1023 {
1024 if (type->is_record()) {
1025 for (unsigned int i = 0; i < type->length; i++) {
1026 const glsl_type *field_type = type->fields.structure[i].type;
1027 char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
1028 type->fields.structure[i].name);
1029
1030 add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
1031 shader_type, next_shader_pos, total_uniforms);
1032 }
1033 } else {
1034 uniform_node *n = (uniform_node *) hash_table_find(ht, name);
1035 unsigned int vec4_slots;
1036 const glsl_type *array_elem_type = NULL;
1037
1038 if (type->is_array()) {
1039 array_elem_type = type->fields.array;
1040 /* Array of structures. */
1041 if (array_elem_type->is_record()) {
1042 for (unsigned int i = 0; i < type->length; i++) {
1043 char *elem_name = ralloc_asprintf(mem_ctx, "%s[%d]", name, i);
1044 add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
1045 shader_type, next_shader_pos, total_uniforms);
1046 }
1047 return;
1048 }
1049 }
1050
1051 /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
1052 * vectors to vec4 slots.
1053 */
1054 if (type->is_array()) {
1055 if (array_elem_type->is_sampler())
1056 vec4_slots = type->length;
1057 else
1058 vec4_slots = type->length * array_elem_type->matrix_columns;
1059 } else if (type->is_sampler()) {
1060 vec4_slots = 1;
1061 } else {
1062 vec4_slots = type->matrix_columns;
1063 }
1064
1065 if (n == NULL) {
1066 n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
1067 n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
1068 n->slots = vec4_slots;
1069
1070 n->u->Name = strdup(name);
1071 n->u->Type = type;
1072 n->u->VertPos = -1;
1073 n->u->FragPos = -1;
1074 n->u->GeomPos = -1;
1075 (*total_uniforms)++;
1076
1077 hash_table_insert(ht, n, name);
1078 uniforms->push_tail(& n->link);
1079 }
1080
1081 switch (shader_type) {
1082 case GL_VERTEX_SHADER:
1083 n->u->VertPos = *next_shader_pos;
1084 break;
1085 case GL_FRAGMENT_SHADER:
1086 n->u->FragPos = *next_shader_pos;
1087 break;
1088 case GL_GEOMETRY_SHADER:
1089 n->u->GeomPos = *next_shader_pos;
1090 break;
1091 }
1092
1093 (*next_shader_pos) += vec4_slots;
1094 }
1095 }
1096
1097 void
1098 assign_uniform_locations(struct gl_shader_program *prog)
1099 {
1100 /* */
1101 exec_list uniforms;
1102 unsigned total_uniforms = 0;
1103 hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
1104 hash_table_string_compare);
1105 void *mem_ctx = ralloc_context(NULL);
1106
1107 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1108 if (prog->_LinkedShaders[i] == NULL)
1109 continue;
1110
1111 unsigned next_position = 0;
1112
1113 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1114 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1115
1116 if ((var == NULL) || (var->mode != ir_var_uniform))
1117 continue;
1118
1119 if (strncmp(var->name, "gl_", 3) == 0) {
1120 /* At the moment, we don't allocate uniform locations for
1121 * builtin uniforms. It's permitted by spec, and we'll
1122 * likely switch to doing that at some point, but not yet.
1123 */
1124 continue;
1125 }
1126
1127 var->location = next_position;
1128 add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
1129 prog->_LinkedShaders[i]->Type,
1130 &next_position, &total_uniforms);
1131 }
1132 }
1133
1134 ralloc_free(mem_ctx);
1135
1136 gl_uniform_list *ul = (gl_uniform_list *)
1137 calloc(1, sizeof(gl_uniform_list));
1138
1139 ul->Size = total_uniforms;
1140 ul->NumUniforms = total_uniforms;
1141 ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
1142
1143 unsigned idx = 0;
1144 uniform_node *next;
1145 for (uniform_node *node = (uniform_node *) uniforms.head
1146 ; node->link.next != NULL
1147 ; node = next) {
1148 next = (uniform_node *) node->link.next;
1149
1150 node->link.remove();
1151 memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
1152 idx++;
1153
1154 free(node->u);
1155 free(node);
1156 }
1157
1158 hash_table_dtor(ht);
1159
1160 prog->Uniforms = ul;
1161 }
1162
1163
1164 /**
1165 * Find a contiguous set of available bits in a bitmask.
1166 *
1167 * \param used_mask Bits representing used (1) and unused (0) locations
1168 * \param needed_count Number of contiguous bits needed.
1169 *
1170 * \return
1171 * Base location of the available bits on success or -1 on failure.
1172 */
1173 int
1174 find_available_slots(unsigned used_mask, unsigned needed_count)
1175 {
1176 unsigned needed_mask = (1 << needed_count) - 1;
1177 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1178
1179 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1180 * cannot optimize possibly infinite loops" for the loop below.
1181 */
1182 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1183 return -1;
1184
1185 for (int i = 0; i <= max_bit_to_test; i++) {
1186 if ((needed_mask & ~used_mask) == needed_mask)
1187 return i;
1188
1189 needed_mask <<= 1;
1190 }
1191
1192 return -1;
1193 }
1194
1195
1196 /**
1197 * Assign locations for either VS inputs for FS outputs
1198 *
1199 * \param prog Shader program whose variables need locations assigned
1200 * \param target_index Selector for the program target to receive location
1201 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1202 * \c MESA_SHADER_FRAGMENT.
1203 * \param max_index Maximum number of generic locations. This corresponds
1204 * to either the maximum number of draw buffers or the
1205 * maximum number of generic attributes.
1206 *
1207 * \return
1208 * If locations are successfully assigned, true is returned. Otherwise an
1209 * error is emitted to the shader link log and false is returned.
1210 *
1211 * \bug
1212 * Locations set via \c glBindFragDataLocation are not currently supported.
1213 * Only locations assigned automatically by the linker, explicitly set by a
1214 * layout qualifier, or explicitly set by a built-in variable (e.g., \c
1215 * gl_FragColor) are supported for fragment shaders.
1216 */
1217 bool
1218 assign_attribute_or_color_locations(gl_shader_program *prog,
1219 unsigned target_index,
1220 unsigned max_index)
1221 {
1222 /* Mark invalid locations as being used.
1223 */
1224 unsigned used_locations = (max_index >= 32)
1225 ? ~0 : ~((1 << max_index) - 1);
1226
1227 assert((target_index == MESA_SHADER_VERTEX)
1228 || (target_index == MESA_SHADER_FRAGMENT));
1229
1230 gl_shader *const sh = prog->_LinkedShaders[target_index];
1231 if (sh == NULL)
1232 return true;
1233
1234 /* Operate in a total of four passes.
1235 *
1236 * 1. Invalidate the location assignments for all vertex shader inputs.
1237 *
1238 * 2. Assign locations for inputs that have user-defined (via
1239 * glBindVertexAttribLocation) locations.
1240 *
1241 * 3. Sort the attributes without assigned locations by number of slots
1242 * required in decreasing order. Fragmentation caused by attribute
1243 * locations assigned by the application may prevent large attributes
1244 * from having enough contiguous space.
1245 *
1246 * 4. Assign locations to any inputs without assigned locations.
1247 */
1248
1249 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1250 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1251
1252 const enum ir_variable_mode direction =
1253 (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1254
1255
1256 invalidate_variable_locations(sh, direction, generic_base);
1257
1258 if ((target_index == MESA_SHADER_VERTEX) && (prog->Attributes != NULL)) {
1259 for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
1260 ir_variable *const var =
1261 sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
1262
1263 /* Note: attributes that occupy multiple slots, such as arrays or
1264 * matrices, may appear in the attrib array multiple times.
1265 */
1266 if ((var == NULL) || (var->location != -1))
1267 continue;
1268
1269 /* From page 61 of the OpenGL 4.0 spec:
1270 *
1271 * "LinkProgram will fail if the attribute bindings assigned by
1272 * BindAttribLocation do not leave not enough space to assign a
1273 * location for an active matrix attribute or an active attribute
1274 * array, both of which require multiple contiguous generic
1275 * attributes."
1276 *
1277 * Previous versions of the spec contain similar language but omit the
1278 * bit about attribute arrays.
1279 *
1280 * Page 61 of the OpenGL 4.0 spec also says:
1281 *
1282 * "It is possible for an application to bind more than one
1283 * attribute name to the same location. This is referred to as
1284 * aliasing. This will only work if only one of the aliased
1285 * attributes is active in the executable program, or if no path
1286 * through the shader consumes more than one attribute of a set
1287 * of attributes aliased to the same location. A link error can
1288 * occur if the linker determines that every path through the
1289 * shader consumes multiple aliased attributes, but
1290 * implementations are not required to generate an error in this
1291 * case."
1292 *
1293 * These two paragraphs are either somewhat contradictory, or I don't
1294 * fully understand one or both of them.
1295 */
1296 /* FINISHME: The code as currently written does not support attribute
1297 * FINISHME: location aliasing (see comment above).
1298 */
1299 const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
1300 const unsigned slots = count_attribute_slots(var->type);
1301
1302 /* Mask representing the contiguous slots that will be used by this
1303 * attribute.
1304 */
1305 const unsigned use_mask = (1 << slots) - 1;
1306
1307 /* Generate a link error if the set of bits requested for this
1308 * attribute overlaps any previously allocated bits.
1309 */
1310 if ((~(use_mask << attr) & used_locations) != used_locations) {
1311 linker_error(prog,
1312 "insufficient contiguous attribute locations "
1313 "available for vertex shader input `%s'",
1314 var->name);
1315 return false;
1316 }
1317
1318 var->location = VERT_ATTRIB_GENERIC0 + attr;
1319 used_locations |= (use_mask << attr);
1320 }
1321 }
1322
1323 /* Temporary storage for the set of attributes that need locations assigned.
1324 */
1325 struct temp_attr {
1326 unsigned slots;
1327 ir_variable *var;
1328
1329 /* Used below in the call to qsort. */
1330 static int compare(const void *a, const void *b)
1331 {
1332 const temp_attr *const l = (const temp_attr *) a;
1333 const temp_attr *const r = (const temp_attr *) b;
1334
1335 /* Reversed because we want a descending order sort below. */
1336 return r->slots - l->slots;
1337 }
1338 } to_assign[16];
1339
1340 unsigned num_attr = 0;
1341
1342 foreach_list(node, sh->ir) {
1343 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1344
1345 if ((var == NULL) || (var->mode != (unsigned) direction))
1346 continue;
1347
1348 if (var->explicit_location) {
1349 const unsigned slots = count_attribute_slots(var->type);
1350 const unsigned use_mask = (1 << slots) - 1;
1351 const int attr = var->location - generic_base;
1352
1353 if ((var->location >= (int)(max_index + generic_base))
1354 || (var->location < 0)) {
1355 linker_error(prog,
1356 "invalid explicit location %d specified for `%s'\n",
1357 (var->location < 0) ? var->location : attr,
1358 var->name);
1359 return false;
1360 } else if (var->location >= generic_base) {
1361 used_locations |= (use_mask << attr);
1362 }
1363 }
1364
1365 /* The location was explicitly assigned, nothing to do here.
1366 */
1367 if (var->location != -1)
1368 continue;
1369
1370 to_assign[num_attr].slots = count_attribute_slots(var->type);
1371 to_assign[num_attr].var = var;
1372 num_attr++;
1373 }
1374
1375 /* If all of the attributes were assigned locations by the application (or
1376 * are built-in attributes with fixed locations), return early. This should
1377 * be the common case.
1378 */
1379 if (num_attr == 0)
1380 return true;
1381
1382 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1383
1384 if (target_index == MESA_SHADER_VERTEX) {
1385 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1386 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1387 * reserved to prevent it from being automatically allocated below.
1388 */
1389 find_deref_visitor find("gl_Vertex");
1390 find.run(sh->ir);
1391 if (find.variable_found())
1392 used_locations |= (1 << 0);
1393 }
1394
1395 for (unsigned i = 0; i < num_attr; i++) {
1396 /* Mask representing the contiguous slots that will be used by this
1397 * attribute.
1398 */
1399 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1400
1401 int location = find_available_slots(used_locations, to_assign[i].slots);
1402
1403 if (location < 0) {
1404 const char *const string = (target_index == MESA_SHADER_VERTEX)
1405 ? "vertex shader input" : "fragment shader output";
1406
1407 linker_error(prog,
1408 "insufficient contiguous attribute locations "
1409 "available for %s `%s'",
1410 string, to_assign[i].var->name);
1411 return false;
1412 }
1413
1414 to_assign[i].var->location = generic_base + location;
1415 used_locations |= (use_mask << location);
1416 }
1417
1418 return true;
1419 }
1420
1421
1422 /**
1423 * Demote shader inputs and outputs that are not used in other stages
1424 */
1425 void
1426 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1427 {
1428 foreach_list(node, sh->ir) {
1429 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1430
1431 if ((var == NULL) || (var->mode != int(mode)))
1432 continue;
1433
1434 /* A shader 'in' or 'out' variable is only really an input or output if
1435 * its value is used by other shader stages. This will cause the variable
1436 * to have a location assigned.
1437 */
1438 if (var->location == -1) {
1439 var->mode = ir_var_auto;
1440 }
1441 }
1442 }
1443
1444
1445 bool
1446 assign_varying_locations(struct gl_context *ctx,
1447 struct gl_shader_program *prog,
1448 gl_shader *producer, gl_shader *consumer)
1449 {
1450 /* FINISHME: Set dynamically when geometry shader support is added. */
1451 unsigned output_index = VERT_RESULT_VAR0;
1452 unsigned input_index = FRAG_ATTRIB_VAR0;
1453
1454 /* Operate in a total of three passes.
1455 *
1456 * 1. Assign locations for any matching inputs and outputs.
1457 *
1458 * 2. Mark output variables in the producer that do not have locations as
1459 * not being outputs. This lets the optimizer eliminate them.
1460 *
1461 * 3. Mark input variables in the consumer that do not have locations as
1462 * not being inputs. This lets the optimizer eliminate them.
1463 */
1464
1465 invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1466 invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1467
1468 foreach_list(node, producer->ir) {
1469 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1470
1471 if ((output_var == NULL) || (output_var->mode != ir_var_out)
1472 || (output_var->location != -1))
1473 continue;
1474
1475 ir_variable *const input_var =
1476 consumer->symbols->get_variable(output_var->name);
1477
1478 if ((input_var == NULL) || (input_var->mode != ir_var_in))
1479 continue;
1480
1481 assert(input_var->location == -1);
1482
1483 output_var->location = output_index;
1484 input_var->location = input_index;
1485
1486 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1487 assert(!output_var->type->is_record());
1488
1489 if (output_var->type->is_array()) {
1490 const unsigned slots = output_var->type->length
1491 * output_var->type->fields.array->matrix_columns;
1492
1493 output_index += slots;
1494 input_index += slots;
1495 } else {
1496 const unsigned slots = output_var->type->matrix_columns;
1497
1498 output_index += slots;
1499 input_index += slots;
1500 }
1501 }
1502
1503 unsigned varying_vectors = 0;
1504
1505 foreach_list(node, consumer->ir) {
1506 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1507
1508 if ((var == NULL) || (var->mode != ir_var_in))
1509 continue;
1510
1511 if (var->location == -1) {
1512 if (prog->Version <= 120) {
1513 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1514 *
1515 * Only those varying variables used (i.e. read) in
1516 * the fragment shader executable must be written to
1517 * by the vertex shader executable; declaring
1518 * superfluous varying variables in a vertex shader is
1519 * permissible.
1520 *
1521 * We interpret this text as meaning that the VS must
1522 * write the variable for the FS to read it. See
1523 * "glsl1-varying read but not written" in piglit.
1524 */
1525
1526 linker_error(prog, "fragment shader varying %s not written "
1527 "by vertex shader\n.", var->name);
1528 }
1529
1530 /* An 'in' variable is only really a shader input if its
1531 * value is written by the previous stage.
1532 */
1533 var->mode = ir_var_auto;
1534 } else {
1535 /* The packing rules are used for vertex shader inputs are also used
1536 * for fragment shader inputs.
1537 */
1538 varying_vectors += count_attribute_slots(var->type);
1539 }
1540 }
1541
1542 if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
1543 if (varying_vectors > ctx->Const.MaxVarying) {
1544 linker_error(prog, "shader uses too many varying vectors "
1545 "(%u > %u)\n",
1546 varying_vectors, ctx->Const.MaxVarying);
1547 return false;
1548 }
1549 } else {
1550 const unsigned float_components = varying_vectors * 4;
1551 if (float_components > ctx->Const.MaxVarying * 4) {
1552 linker_error(prog, "shader uses too many varying components "
1553 "(%u > %u)\n",
1554 float_components, ctx->Const.MaxVarying * 4);
1555 return false;
1556 }
1557 }
1558
1559 return true;
1560 }
1561
1562
1563 void
1564 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1565 {
1566 void *mem_ctx = ralloc_context(NULL); // temporary linker context
1567
1568 prog->LinkStatus = false;
1569 prog->Validated = false;
1570 prog->_Used = false;
1571
1572 if (prog->InfoLog != NULL)
1573 ralloc_free(prog->InfoLog);
1574
1575 prog->InfoLog = ralloc_strdup(NULL, "");
1576
1577 /* Separate the shaders into groups based on their type.
1578 */
1579 struct gl_shader **vert_shader_list;
1580 unsigned num_vert_shaders = 0;
1581 struct gl_shader **frag_shader_list;
1582 unsigned num_frag_shaders = 0;
1583
1584 vert_shader_list = (struct gl_shader **)
1585 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1586 frag_shader_list = &vert_shader_list[prog->NumShaders];
1587
1588 unsigned min_version = UINT_MAX;
1589 unsigned max_version = 0;
1590 for (unsigned i = 0; i < prog->NumShaders; i++) {
1591 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1592 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1593
1594 switch (prog->Shaders[i]->Type) {
1595 case GL_VERTEX_SHADER:
1596 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1597 num_vert_shaders++;
1598 break;
1599 case GL_FRAGMENT_SHADER:
1600 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1601 num_frag_shaders++;
1602 break;
1603 case GL_GEOMETRY_SHADER:
1604 /* FINISHME: Support geometry shaders. */
1605 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1606 break;
1607 }
1608 }
1609
1610 /* Previous to GLSL version 1.30, different compilation units could mix and
1611 * match shading language versions. With GLSL 1.30 and later, the versions
1612 * of all shaders must match.
1613 */
1614 assert(min_version >= 100);
1615 assert(max_version <= 130);
1616 if ((max_version >= 130 || min_version == 100)
1617 && min_version != max_version) {
1618 linker_error(prog, "all shaders must use same shading "
1619 "language version\n");
1620 goto done;
1621 }
1622
1623 prog->Version = max_version;
1624
1625 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1626 if (prog->_LinkedShaders[i] != NULL)
1627 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1628
1629 prog->_LinkedShaders[i] = NULL;
1630 }
1631
1632 /* Link all shaders for a particular stage and validate the result.
1633 */
1634 if (num_vert_shaders > 0) {
1635 gl_shader *const sh =
1636 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1637 num_vert_shaders);
1638
1639 if (sh == NULL)
1640 goto done;
1641
1642 if (!validate_vertex_shader_executable(prog, sh))
1643 goto done;
1644
1645 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1646 sh);
1647 }
1648
1649 if (num_frag_shaders > 0) {
1650 gl_shader *const sh =
1651 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1652 num_frag_shaders);
1653
1654 if (sh == NULL)
1655 goto done;
1656
1657 if (!validate_fragment_shader_executable(prog, sh))
1658 goto done;
1659
1660 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1661 sh);
1662 }
1663
1664 /* Here begins the inter-stage linking phase. Some initial validation is
1665 * performed, then locations are assigned for uniforms, attributes, and
1666 * varyings.
1667 */
1668 if (cross_validate_uniforms(prog)) {
1669 unsigned prev;
1670
1671 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1672 if (prog->_LinkedShaders[prev] != NULL)
1673 break;
1674 }
1675
1676 /* Validate the inputs of each stage with the output of the preceding
1677 * stage.
1678 */
1679 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1680 if (prog->_LinkedShaders[i] == NULL)
1681 continue;
1682
1683 if (!cross_validate_outputs_to_inputs(prog,
1684 prog->_LinkedShaders[prev],
1685 prog->_LinkedShaders[i]))
1686 goto done;
1687
1688 prev = i;
1689 }
1690
1691 prog->LinkStatus = true;
1692 }
1693
1694 /* Do common optimization before assigning storage for attributes,
1695 * uniforms, and varyings. Later optimization could possibly make
1696 * some of that unused.
1697 */
1698 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1699 if (prog->_LinkedShaders[i] == NULL)
1700 continue;
1701
1702 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
1703 if (!prog->LinkStatus)
1704 goto done;
1705
1706 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
1707 ;
1708 }
1709
1710 update_array_sizes(prog);
1711
1712 assign_uniform_locations(prog);
1713
1714 /* FINISHME: The value of the max_attribute_index parameter is
1715 * FINISHME: implementation dependent based on the value of
1716 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1717 * FINISHME: at least 16, so hardcode 16 for now.
1718 */
1719 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
1720 goto done;
1721 }
1722
1723 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, ctx->Const.MaxDrawBuffers)) {
1724 goto done;
1725 }
1726
1727 unsigned prev;
1728 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1729 if (prog->_LinkedShaders[prev] != NULL)
1730 break;
1731 }
1732
1733 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1734 if (prog->_LinkedShaders[i] == NULL)
1735 continue;
1736
1737 if (!assign_varying_locations(ctx, prog,
1738 prog->_LinkedShaders[prev],
1739 prog->_LinkedShaders[i])) {
1740 goto done;
1741 }
1742
1743 prev = i;
1744 }
1745
1746 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1747 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1748 ir_var_out);
1749 }
1750
1751 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1752 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1753
1754 demote_shader_inputs_and_outputs(sh, ir_var_in);
1755 demote_shader_inputs_and_outputs(sh, ir_var_inout);
1756 demote_shader_inputs_and_outputs(sh, ir_var_out);
1757 }
1758
1759 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1760 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1761
1762 demote_shader_inputs_and_outputs(sh, ir_var_in);
1763 }
1764
1765 /* OpenGL ES requires that a vertex shader and a fragment shader both be
1766 * present in a linked program. By checking for use of shading language
1767 * version 1.00, we also catch the GL_ARB_ES2_compatibility case.
1768 */
1769 if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
1770 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
1771 linker_error(prog, "program lacks a vertex shader\n");
1772 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1773 linker_error(prog, "program lacks a fragment shader\n");
1774 }
1775 }
1776
1777 /* FINISHME: Assign fragment shader output locations. */
1778
1779 done:
1780 free(vert_shader_list);
1781
1782 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1783 if (prog->_LinkedShaders[i] == NULL)
1784 continue;
1785
1786 /* Retain any live IR, but trash the rest. */
1787 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1788 }
1789
1790 ralloc_free(mem_ctx);
1791 }