glsl: expose build_program_resource_list function
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->fields.array,
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->fields.array;
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 /* Class that finds array derefs and check if indexes are dynamic. */
350 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
351 {
352 public:
353 dynamic_sampler_array_indexing_visitor() :
354 dynamic_sampler_array_indexing(false)
355 {
356 }
357
358 ir_visitor_status visit_enter(ir_dereference_array *ir)
359 {
360 if (!ir->variable_referenced())
361 return visit_continue;
362
363 if (!ir->variable_referenced()->type->contains_sampler())
364 return visit_continue;
365
366 if (!ir->array_index->constant_expression_value()) {
367 dynamic_sampler_array_indexing = true;
368 return visit_stop;
369 }
370 return visit_continue;
371 }
372
373 bool uses_dynamic_sampler_array_indexing()
374 {
375 return dynamic_sampler_array_indexing;
376 }
377
378 private:
379 bool dynamic_sampler_array_indexing;
380 };
381
382 } /* anonymous namespace */
383
384 void
385 linker_error(gl_shader_program *prog, const char *fmt, ...)
386 {
387 va_list ap;
388
389 ralloc_strcat(&prog->InfoLog, "error: ");
390 va_start(ap, fmt);
391 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
392 va_end(ap);
393
394 prog->LinkStatus = false;
395 }
396
397
398 void
399 linker_warning(gl_shader_program *prog, const char *fmt, ...)
400 {
401 va_list ap;
402
403 ralloc_strcat(&prog->InfoLog, "warning: ");
404 va_start(ap, fmt);
405 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
406 va_end(ap);
407
408 }
409
410
411 /**
412 * Given a string identifying a program resource, break it into a base name
413 * and an optional array index in square brackets.
414 *
415 * If an array index is present, \c out_base_name_end is set to point to the
416 * "[" that precedes the array index, and the array index itself is returned
417 * as a long.
418 *
419 * If no array index is present (or if the array index is negative or
420 * mal-formed), \c out_base_name_end, is set to point to the null terminator
421 * at the end of the input string, and -1 is returned.
422 *
423 * Only the final array index is parsed; if the string contains other array
424 * indices (or structure field accesses), they are left in the base name.
425 *
426 * No attempt is made to check that the base name is properly formed;
427 * typically the caller will look up the base name in a hash table, so
428 * ill-formed base names simply turn into hash table lookup failures.
429 */
430 long
431 parse_program_resource_name(const GLchar *name,
432 const GLchar **out_base_name_end)
433 {
434 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
435 *
436 * "When an integer array element or block instance number is part of
437 * the name string, it will be specified in decimal form without a "+"
438 * or "-" sign or any extra leading zeroes. Additionally, the name
439 * string will not include white space anywhere in the string."
440 */
441
442 const size_t len = strlen(name);
443 *out_base_name_end = name + len;
444
445 if (len == 0 || name[len-1] != ']')
446 return -1;
447
448 /* Walk backwards over the string looking for a non-digit character. This
449 * had better be the opening bracket for an array index.
450 *
451 * Initially, i specifies the location of the ']'. Since the string may
452 * contain only the ']' charcater, walk backwards very carefully.
453 */
454 unsigned i;
455 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
456 /* empty */ ;
457
458 if ((i == 0) || name[i-1] != '[')
459 return -1;
460
461 long array_index = strtol(&name[i], NULL, 10);
462 if (array_index < 0)
463 return -1;
464
465 *out_base_name_end = name + (i - 1);
466 return array_index;
467 }
468
469
470 void
471 link_invalidate_variable_locations(exec_list *ir)
472 {
473 foreach_in_list(ir_instruction, node, ir) {
474 ir_variable *const var = node->as_variable();
475
476 if (var == NULL)
477 continue;
478
479 /* Only assign locations for variables that lack an explicit location.
480 * Explicit locations are set for all built-in variables, generic vertex
481 * shader inputs (via layout(location=...)), and generic fragment shader
482 * outputs (also via layout(location=...)).
483 */
484 if (!var->data.explicit_location) {
485 var->data.location = -1;
486 var->data.location_frac = 0;
487 }
488
489 /* ir_variable::is_unmatched_generic_inout is used by the linker while
490 * connecting outputs from one stage to inputs of the next stage.
491 *
492 * There are two implicit assumptions here. First, we assume that any
493 * built-in variable (i.e., non-generic in or out) will have
494 * explicit_location set. Second, we assume that any generic in or out
495 * will not have explicit_location set.
496 *
497 * This second assumption will only be valid until
498 * GL_ARB_separate_shader_objects is supported. When that extension is
499 * implemented, this function will need some modifications.
500 */
501 if (!var->data.explicit_location) {
502 var->data.is_unmatched_generic_inout = 1;
503 } else {
504 var->data.is_unmatched_generic_inout = 0;
505 }
506 }
507 }
508
509
510 /**
511 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
512 *
513 * Also check for errors based on incorrect usage of gl_ClipVertex and
514 * gl_ClipDistance.
515 *
516 * Return false if an error was reported.
517 */
518 static void
519 analyze_clip_usage(struct gl_shader_program *prog,
520 struct gl_shader *shader, GLboolean *UsesClipDistance,
521 GLuint *ClipDistanceArraySize)
522 {
523 *ClipDistanceArraySize = 0;
524
525 if (!prog->IsES && prog->Version >= 130) {
526 /* From section 7.1 (Vertex Shader Special Variables) of the
527 * GLSL 1.30 spec:
528 *
529 * "It is an error for a shader to statically write both
530 * gl_ClipVertex and gl_ClipDistance."
531 *
532 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
533 * gl_ClipVertex nor gl_ClipDistance.
534 */
535 find_assignment_visitor clip_vertex("gl_ClipVertex");
536 find_assignment_visitor clip_distance("gl_ClipDistance");
537
538 clip_vertex.run(shader->ir);
539 clip_distance.run(shader->ir);
540 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
541 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
542 "and `gl_ClipDistance'\n",
543 _mesa_shader_stage_to_string(shader->Stage));
544 return;
545 }
546 *UsesClipDistance = clip_distance.variable_found();
547 ir_variable *clip_distance_var =
548 shader->symbols->get_variable("gl_ClipDistance");
549 if (clip_distance_var)
550 *ClipDistanceArraySize = clip_distance_var->type->length;
551 } else {
552 *UsesClipDistance = false;
553 }
554 }
555
556
557 /**
558 * Verify that a vertex shader executable meets all semantic requirements.
559 *
560 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
561 * as a side effect.
562 *
563 * \param shader Vertex shader executable to be verified
564 */
565 void
566 validate_vertex_shader_executable(struct gl_shader_program *prog,
567 struct gl_shader *shader)
568 {
569 if (shader == NULL)
570 return;
571
572 /* From the GLSL 1.10 spec, page 48:
573 *
574 * "The variable gl_Position is available only in the vertex
575 * language and is intended for writing the homogeneous vertex
576 * position. All executions of a well-formed vertex shader
577 * executable must write a value into this variable. [...] The
578 * variable gl_Position is available only in the vertex
579 * language and is intended for writing the homogeneous vertex
580 * position. All executions of a well-formed vertex shader
581 * executable must write a value into this variable."
582 *
583 * while in GLSL 1.40 this text is changed to:
584 *
585 * "The variable gl_Position is available only in the vertex
586 * language and is intended for writing the homogeneous vertex
587 * position. It can be written at any time during shader
588 * execution. It may also be read back by a vertex shader
589 * after being written. This value will be used by primitive
590 * assembly, clipping, culling, and other fixed functionality
591 * operations, if present, that operate on primitives after
592 * vertex processing has occurred. Its value is undefined if
593 * the vertex shader executable does not write gl_Position."
594 *
595 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
596 * gl_Position is not an error.
597 */
598 if (prog->Version < (prog->IsES ? 300 : 140)) {
599 find_assignment_visitor find("gl_Position");
600 find.run(shader->ir);
601 if (!find.variable_found()) {
602 if (prog->IsES) {
603 linker_warning(prog,
604 "vertex shader does not write to `gl_Position'."
605 "It's value is undefined. \n");
606 } else {
607 linker_error(prog,
608 "vertex shader does not write to `gl_Position'. \n");
609 }
610 return;
611 }
612 }
613
614 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
615 &prog->Vert.ClipDistanceArraySize);
616 }
617
618
619 /**
620 * Verify that a fragment shader executable meets all semantic requirements
621 *
622 * \param shader Fragment shader executable to be verified
623 */
624 void
625 validate_fragment_shader_executable(struct gl_shader_program *prog,
626 struct gl_shader *shader)
627 {
628 if (shader == NULL)
629 return;
630
631 find_assignment_visitor frag_color("gl_FragColor");
632 find_assignment_visitor frag_data("gl_FragData");
633
634 frag_color.run(shader->ir);
635 frag_data.run(shader->ir);
636
637 if (frag_color.variable_found() && frag_data.variable_found()) {
638 linker_error(prog, "fragment shader writes to both "
639 "`gl_FragColor' and `gl_FragData'\n");
640 }
641 }
642
643 /**
644 * Verify that a geometry shader executable meets all semantic requirements
645 *
646 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
647 * prog->Geom.ClipDistanceArraySize as a side effect.
648 *
649 * \param shader Geometry shader executable to be verified
650 */
651 void
652 validate_geometry_shader_executable(struct gl_shader_program *prog,
653 struct gl_shader *shader)
654 {
655 if (shader == NULL)
656 return;
657
658 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
659 prog->Geom.VerticesIn = num_vertices;
660
661 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
662 &prog->Geom.ClipDistanceArraySize);
663 }
664
665 /**
666 * Check if geometry shaders emit to non-zero streams and do corresponding
667 * validations.
668 */
669 static void
670 validate_geometry_shader_emissions(struct gl_context *ctx,
671 struct gl_shader_program *prog)
672 {
673 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
674 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
675 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
676 if (emit_vertex.error()) {
677 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
678 "stream parameter are in the range [0, %d].\n",
679 emit_vertex.error_func(),
680 emit_vertex.error_stream(),
681 ctx->Const.MaxVertexStreams - 1);
682 }
683 prog->Geom.UsesStreams = emit_vertex.uses_streams();
684 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
685
686 /* From the ARB_gpu_shader5 spec:
687 *
688 * "Multiple vertex streams are supported only if the output primitive
689 * type is declared to be "points". A program will fail to link if it
690 * contains a geometry shader calling EmitStreamVertex() or
691 * EndStreamPrimitive() if its output primitive type is not "points".
692 *
693 * However, in the same spec:
694 *
695 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
696 * with <stream> set to zero."
697 *
698 * And:
699 *
700 * "The function EndPrimitive() is equivalent to calling
701 * EndStreamPrimitive() with <stream> set to zero."
702 *
703 * Since we can call EmitVertex() and EndPrimitive() when we output
704 * primitives other than points, calling EmitStreamVertex(0) or
705 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
706 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
707 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
708 * stream.
709 */
710 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
711 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
712 "with n>0 requires point output\n");
713 }
714 }
715 }
716
717 bool
718 validate_intrastage_arrays(struct gl_shader_program *prog,
719 ir_variable *const var,
720 ir_variable *const existing)
721 {
722 /* Consider the types to be "the same" if both types are arrays
723 * of the same type and one of the arrays is implicitly sized.
724 * In addition, set the type of the linked variable to the
725 * explicitly sized array.
726 */
727 if (var->type->is_array() && existing->type->is_array() &&
728 (var->type->fields.array == existing->type->fields.array) &&
729 ((var->type->length == 0)|| (existing->type->length == 0))) {
730 if (var->type->length != 0) {
731 if (var->type->length <= existing->data.max_array_access) {
732 linker_error(prog, "%s `%s' declared as type "
733 "`%s' but outermost dimension has an index"
734 " of `%i'\n",
735 mode_string(var),
736 var->name, var->type->name,
737 existing->data.max_array_access);
738 }
739 existing->type = var->type;
740 return true;
741 } else if (existing->type->length != 0) {
742 if(existing->type->length <= var->data.max_array_access) {
743 linker_error(prog, "%s `%s' declared as type "
744 "`%s' but outermost dimension has an index"
745 " of `%i'\n",
746 mode_string(var),
747 var->name, existing->type->name,
748 var->data.max_array_access);
749 }
750 return true;
751 }
752 }
753 return false;
754 }
755
756
757 /**
758 * Perform validation of global variables used across multiple shaders
759 */
760 void
761 cross_validate_globals(struct gl_shader_program *prog,
762 struct gl_shader **shader_list,
763 unsigned num_shaders,
764 bool uniforms_only)
765 {
766 /* Examine all of the uniforms in all of the shaders and cross validate
767 * them.
768 */
769 glsl_symbol_table variables;
770 for (unsigned i = 0; i < num_shaders; i++) {
771 if (shader_list[i] == NULL)
772 continue;
773
774 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
775 ir_variable *const var = node->as_variable();
776
777 if (var == NULL)
778 continue;
779
780 if (uniforms_only && (var->data.mode != ir_var_uniform))
781 continue;
782
783 /* Don't cross validate temporaries that are at global scope. These
784 * will eventually get pulled into the shaders 'main'.
785 */
786 if (var->data.mode == ir_var_temporary)
787 continue;
788
789 /* If a global with this name has already been seen, verify that the
790 * new instance has the same type. In addition, if the globals have
791 * initializers, the values of the initializers must be the same.
792 */
793 ir_variable *const existing = variables.get_variable(var->name);
794 if (existing != NULL) {
795 /* Check if types match. Interface blocks have some special
796 * rules so we handle those elsewhere.
797 */
798 if (var->type != existing->type &&
799 !var->is_interface_instance()) {
800 if (!validate_intrastage_arrays(prog, var, existing)) {
801 if (var->type->is_record() && existing->type->is_record()
802 && existing->type->record_compare(var->type)) {
803 existing->type = var->type;
804 } else {
805 linker_error(prog, "%s `%s' declared as type "
806 "`%s' and type `%s'\n",
807 mode_string(var),
808 var->name, var->type->name,
809 existing->type->name);
810 return;
811 }
812 }
813 }
814
815 if (var->data.explicit_location) {
816 if (existing->data.explicit_location
817 && (var->data.location != existing->data.location)) {
818 linker_error(prog, "explicit locations for %s "
819 "`%s' have differing values\n",
820 mode_string(var), var->name);
821 return;
822 }
823
824 existing->data.location = var->data.location;
825 existing->data.explicit_location = true;
826 }
827
828 /* From the GLSL 4.20 specification:
829 * "A link error will result if two compilation units in a program
830 * specify different integer-constant bindings for the same
831 * opaque-uniform name. However, it is not an error to specify a
832 * binding on some but not all declarations for the same name"
833 */
834 if (var->data.explicit_binding) {
835 if (existing->data.explicit_binding &&
836 var->data.binding != existing->data.binding) {
837 linker_error(prog, "explicit bindings for %s "
838 "`%s' have differing values\n",
839 mode_string(var), var->name);
840 return;
841 }
842
843 existing->data.binding = var->data.binding;
844 existing->data.explicit_binding = true;
845 }
846
847 if (var->type->contains_atomic() &&
848 var->data.atomic.offset != existing->data.atomic.offset) {
849 linker_error(prog, "offset specifications for %s "
850 "`%s' have differing values\n",
851 mode_string(var), var->name);
852 return;
853 }
854
855 /* Validate layout qualifiers for gl_FragDepth.
856 *
857 * From the AMD/ARB_conservative_depth specs:
858 *
859 * "If gl_FragDepth is redeclared in any fragment shader in a
860 * program, it must be redeclared in all fragment shaders in
861 * that program that have static assignments to
862 * gl_FragDepth. All redeclarations of gl_FragDepth in all
863 * fragment shaders in a single program must have the same set
864 * of qualifiers."
865 */
866 if (strcmp(var->name, "gl_FragDepth") == 0) {
867 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
868 bool layout_differs =
869 var->data.depth_layout != existing->data.depth_layout;
870
871 if (layout_declared && layout_differs) {
872 linker_error(prog,
873 "All redeclarations of gl_FragDepth in all "
874 "fragment shaders in a single program must have "
875 "the same set of qualifiers.\n");
876 }
877
878 if (var->data.used && layout_differs) {
879 linker_error(prog,
880 "If gl_FragDepth is redeclared with a layout "
881 "qualifier in any fragment shader, it must be "
882 "redeclared with the same layout qualifier in "
883 "all fragment shaders that have assignments to "
884 "gl_FragDepth\n");
885 }
886 }
887
888 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
889 *
890 * "If a shared global has multiple initializers, the
891 * initializers must all be constant expressions, and they
892 * must all have the same value. Otherwise, a link error will
893 * result. (A shared global having only one initializer does
894 * not require that initializer to be a constant expression.)"
895 *
896 * Previous to 4.20 the GLSL spec simply said that initializers
897 * must have the same value. In this case of non-constant
898 * initializers, this was impossible to determine. As a result,
899 * no vendor actually implemented that behavior. The 4.20
900 * behavior matches the implemented behavior of at least one other
901 * vendor, so we'll implement that for all GLSL versions.
902 */
903 if (var->constant_initializer != NULL) {
904 if (existing->constant_initializer != NULL) {
905 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
906 linker_error(prog, "initializers for %s "
907 "`%s' have differing values\n",
908 mode_string(var), var->name);
909 return;
910 }
911 } else {
912 /* If the first-seen instance of a particular uniform did not
913 * have an initializer but a later instance does, copy the
914 * initializer to the version stored in the symbol table.
915 */
916 /* FINISHME: This is wrong. The constant_value field should
917 * FINISHME: not be modified! Imagine a case where a shader
918 * FINISHME: without an initializer is linked in two different
919 * FINISHME: programs with shaders that have differing
920 * FINISHME: initializers. Linking with the first will
921 * FINISHME: modify the shader, and linking with the second
922 * FINISHME: will fail.
923 */
924 existing->constant_initializer =
925 var->constant_initializer->clone(ralloc_parent(existing),
926 NULL);
927 }
928 }
929
930 if (var->data.has_initializer) {
931 if (existing->data.has_initializer
932 && (var->constant_initializer == NULL
933 || existing->constant_initializer == NULL)) {
934 linker_error(prog,
935 "shared global variable `%s' has multiple "
936 "non-constant initializers.\n",
937 var->name);
938 return;
939 }
940
941 /* Some instance had an initializer, so keep track of that. In
942 * this location, all sorts of initializers (constant or
943 * otherwise) will propagate the existence to the variable
944 * stored in the symbol table.
945 */
946 existing->data.has_initializer = true;
947 }
948
949 if (existing->data.invariant != var->data.invariant) {
950 linker_error(prog, "declarations for %s `%s' have "
951 "mismatching invariant qualifiers\n",
952 mode_string(var), var->name);
953 return;
954 }
955 if (existing->data.centroid != var->data.centroid) {
956 linker_error(prog, "declarations for %s `%s' have "
957 "mismatching centroid qualifiers\n",
958 mode_string(var), var->name);
959 return;
960 }
961 if (existing->data.sample != var->data.sample) {
962 linker_error(prog, "declarations for %s `%s` have "
963 "mismatching sample qualifiers\n",
964 mode_string(var), var->name);
965 return;
966 }
967 } else
968 variables.add_variable(var);
969 }
970 }
971 }
972
973
974 /**
975 * Perform validation of uniforms used across multiple shader stages
976 */
977 void
978 cross_validate_uniforms(struct gl_shader_program *prog)
979 {
980 cross_validate_globals(prog, prog->_LinkedShaders,
981 MESA_SHADER_STAGES, true);
982 }
983
984 /**
985 * Accumulates the array of prog->UniformBlocks and checks that all
986 * definitons of blocks agree on their contents.
987 */
988 static bool
989 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
990 {
991 unsigned max_num_uniform_blocks = 0;
992 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
993 if (prog->_LinkedShaders[i])
994 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
995 }
996
997 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
998 struct gl_shader *sh = prog->_LinkedShaders[i];
999
1000 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
1001 max_num_uniform_blocks);
1002 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1003 prog->UniformBlockStageIndex[i][j] = -1;
1004
1005 if (sh == NULL)
1006 continue;
1007
1008 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
1009 int index = link_cross_validate_uniform_block(prog,
1010 &prog->UniformBlocks,
1011 &prog->NumUniformBlocks,
1012 &sh->UniformBlocks[j]);
1013
1014 if (index == -1) {
1015 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1016 sh->UniformBlocks[j].Name);
1017 return false;
1018 }
1019
1020 prog->UniformBlockStageIndex[i][index] = j;
1021 }
1022 }
1023
1024 return true;
1025 }
1026
1027
1028 /**
1029 * Populates a shaders symbol table with all global declarations
1030 */
1031 static void
1032 populate_symbol_table(gl_shader *sh)
1033 {
1034 sh->symbols = new(sh) glsl_symbol_table;
1035
1036 foreach_in_list(ir_instruction, inst, sh->ir) {
1037 ir_variable *var;
1038 ir_function *func;
1039
1040 if ((func = inst->as_function()) != NULL) {
1041 sh->symbols->add_function(func);
1042 } else if ((var = inst->as_variable()) != NULL) {
1043 if (var->data.mode != ir_var_temporary)
1044 sh->symbols->add_variable(var);
1045 }
1046 }
1047 }
1048
1049
1050 /**
1051 * Remap variables referenced in an instruction tree
1052 *
1053 * This is used when instruction trees are cloned from one shader and placed in
1054 * another. These trees will contain references to \c ir_variable nodes that
1055 * do not exist in the target shader. This function finds these \c ir_variable
1056 * references and replaces the references with matching variables in the target
1057 * shader.
1058 *
1059 * If there is no matching variable in the target shader, a clone of the
1060 * \c ir_variable is made and added to the target shader. The new variable is
1061 * added to \b both the instruction stream and the symbol table.
1062 *
1063 * \param inst IR tree that is to be processed.
1064 * \param symbols Symbol table containing global scope symbols in the
1065 * linked shader.
1066 * \param instructions Instruction stream where new variable declarations
1067 * should be added.
1068 */
1069 void
1070 remap_variables(ir_instruction *inst, struct gl_shader *target,
1071 hash_table *temps)
1072 {
1073 class remap_visitor : public ir_hierarchical_visitor {
1074 public:
1075 remap_visitor(struct gl_shader *target,
1076 hash_table *temps)
1077 {
1078 this->target = target;
1079 this->symbols = target->symbols;
1080 this->instructions = target->ir;
1081 this->temps = temps;
1082 }
1083
1084 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1085 {
1086 if (ir->var->data.mode == ir_var_temporary) {
1087 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1088
1089 assert(var != NULL);
1090 ir->var = var;
1091 return visit_continue;
1092 }
1093
1094 ir_variable *const existing =
1095 this->symbols->get_variable(ir->var->name);
1096 if (existing != NULL)
1097 ir->var = existing;
1098 else {
1099 ir_variable *copy = ir->var->clone(this->target, NULL);
1100
1101 this->symbols->add_variable(copy);
1102 this->instructions->push_head(copy);
1103 ir->var = copy;
1104 }
1105
1106 return visit_continue;
1107 }
1108
1109 private:
1110 struct gl_shader *target;
1111 glsl_symbol_table *symbols;
1112 exec_list *instructions;
1113 hash_table *temps;
1114 };
1115
1116 remap_visitor v(target, temps);
1117
1118 inst->accept(&v);
1119 }
1120
1121
1122 /**
1123 * Move non-declarations from one instruction stream to another
1124 *
1125 * The intended usage pattern of this function is to pass the pointer to the
1126 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1127 * pointer) for \c last and \c false for \c make_copies on the first
1128 * call. Successive calls pass the return value of the previous call for
1129 * \c last and \c true for \c make_copies.
1130 *
1131 * \param instructions Source instruction stream
1132 * \param last Instruction after which new instructions should be
1133 * inserted in the target instruction stream
1134 * \param make_copies Flag selecting whether instructions in \c instructions
1135 * should be copied (via \c ir_instruction::clone) into the
1136 * target list or moved.
1137 *
1138 * \return
1139 * The new "last" instruction in the target instruction stream. This pointer
1140 * is suitable for use as the \c last parameter of a later call to this
1141 * function.
1142 */
1143 exec_node *
1144 move_non_declarations(exec_list *instructions, exec_node *last,
1145 bool make_copies, gl_shader *target)
1146 {
1147 hash_table *temps = NULL;
1148
1149 if (make_copies)
1150 temps = hash_table_ctor(0, hash_table_pointer_hash,
1151 hash_table_pointer_compare);
1152
1153 foreach_in_list_safe(ir_instruction, inst, instructions) {
1154 if (inst->as_function())
1155 continue;
1156
1157 ir_variable *var = inst->as_variable();
1158 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1159 continue;
1160
1161 assert(inst->as_assignment()
1162 || inst->as_call()
1163 || inst->as_if() /* for initializers with the ?: operator */
1164 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1165
1166 if (make_copies) {
1167 inst = inst->clone(target, NULL);
1168
1169 if (var != NULL)
1170 hash_table_insert(temps, inst, var);
1171 else
1172 remap_variables(inst, target, temps);
1173 } else {
1174 inst->remove();
1175 }
1176
1177 last->insert_after(inst);
1178 last = inst;
1179 }
1180
1181 if (make_copies)
1182 hash_table_dtor(temps);
1183
1184 return last;
1185 }
1186
1187 /**
1188 * Get the function signature for main from a shader
1189 */
1190 ir_function_signature *
1191 link_get_main_function_signature(gl_shader *sh)
1192 {
1193 ir_function *const f = sh->symbols->get_function("main");
1194 if (f != NULL) {
1195 exec_list void_parameters;
1196
1197 /* Look for the 'void main()' signature and ensure that it's defined.
1198 * This keeps the linker from accidentally pick a shader that just
1199 * contains a prototype for main.
1200 *
1201 * We don't have to check for multiple definitions of main (in multiple
1202 * shaders) because that would have already been caught above.
1203 */
1204 ir_function_signature *sig =
1205 f->matching_signature(NULL, &void_parameters, false);
1206 if ((sig != NULL) && sig->is_defined) {
1207 return sig;
1208 }
1209 }
1210
1211 return NULL;
1212 }
1213
1214
1215 /**
1216 * This class is only used in link_intrastage_shaders() below but declaring
1217 * it inside that function leads to compiler warnings with some versions of
1218 * gcc.
1219 */
1220 class array_sizing_visitor : public ir_hierarchical_visitor {
1221 public:
1222 array_sizing_visitor()
1223 : mem_ctx(ralloc_context(NULL)),
1224 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1225 hash_table_pointer_compare))
1226 {
1227 }
1228
1229 ~array_sizing_visitor()
1230 {
1231 hash_table_dtor(this->unnamed_interfaces);
1232 ralloc_free(this->mem_ctx);
1233 }
1234
1235 virtual ir_visitor_status visit(ir_variable *var)
1236 {
1237 fixup_type(&var->type, var->data.max_array_access);
1238 if (var->type->is_interface()) {
1239 if (interface_contains_unsized_arrays(var->type)) {
1240 const glsl_type *new_type =
1241 resize_interface_members(var->type,
1242 var->get_max_ifc_array_access());
1243 var->type = new_type;
1244 var->change_interface_type(new_type);
1245 }
1246 } else if (var->type->is_array() &&
1247 var->type->fields.array->is_interface()) {
1248 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1249 const glsl_type *new_type =
1250 resize_interface_members(var->type->fields.array,
1251 var->get_max_ifc_array_access());
1252 var->change_interface_type(new_type);
1253 var->type =
1254 glsl_type::get_array_instance(new_type, var->type->length);
1255 }
1256 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1257 /* Store a pointer to the variable in the unnamed_interfaces
1258 * hashtable.
1259 */
1260 ir_variable **interface_vars = (ir_variable **)
1261 hash_table_find(this->unnamed_interfaces, ifc_type);
1262 if (interface_vars == NULL) {
1263 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1264 ifc_type->length);
1265 hash_table_insert(this->unnamed_interfaces, interface_vars,
1266 ifc_type);
1267 }
1268 unsigned index = ifc_type->field_index(var->name);
1269 assert(index < ifc_type->length);
1270 assert(interface_vars[index] == NULL);
1271 interface_vars[index] = var;
1272 }
1273 return visit_continue;
1274 }
1275
1276 /**
1277 * For each unnamed interface block that was discovered while running the
1278 * visitor, adjust the interface type to reflect the newly assigned array
1279 * sizes, and fix up the ir_variable nodes to point to the new interface
1280 * type.
1281 */
1282 void fixup_unnamed_interface_types()
1283 {
1284 hash_table_call_foreach(this->unnamed_interfaces,
1285 fixup_unnamed_interface_type, NULL);
1286 }
1287
1288 private:
1289 /**
1290 * If the type pointed to by \c type represents an unsized array, replace
1291 * it with a sized array whose size is determined by max_array_access.
1292 */
1293 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1294 {
1295 if ((*type)->is_unsized_array()) {
1296 *type = glsl_type::get_array_instance((*type)->fields.array,
1297 max_array_access + 1);
1298 assert(*type != NULL);
1299 }
1300 }
1301
1302 /**
1303 * Determine whether the given interface type contains unsized arrays (if
1304 * it doesn't, array_sizing_visitor doesn't need to process it).
1305 */
1306 static bool interface_contains_unsized_arrays(const glsl_type *type)
1307 {
1308 for (unsigned i = 0; i < type->length; i++) {
1309 const glsl_type *elem_type = type->fields.structure[i].type;
1310 if (elem_type->is_unsized_array())
1311 return true;
1312 }
1313 return false;
1314 }
1315
1316 /**
1317 * Create a new interface type based on the given type, with unsized arrays
1318 * replaced by sized arrays whose size is determined by
1319 * max_ifc_array_access.
1320 */
1321 static const glsl_type *
1322 resize_interface_members(const glsl_type *type,
1323 const unsigned *max_ifc_array_access)
1324 {
1325 unsigned num_fields = type->length;
1326 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1327 memcpy(fields, type->fields.structure,
1328 num_fields * sizeof(*fields));
1329 for (unsigned i = 0; i < num_fields; i++) {
1330 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1331 }
1332 glsl_interface_packing packing =
1333 (glsl_interface_packing) type->interface_packing;
1334 const glsl_type *new_ifc_type =
1335 glsl_type::get_interface_instance(fields, num_fields,
1336 packing, type->name);
1337 delete [] fields;
1338 return new_ifc_type;
1339 }
1340
1341 static void fixup_unnamed_interface_type(const void *key, void *data,
1342 void *)
1343 {
1344 const glsl_type *ifc_type = (const glsl_type *) key;
1345 ir_variable **interface_vars = (ir_variable **) data;
1346 unsigned num_fields = ifc_type->length;
1347 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1348 memcpy(fields, ifc_type->fields.structure,
1349 num_fields * sizeof(*fields));
1350 bool interface_type_changed = false;
1351 for (unsigned i = 0; i < num_fields; i++) {
1352 if (interface_vars[i] != NULL &&
1353 fields[i].type != interface_vars[i]->type) {
1354 fields[i].type = interface_vars[i]->type;
1355 interface_type_changed = true;
1356 }
1357 }
1358 if (!interface_type_changed) {
1359 delete [] fields;
1360 return;
1361 }
1362 glsl_interface_packing packing =
1363 (glsl_interface_packing) ifc_type->interface_packing;
1364 const glsl_type *new_ifc_type =
1365 glsl_type::get_interface_instance(fields, num_fields, packing,
1366 ifc_type->name);
1367 delete [] fields;
1368 for (unsigned i = 0; i < num_fields; i++) {
1369 if (interface_vars[i] != NULL)
1370 interface_vars[i]->change_interface_type(new_ifc_type);
1371 }
1372 }
1373
1374 /**
1375 * Memory context used to allocate the data in \c unnamed_interfaces.
1376 */
1377 void *mem_ctx;
1378
1379 /**
1380 * Hash table from const glsl_type * to an array of ir_variable *'s
1381 * pointing to the ir_variables constituting each unnamed interface block.
1382 */
1383 hash_table *unnamed_interfaces;
1384 };
1385
1386 /**
1387 * Performs the cross-validation of layout qualifiers specified in
1388 * redeclaration of gl_FragCoord for the attached fragment shaders,
1389 * and propagates them to the linked FS and linked shader program.
1390 */
1391 static void
1392 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1393 struct gl_shader *linked_shader,
1394 struct gl_shader **shader_list,
1395 unsigned num_shaders)
1396 {
1397 linked_shader->redeclares_gl_fragcoord = false;
1398 linked_shader->uses_gl_fragcoord = false;
1399 linked_shader->origin_upper_left = false;
1400 linked_shader->pixel_center_integer = false;
1401
1402 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1403 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1404 return;
1405
1406 for (unsigned i = 0; i < num_shaders; i++) {
1407 struct gl_shader *shader = shader_list[i];
1408 /* From the GLSL 1.50 spec, page 39:
1409 *
1410 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1411 * it must be redeclared in all the fragment shaders in that program
1412 * that have a static use gl_FragCoord."
1413 */
1414 if ((linked_shader->redeclares_gl_fragcoord
1415 && !shader->redeclares_gl_fragcoord
1416 && shader->uses_gl_fragcoord)
1417 || (shader->redeclares_gl_fragcoord
1418 && !linked_shader->redeclares_gl_fragcoord
1419 && linked_shader->uses_gl_fragcoord)) {
1420 linker_error(prog, "fragment shader defined with conflicting "
1421 "layout qualifiers for gl_FragCoord\n");
1422 }
1423
1424 /* From the GLSL 1.50 spec, page 39:
1425 *
1426 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1427 * single program must have the same set of qualifiers."
1428 */
1429 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1430 && (shader->origin_upper_left != linked_shader->origin_upper_left
1431 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1432 linker_error(prog, "fragment shader defined with conflicting "
1433 "layout qualifiers for gl_FragCoord\n");
1434 }
1435
1436 /* Update the linked shader state. Note that uses_gl_fragcoord should
1437 * accumulate the results. The other values should replace. If there
1438 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1439 * are already known to be the same.
1440 */
1441 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1442 linked_shader->redeclares_gl_fragcoord =
1443 shader->redeclares_gl_fragcoord;
1444 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1445 || shader->uses_gl_fragcoord;
1446 linked_shader->origin_upper_left = shader->origin_upper_left;
1447 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1448 }
1449
1450 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1451 }
1452 }
1453
1454 /**
1455 * Performs the cross-validation of geometry shader max_vertices and
1456 * primitive type layout qualifiers for the attached geometry shaders,
1457 * and propagates them to the linked GS and linked shader program.
1458 */
1459 static void
1460 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1461 struct gl_shader *linked_shader,
1462 struct gl_shader **shader_list,
1463 unsigned num_shaders)
1464 {
1465 linked_shader->Geom.VerticesOut = 0;
1466 linked_shader->Geom.Invocations = 0;
1467 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1468 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1469
1470 /* No in/out qualifiers defined for anything but GLSL 1.50+
1471 * geometry shaders so far.
1472 */
1473 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1474 return;
1475
1476 /* From the GLSL 1.50 spec, page 46:
1477 *
1478 * "All geometry shader output layout declarations in a program
1479 * must declare the same layout and same value for
1480 * max_vertices. There must be at least one geometry output
1481 * layout declaration somewhere in a program, but not all
1482 * geometry shaders (compilation units) are required to
1483 * declare it."
1484 */
1485
1486 for (unsigned i = 0; i < num_shaders; i++) {
1487 struct gl_shader *shader = shader_list[i];
1488
1489 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1490 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1491 linked_shader->Geom.InputType != shader->Geom.InputType) {
1492 linker_error(prog, "geometry shader defined with conflicting "
1493 "input types\n");
1494 return;
1495 }
1496 linked_shader->Geom.InputType = shader->Geom.InputType;
1497 }
1498
1499 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1500 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1501 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1502 linker_error(prog, "geometry shader defined with conflicting "
1503 "output types\n");
1504 return;
1505 }
1506 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1507 }
1508
1509 if (shader->Geom.VerticesOut != 0) {
1510 if (linked_shader->Geom.VerticesOut != 0 &&
1511 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1512 linker_error(prog, "geometry shader defined with conflicting "
1513 "output vertex count (%d and %d)\n",
1514 linked_shader->Geom.VerticesOut,
1515 shader->Geom.VerticesOut);
1516 return;
1517 }
1518 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1519 }
1520
1521 if (shader->Geom.Invocations != 0) {
1522 if (linked_shader->Geom.Invocations != 0 &&
1523 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1524 linker_error(prog, "geometry shader defined with conflicting "
1525 "invocation count (%d and %d)\n",
1526 linked_shader->Geom.Invocations,
1527 shader->Geom.Invocations);
1528 return;
1529 }
1530 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1531 }
1532 }
1533
1534 /* Just do the intrastage -> interstage propagation right now,
1535 * since we already know we're in the right type of shader program
1536 * for doing it.
1537 */
1538 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1539 linker_error(prog,
1540 "geometry shader didn't declare primitive input type\n");
1541 return;
1542 }
1543 prog->Geom.InputType = linked_shader->Geom.InputType;
1544
1545 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1546 linker_error(prog,
1547 "geometry shader didn't declare primitive output type\n");
1548 return;
1549 }
1550 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1551
1552 if (linked_shader->Geom.VerticesOut == 0) {
1553 linker_error(prog,
1554 "geometry shader didn't declare max_vertices\n");
1555 return;
1556 }
1557 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1558
1559 if (linked_shader->Geom.Invocations == 0)
1560 linked_shader->Geom.Invocations = 1;
1561
1562 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1563 }
1564
1565
1566 /**
1567 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1568 * qualifiers for the attached compute shaders, and propagate them to the
1569 * linked CS and linked shader program.
1570 */
1571 static void
1572 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1573 struct gl_shader *linked_shader,
1574 struct gl_shader **shader_list,
1575 unsigned num_shaders)
1576 {
1577 for (int i = 0; i < 3; i++)
1578 linked_shader->Comp.LocalSize[i] = 0;
1579
1580 /* This function is called for all shader stages, but it only has an effect
1581 * for compute shaders.
1582 */
1583 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1584 return;
1585
1586 /* From the ARB_compute_shader spec, in the section describing local size
1587 * declarations:
1588 *
1589 * If multiple compute shaders attached to a single program object
1590 * declare local work-group size, the declarations must be identical;
1591 * otherwise a link-time error results. Furthermore, if a program
1592 * object contains any compute shaders, at least one must contain an
1593 * input layout qualifier specifying the local work sizes of the
1594 * program, or a link-time error will occur.
1595 */
1596 for (unsigned sh = 0; sh < num_shaders; sh++) {
1597 struct gl_shader *shader = shader_list[sh];
1598
1599 if (shader->Comp.LocalSize[0] != 0) {
1600 if (linked_shader->Comp.LocalSize[0] != 0) {
1601 for (int i = 0; i < 3; i++) {
1602 if (linked_shader->Comp.LocalSize[i] !=
1603 shader->Comp.LocalSize[i]) {
1604 linker_error(prog, "compute shader defined with conflicting "
1605 "local sizes\n");
1606 return;
1607 }
1608 }
1609 }
1610 for (int i = 0; i < 3; i++)
1611 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1612 }
1613 }
1614
1615 /* Just do the intrastage -> interstage propagation right now,
1616 * since we already know we're in the right type of shader program
1617 * for doing it.
1618 */
1619 if (linked_shader->Comp.LocalSize[0] == 0) {
1620 linker_error(prog, "compute shader didn't declare local size\n");
1621 return;
1622 }
1623 for (int i = 0; i < 3; i++)
1624 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1625 }
1626
1627
1628 /**
1629 * Combine a group of shaders for a single stage to generate a linked shader
1630 *
1631 * \note
1632 * If this function is supplied a single shader, it is cloned, and the new
1633 * shader is returned.
1634 */
1635 static struct gl_shader *
1636 link_intrastage_shaders(void *mem_ctx,
1637 struct gl_context *ctx,
1638 struct gl_shader_program *prog,
1639 struct gl_shader **shader_list,
1640 unsigned num_shaders)
1641 {
1642 struct gl_uniform_block *uniform_blocks = NULL;
1643
1644 /* Check that global variables defined in multiple shaders are consistent.
1645 */
1646 cross_validate_globals(prog, shader_list, num_shaders, false);
1647 if (!prog->LinkStatus)
1648 return NULL;
1649
1650 /* Check that interface blocks defined in multiple shaders are consistent.
1651 */
1652 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1653 num_shaders);
1654 if (!prog->LinkStatus)
1655 return NULL;
1656
1657 /* Link up uniform blocks defined within this stage. */
1658 const unsigned num_uniform_blocks =
1659 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1660 &uniform_blocks);
1661 if (!prog->LinkStatus)
1662 return NULL;
1663
1664 /* Check that there is only a single definition of each function signature
1665 * across all shaders.
1666 */
1667 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1668 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1669 ir_function *const f = node->as_function();
1670
1671 if (f == NULL)
1672 continue;
1673
1674 for (unsigned j = i + 1; j < num_shaders; j++) {
1675 ir_function *const other =
1676 shader_list[j]->symbols->get_function(f->name);
1677
1678 /* If the other shader has no function (and therefore no function
1679 * signatures) with the same name, skip to the next shader.
1680 */
1681 if (other == NULL)
1682 continue;
1683
1684 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1685 if (!sig->is_defined || sig->is_builtin())
1686 continue;
1687
1688 ir_function_signature *other_sig =
1689 other->exact_matching_signature(NULL, &sig->parameters);
1690
1691 if ((other_sig != NULL) && other_sig->is_defined
1692 && !other_sig->is_builtin()) {
1693 linker_error(prog, "function `%s' is multiply defined\n",
1694 f->name);
1695 return NULL;
1696 }
1697 }
1698 }
1699 }
1700 }
1701
1702 /* Find the shader that defines main, and make a clone of it.
1703 *
1704 * Starting with the clone, search for undefined references. If one is
1705 * found, find the shader that defines it. Clone the reference and add
1706 * it to the shader. Repeat until there are no undefined references or
1707 * until a reference cannot be resolved.
1708 */
1709 gl_shader *main = NULL;
1710 for (unsigned i = 0; i < num_shaders; i++) {
1711 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1712 main = shader_list[i];
1713 break;
1714 }
1715 }
1716
1717 if (main == NULL) {
1718 linker_error(prog, "%s shader lacks `main'\n",
1719 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1720 return NULL;
1721 }
1722
1723 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1724 linked->ir = new(linked) exec_list;
1725 clone_ir_list(mem_ctx, linked->ir, main->ir);
1726
1727 linked->UniformBlocks = uniform_blocks;
1728 linked->NumUniformBlocks = num_uniform_blocks;
1729 ralloc_steal(linked, linked->UniformBlocks);
1730
1731 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1732 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1733 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1734
1735 populate_symbol_table(linked);
1736
1737 /* The pointer to the main function in the final linked shader (i.e., the
1738 * copy of the original shader that contained the main function).
1739 */
1740 ir_function_signature *const main_sig =
1741 link_get_main_function_signature(linked);
1742
1743 /* Move any instructions other than variable declarations or function
1744 * declarations into main.
1745 */
1746 exec_node *insertion_point =
1747 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1748 linked);
1749
1750 for (unsigned i = 0; i < num_shaders; i++) {
1751 if (shader_list[i] == main)
1752 continue;
1753
1754 insertion_point = move_non_declarations(shader_list[i]->ir,
1755 insertion_point, true, linked);
1756 }
1757
1758 /* Check if any shader needs built-in functions. */
1759 bool need_builtins = false;
1760 for (unsigned i = 0; i < num_shaders; i++) {
1761 if (shader_list[i]->uses_builtin_functions) {
1762 need_builtins = true;
1763 break;
1764 }
1765 }
1766
1767 bool ok;
1768 if (need_builtins) {
1769 /* Make a temporary array one larger than shader_list, which will hold
1770 * the built-in function shader as well.
1771 */
1772 gl_shader **linking_shaders = (gl_shader **)
1773 calloc(num_shaders + 1, sizeof(gl_shader *));
1774
1775 ok = linking_shaders != NULL;
1776
1777 if (ok) {
1778 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1779 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1780
1781 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1782
1783 free(linking_shaders);
1784 } else {
1785 _mesa_error_no_memory(__func__);
1786 }
1787 } else {
1788 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1789 }
1790
1791
1792 if (!ok) {
1793 ctx->Driver.DeleteShader(ctx, linked);
1794 return NULL;
1795 }
1796
1797 /* At this point linked should contain all of the linked IR, so
1798 * validate it to make sure nothing went wrong.
1799 */
1800 validate_ir_tree(linked->ir);
1801
1802 /* Set the size of geometry shader input arrays */
1803 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1804 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1805 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1806 foreach_in_list(ir_instruction, ir, linked->ir) {
1807 ir->accept(&input_resize_visitor);
1808 }
1809 }
1810
1811 if (ctx->Const.VertexID_is_zero_based)
1812 lower_vertex_id(linked);
1813
1814 /* Make a pass over all variable declarations to ensure that arrays with
1815 * unspecified sizes have a size specified. The size is inferred from the
1816 * max_array_access field.
1817 */
1818 array_sizing_visitor v;
1819 v.run(linked->ir);
1820 v.fixup_unnamed_interface_types();
1821
1822 return linked;
1823 }
1824
1825 /**
1826 * Update the sizes of linked shader uniform arrays to the maximum
1827 * array index used.
1828 *
1829 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1830 *
1831 * If one or more elements of an array are active,
1832 * GetActiveUniform will return the name of the array in name,
1833 * subject to the restrictions listed above. The type of the array
1834 * is returned in type. The size parameter contains the highest
1835 * array element index used, plus one. The compiler or linker
1836 * determines the highest index used. There will be only one
1837 * active uniform reported by the GL per uniform array.
1838
1839 */
1840 static void
1841 update_array_sizes(struct gl_shader_program *prog)
1842 {
1843 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1844 if (prog->_LinkedShaders[i] == NULL)
1845 continue;
1846
1847 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1848 ir_variable *const var = node->as_variable();
1849
1850 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1851 !var->type->is_array())
1852 continue;
1853
1854 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1855 * will not be eliminated. Since we always do std140, just
1856 * don't resize arrays in UBOs.
1857 *
1858 * Atomic counters are supposed to get deterministic
1859 * locations assigned based on the declaration ordering and
1860 * sizes, array compaction would mess that up.
1861 */
1862 if (var->is_in_uniform_block() || var->type->contains_atomic())
1863 continue;
1864
1865 unsigned int size = var->data.max_array_access;
1866 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1867 if (prog->_LinkedShaders[j] == NULL)
1868 continue;
1869
1870 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1871 ir_variable *other_var = node2->as_variable();
1872 if (!other_var)
1873 continue;
1874
1875 if (strcmp(var->name, other_var->name) == 0 &&
1876 other_var->data.max_array_access > size) {
1877 size = other_var->data.max_array_access;
1878 }
1879 }
1880 }
1881
1882 if (size + 1 != var->type->length) {
1883 /* If this is a built-in uniform (i.e., it's backed by some
1884 * fixed-function state), adjust the number of state slots to
1885 * match the new array size. The number of slots per array entry
1886 * is not known. It seems safe to assume that the total number of
1887 * slots is an integer multiple of the number of array elements.
1888 * Determine the number of slots per array element by dividing by
1889 * the old (total) size.
1890 */
1891 const unsigned num_slots = var->get_num_state_slots();
1892 if (num_slots > 0) {
1893 var->set_num_state_slots((size + 1)
1894 * (num_slots / var->type->length));
1895 }
1896
1897 var->type = glsl_type::get_array_instance(var->type->fields.array,
1898 size + 1);
1899 /* FINISHME: We should update the types of array
1900 * dereferences of this variable now.
1901 */
1902 }
1903 }
1904 }
1905 }
1906
1907 /**
1908 * Find a contiguous set of available bits in a bitmask.
1909 *
1910 * \param used_mask Bits representing used (1) and unused (0) locations
1911 * \param needed_count Number of contiguous bits needed.
1912 *
1913 * \return
1914 * Base location of the available bits on success or -1 on failure.
1915 */
1916 int
1917 find_available_slots(unsigned used_mask, unsigned needed_count)
1918 {
1919 unsigned needed_mask = (1 << needed_count) - 1;
1920 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1921
1922 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1923 * cannot optimize possibly infinite loops" for the loop below.
1924 */
1925 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1926 return -1;
1927
1928 for (int i = 0; i <= max_bit_to_test; i++) {
1929 if ((needed_mask & ~used_mask) == needed_mask)
1930 return i;
1931
1932 needed_mask <<= 1;
1933 }
1934
1935 return -1;
1936 }
1937
1938
1939 /**
1940 * Assign locations for either VS inputs or FS outputs
1941 *
1942 * \param prog Shader program whose variables need locations assigned
1943 * \param target_index Selector for the program target to receive location
1944 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1945 * \c MESA_SHADER_FRAGMENT.
1946 * \param max_index Maximum number of generic locations. This corresponds
1947 * to either the maximum number of draw buffers or the
1948 * maximum number of generic attributes.
1949 *
1950 * \return
1951 * If locations are successfully assigned, true is returned. Otherwise an
1952 * error is emitted to the shader link log and false is returned.
1953 */
1954 bool
1955 assign_attribute_or_color_locations(gl_shader_program *prog,
1956 unsigned target_index,
1957 unsigned max_index)
1958 {
1959 /* Mark invalid locations as being used.
1960 */
1961 unsigned used_locations = (max_index >= 32)
1962 ? ~0 : ~((1 << max_index) - 1);
1963
1964 assert((target_index == MESA_SHADER_VERTEX)
1965 || (target_index == MESA_SHADER_FRAGMENT));
1966
1967 gl_shader *const sh = prog->_LinkedShaders[target_index];
1968 if (sh == NULL)
1969 return true;
1970
1971 /* Operate in a total of four passes.
1972 *
1973 * 1. Invalidate the location assignments for all vertex shader inputs.
1974 *
1975 * 2. Assign locations for inputs that have user-defined (via
1976 * glBindVertexAttribLocation) locations and outputs that have
1977 * user-defined locations (via glBindFragDataLocation).
1978 *
1979 * 3. Sort the attributes without assigned locations by number of slots
1980 * required in decreasing order. Fragmentation caused by attribute
1981 * locations assigned by the application may prevent large attributes
1982 * from having enough contiguous space.
1983 *
1984 * 4. Assign locations to any inputs without assigned locations.
1985 */
1986
1987 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1988 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1989
1990 const enum ir_variable_mode direction =
1991 (target_index == MESA_SHADER_VERTEX)
1992 ? ir_var_shader_in : ir_var_shader_out;
1993
1994
1995 /* Temporary storage for the set of attributes that need locations assigned.
1996 */
1997 struct temp_attr {
1998 unsigned slots;
1999 ir_variable *var;
2000
2001 /* Used below in the call to qsort. */
2002 static int compare(const void *a, const void *b)
2003 {
2004 const temp_attr *const l = (const temp_attr *) a;
2005 const temp_attr *const r = (const temp_attr *) b;
2006
2007 /* Reversed because we want a descending order sort below. */
2008 return r->slots - l->slots;
2009 }
2010 } to_assign[16];
2011
2012 unsigned num_attr = 0;
2013 unsigned total_attribs_size = 0;
2014
2015 foreach_in_list(ir_instruction, node, sh->ir) {
2016 ir_variable *const var = node->as_variable();
2017
2018 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2019 continue;
2020
2021 if (var->data.explicit_location) {
2022 if ((var->data.location >= (int)(max_index + generic_base))
2023 || (var->data.location < 0)) {
2024 linker_error(prog,
2025 "invalid explicit location %d specified for `%s'\n",
2026 (var->data.location < 0)
2027 ? var->data.location
2028 : var->data.location - generic_base,
2029 var->name);
2030 return false;
2031 }
2032 } else if (target_index == MESA_SHADER_VERTEX) {
2033 unsigned binding;
2034
2035 if (prog->AttributeBindings->get(binding, var->name)) {
2036 assert(binding >= VERT_ATTRIB_GENERIC0);
2037 var->data.location = binding;
2038 var->data.is_unmatched_generic_inout = 0;
2039 }
2040 } else if (target_index == MESA_SHADER_FRAGMENT) {
2041 unsigned binding;
2042 unsigned index;
2043
2044 if (prog->FragDataBindings->get(binding, var->name)) {
2045 assert(binding >= FRAG_RESULT_DATA0);
2046 var->data.location = binding;
2047 var->data.is_unmatched_generic_inout = 0;
2048
2049 if (prog->FragDataIndexBindings->get(index, var->name)) {
2050 var->data.index = index;
2051 }
2052 }
2053 }
2054
2055 const unsigned slots = var->type->count_attribute_slots();
2056
2057 /* From GL4.5 core spec, section 11.1.1 (Vertex Attributes):
2058 *
2059 * "A program with more than the value of MAX_VERTEX_ATTRIBS active
2060 * attribute variables may fail to link, unless device-dependent
2061 * optimizations are able to make the program fit within available
2062 * hardware resources. For the purposes of this test, attribute variables
2063 * of the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3,
2064 * and dmat4 may count as consuming twice as many attributes as equivalent
2065 * single-precision types. While these types use the same number of
2066 * generic attributes as their single-precision equivalents,
2067 * implementations are permitted to consume two single-precision vectors
2068 * of internal storage for each three- or four-component double-precision
2069 * vector."
2070 * Until someone has a good reason in Mesa, enforce that now.
2071 */
2072 if (target_index == MESA_SHADER_VERTEX) {
2073 total_attribs_size += slots;
2074 if (var->type->without_array() == glsl_type::dvec3_type ||
2075 var->type->without_array() == glsl_type::dvec4_type ||
2076 var->type->without_array() == glsl_type::dmat2x3_type ||
2077 var->type->without_array() == glsl_type::dmat2x4_type ||
2078 var->type->without_array() == glsl_type::dmat3_type ||
2079 var->type->without_array() == glsl_type::dmat3x4_type ||
2080 var->type->without_array() == glsl_type::dmat4x3_type ||
2081 var->type->without_array() == glsl_type::dmat4_type)
2082 total_attribs_size += slots;
2083 }
2084
2085 /* If the variable is not a built-in and has a location statically
2086 * assigned in the shader (presumably via a layout qualifier), make sure
2087 * that it doesn't collide with other assigned locations. Otherwise,
2088 * add it to the list of variables that need linker-assigned locations.
2089 */
2090 if (var->data.location != -1) {
2091 if (var->data.location >= generic_base && var->data.index < 1) {
2092 /* From page 61 of the OpenGL 4.0 spec:
2093 *
2094 * "LinkProgram will fail if the attribute bindings assigned
2095 * by BindAttribLocation do not leave not enough space to
2096 * assign a location for an active matrix attribute or an
2097 * active attribute array, both of which require multiple
2098 * contiguous generic attributes."
2099 *
2100 * I think above text prohibits the aliasing of explicit and
2101 * automatic assignments. But, aliasing is allowed in manual
2102 * assignments of attribute locations. See below comments for
2103 * the details.
2104 *
2105 * From OpenGL 4.0 spec, page 61:
2106 *
2107 * "It is possible for an application to bind more than one
2108 * attribute name to the same location. This is referred to as
2109 * aliasing. This will only work if only one of the aliased
2110 * attributes is active in the executable program, or if no
2111 * path through the shader consumes more than one attribute of
2112 * a set of attributes aliased to the same location. A link
2113 * error can occur if the linker determines that every path
2114 * through the shader consumes multiple aliased attributes,
2115 * but implementations are not required to generate an error
2116 * in this case."
2117 *
2118 * From GLSL 4.30 spec, page 54:
2119 *
2120 * "A program will fail to link if any two non-vertex shader
2121 * input variables are assigned to the same location. For
2122 * vertex shaders, multiple input variables may be assigned
2123 * to the same location using either layout qualifiers or via
2124 * the OpenGL API. However, such aliasing is intended only to
2125 * support vertex shaders where each execution path accesses
2126 * at most one input per each location. Implementations are
2127 * permitted, but not required, to generate link-time errors
2128 * if they detect that every path through the vertex shader
2129 * executable accesses multiple inputs assigned to any single
2130 * location. For all shader types, a program will fail to link
2131 * if explicit location assignments leave the linker unable
2132 * to find space for other variables without explicit
2133 * assignments."
2134 *
2135 * From OpenGL ES 3.0 spec, page 56:
2136 *
2137 * "Binding more than one attribute name to the same location
2138 * is referred to as aliasing, and is not permitted in OpenGL
2139 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2140 * fail when this condition exists. However, aliasing is
2141 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2142 * This will only work if only one of the aliased attributes
2143 * is active in the executable program, or if no path through
2144 * the shader consumes more than one attribute of a set of
2145 * attributes aliased to the same location. A link error can
2146 * occur if the linker determines that every path through the
2147 * shader consumes multiple aliased attributes, but implemen-
2148 * tations are not required to generate an error in this case."
2149 *
2150 * After looking at above references from OpenGL, OpenGL ES and
2151 * GLSL specifications, we allow aliasing of vertex input variables
2152 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2153 *
2154 * NOTE: This is not required by the spec but its worth mentioning
2155 * here that we're not doing anything to make sure that no path
2156 * through the vertex shader executable accesses multiple inputs
2157 * assigned to any single location.
2158 */
2159
2160 /* Mask representing the contiguous slots that will be used by
2161 * this attribute.
2162 */
2163 const unsigned attr = var->data.location - generic_base;
2164 const unsigned use_mask = (1 << slots) - 1;
2165 const char *const string = (target_index == MESA_SHADER_VERTEX)
2166 ? "vertex shader input" : "fragment shader output";
2167
2168 /* Generate a link error if the requested locations for this
2169 * attribute exceed the maximum allowed attribute location.
2170 */
2171 if (attr + slots > max_index) {
2172 linker_error(prog,
2173 "insufficient contiguous locations "
2174 "available for %s `%s' %d %d %d\n", string,
2175 var->name, used_locations, use_mask, attr);
2176 return false;
2177 }
2178
2179 /* Generate a link error if the set of bits requested for this
2180 * attribute overlaps any previously allocated bits.
2181 */
2182 if ((~(use_mask << attr) & used_locations) != used_locations) {
2183 if (target_index == MESA_SHADER_FRAGMENT ||
2184 (prog->IsES && prog->Version >= 300)) {
2185 linker_error(prog,
2186 "overlapping location is assigned "
2187 "to %s `%s' %d %d %d\n", string,
2188 var->name, used_locations, use_mask, attr);
2189 return false;
2190 } else {
2191 linker_warning(prog,
2192 "overlapping location is assigned "
2193 "to %s `%s' %d %d %d\n", string,
2194 var->name, used_locations, use_mask, attr);
2195 }
2196 }
2197
2198 used_locations |= (use_mask << attr);
2199 }
2200
2201 continue;
2202 }
2203
2204 to_assign[num_attr].slots = slots;
2205 to_assign[num_attr].var = var;
2206 num_attr++;
2207 }
2208
2209 if (target_index == MESA_SHADER_VERTEX) {
2210 if (total_attribs_size > max_index) {
2211 linker_error(prog,
2212 "attempt to use %d vertex attribute slots only %d available ",
2213 total_attribs_size, max_index);
2214 return false;
2215 }
2216 }
2217
2218 /* If all of the attributes were assigned locations by the application (or
2219 * are built-in attributes with fixed locations), return early. This should
2220 * be the common case.
2221 */
2222 if (num_attr == 0)
2223 return true;
2224
2225 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2226
2227 if (target_index == MESA_SHADER_VERTEX) {
2228 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2229 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2230 * reserved to prevent it from being automatically allocated below.
2231 */
2232 find_deref_visitor find("gl_Vertex");
2233 find.run(sh->ir);
2234 if (find.variable_found())
2235 used_locations |= (1 << 0);
2236 }
2237
2238 for (unsigned i = 0; i < num_attr; i++) {
2239 /* Mask representing the contiguous slots that will be used by this
2240 * attribute.
2241 */
2242 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2243
2244 int location = find_available_slots(used_locations, to_assign[i].slots);
2245
2246 if (location < 0) {
2247 const char *const string = (target_index == MESA_SHADER_VERTEX)
2248 ? "vertex shader input" : "fragment shader output";
2249
2250 linker_error(prog,
2251 "insufficient contiguous locations "
2252 "available for %s `%s'\n",
2253 string, to_assign[i].var->name);
2254 return false;
2255 }
2256
2257 to_assign[i].var->data.location = generic_base + location;
2258 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2259 used_locations |= (use_mask << location);
2260 }
2261
2262 return true;
2263 }
2264
2265
2266 /**
2267 * Demote shader inputs and outputs that are not used in other stages
2268 */
2269 void
2270 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2271 {
2272 foreach_in_list(ir_instruction, node, sh->ir) {
2273 ir_variable *const var = node->as_variable();
2274
2275 if ((var == NULL) || (var->data.mode != int(mode)))
2276 continue;
2277
2278 /* A shader 'in' or 'out' variable is only really an input or output if
2279 * its value is used by other shader stages. This will cause the variable
2280 * to have a location assigned.
2281 */
2282 if (var->data.is_unmatched_generic_inout) {
2283 assert(var->data.mode != ir_var_temporary);
2284 var->data.mode = ir_var_auto;
2285 }
2286 }
2287 }
2288
2289
2290 /**
2291 * Store the gl_FragDepth layout in the gl_shader_program struct.
2292 */
2293 static void
2294 store_fragdepth_layout(struct gl_shader_program *prog)
2295 {
2296 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2297 return;
2298 }
2299
2300 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2301
2302 /* We don't look up the gl_FragDepth symbol directly because if
2303 * gl_FragDepth is not used in the shader, it's removed from the IR.
2304 * However, the symbol won't be removed from the symbol table.
2305 *
2306 * We're only interested in the cases where the variable is NOT removed
2307 * from the IR.
2308 */
2309 foreach_in_list(ir_instruction, node, ir) {
2310 ir_variable *const var = node->as_variable();
2311
2312 if (var == NULL || var->data.mode != ir_var_shader_out) {
2313 continue;
2314 }
2315
2316 if (strcmp(var->name, "gl_FragDepth") == 0) {
2317 switch (var->data.depth_layout) {
2318 case ir_depth_layout_none:
2319 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2320 return;
2321 case ir_depth_layout_any:
2322 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2323 return;
2324 case ir_depth_layout_greater:
2325 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2326 return;
2327 case ir_depth_layout_less:
2328 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2329 return;
2330 case ir_depth_layout_unchanged:
2331 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2332 return;
2333 default:
2334 assert(0);
2335 return;
2336 }
2337 }
2338 }
2339 }
2340
2341 /**
2342 * Validate the resources used by a program versus the implementation limits
2343 */
2344 static void
2345 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2346 {
2347 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2348 struct gl_shader *sh = prog->_LinkedShaders[i];
2349
2350 if (sh == NULL)
2351 continue;
2352
2353 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2354 linker_error(prog, "Too many %s shader texture samplers\n",
2355 _mesa_shader_stage_to_string(i));
2356 }
2357
2358 if (sh->num_uniform_components >
2359 ctx->Const.Program[i].MaxUniformComponents) {
2360 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2361 linker_warning(prog, "Too many %s shader default uniform block "
2362 "components, but the driver will try to optimize "
2363 "them out; this is non-portable out-of-spec "
2364 "behavior\n",
2365 _mesa_shader_stage_to_string(i));
2366 } else {
2367 linker_error(prog, "Too many %s shader default uniform block "
2368 "components\n",
2369 _mesa_shader_stage_to_string(i));
2370 }
2371 }
2372
2373 if (sh->num_combined_uniform_components >
2374 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2375 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2376 linker_warning(prog, "Too many %s shader uniform components, "
2377 "but the driver will try to optimize them out; "
2378 "this is non-portable out-of-spec behavior\n",
2379 _mesa_shader_stage_to_string(i));
2380 } else {
2381 linker_error(prog, "Too many %s shader uniform components\n",
2382 _mesa_shader_stage_to_string(i));
2383 }
2384 }
2385 }
2386
2387 unsigned blocks[MESA_SHADER_STAGES] = {0};
2388 unsigned total_uniform_blocks = 0;
2389
2390 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2391 if (prog->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2392 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2393 prog->UniformBlocks[i].Name,
2394 prog->UniformBlocks[i].UniformBufferSize,
2395 ctx->Const.MaxUniformBlockSize);
2396 }
2397
2398 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2399 if (prog->UniformBlockStageIndex[j][i] != -1) {
2400 blocks[j]++;
2401 total_uniform_blocks++;
2402 }
2403 }
2404
2405 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2406 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2407 prog->NumUniformBlocks,
2408 ctx->Const.MaxCombinedUniformBlocks);
2409 } else {
2410 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2411 const unsigned max_uniform_blocks =
2412 ctx->Const.Program[i].MaxUniformBlocks;
2413 if (blocks[i] > max_uniform_blocks) {
2414 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2415 _mesa_shader_stage_to_string(i),
2416 blocks[i],
2417 max_uniform_blocks);
2418 break;
2419 }
2420 }
2421 }
2422 }
2423 }
2424
2425 /**
2426 * Validate shader image resources.
2427 */
2428 static void
2429 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2430 {
2431 unsigned total_image_units = 0;
2432 unsigned fragment_outputs = 0;
2433
2434 if (!ctx->Extensions.ARB_shader_image_load_store)
2435 return;
2436
2437 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2438 struct gl_shader *sh = prog->_LinkedShaders[i];
2439
2440 if (sh) {
2441 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2442 linker_error(prog, "Too many %s shader image uniforms\n",
2443 _mesa_shader_stage_to_string(i));
2444
2445 total_image_units += sh->NumImages;
2446
2447 if (i == MESA_SHADER_FRAGMENT) {
2448 foreach_in_list(ir_instruction, node, sh->ir) {
2449 ir_variable *var = node->as_variable();
2450 if (var && var->data.mode == ir_var_shader_out)
2451 fragment_outputs += var->type->count_attribute_slots();
2452 }
2453 }
2454 }
2455 }
2456
2457 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2458 linker_error(prog, "Too many combined image uniforms\n");
2459
2460 if (total_image_units + fragment_outputs >
2461 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2462 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2463 }
2464
2465
2466 /**
2467 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2468 * for a variable, checks for overlaps between other uniforms using explicit
2469 * locations.
2470 */
2471 static bool
2472 reserve_explicit_locations(struct gl_shader_program *prog,
2473 string_to_uint_map *map, ir_variable *var)
2474 {
2475 unsigned slots = var->type->uniform_locations();
2476 unsigned max_loc = var->data.location + slots - 1;
2477
2478 /* Resize remap table if locations do not fit in the current one. */
2479 if (max_loc + 1 > prog->NumUniformRemapTable) {
2480 prog->UniformRemapTable =
2481 reralloc(prog, prog->UniformRemapTable,
2482 gl_uniform_storage *,
2483 max_loc + 1);
2484
2485 if (!prog->UniformRemapTable) {
2486 linker_error(prog, "Out of memory during linking.\n");
2487 return false;
2488 }
2489
2490 /* Initialize allocated space. */
2491 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2492 prog->UniformRemapTable[i] = NULL;
2493
2494 prog->NumUniformRemapTable = max_loc + 1;
2495 }
2496
2497 for (unsigned i = 0; i < slots; i++) {
2498 unsigned loc = var->data.location + i;
2499
2500 /* Check if location is already used. */
2501 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2502
2503 /* Possibly same uniform from a different stage, this is ok. */
2504 unsigned hash_loc;
2505 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2506 continue;
2507
2508 /* ARB_explicit_uniform_location specification states:
2509 *
2510 * "No two default-block uniform variables in the program can have
2511 * the same location, even if they are unused, otherwise a compiler
2512 * or linker error will be generated."
2513 */
2514 linker_error(prog,
2515 "location qualifier for uniform %s overlaps "
2516 "previously used location\n",
2517 var->name);
2518 return false;
2519 }
2520
2521 /* Initialize location as inactive before optimization
2522 * rounds and location assignment.
2523 */
2524 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2525 }
2526
2527 /* Note, base location used for arrays. */
2528 map->put(var->data.location, var->name);
2529
2530 return true;
2531 }
2532
2533 /**
2534 * Check and reserve all explicit uniform locations, called before
2535 * any optimizations happen to handle also inactive uniforms and
2536 * inactive array elements that may get trimmed away.
2537 */
2538 static void
2539 check_explicit_uniform_locations(struct gl_context *ctx,
2540 struct gl_shader_program *prog)
2541 {
2542 if (!ctx->Extensions.ARB_explicit_uniform_location)
2543 return;
2544
2545 /* This map is used to detect if overlapping explicit locations
2546 * occur with the same uniform (from different stage) or a different one.
2547 */
2548 string_to_uint_map *uniform_map = new string_to_uint_map;
2549
2550 if (!uniform_map) {
2551 linker_error(prog, "Out of memory during linking.\n");
2552 return;
2553 }
2554
2555 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2556 struct gl_shader *sh = prog->_LinkedShaders[i];
2557
2558 if (!sh)
2559 continue;
2560
2561 foreach_in_list(ir_instruction, node, sh->ir) {
2562 ir_variable *var = node->as_variable();
2563 if ((var && var->data.mode == ir_var_uniform) &&
2564 var->data.explicit_location) {
2565 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2566 delete uniform_map;
2567 return;
2568 }
2569 }
2570 }
2571 }
2572
2573 delete uniform_map;
2574 }
2575
2576 static bool
2577 add_program_resource(struct gl_shader_program *prog, GLenum type,
2578 const void *data, uint8_t stages)
2579 {
2580 assert(data);
2581
2582 /* If resource already exists, do not add it again. */
2583 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
2584 if (prog->ProgramResourceList[i].Data == data)
2585 return true;
2586
2587 prog->ProgramResourceList =
2588 reralloc(prog,
2589 prog->ProgramResourceList,
2590 gl_program_resource,
2591 prog->NumProgramResourceList + 1);
2592
2593 if (!prog->ProgramResourceList) {
2594 linker_error(prog, "Out of memory during linking.\n");
2595 return false;
2596 }
2597
2598 struct gl_program_resource *res =
2599 &prog->ProgramResourceList[prog->NumProgramResourceList];
2600
2601 res->Type = type;
2602 res->Data = data;
2603 res->StageReferences = stages;
2604
2605 prog->NumProgramResourceList++;
2606
2607 return true;
2608 }
2609
2610 /**
2611 * Function builds a stage reference bitmask from variable name.
2612 */
2613 static uint8_t
2614 build_stageref(struct gl_shader_program *shProg, const char *name)
2615 {
2616 uint8_t stages = 0;
2617
2618 /* Note, that we assume MAX 8 stages, if there will be more stages, type
2619 * used for reference mask in gl_program_resource will need to be changed.
2620 */
2621 assert(MESA_SHADER_STAGES < 8);
2622
2623 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2624 struct gl_shader *sh = shProg->_LinkedShaders[i];
2625 if (!sh)
2626 continue;
2627
2628 /* Shader symbol table may contain variables that have
2629 * been optimized away. Search IR for the variable instead.
2630 */
2631 foreach_in_list(ir_instruction, node, sh->ir) {
2632 ir_variable *var = node->as_variable();
2633 if (var && strcmp(var->name, name) == 0) {
2634 stages |= (1 << i);
2635 break;
2636 }
2637 }
2638 }
2639 return stages;
2640 }
2641
2642 static bool
2643 add_interface_variables(struct gl_shader_program *shProg,
2644 struct gl_shader *sh, GLenum programInterface)
2645 {
2646 foreach_in_list(ir_instruction, node, sh->ir) {
2647 ir_variable *var = node->as_variable();
2648 uint8_t mask = 0;
2649
2650 if (!var)
2651 continue;
2652
2653 switch (var->data.mode) {
2654 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
2655 * "For GetActiveAttrib, all active vertex shader input variables
2656 * are enumerated, including the special built-in inputs gl_VertexID
2657 * and gl_InstanceID."
2658 */
2659 case ir_var_system_value:
2660 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
2661 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
2662 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
2663 continue;
2664 /* Mark special built-in inputs referenced by the vertex stage so
2665 * that they are considered active by the shader queries.
2666 */
2667 mask = (1 << (MESA_SHADER_VERTEX));
2668 /* FALLTHROUGH */
2669 case ir_var_shader_in:
2670 if (programInterface != GL_PROGRAM_INPUT)
2671 continue;
2672 break;
2673 case ir_var_shader_out:
2674 if (programInterface != GL_PROGRAM_OUTPUT)
2675 continue;
2676 break;
2677 default:
2678 continue;
2679 };
2680
2681 if (!add_program_resource(shProg, programInterface, var,
2682 build_stageref(shProg, var->name) | mask))
2683 return false;
2684 }
2685 return true;
2686 }
2687
2688 /**
2689 * Builds up a list of program resources that point to existing
2690 * resource data.
2691 */
2692 void
2693 build_program_resource_list(struct gl_context *ctx,
2694 struct gl_shader_program *shProg)
2695 {
2696 /* Rebuild resource list. */
2697 if (shProg->ProgramResourceList) {
2698 ralloc_free(shProg->ProgramResourceList);
2699 shProg->ProgramResourceList = NULL;
2700 shProg->NumProgramResourceList = 0;
2701 }
2702
2703 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
2704
2705 /* Determine first input and final output stage. These are used to
2706 * detect which variables should be enumerated in the resource list
2707 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
2708 */
2709 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2710 if (!shProg->_LinkedShaders[i])
2711 continue;
2712 if (input_stage == MESA_SHADER_STAGES)
2713 input_stage = i;
2714 output_stage = i;
2715 }
2716
2717 /* Empty shader, no resources. */
2718 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
2719 return;
2720
2721 /* Add inputs and outputs to the resource list. */
2722 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage],
2723 GL_PROGRAM_INPUT))
2724 return;
2725
2726 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage],
2727 GL_PROGRAM_OUTPUT))
2728 return;
2729
2730 /* Add transform feedback varyings. */
2731 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
2732 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
2733 uint8_t stageref =
2734 build_stageref(shProg,
2735 shProg->LinkedTransformFeedback.Varyings[i].Name);
2736 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
2737 &shProg->LinkedTransformFeedback.Varyings[i],
2738 stageref))
2739 return;
2740 }
2741 }
2742
2743 /* Add uniforms from uniform storage. */
2744 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
2745 /* Do not add uniforms internally used by Mesa. */
2746 if (shProg->UniformStorage[i].hidden)
2747 continue;
2748
2749 uint8_t stageref =
2750 build_stageref(shProg, shProg->UniformStorage[i].name);
2751
2752 /* Add stagereferences for uniforms in a uniform block. */
2753 int block_index = shProg->UniformStorage[i].block_index;
2754 if (block_index != -1) {
2755 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2756 if (shProg->UniformBlockStageIndex[j][block_index] != -1)
2757 stageref |= (1 << j);
2758 }
2759 }
2760
2761 if (!add_program_resource(shProg, GL_UNIFORM,
2762 &shProg->UniformStorage[i], stageref))
2763 return;
2764 }
2765
2766 /* Add program uniform blocks. */
2767 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
2768 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
2769 &shProg->UniformBlocks[i], 0))
2770 return;
2771 }
2772
2773 /* Add atomic counter buffers. */
2774 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
2775 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
2776 &shProg->AtomicBuffers[i], 0))
2777 return;
2778 }
2779
2780 /* TODO - following extensions will require more resource types:
2781 *
2782 * GL_ARB_shader_storage_buffer_object
2783 * GL_ARB_shader_subroutine
2784 */
2785 }
2786
2787 /**
2788 * This check is done to make sure we allow only constant expression
2789 * indexing and "constant-index-expression" (indexing with an expression
2790 * that includes loop induction variable).
2791 */
2792 static bool
2793 validate_sampler_array_indexing(struct gl_context *ctx,
2794 struct gl_shader_program *prog)
2795 {
2796 dynamic_sampler_array_indexing_visitor v;
2797 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2798 if (prog->_LinkedShaders[i] == NULL)
2799 continue;
2800
2801 bool no_dynamic_indexing =
2802 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
2803
2804 /* Search for array derefs in shader. */
2805 v.run(prog->_LinkedShaders[i]->ir);
2806 if (v.uses_dynamic_sampler_array_indexing()) {
2807 const char *msg = "sampler arrays indexed with non-constant "
2808 "expressions is forbidden in GLSL %s %u";
2809 /* Backend has indicated that it has no dynamic indexing support. */
2810 if (no_dynamic_indexing) {
2811 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
2812 return false;
2813 } else {
2814 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
2815 }
2816 }
2817 }
2818 return true;
2819 }
2820
2821
2822 void
2823 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2824 {
2825 tfeedback_decl *tfeedback_decls = NULL;
2826 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2827
2828 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2829
2830 prog->LinkStatus = true; /* All error paths will set this to false */
2831 prog->Validated = false;
2832 prog->_Used = false;
2833
2834 prog->ARB_fragment_coord_conventions_enable = false;
2835
2836 /* Separate the shaders into groups based on their type.
2837 */
2838 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2839 unsigned num_shaders[MESA_SHADER_STAGES];
2840
2841 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2842 shader_list[i] = (struct gl_shader **)
2843 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2844 num_shaders[i] = 0;
2845 }
2846
2847 unsigned min_version = UINT_MAX;
2848 unsigned max_version = 0;
2849 const bool is_es_prog =
2850 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2851 for (unsigned i = 0; i < prog->NumShaders; i++) {
2852 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2853 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2854
2855 if (prog->Shaders[i]->IsES != is_es_prog) {
2856 linker_error(prog, "all shaders must use same shading "
2857 "language version\n");
2858 goto done;
2859 }
2860
2861 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
2862 prog->ARB_fragment_coord_conventions_enable = true;
2863 }
2864
2865 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2866 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2867 num_shaders[shader_type]++;
2868 }
2869
2870 /* In desktop GLSL, different shader versions may be linked together. In
2871 * GLSL ES, all shader versions must be the same.
2872 */
2873 if (is_es_prog && min_version != max_version) {
2874 linker_error(prog, "all shaders must use same shading "
2875 "language version\n");
2876 goto done;
2877 }
2878
2879 prog->Version = max_version;
2880 prog->IsES = is_es_prog;
2881
2882 /* Geometry shaders have to be linked with vertex shaders.
2883 */
2884 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2885 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2886 !prog->SeparateShader) {
2887 linker_error(prog, "Geometry shader must be linked with "
2888 "vertex shader\n");
2889 goto done;
2890 }
2891
2892 /* Compute shaders have additional restrictions. */
2893 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2894 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2895 linker_error(prog, "Compute shaders may not be linked with any other "
2896 "type of shader\n");
2897 }
2898
2899 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2900 if (prog->_LinkedShaders[i] != NULL)
2901 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2902
2903 prog->_LinkedShaders[i] = NULL;
2904 }
2905
2906 /* Link all shaders for a particular stage and validate the result.
2907 */
2908 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2909 if (num_shaders[stage] > 0) {
2910 gl_shader *const sh =
2911 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2912 num_shaders[stage]);
2913
2914 if (!prog->LinkStatus) {
2915 if (sh)
2916 ctx->Driver.DeleteShader(ctx, sh);
2917 goto done;
2918 }
2919
2920 switch (stage) {
2921 case MESA_SHADER_VERTEX:
2922 validate_vertex_shader_executable(prog, sh);
2923 break;
2924 case MESA_SHADER_GEOMETRY:
2925 validate_geometry_shader_executable(prog, sh);
2926 break;
2927 case MESA_SHADER_FRAGMENT:
2928 validate_fragment_shader_executable(prog, sh);
2929 break;
2930 }
2931 if (!prog->LinkStatus) {
2932 if (sh)
2933 ctx->Driver.DeleteShader(ctx, sh);
2934 goto done;
2935 }
2936
2937 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2938 }
2939 }
2940
2941 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2942 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2943 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2944 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2945 else
2946 prog->LastClipDistanceArraySize = 0; /* Not used */
2947
2948 /* Here begins the inter-stage linking phase. Some initial validation is
2949 * performed, then locations are assigned for uniforms, attributes, and
2950 * varyings.
2951 */
2952 cross_validate_uniforms(prog);
2953 if (!prog->LinkStatus)
2954 goto done;
2955
2956 unsigned prev;
2957
2958 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2959 if (prog->_LinkedShaders[prev] != NULL)
2960 break;
2961 }
2962
2963 check_explicit_uniform_locations(ctx, prog);
2964 if (!prog->LinkStatus)
2965 goto done;
2966
2967 /* Validate the inputs of each stage with the output of the preceding
2968 * stage.
2969 */
2970 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2971 if (prog->_LinkedShaders[i] == NULL)
2972 continue;
2973
2974 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2975 prog->_LinkedShaders[i]);
2976 if (!prog->LinkStatus)
2977 goto done;
2978
2979 cross_validate_outputs_to_inputs(prog,
2980 prog->_LinkedShaders[prev],
2981 prog->_LinkedShaders[i]);
2982 if (!prog->LinkStatus)
2983 goto done;
2984
2985 prev = i;
2986 }
2987
2988 /* Cross-validate uniform blocks between shader stages */
2989 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2990 MESA_SHADER_STAGES);
2991 if (!prog->LinkStatus)
2992 goto done;
2993
2994 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2995 if (prog->_LinkedShaders[i] != NULL)
2996 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2997 }
2998
2999 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
3000 * it before optimization because we want most of the checks to get
3001 * dropped thanks to constant propagation.
3002 *
3003 * This rule also applies to GLSL ES 3.00.
3004 */
3005 if (max_version >= (is_es_prog ? 300 : 130)) {
3006 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3007 if (sh) {
3008 lower_discard_flow(sh->ir);
3009 }
3010 }
3011
3012 if (!interstage_cross_validate_uniform_blocks(prog))
3013 goto done;
3014
3015 /* Do common optimization before assigning storage for attributes,
3016 * uniforms, and varyings. Later optimization could possibly make
3017 * some of that unused.
3018 */
3019 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3020 if (prog->_LinkedShaders[i] == NULL)
3021 continue;
3022
3023 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
3024 if (!prog->LinkStatus)
3025 goto done;
3026
3027 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
3028 lower_clip_distance(prog->_LinkedShaders[i]);
3029 }
3030
3031 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
3032 &ctx->Const.ShaderCompilerOptions[i],
3033 ctx->Const.NativeIntegers))
3034 ;
3035
3036 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
3037 }
3038
3039 /* Validation for special cases where we allow sampler array indexing
3040 * with loop induction variable. This check emits a warning or error
3041 * depending if backend can handle dynamic indexing.
3042 */
3043 if ((!prog->IsES && prog->Version < 130) ||
3044 (prog->IsES && prog->Version < 300)) {
3045 if (!validate_sampler_array_indexing(ctx, prog))
3046 goto done;
3047 }
3048
3049 /* Check and validate stream emissions in geometry shaders */
3050 validate_geometry_shader_emissions(ctx, prog);
3051
3052 /* Mark all generic shader inputs and outputs as unpaired. */
3053 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
3054 if (prog->_LinkedShaders[i] != NULL) {
3055 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
3056 }
3057 }
3058
3059 /* FINISHME: The value of the max_attribute_index parameter is
3060 * FINISHME: implementation dependent based on the value of
3061 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
3062 * FINISHME: at least 16, so hardcode 16 for now.
3063 */
3064 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
3065 goto done;
3066 }
3067
3068 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
3069 goto done;
3070 }
3071
3072 unsigned first, last;
3073
3074 first = MESA_SHADER_STAGES;
3075 last = 0;
3076
3077 /* Determine first and last stage. */
3078 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3079 if (!prog->_LinkedShaders[i])
3080 continue;
3081 if (first == MESA_SHADER_STAGES)
3082 first = i;
3083 last = i;
3084 }
3085
3086 if (num_tfeedback_decls != 0) {
3087 /* From GL_EXT_transform_feedback:
3088 * A program will fail to link if:
3089 *
3090 * * the <count> specified by TransformFeedbackVaryingsEXT is
3091 * non-zero, but the program object has no vertex or geometry
3092 * shader;
3093 */
3094 if (first == MESA_SHADER_FRAGMENT) {
3095 linker_error(prog, "Transform feedback varyings specified, but "
3096 "no vertex or geometry shader is present.\n");
3097 goto done;
3098 }
3099
3100 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
3101 prog->TransformFeedback.NumVarying);
3102 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
3103 prog->TransformFeedback.VaryingNames,
3104 tfeedback_decls))
3105 goto done;
3106 }
3107
3108 /* Linking the stages in the opposite order (from fragment to vertex)
3109 * ensures that inter-shader outputs written to in an earlier stage are
3110 * eliminated if they are (transitively) not used in a later stage.
3111 */
3112 int next;
3113
3114 if (first < MESA_SHADER_FRAGMENT) {
3115 gl_shader *const sh = prog->_LinkedShaders[last];
3116
3117 if (first == MESA_SHADER_GEOMETRY) {
3118 /* There was no vertex shader, but we still have to assign varying
3119 * locations for use by geometry shader inputs in SSO.
3120 *
3121 * If the shader is not separable (i.e., prog->SeparateShader is
3122 * false), linking will have already failed when first is
3123 * MESA_SHADER_GEOMETRY.
3124 */
3125 if (!assign_varying_locations(ctx, mem_ctx, prog,
3126 NULL, prog->_LinkedShaders[first],
3127 num_tfeedback_decls, tfeedback_decls,
3128 prog->Geom.VerticesIn))
3129 goto done;
3130 }
3131
3132 if (last != MESA_SHADER_FRAGMENT &&
3133 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
3134 /* There was no fragment shader, but we still have to assign varying
3135 * locations for use by transform feedback.
3136 */
3137 if (!assign_varying_locations(ctx, mem_ctx, prog,
3138 sh, NULL,
3139 num_tfeedback_decls, tfeedback_decls,
3140 0))
3141 goto done;
3142 }
3143
3144 do_dead_builtin_varyings(ctx, sh, NULL,
3145 num_tfeedback_decls, tfeedback_decls);
3146
3147 if (!prog->SeparateShader)
3148 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
3149
3150 /* Eliminate code that is now dead due to unused outputs being demoted.
3151 */
3152 while (do_dead_code(sh->ir, false))
3153 ;
3154 }
3155 else if (first == MESA_SHADER_FRAGMENT) {
3156 /* If the program only contains a fragment shader...
3157 */
3158 gl_shader *const sh = prog->_LinkedShaders[first];
3159
3160 do_dead_builtin_varyings(ctx, NULL, sh,
3161 num_tfeedback_decls, tfeedback_decls);
3162
3163 if (prog->SeparateShader) {
3164 if (!assign_varying_locations(ctx, mem_ctx, prog,
3165 NULL /* producer */,
3166 sh /* consumer */,
3167 0 /* num_tfeedback_decls */,
3168 NULL /* tfeedback_decls */,
3169 0 /* gs_input_vertices */))
3170 goto done;
3171 } else
3172 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
3173
3174 while (do_dead_code(sh->ir, false))
3175 ;
3176 }
3177
3178 next = last;
3179 for (int i = next - 1; i >= 0; i--) {
3180 if (prog->_LinkedShaders[i] == NULL)
3181 continue;
3182
3183 gl_shader *const sh_i = prog->_LinkedShaders[i];
3184 gl_shader *const sh_next = prog->_LinkedShaders[next];
3185 unsigned gs_input_vertices =
3186 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
3187
3188 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3189 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3190 tfeedback_decls, gs_input_vertices))
3191 goto done;
3192
3193 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3194 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3195 tfeedback_decls);
3196
3197 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
3198 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
3199
3200 /* Eliminate code that is now dead due to unused outputs being demoted.
3201 */
3202 while (do_dead_code(sh_i->ir, false))
3203 ;
3204 while (do_dead_code(sh_next->ir, false))
3205 ;
3206
3207 /* This must be done after all dead varyings are eliminated. */
3208 if (!check_against_output_limit(ctx, prog, sh_i))
3209 goto done;
3210 if (!check_against_input_limit(ctx, prog, sh_next))
3211 goto done;
3212
3213 next = i;
3214 }
3215
3216 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
3217 goto done;
3218
3219 update_array_sizes(prog);
3220 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
3221 link_assign_atomic_counter_resources(ctx, prog);
3222 store_fragdepth_layout(prog);
3223
3224 check_resources(ctx, prog);
3225 check_image_resources(ctx, prog);
3226 link_check_atomic_counter_resources(ctx, prog);
3227
3228 if (!prog->LinkStatus)
3229 goto done;
3230
3231 /* OpenGL ES requires that a vertex shader and a fragment shader both be
3232 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
3233 * anything about shader linking when one of the shaders (vertex or
3234 * fragment shader) is absent. So, the extension shouldn't change the
3235 * behavior specified in GLSL specification.
3236 */
3237 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
3238 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
3239 linker_error(prog, "program lacks a vertex shader\n");
3240 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3241 linker_error(prog, "program lacks a fragment shader\n");
3242 }
3243 }
3244
3245 build_program_resource_list(ctx, prog);
3246 if (!prog->LinkStatus)
3247 goto done;
3248
3249 /* FINISHME: Assign fragment shader output locations. */
3250
3251 done:
3252 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3253 free(shader_list[i]);
3254 if (prog->_LinkedShaders[i] == NULL)
3255 continue;
3256
3257 /* Do a final validation step to make sure that the IR wasn't
3258 * invalidated by any modifications performed after intrastage linking.
3259 */
3260 validate_ir_tree(prog->_LinkedShaders[i]->ir);
3261
3262 /* Retain any live IR, but trash the rest. */
3263 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
3264
3265 /* The symbol table in the linked shaders may contain references to
3266 * variables that were removed (e.g., unused uniforms). Since it may
3267 * contain junk, there is no possible valid use. Delete it and set the
3268 * pointer to NULL.
3269 */
3270 delete prog->_LinkedShaders[i]->symbols;
3271 prog->_LinkedShaders[i]->symbols = NULL;
3272 }
3273
3274 ralloc_free(mem_ctx);
3275 }