glsl: allow linking of tessellation shaders.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->fields.array,
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->fields.array;
249 return visit_continue;
250 }
251 };
252
253 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
254 public:
255 unsigned num_vertices;
256 gl_shader_program *prog;
257
258 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
259 {
260 this->num_vertices = num_vertices;
261 this->prog = prog;
262 }
263
264 virtual ~tess_eval_array_resize_visitor()
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit(ir_variable *var)
270 {
271 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
272 return visit_continue;
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280
281 /* Dereferences of input variables need to be updated so that their type
282 * matches the newly assigned type of the variable they are accessing. */
283 virtual ir_visitor_status visit(ir_dereference_variable *ir)
284 {
285 ir->type = ir->var->type;
286 return visit_continue;
287 }
288
289 /* Dereferences of 2D input arrays need to be updated so that their type
290 * matches the newly assigned type of the array they are accessing. */
291 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
292 {
293 const glsl_type *const vt = ir->array->type;
294 if (vt->is_array())
295 ir->type = vt->fields.array;
296 return visit_continue;
297 }
298 };
299
300 /**
301 * Visitor that determines the highest stream id to which a (geometry) shader
302 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
303 */
304 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
305 public:
306 find_emit_vertex_visitor(int max_allowed)
307 : max_stream_allowed(max_allowed),
308 invalid_stream_id(0),
309 invalid_stream_id_from_emit_vertex(false),
310 end_primitive_found(false),
311 uses_non_zero_stream(false)
312 {
313 /* empty */
314 }
315
316 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
317 {
318 int stream_id = ir->stream_id();
319
320 if (stream_id < 0) {
321 invalid_stream_id = stream_id;
322 invalid_stream_id_from_emit_vertex = true;
323 return visit_stop;
324 }
325
326 if (stream_id > max_stream_allowed) {
327 invalid_stream_id = stream_id;
328 invalid_stream_id_from_emit_vertex = true;
329 return visit_stop;
330 }
331
332 if (stream_id != 0)
333 uses_non_zero_stream = true;
334
335 return visit_continue;
336 }
337
338 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
339 {
340 end_primitive_found = true;
341
342 int stream_id = ir->stream_id();
343
344 if (stream_id < 0) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = false;
347 return visit_stop;
348 }
349
350 if (stream_id > max_stream_allowed) {
351 invalid_stream_id = stream_id;
352 invalid_stream_id_from_emit_vertex = false;
353 return visit_stop;
354 }
355
356 if (stream_id != 0)
357 uses_non_zero_stream = true;
358
359 return visit_continue;
360 }
361
362 bool error()
363 {
364 return invalid_stream_id != 0;
365 }
366
367 const char *error_func()
368 {
369 return invalid_stream_id_from_emit_vertex ?
370 "EmitStreamVertex" : "EndStreamPrimitive";
371 }
372
373 int error_stream()
374 {
375 return invalid_stream_id;
376 }
377
378 bool uses_streams()
379 {
380 return uses_non_zero_stream;
381 }
382
383 bool uses_end_primitive()
384 {
385 return end_primitive_found;
386 }
387
388 private:
389 int max_stream_allowed;
390 int invalid_stream_id;
391 bool invalid_stream_id_from_emit_vertex;
392 bool end_primitive_found;
393 bool uses_non_zero_stream;
394 };
395
396 /* Class that finds array derefs and check if indexes are dynamic. */
397 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
398 {
399 public:
400 dynamic_sampler_array_indexing_visitor() :
401 dynamic_sampler_array_indexing(false)
402 {
403 }
404
405 ir_visitor_status visit_enter(ir_dereference_array *ir)
406 {
407 if (!ir->variable_referenced())
408 return visit_continue;
409
410 if (!ir->variable_referenced()->type->contains_sampler())
411 return visit_continue;
412
413 if (!ir->array_index->constant_expression_value()) {
414 dynamic_sampler_array_indexing = true;
415 return visit_stop;
416 }
417 return visit_continue;
418 }
419
420 bool uses_dynamic_sampler_array_indexing()
421 {
422 return dynamic_sampler_array_indexing;
423 }
424
425 private:
426 bool dynamic_sampler_array_indexing;
427 };
428
429 } /* anonymous namespace */
430
431 void
432 linker_error(gl_shader_program *prog, const char *fmt, ...)
433 {
434 va_list ap;
435
436 ralloc_strcat(&prog->InfoLog, "error: ");
437 va_start(ap, fmt);
438 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
439 va_end(ap);
440
441 prog->LinkStatus = false;
442 }
443
444
445 void
446 linker_warning(gl_shader_program *prog, const char *fmt, ...)
447 {
448 va_list ap;
449
450 ralloc_strcat(&prog->InfoLog, "warning: ");
451 va_start(ap, fmt);
452 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
453 va_end(ap);
454
455 }
456
457
458 /**
459 * Given a string identifying a program resource, break it into a base name
460 * and an optional array index in square brackets.
461 *
462 * If an array index is present, \c out_base_name_end is set to point to the
463 * "[" that precedes the array index, and the array index itself is returned
464 * as a long.
465 *
466 * If no array index is present (or if the array index is negative or
467 * mal-formed), \c out_base_name_end, is set to point to the null terminator
468 * at the end of the input string, and -1 is returned.
469 *
470 * Only the final array index is parsed; if the string contains other array
471 * indices (or structure field accesses), they are left in the base name.
472 *
473 * No attempt is made to check that the base name is properly formed;
474 * typically the caller will look up the base name in a hash table, so
475 * ill-formed base names simply turn into hash table lookup failures.
476 */
477 long
478 parse_program_resource_name(const GLchar *name,
479 const GLchar **out_base_name_end)
480 {
481 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
482 *
483 * "When an integer array element or block instance number is part of
484 * the name string, it will be specified in decimal form without a "+"
485 * or "-" sign or any extra leading zeroes. Additionally, the name
486 * string will not include white space anywhere in the string."
487 */
488
489 const size_t len = strlen(name);
490 *out_base_name_end = name + len;
491
492 if (len == 0 || name[len-1] != ']')
493 return -1;
494
495 /* Walk backwards over the string looking for a non-digit character. This
496 * had better be the opening bracket for an array index.
497 *
498 * Initially, i specifies the location of the ']'. Since the string may
499 * contain only the ']' charcater, walk backwards very carefully.
500 */
501 unsigned i;
502 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
503 /* empty */ ;
504
505 if ((i == 0) || name[i-1] != '[')
506 return -1;
507
508 long array_index = strtol(&name[i], NULL, 10);
509 if (array_index < 0)
510 return -1;
511
512 /* Check for leading zero */
513 if (name[i] == '0' && name[i+1] != ']')
514 return -1;
515
516 *out_base_name_end = name + (i - 1);
517 return array_index;
518 }
519
520
521 void
522 link_invalidate_variable_locations(exec_list *ir)
523 {
524 foreach_in_list(ir_instruction, node, ir) {
525 ir_variable *const var = node->as_variable();
526
527 if (var == NULL)
528 continue;
529
530 /* Only assign locations for variables that lack an explicit location.
531 * Explicit locations are set for all built-in variables, generic vertex
532 * shader inputs (via layout(location=...)), and generic fragment shader
533 * outputs (also via layout(location=...)).
534 */
535 if (!var->data.explicit_location) {
536 var->data.location = -1;
537 var->data.location_frac = 0;
538 }
539
540 /* ir_variable::is_unmatched_generic_inout is used by the linker while
541 * connecting outputs from one stage to inputs of the next stage.
542 *
543 * There are two implicit assumptions here. First, we assume that any
544 * built-in variable (i.e., non-generic in or out) will have
545 * explicit_location set. Second, we assume that any generic in or out
546 * will not have explicit_location set.
547 *
548 * This second assumption will only be valid until
549 * GL_ARB_separate_shader_objects is supported. When that extension is
550 * implemented, this function will need some modifications.
551 */
552 if (!var->data.explicit_location) {
553 var->data.is_unmatched_generic_inout = 1;
554 } else {
555 var->data.is_unmatched_generic_inout = 0;
556 }
557 }
558 }
559
560
561 /**
562 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
563 *
564 * Also check for errors based on incorrect usage of gl_ClipVertex and
565 * gl_ClipDistance.
566 *
567 * Return false if an error was reported.
568 */
569 static void
570 analyze_clip_usage(struct gl_shader_program *prog,
571 struct gl_shader *shader, GLboolean *UsesClipDistance,
572 GLuint *ClipDistanceArraySize)
573 {
574 *ClipDistanceArraySize = 0;
575
576 if (!prog->IsES && prog->Version >= 130) {
577 /* From section 7.1 (Vertex Shader Special Variables) of the
578 * GLSL 1.30 spec:
579 *
580 * "It is an error for a shader to statically write both
581 * gl_ClipVertex and gl_ClipDistance."
582 *
583 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
584 * gl_ClipVertex nor gl_ClipDistance.
585 */
586 find_assignment_visitor clip_vertex("gl_ClipVertex");
587 find_assignment_visitor clip_distance("gl_ClipDistance");
588
589 clip_vertex.run(shader->ir);
590 clip_distance.run(shader->ir);
591 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
592 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
593 "and `gl_ClipDistance'\n",
594 _mesa_shader_stage_to_string(shader->Stage));
595 return;
596 }
597 *UsesClipDistance = clip_distance.variable_found();
598 ir_variable *clip_distance_var =
599 shader->symbols->get_variable("gl_ClipDistance");
600 if (clip_distance_var)
601 *ClipDistanceArraySize = clip_distance_var->type->length;
602 } else {
603 *UsesClipDistance = false;
604 }
605 }
606
607
608 /**
609 * Verify that a vertex shader executable meets all semantic requirements.
610 *
611 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
612 * as a side effect.
613 *
614 * \param shader Vertex shader executable to be verified
615 */
616 void
617 validate_vertex_shader_executable(struct gl_shader_program *prog,
618 struct gl_shader *shader)
619 {
620 if (shader == NULL)
621 return;
622
623 /* From the GLSL 1.10 spec, page 48:
624 *
625 * "The variable gl_Position is available only in the vertex
626 * language and is intended for writing the homogeneous vertex
627 * position. All executions of a well-formed vertex shader
628 * executable must write a value into this variable. [...] The
629 * variable gl_Position is available only in the vertex
630 * language and is intended for writing the homogeneous vertex
631 * position. All executions of a well-formed vertex shader
632 * executable must write a value into this variable."
633 *
634 * while in GLSL 1.40 this text is changed to:
635 *
636 * "The variable gl_Position is available only in the vertex
637 * language and is intended for writing the homogeneous vertex
638 * position. It can be written at any time during shader
639 * execution. It may also be read back by a vertex shader
640 * after being written. This value will be used by primitive
641 * assembly, clipping, culling, and other fixed functionality
642 * operations, if present, that operate on primitives after
643 * vertex processing has occurred. Its value is undefined if
644 * the vertex shader executable does not write gl_Position."
645 *
646 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
647 * gl_Position is not an error.
648 */
649 if (prog->Version < (prog->IsES ? 300 : 140)) {
650 find_assignment_visitor find("gl_Position");
651 find.run(shader->ir);
652 if (!find.variable_found()) {
653 if (prog->IsES) {
654 linker_warning(prog,
655 "vertex shader does not write to `gl_Position'."
656 "It's value is undefined. \n");
657 } else {
658 linker_error(prog,
659 "vertex shader does not write to `gl_Position'. \n");
660 }
661 return;
662 }
663 }
664
665 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
666 &prog->Vert.ClipDistanceArraySize);
667 }
668
669
670 /**
671 * Verify that a fragment shader executable meets all semantic requirements
672 *
673 * \param shader Fragment shader executable to be verified
674 */
675 void
676 validate_fragment_shader_executable(struct gl_shader_program *prog,
677 struct gl_shader *shader)
678 {
679 if (shader == NULL)
680 return;
681
682 find_assignment_visitor frag_color("gl_FragColor");
683 find_assignment_visitor frag_data("gl_FragData");
684
685 frag_color.run(shader->ir);
686 frag_data.run(shader->ir);
687
688 if (frag_color.variable_found() && frag_data.variable_found()) {
689 linker_error(prog, "fragment shader writes to both "
690 "`gl_FragColor' and `gl_FragData'\n");
691 }
692 }
693
694 /**
695 * Verify that a geometry shader executable meets all semantic requirements
696 *
697 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
698 * prog->Geom.ClipDistanceArraySize as a side effect.
699 *
700 * \param shader Geometry shader executable to be verified
701 */
702 void
703 validate_geometry_shader_executable(struct gl_shader_program *prog,
704 struct gl_shader *shader)
705 {
706 if (shader == NULL)
707 return;
708
709 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
710 prog->Geom.VerticesIn = num_vertices;
711
712 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
713 &prog->Geom.ClipDistanceArraySize);
714 }
715
716 /**
717 * Check if geometry shaders emit to non-zero streams and do corresponding
718 * validations.
719 */
720 static void
721 validate_geometry_shader_emissions(struct gl_context *ctx,
722 struct gl_shader_program *prog)
723 {
724 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
725 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
726 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
727 if (emit_vertex.error()) {
728 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
729 "stream parameter are in the range [0, %d].\n",
730 emit_vertex.error_func(),
731 emit_vertex.error_stream(),
732 ctx->Const.MaxVertexStreams - 1);
733 }
734 prog->Geom.UsesStreams = emit_vertex.uses_streams();
735 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
736
737 /* From the ARB_gpu_shader5 spec:
738 *
739 * "Multiple vertex streams are supported only if the output primitive
740 * type is declared to be "points". A program will fail to link if it
741 * contains a geometry shader calling EmitStreamVertex() or
742 * EndStreamPrimitive() if its output primitive type is not "points".
743 *
744 * However, in the same spec:
745 *
746 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
747 * with <stream> set to zero."
748 *
749 * And:
750 *
751 * "The function EndPrimitive() is equivalent to calling
752 * EndStreamPrimitive() with <stream> set to zero."
753 *
754 * Since we can call EmitVertex() and EndPrimitive() when we output
755 * primitives other than points, calling EmitStreamVertex(0) or
756 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
757 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
758 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
759 * stream.
760 */
761 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
762 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
763 "with n>0 requires point output\n");
764 }
765 }
766 }
767
768 bool
769 validate_intrastage_arrays(struct gl_shader_program *prog,
770 ir_variable *const var,
771 ir_variable *const existing)
772 {
773 /* Consider the types to be "the same" if both types are arrays
774 * of the same type and one of the arrays is implicitly sized.
775 * In addition, set the type of the linked variable to the
776 * explicitly sized array.
777 */
778 if (var->type->is_array() && existing->type->is_array() &&
779 (var->type->fields.array == existing->type->fields.array) &&
780 ((var->type->length == 0)|| (existing->type->length == 0))) {
781 if (var->type->length != 0) {
782 if (var->type->length <= existing->data.max_array_access) {
783 linker_error(prog, "%s `%s' declared as type "
784 "`%s' but outermost dimension has an index"
785 " of `%i'\n",
786 mode_string(var),
787 var->name, var->type->name,
788 existing->data.max_array_access);
789 }
790 existing->type = var->type;
791 return true;
792 } else if (existing->type->length != 0) {
793 if(existing->type->length <= var->data.max_array_access) {
794 linker_error(prog, "%s `%s' declared as type "
795 "`%s' but outermost dimension has an index"
796 " of `%i'\n",
797 mode_string(var),
798 var->name, existing->type->name,
799 var->data.max_array_access);
800 }
801 return true;
802 }
803 }
804 return false;
805 }
806
807
808 /**
809 * Perform validation of global variables used across multiple shaders
810 */
811 void
812 cross_validate_globals(struct gl_shader_program *prog,
813 struct gl_shader **shader_list,
814 unsigned num_shaders,
815 bool uniforms_only)
816 {
817 /* Examine all of the uniforms in all of the shaders and cross validate
818 * them.
819 */
820 glsl_symbol_table variables;
821 for (unsigned i = 0; i < num_shaders; i++) {
822 if (shader_list[i] == NULL)
823 continue;
824
825 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
826 ir_variable *const var = node->as_variable();
827
828 if (var == NULL)
829 continue;
830
831 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
832 continue;
833
834 /* Don't cross validate temporaries that are at global scope. These
835 * will eventually get pulled into the shaders 'main'.
836 */
837 if (var->data.mode == ir_var_temporary)
838 continue;
839
840 /* If a global with this name has already been seen, verify that the
841 * new instance has the same type. In addition, if the globals have
842 * initializers, the values of the initializers must be the same.
843 */
844 ir_variable *const existing = variables.get_variable(var->name);
845 if (existing != NULL) {
846 /* Check if types match. Interface blocks have some special
847 * rules so we handle those elsewhere.
848 */
849 if (var->type != existing->type &&
850 !var->is_interface_instance()) {
851 if (!validate_intrastage_arrays(prog, var, existing)) {
852 if (var->type->is_record() && existing->type->is_record()
853 && existing->type->record_compare(var->type)) {
854 existing->type = var->type;
855 } else {
856 linker_error(prog, "%s `%s' declared as type "
857 "`%s' and type `%s'\n",
858 mode_string(var),
859 var->name, var->type->name,
860 existing->type->name);
861 return;
862 }
863 }
864 }
865
866 if (var->data.explicit_location) {
867 if (existing->data.explicit_location
868 && (var->data.location != existing->data.location)) {
869 linker_error(prog, "explicit locations for %s "
870 "`%s' have differing values\n",
871 mode_string(var), var->name);
872 return;
873 }
874
875 existing->data.location = var->data.location;
876 existing->data.explicit_location = true;
877 }
878
879 /* From the GLSL 4.20 specification:
880 * "A link error will result if two compilation units in a program
881 * specify different integer-constant bindings for the same
882 * opaque-uniform name. However, it is not an error to specify a
883 * binding on some but not all declarations for the same name"
884 */
885 if (var->data.explicit_binding) {
886 if (existing->data.explicit_binding &&
887 var->data.binding != existing->data.binding) {
888 linker_error(prog, "explicit bindings for %s "
889 "`%s' have differing values\n",
890 mode_string(var), var->name);
891 return;
892 }
893
894 existing->data.binding = var->data.binding;
895 existing->data.explicit_binding = true;
896 }
897
898 if (var->type->contains_atomic() &&
899 var->data.atomic.offset != existing->data.atomic.offset) {
900 linker_error(prog, "offset specifications for %s "
901 "`%s' have differing values\n",
902 mode_string(var), var->name);
903 return;
904 }
905
906 /* Validate layout qualifiers for gl_FragDepth.
907 *
908 * From the AMD/ARB_conservative_depth specs:
909 *
910 * "If gl_FragDepth is redeclared in any fragment shader in a
911 * program, it must be redeclared in all fragment shaders in
912 * that program that have static assignments to
913 * gl_FragDepth. All redeclarations of gl_FragDepth in all
914 * fragment shaders in a single program must have the same set
915 * of qualifiers."
916 */
917 if (strcmp(var->name, "gl_FragDepth") == 0) {
918 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
919 bool layout_differs =
920 var->data.depth_layout != existing->data.depth_layout;
921
922 if (layout_declared && layout_differs) {
923 linker_error(prog,
924 "All redeclarations of gl_FragDepth in all "
925 "fragment shaders in a single program must have "
926 "the same set of qualifiers.\n");
927 }
928
929 if (var->data.used && layout_differs) {
930 linker_error(prog,
931 "If gl_FragDepth is redeclared with a layout "
932 "qualifier in any fragment shader, it must be "
933 "redeclared with the same layout qualifier in "
934 "all fragment shaders that have assignments to "
935 "gl_FragDepth\n");
936 }
937 }
938
939 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
940 *
941 * "If a shared global has multiple initializers, the
942 * initializers must all be constant expressions, and they
943 * must all have the same value. Otherwise, a link error will
944 * result. (A shared global having only one initializer does
945 * not require that initializer to be a constant expression.)"
946 *
947 * Previous to 4.20 the GLSL spec simply said that initializers
948 * must have the same value. In this case of non-constant
949 * initializers, this was impossible to determine. As a result,
950 * no vendor actually implemented that behavior. The 4.20
951 * behavior matches the implemented behavior of at least one other
952 * vendor, so we'll implement that for all GLSL versions.
953 */
954 if (var->constant_initializer != NULL) {
955 if (existing->constant_initializer != NULL) {
956 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
957 linker_error(prog, "initializers for %s "
958 "`%s' have differing values\n",
959 mode_string(var), var->name);
960 return;
961 }
962 } else {
963 /* If the first-seen instance of a particular uniform did not
964 * have an initializer but a later instance does, copy the
965 * initializer to the version stored in the symbol table.
966 */
967 /* FINISHME: This is wrong. The constant_value field should
968 * FINISHME: not be modified! Imagine a case where a shader
969 * FINISHME: without an initializer is linked in two different
970 * FINISHME: programs with shaders that have differing
971 * FINISHME: initializers. Linking with the first will
972 * FINISHME: modify the shader, and linking with the second
973 * FINISHME: will fail.
974 */
975 existing->constant_initializer =
976 var->constant_initializer->clone(ralloc_parent(existing),
977 NULL);
978 }
979 }
980
981 if (var->data.has_initializer) {
982 if (existing->data.has_initializer
983 && (var->constant_initializer == NULL
984 || existing->constant_initializer == NULL)) {
985 linker_error(prog,
986 "shared global variable `%s' has multiple "
987 "non-constant initializers.\n",
988 var->name);
989 return;
990 }
991
992 /* Some instance had an initializer, so keep track of that. In
993 * this location, all sorts of initializers (constant or
994 * otherwise) will propagate the existence to the variable
995 * stored in the symbol table.
996 */
997 existing->data.has_initializer = true;
998 }
999
1000 if (existing->data.invariant != var->data.invariant) {
1001 linker_error(prog, "declarations for %s `%s' have "
1002 "mismatching invariant qualifiers\n",
1003 mode_string(var), var->name);
1004 return;
1005 }
1006 if (existing->data.centroid != var->data.centroid) {
1007 linker_error(prog, "declarations for %s `%s' have "
1008 "mismatching centroid qualifiers\n",
1009 mode_string(var), var->name);
1010 return;
1011 }
1012 if (existing->data.sample != var->data.sample) {
1013 linker_error(prog, "declarations for %s `%s` have "
1014 "mismatching sample qualifiers\n",
1015 mode_string(var), var->name);
1016 return;
1017 }
1018 } else
1019 variables.add_variable(var);
1020 }
1021 }
1022 }
1023
1024
1025 /**
1026 * Perform validation of uniforms used across multiple shader stages
1027 */
1028 void
1029 cross_validate_uniforms(struct gl_shader_program *prog)
1030 {
1031 cross_validate_globals(prog, prog->_LinkedShaders,
1032 MESA_SHADER_STAGES, true);
1033 }
1034
1035 /**
1036 * Accumulates the array of prog->UniformBlocks and checks that all
1037 * definitons of blocks agree on their contents.
1038 */
1039 static bool
1040 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
1041 {
1042 unsigned max_num_uniform_blocks = 0;
1043 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1044 if (prog->_LinkedShaders[i])
1045 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
1046 }
1047
1048 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1049 struct gl_shader *sh = prog->_LinkedShaders[i];
1050
1051 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
1052 max_num_uniform_blocks);
1053 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1054 prog->UniformBlockStageIndex[i][j] = -1;
1055
1056 if (sh == NULL)
1057 continue;
1058
1059 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
1060 int index = link_cross_validate_uniform_block(prog,
1061 &prog->UniformBlocks,
1062 &prog->NumUniformBlocks,
1063 &sh->UniformBlocks[j]);
1064
1065 if (index == -1) {
1066 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1067 sh->UniformBlocks[j].Name);
1068 return false;
1069 }
1070
1071 prog->UniformBlockStageIndex[i][index] = j;
1072 }
1073 }
1074
1075 return true;
1076 }
1077
1078
1079 /**
1080 * Populates a shaders symbol table with all global declarations
1081 */
1082 static void
1083 populate_symbol_table(gl_shader *sh)
1084 {
1085 sh->symbols = new(sh) glsl_symbol_table;
1086
1087 foreach_in_list(ir_instruction, inst, sh->ir) {
1088 ir_variable *var;
1089 ir_function *func;
1090
1091 if ((func = inst->as_function()) != NULL) {
1092 sh->symbols->add_function(func);
1093 } else if ((var = inst->as_variable()) != NULL) {
1094 if (var->data.mode != ir_var_temporary)
1095 sh->symbols->add_variable(var);
1096 }
1097 }
1098 }
1099
1100
1101 /**
1102 * Remap variables referenced in an instruction tree
1103 *
1104 * This is used when instruction trees are cloned from one shader and placed in
1105 * another. These trees will contain references to \c ir_variable nodes that
1106 * do not exist in the target shader. This function finds these \c ir_variable
1107 * references and replaces the references with matching variables in the target
1108 * shader.
1109 *
1110 * If there is no matching variable in the target shader, a clone of the
1111 * \c ir_variable is made and added to the target shader. The new variable is
1112 * added to \b both the instruction stream and the symbol table.
1113 *
1114 * \param inst IR tree that is to be processed.
1115 * \param symbols Symbol table containing global scope symbols in the
1116 * linked shader.
1117 * \param instructions Instruction stream where new variable declarations
1118 * should be added.
1119 */
1120 void
1121 remap_variables(ir_instruction *inst, struct gl_shader *target,
1122 hash_table *temps)
1123 {
1124 class remap_visitor : public ir_hierarchical_visitor {
1125 public:
1126 remap_visitor(struct gl_shader *target,
1127 hash_table *temps)
1128 {
1129 this->target = target;
1130 this->symbols = target->symbols;
1131 this->instructions = target->ir;
1132 this->temps = temps;
1133 }
1134
1135 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1136 {
1137 if (ir->var->data.mode == ir_var_temporary) {
1138 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1139
1140 assert(var != NULL);
1141 ir->var = var;
1142 return visit_continue;
1143 }
1144
1145 ir_variable *const existing =
1146 this->symbols->get_variable(ir->var->name);
1147 if (existing != NULL)
1148 ir->var = existing;
1149 else {
1150 ir_variable *copy = ir->var->clone(this->target, NULL);
1151
1152 this->symbols->add_variable(copy);
1153 this->instructions->push_head(copy);
1154 ir->var = copy;
1155 }
1156
1157 return visit_continue;
1158 }
1159
1160 private:
1161 struct gl_shader *target;
1162 glsl_symbol_table *symbols;
1163 exec_list *instructions;
1164 hash_table *temps;
1165 };
1166
1167 remap_visitor v(target, temps);
1168
1169 inst->accept(&v);
1170 }
1171
1172
1173 /**
1174 * Move non-declarations from one instruction stream to another
1175 *
1176 * The intended usage pattern of this function is to pass the pointer to the
1177 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1178 * pointer) for \c last and \c false for \c make_copies on the first
1179 * call. Successive calls pass the return value of the previous call for
1180 * \c last and \c true for \c make_copies.
1181 *
1182 * \param instructions Source instruction stream
1183 * \param last Instruction after which new instructions should be
1184 * inserted in the target instruction stream
1185 * \param make_copies Flag selecting whether instructions in \c instructions
1186 * should be copied (via \c ir_instruction::clone) into the
1187 * target list or moved.
1188 *
1189 * \return
1190 * The new "last" instruction in the target instruction stream. This pointer
1191 * is suitable for use as the \c last parameter of a later call to this
1192 * function.
1193 */
1194 exec_node *
1195 move_non_declarations(exec_list *instructions, exec_node *last,
1196 bool make_copies, gl_shader *target)
1197 {
1198 hash_table *temps = NULL;
1199
1200 if (make_copies)
1201 temps = hash_table_ctor(0, hash_table_pointer_hash,
1202 hash_table_pointer_compare);
1203
1204 foreach_in_list_safe(ir_instruction, inst, instructions) {
1205 if (inst->as_function())
1206 continue;
1207
1208 ir_variable *var = inst->as_variable();
1209 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1210 continue;
1211
1212 assert(inst->as_assignment()
1213 || inst->as_call()
1214 || inst->as_if() /* for initializers with the ?: operator */
1215 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1216
1217 if (make_copies) {
1218 inst = inst->clone(target, NULL);
1219
1220 if (var != NULL)
1221 hash_table_insert(temps, inst, var);
1222 else
1223 remap_variables(inst, target, temps);
1224 } else {
1225 inst->remove();
1226 }
1227
1228 last->insert_after(inst);
1229 last = inst;
1230 }
1231
1232 if (make_copies)
1233 hash_table_dtor(temps);
1234
1235 return last;
1236 }
1237
1238 /**
1239 * Get the function signature for main from a shader
1240 */
1241 ir_function_signature *
1242 link_get_main_function_signature(gl_shader *sh)
1243 {
1244 ir_function *const f = sh->symbols->get_function("main");
1245 if (f != NULL) {
1246 exec_list void_parameters;
1247
1248 /* Look for the 'void main()' signature and ensure that it's defined.
1249 * This keeps the linker from accidentally pick a shader that just
1250 * contains a prototype for main.
1251 *
1252 * We don't have to check for multiple definitions of main (in multiple
1253 * shaders) because that would have already been caught above.
1254 */
1255 ir_function_signature *sig =
1256 f->matching_signature(NULL, &void_parameters, false);
1257 if ((sig != NULL) && sig->is_defined) {
1258 return sig;
1259 }
1260 }
1261
1262 return NULL;
1263 }
1264
1265
1266 /**
1267 * This class is only used in link_intrastage_shaders() below but declaring
1268 * it inside that function leads to compiler warnings with some versions of
1269 * gcc.
1270 */
1271 class array_sizing_visitor : public ir_hierarchical_visitor {
1272 public:
1273 array_sizing_visitor()
1274 : mem_ctx(ralloc_context(NULL)),
1275 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1276 hash_table_pointer_compare))
1277 {
1278 }
1279
1280 ~array_sizing_visitor()
1281 {
1282 hash_table_dtor(this->unnamed_interfaces);
1283 ralloc_free(this->mem_ctx);
1284 }
1285
1286 virtual ir_visitor_status visit(ir_variable *var)
1287 {
1288 fixup_type(&var->type, var->data.max_array_access);
1289 if (var->type->is_interface()) {
1290 if (interface_contains_unsized_arrays(var->type)) {
1291 const glsl_type *new_type =
1292 resize_interface_members(var->type,
1293 var->get_max_ifc_array_access());
1294 var->type = new_type;
1295 var->change_interface_type(new_type);
1296 }
1297 } else if (var->type->is_array() &&
1298 var->type->fields.array->is_interface()) {
1299 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1300 const glsl_type *new_type =
1301 resize_interface_members(var->type->fields.array,
1302 var->get_max_ifc_array_access());
1303 var->change_interface_type(new_type);
1304 var->type = update_interface_members_array(var->type, new_type);
1305 }
1306 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1307 /* Store a pointer to the variable in the unnamed_interfaces
1308 * hashtable.
1309 */
1310 ir_variable **interface_vars = (ir_variable **)
1311 hash_table_find(this->unnamed_interfaces, ifc_type);
1312 if (interface_vars == NULL) {
1313 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1314 ifc_type->length);
1315 hash_table_insert(this->unnamed_interfaces, interface_vars,
1316 ifc_type);
1317 }
1318 unsigned index = ifc_type->field_index(var->name);
1319 assert(index < ifc_type->length);
1320 assert(interface_vars[index] == NULL);
1321 interface_vars[index] = var;
1322 }
1323 return visit_continue;
1324 }
1325
1326 /**
1327 * For each unnamed interface block that was discovered while running the
1328 * visitor, adjust the interface type to reflect the newly assigned array
1329 * sizes, and fix up the ir_variable nodes to point to the new interface
1330 * type.
1331 */
1332 void fixup_unnamed_interface_types()
1333 {
1334 hash_table_call_foreach(this->unnamed_interfaces,
1335 fixup_unnamed_interface_type, NULL);
1336 }
1337
1338 private:
1339 /**
1340 * If the type pointed to by \c type represents an unsized array, replace
1341 * it with a sized array whose size is determined by max_array_access.
1342 */
1343 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1344 {
1345 if ((*type)->is_unsized_array()) {
1346 *type = glsl_type::get_array_instance((*type)->fields.array,
1347 max_array_access + 1);
1348 assert(*type != NULL);
1349 }
1350 }
1351
1352 static const glsl_type *
1353 update_interface_members_array(const glsl_type *type,
1354 const glsl_type *new_interface_type)
1355 {
1356 const glsl_type *element_type = type->fields.array;
1357 if (element_type->is_array()) {
1358 const glsl_type *new_array_type =
1359 update_interface_members_array(element_type, new_interface_type);
1360 return glsl_type::get_array_instance(new_array_type, type->length);
1361 } else {
1362 return glsl_type::get_array_instance(new_interface_type,
1363 type->length);
1364 }
1365 }
1366
1367 /**
1368 * Determine whether the given interface type contains unsized arrays (if
1369 * it doesn't, array_sizing_visitor doesn't need to process it).
1370 */
1371 static bool interface_contains_unsized_arrays(const glsl_type *type)
1372 {
1373 for (unsigned i = 0; i < type->length; i++) {
1374 const glsl_type *elem_type = type->fields.structure[i].type;
1375 if (elem_type->is_unsized_array())
1376 return true;
1377 }
1378 return false;
1379 }
1380
1381 /**
1382 * Create a new interface type based on the given type, with unsized arrays
1383 * replaced by sized arrays whose size is determined by
1384 * max_ifc_array_access.
1385 */
1386 static const glsl_type *
1387 resize_interface_members(const glsl_type *type,
1388 const unsigned *max_ifc_array_access)
1389 {
1390 unsigned num_fields = type->length;
1391 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1392 memcpy(fields, type->fields.structure,
1393 num_fields * sizeof(*fields));
1394 for (unsigned i = 0; i < num_fields; i++) {
1395 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1396 }
1397 glsl_interface_packing packing =
1398 (glsl_interface_packing) type->interface_packing;
1399 const glsl_type *new_ifc_type =
1400 glsl_type::get_interface_instance(fields, num_fields,
1401 packing, type->name);
1402 delete [] fields;
1403 return new_ifc_type;
1404 }
1405
1406 static void fixup_unnamed_interface_type(const void *key, void *data,
1407 void *)
1408 {
1409 const glsl_type *ifc_type = (const glsl_type *) key;
1410 ir_variable **interface_vars = (ir_variable **) data;
1411 unsigned num_fields = ifc_type->length;
1412 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1413 memcpy(fields, ifc_type->fields.structure,
1414 num_fields * sizeof(*fields));
1415 bool interface_type_changed = false;
1416 for (unsigned i = 0; i < num_fields; i++) {
1417 if (interface_vars[i] != NULL &&
1418 fields[i].type != interface_vars[i]->type) {
1419 fields[i].type = interface_vars[i]->type;
1420 interface_type_changed = true;
1421 }
1422 }
1423 if (!interface_type_changed) {
1424 delete [] fields;
1425 return;
1426 }
1427 glsl_interface_packing packing =
1428 (glsl_interface_packing) ifc_type->interface_packing;
1429 const glsl_type *new_ifc_type =
1430 glsl_type::get_interface_instance(fields, num_fields, packing,
1431 ifc_type->name);
1432 delete [] fields;
1433 for (unsigned i = 0; i < num_fields; i++) {
1434 if (interface_vars[i] != NULL)
1435 interface_vars[i]->change_interface_type(new_ifc_type);
1436 }
1437 }
1438
1439 /**
1440 * Memory context used to allocate the data in \c unnamed_interfaces.
1441 */
1442 void *mem_ctx;
1443
1444 /**
1445 * Hash table from const glsl_type * to an array of ir_variable *'s
1446 * pointing to the ir_variables constituting each unnamed interface block.
1447 */
1448 hash_table *unnamed_interfaces;
1449 };
1450
1451
1452 /**
1453 * Performs the cross-validation of tessellation control shader vertices and
1454 * layout qualifiers for the attached tessellation control shaders,
1455 * and propagates them to the linked TCS and linked shader program.
1456 */
1457 static void
1458 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1459 struct gl_shader *linked_shader,
1460 struct gl_shader **shader_list,
1461 unsigned num_shaders)
1462 {
1463 linked_shader->TessCtrl.VerticesOut = 0;
1464
1465 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1466 return;
1467
1468 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1469 *
1470 * "All tessellation control shader layout declarations in a program
1471 * must specify the same output patch vertex count. There must be at
1472 * least one layout qualifier specifying an output patch vertex count
1473 * in any program containing tessellation control shaders; however,
1474 * such a declaration is not required in all tessellation control
1475 * shaders."
1476 */
1477
1478 for (unsigned i = 0; i < num_shaders; i++) {
1479 struct gl_shader *shader = shader_list[i];
1480
1481 if (shader->TessCtrl.VerticesOut != 0) {
1482 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1483 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1484 linker_error(prog, "tessellation control shader defined with "
1485 "conflicting output vertex count (%d and %d)\n",
1486 linked_shader->TessCtrl.VerticesOut,
1487 shader->TessCtrl.VerticesOut);
1488 return;
1489 }
1490 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1491 }
1492 }
1493
1494 /* Just do the intrastage -> interstage propagation right now,
1495 * since we already know we're in the right type of shader program
1496 * for doing it.
1497 */
1498 if (linked_shader->TessCtrl.VerticesOut == 0) {
1499 linker_error(prog, "tessellation control shader didn't declare "
1500 "vertices out layout qualifier\n");
1501 return;
1502 }
1503 prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
1504 }
1505
1506
1507 /**
1508 * Performs the cross-validation of tessellation evaluation shader
1509 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1510 * for the attached tessellation evaluation shaders, and propagates them
1511 * to the linked TES and linked shader program.
1512 */
1513 static void
1514 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1515 struct gl_shader *linked_shader,
1516 struct gl_shader **shader_list,
1517 unsigned num_shaders)
1518 {
1519 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1520 linked_shader->TessEval.Spacing = 0;
1521 linked_shader->TessEval.VertexOrder = 0;
1522 linked_shader->TessEval.PointMode = -1;
1523
1524 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1525 return;
1526
1527 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1528 *
1529 * "At least one tessellation evaluation shader (compilation unit) in
1530 * a program must declare a primitive mode in its input layout.
1531 * Declaration vertex spacing, ordering, and point mode identifiers is
1532 * optional. It is not required that all tessellation evaluation
1533 * shaders in a program declare a primitive mode. If spacing or
1534 * vertex ordering declarations are omitted, the tessellation
1535 * primitive generator will use equal spacing or counter-clockwise
1536 * vertex ordering, respectively. If a point mode declaration is
1537 * omitted, the tessellation primitive generator will produce lines or
1538 * triangles according to the primitive mode."
1539 */
1540
1541 for (unsigned i = 0; i < num_shaders; i++) {
1542 struct gl_shader *shader = shader_list[i];
1543
1544 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1545 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1546 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1547 linker_error(prog, "tessellation evaluation shader defined with "
1548 "conflicting input primitive modes.\n");
1549 return;
1550 }
1551 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1552 }
1553
1554 if (shader->TessEval.Spacing != 0) {
1555 if (linked_shader->TessEval.Spacing != 0 &&
1556 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1557 linker_error(prog, "tessellation evaluation shader defined with "
1558 "conflicting vertex spacing.\n");
1559 return;
1560 }
1561 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1562 }
1563
1564 if (shader->TessEval.VertexOrder != 0) {
1565 if (linked_shader->TessEval.VertexOrder != 0 &&
1566 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1567 linker_error(prog, "tessellation evaluation shader defined with "
1568 "conflicting ordering.\n");
1569 return;
1570 }
1571 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1572 }
1573
1574 if (shader->TessEval.PointMode != -1) {
1575 if (linked_shader->TessEval.PointMode != -1 &&
1576 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1577 linker_error(prog, "tessellation evaluation shader defined with "
1578 "conflicting point modes.\n");
1579 return;
1580 }
1581 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1582 }
1583
1584 }
1585
1586 /* Just do the intrastage -> interstage propagation right now,
1587 * since we already know we're in the right type of shader program
1588 * for doing it.
1589 */
1590 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1591 linker_error(prog,
1592 "tessellation evaluation shader didn't declare input "
1593 "primitive modes.\n");
1594 return;
1595 }
1596 prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
1597
1598 if (linked_shader->TessEval.Spacing == 0)
1599 linked_shader->TessEval.Spacing = GL_EQUAL;
1600 prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
1601
1602 if (linked_shader->TessEval.VertexOrder == 0)
1603 linked_shader->TessEval.VertexOrder = GL_CCW;
1604 prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
1605
1606 if (linked_shader->TessEval.PointMode == -1)
1607 linked_shader->TessEval.PointMode = GL_FALSE;
1608 prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
1609 }
1610
1611
1612 /**
1613 * Performs the cross-validation of layout qualifiers specified in
1614 * redeclaration of gl_FragCoord for the attached fragment shaders,
1615 * and propagates them to the linked FS and linked shader program.
1616 */
1617 static void
1618 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1619 struct gl_shader *linked_shader,
1620 struct gl_shader **shader_list,
1621 unsigned num_shaders)
1622 {
1623 linked_shader->redeclares_gl_fragcoord = false;
1624 linked_shader->uses_gl_fragcoord = false;
1625 linked_shader->origin_upper_left = false;
1626 linked_shader->pixel_center_integer = false;
1627
1628 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1629 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1630 return;
1631
1632 for (unsigned i = 0; i < num_shaders; i++) {
1633 struct gl_shader *shader = shader_list[i];
1634 /* From the GLSL 1.50 spec, page 39:
1635 *
1636 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1637 * it must be redeclared in all the fragment shaders in that program
1638 * that have a static use gl_FragCoord."
1639 */
1640 if ((linked_shader->redeclares_gl_fragcoord
1641 && !shader->redeclares_gl_fragcoord
1642 && shader->uses_gl_fragcoord)
1643 || (shader->redeclares_gl_fragcoord
1644 && !linked_shader->redeclares_gl_fragcoord
1645 && linked_shader->uses_gl_fragcoord)) {
1646 linker_error(prog, "fragment shader defined with conflicting "
1647 "layout qualifiers for gl_FragCoord\n");
1648 }
1649
1650 /* From the GLSL 1.50 spec, page 39:
1651 *
1652 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1653 * single program must have the same set of qualifiers."
1654 */
1655 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1656 && (shader->origin_upper_left != linked_shader->origin_upper_left
1657 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1658 linker_error(prog, "fragment shader defined with conflicting "
1659 "layout qualifiers for gl_FragCoord\n");
1660 }
1661
1662 /* Update the linked shader state. Note that uses_gl_fragcoord should
1663 * accumulate the results. The other values should replace. If there
1664 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1665 * are already known to be the same.
1666 */
1667 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1668 linked_shader->redeclares_gl_fragcoord =
1669 shader->redeclares_gl_fragcoord;
1670 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1671 || shader->uses_gl_fragcoord;
1672 linked_shader->origin_upper_left = shader->origin_upper_left;
1673 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1674 }
1675
1676 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1677 }
1678 }
1679
1680 /**
1681 * Performs the cross-validation of geometry shader max_vertices and
1682 * primitive type layout qualifiers for the attached geometry shaders,
1683 * and propagates them to the linked GS and linked shader program.
1684 */
1685 static void
1686 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1687 struct gl_shader *linked_shader,
1688 struct gl_shader **shader_list,
1689 unsigned num_shaders)
1690 {
1691 linked_shader->Geom.VerticesOut = 0;
1692 linked_shader->Geom.Invocations = 0;
1693 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1694 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1695
1696 /* No in/out qualifiers defined for anything but GLSL 1.50+
1697 * geometry shaders so far.
1698 */
1699 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1700 return;
1701
1702 /* From the GLSL 1.50 spec, page 46:
1703 *
1704 * "All geometry shader output layout declarations in a program
1705 * must declare the same layout and same value for
1706 * max_vertices. There must be at least one geometry output
1707 * layout declaration somewhere in a program, but not all
1708 * geometry shaders (compilation units) are required to
1709 * declare it."
1710 */
1711
1712 for (unsigned i = 0; i < num_shaders; i++) {
1713 struct gl_shader *shader = shader_list[i];
1714
1715 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1716 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1717 linked_shader->Geom.InputType != shader->Geom.InputType) {
1718 linker_error(prog, "geometry shader defined with conflicting "
1719 "input types\n");
1720 return;
1721 }
1722 linked_shader->Geom.InputType = shader->Geom.InputType;
1723 }
1724
1725 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1726 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1727 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1728 linker_error(prog, "geometry shader defined with conflicting "
1729 "output types\n");
1730 return;
1731 }
1732 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1733 }
1734
1735 if (shader->Geom.VerticesOut != 0) {
1736 if (linked_shader->Geom.VerticesOut != 0 &&
1737 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1738 linker_error(prog, "geometry shader defined with conflicting "
1739 "output vertex count (%d and %d)\n",
1740 linked_shader->Geom.VerticesOut,
1741 shader->Geom.VerticesOut);
1742 return;
1743 }
1744 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1745 }
1746
1747 if (shader->Geom.Invocations != 0) {
1748 if (linked_shader->Geom.Invocations != 0 &&
1749 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1750 linker_error(prog, "geometry shader defined with conflicting "
1751 "invocation count (%d and %d)\n",
1752 linked_shader->Geom.Invocations,
1753 shader->Geom.Invocations);
1754 return;
1755 }
1756 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1757 }
1758 }
1759
1760 /* Just do the intrastage -> interstage propagation right now,
1761 * since we already know we're in the right type of shader program
1762 * for doing it.
1763 */
1764 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1765 linker_error(prog,
1766 "geometry shader didn't declare primitive input type\n");
1767 return;
1768 }
1769 prog->Geom.InputType = linked_shader->Geom.InputType;
1770
1771 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1772 linker_error(prog,
1773 "geometry shader didn't declare primitive output type\n");
1774 return;
1775 }
1776 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1777
1778 if (linked_shader->Geom.VerticesOut == 0) {
1779 linker_error(prog,
1780 "geometry shader didn't declare max_vertices\n");
1781 return;
1782 }
1783 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1784
1785 if (linked_shader->Geom.Invocations == 0)
1786 linked_shader->Geom.Invocations = 1;
1787
1788 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1789 }
1790
1791
1792 /**
1793 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1794 * qualifiers for the attached compute shaders, and propagate them to the
1795 * linked CS and linked shader program.
1796 */
1797 static void
1798 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1799 struct gl_shader *linked_shader,
1800 struct gl_shader **shader_list,
1801 unsigned num_shaders)
1802 {
1803 for (int i = 0; i < 3; i++)
1804 linked_shader->Comp.LocalSize[i] = 0;
1805
1806 /* This function is called for all shader stages, but it only has an effect
1807 * for compute shaders.
1808 */
1809 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1810 return;
1811
1812 /* From the ARB_compute_shader spec, in the section describing local size
1813 * declarations:
1814 *
1815 * If multiple compute shaders attached to a single program object
1816 * declare local work-group size, the declarations must be identical;
1817 * otherwise a link-time error results. Furthermore, if a program
1818 * object contains any compute shaders, at least one must contain an
1819 * input layout qualifier specifying the local work sizes of the
1820 * program, or a link-time error will occur.
1821 */
1822 for (unsigned sh = 0; sh < num_shaders; sh++) {
1823 struct gl_shader *shader = shader_list[sh];
1824
1825 if (shader->Comp.LocalSize[0] != 0) {
1826 if (linked_shader->Comp.LocalSize[0] != 0) {
1827 for (int i = 0; i < 3; i++) {
1828 if (linked_shader->Comp.LocalSize[i] !=
1829 shader->Comp.LocalSize[i]) {
1830 linker_error(prog, "compute shader defined with conflicting "
1831 "local sizes\n");
1832 return;
1833 }
1834 }
1835 }
1836 for (int i = 0; i < 3; i++)
1837 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1838 }
1839 }
1840
1841 /* Just do the intrastage -> interstage propagation right now,
1842 * since we already know we're in the right type of shader program
1843 * for doing it.
1844 */
1845 if (linked_shader->Comp.LocalSize[0] == 0) {
1846 linker_error(prog, "compute shader didn't declare local size\n");
1847 return;
1848 }
1849 for (int i = 0; i < 3; i++)
1850 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1851 }
1852
1853
1854 /**
1855 * Combine a group of shaders for a single stage to generate a linked shader
1856 *
1857 * \note
1858 * If this function is supplied a single shader, it is cloned, and the new
1859 * shader is returned.
1860 */
1861 static struct gl_shader *
1862 link_intrastage_shaders(void *mem_ctx,
1863 struct gl_context *ctx,
1864 struct gl_shader_program *prog,
1865 struct gl_shader **shader_list,
1866 unsigned num_shaders)
1867 {
1868 struct gl_uniform_block *uniform_blocks = NULL;
1869
1870 /* Check that global variables defined in multiple shaders are consistent.
1871 */
1872 cross_validate_globals(prog, shader_list, num_shaders, false);
1873 if (!prog->LinkStatus)
1874 return NULL;
1875
1876 /* Check that interface blocks defined in multiple shaders are consistent.
1877 */
1878 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1879 num_shaders);
1880 if (!prog->LinkStatus)
1881 return NULL;
1882
1883 /* Link up uniform blocks defined within this stage. */
1884 const unsigned num_uniform_blocks =
1885 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1886 &uniform_blocks);
1887 if (!prog->LinkStatus)
1888 return NULL;
1889
1890 /* Check that there is only a single definition of each function signature
1891 * across all shaders.
1892 */
1893 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1894 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1895 ir_function *const f = node->as_function();
1896
1897 if (f == NULL)
1898 continue;
1899
1900 for (unsigned j = i + 1; j < num_shaders; j++) {
1901 ir_function *const other =
1902 shader_list[j]->symbols->get_function(f->name);
1903
1904 /* If the other shader has no function (and therefore no function
1905 * signatures) with the same name, skip to the next shader.
1906 */
1907 if (other == NULL)
1908 continue;
1909
1910 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1911 if (!sig->is_defined || sig->is_builtin())
1912 continue;
1913
1914 ir_function_signature *other_sig =
1915 other->exact_matching_signature(NULL, &sig->parameters);
1916
1917 if ((other_sig != NULL) && other_sig->is_defined
1918 && !other_sig->is_builtin()) {
1919 linker_error(prog, "function `%s' is multiply defined\n",
1920 f->name);
1921 return NULL;
1922 }
1923 }
1924 }
1925 }
1926 }
1927
1928 /* Find the shader that defines main, and make a clone of it.
1929 *
1930 * Starting with the clone, search for undefined references. If one is
1931 * found, find the shader that defines it. Clone the reference and add
1932 * it to the shader. Repeat until there are no undefined references or
1933 * until a reference cannot be resolved.
1934 */
1935 gl_shader *main = NULL;
1936 for (unsigned i = 0; i < num_shaders; i++) {
1937 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1938 main = shader_list[i];
1939 break;
1940 }
1941 }
1942
1943 if (main == NULL) {
1944 linker_error(prog, "%s shader lacks `main'\n",
1945 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1946 return NULL;
1947 }
1948
1949 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1950 linked->ir = new(linked) exec_list;
1951 clone_ir_list(mem_ctx, linked->ir, main->ir);
1952
1953 linked->UniformBlocks = uniform_blocks;
1954 linked->NumUniformBlocks = num_uniform_blocks;
1955 ralloc_steal(linked, linked->UniformBlocks);
1956
1957 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1958 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
1959 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
1960 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1961 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1962
1963 populate_symbol_table(linked);
1964
1965 /* The pointer to the main function in the final linked shader (i.e., the
1966 * copy of the original shader that contained the main function).
1967 */
1968 ir_function_signature *const main_sig =
1969 link_get_main_function_signature(linked);
1970
1971 /* Move any instructions other than variable declarations or function
1972 * declarations into main.
1973 */
1974 exec_node *insertion_point =
1975 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1976 linked);
1977
1978 for (unsigned i = 0; i < num_shaders; i++) {
1979 if (shader_list[i] == main)
1980 continue;
1981
1982 insertion_point = move_non_declarations(shader_list[i]->ir,
1983 insertion_point, true, linked);
1984 }
1985
1986 /* Check if any shader needs built-in functions. */
1987 bool need_builtins = false;
1988 for (unsigned i = 0; i < num_shaders; i++) {
1989 if (shader_list[i]->uses_builtin_functions) {
1990 need_builtins = true;
1991 break;
1992 }
1993 }
1994
1995 bool ok;
1996 if (need_builtins) {
1997 /* Make a temporary array one larger than shader_list, which will hold
1998 * the built-in function shader as well.
1999 */
2000 gl_shader **linking_shaders = (gl_shader **)
2001 calloc(num_shaders + 1, sizeof(gl_shader *));
2002
2003 ok = linking_shaders != NULL;
2004
2005 if (ok) {
2006 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2007 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2008
2009 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2010
2011 free(linking_shaders);
2012 } else {
2013 _mesa_error_no_memory(__func__);
2014 }
2015 } else {
2016 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2017 }
2018
2019
2020 if (!ok) {
2021 ctx->Driver.DeleteShader(ctx, linked);
2022 return NULL;
2023 }
2024
2025 /* At this point linked should contain all of the linked IR, so
2026 * validate it to make sure nothing went wrong.
2027 */
2028 validate_ir_tree(linked->ir);
2029
2030 /* Set the size of geometry shader input arrays */
2031 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2032 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
2033 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2034 foreach_in_list(ir_instruction, ir, linked->ir) {
2035 ir->accept(&input_resize_visitor);
2036 }
2037 }
2038
2039 if (ctx->Const.VertexID_is_zero_based)
2040 lower_vertex_id(linked);
2041
2042 /* Make a pass over all variable declarations to ensure that arrays with
2043 * unspecified sizes have a size specified. The size is inferred from the
2044 * max_array_access field.
2045 */
2046 array_sizing_visitor v;
2047 v.run(linked->ir);
2048 v.fixup_unnamed_interface_types();
2049
2050 return linked;
2051 }
2052
2053 /**
2054 * Update the sizes of linked shader uniform arrays to the maximum
2055 * array index used.
2056 *
2057 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2058 *
2059 * If one or more elements of an array are active,
2060 * GetActiveUniform will return the name of the array in name,
2061 * subject to the restrictions listed above. The type of the array
2062 * is returned in type. The size parameter contains the highest
2063 * array element index used, plus one. The compiler or linker
2064 * determines the highest index used. There will be only one
2065 * active uniform reported by the GL per uniform array.
2066
2067 */
2068 static void
2069 update_array_sizes(struct gl_shader_program *prog)
2070 {
2071 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2072 if (prog->_LinkedShaders[i] == NULL)
2073 continue;
2074
2075 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2076 ir_variable *const var = node->as_variable();
2077
2078 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2079 !var->type->is_array())
2080 continue;
2081
2082 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2083 * will not be eliminated. Since we always do std140, just
2084 * don't resize arrays in UBOs.
2085 *
2086 * Atomic counters are supposed to get deterministic
2087 * locations assigned based on the declaration ordering and
2088 * sizes, array compaction would mess that up.
2089 */
2090 if (var->is_in_buffer_block() || var->type->contains_atomic())
2091 continue;
2092
2093 unsigned int size = var->data.max_array_access;
2094 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2095 if (prog->_LinkedShaders[j] == NULL)
2096 continue;
2097
2098 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2099 ir_variable *other_var = node2->as_variable();
2100 if (!other_var)
2101 continue;
2102
2103 if (strcmp(var->name, other_var->name) == 0 &&
2104 other_var->data.max_array_access > size) {
2105 size = other_var->data.max_array_access;
2106 }
2107 }
2108 }
2109
2110 if (size + 1 != var->type->length) {
2111 /* If this is a built-in uniform (i.e., it's backed by some
2112 * fixed-function state), adjust the number of state slots to
2113 * match the new array size. The number of slots per array entry
2114 * is not known. It seems safe to assume that the total number of
2115 * slots is an integer multiple of the number of array elements.
2116 * Determine the number of slots per array element by dividing by
2117 * the old (total) size.
2118 */
2119 const unsigned num_slots = var->get_num_state_slots();
2120 if (num_slots > 0) {
2121 var->set_num_state_slots((size + 1)
2122 * (num_slots / var->type->length));
2123 }
2124
2125 var->type = glsl_type::get_array_instance(var->type->fields.array,
2126 size + 1);
2127 /* FINISHME: We should update the types of array
2128 * dereferences of this variable now.
2129 */
2130 }
2131 }
2132 }
2133 }
2134
2135 /**
2136 * Resize tessellation evaluation per-vertex inputs to the size of
2137 * tessellation control per-vertex outputs.
2138 */
2139 static void
2140 resize_tes_inputs(struct gl_context *ctx,
2141 struct gl_shader_program *prog)
2142 {
2143 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2144 return;
2145
2146 gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2147 gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2148
2149 /* If no control shader is present, then the TES inputs are statically
2150 * sized to MaxPatchVertices; the actual size of the arrays won't be
2151 * known until draw time.
2152 */
2153 const int num_vertices = tcs
2154 ? tcs->TessCtrl.VerticesOut
2155 : ctx->Const.MaxPatchVertices;
2156
2157 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2158 foreach_in_list(ir_instruction, ir, tes->ir) {
2159 ir->accept(&input_resize_visitor);
2160 }
2161 }
2162
2163 /**
2164 * Find a contiguous set of available bits in a bitmask.
2165 *
2166 * \param used_mask Bits representing used (1) and unused (0) locations
2167 * \param needed_count Number of contiguous bits needed.
2168 *
2169 * \return
2170 * Base location of the available bits on success or -1 on failure.
2171 */
2172 int
2173 find_available_slots(unsigned used_mask, unsigned needed_count)
2174 {
2175 unsigned needed_mask = (1 << needed_count) - 1;
2176 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2177
2178 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2179 * cannot optimize possibly infinite loops" for the loop below.
2180 */
2181 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2182 return -1;
2183
2184 for (int i = 0; i <= max_bit_to_test; i++) {
2185 if ((needed_mask & ~used_mask) == needed_mask)
2186 return i;
2187
2188 needed_mask <<= 1;
2189 }
2190
2191 return -1;
2192 }
2193
2194
2195 /**
2196 * Assign locations for either VS inputs or FS outputs
2197 *
2198 * \param prog Shader program whose variables need locations assigned
2199 * \param target_index Selector for the program target to receive location
2200 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2201 * \c MESA_SHADER_FRAGMENT.
2202 * \param max_index Maximum number of generic locations. This corresponds
2203 * to either the maximum number of draw buffers or the
2204 * maximum number of generic attributes.
2205 *
2206 * \return
2207 * If locations are successfully assigned, true is returned. Otherwise an
2208 * error is emitted to the shader link log and false is returned.
2209 */
2210 bool
2211 assign_attribute_or_color_locations(gl_shader_program *prog,
2212 unsigned target_index,
2213 unsigned max_index)
2214 {
2215 /* Mark invalid locations as being used.
2216 */
2217 unsigned used_locations = (max_index >= 32)
2218 ? ~0 : ~((1 << max_index) - 1);
2219
2220 assert((target_index == MESA_SHADER_VERTEX)
2221 || (target_index == MESA_SHADER_FRAGMENT));
2222
2223 gl_shader *const sh = prog->_LinkedShaders[target_index];
2224 if (sh == NULL)
2225 return true;
2226
2227 /* Operate in a total of four passes.
2228 *
2229 * 1. Invalidate the location assignments for all vertex shader inputs.
2230 *
2231 * 2. Assign locations for inputs that have user-defined (via
2232 * glBindVertexAttribLocation) locations and outputs that have
2233 * user-defined locations (via glBindFragDataLocation).
2234 *
2235 * 3. Sort the attributes without assigned locations by number of slots
2236 * required in decreasing order. Fragmentation caused by attribute
2237 * locations assigned by the application may prevent large attributes
2238 * from having enough contiguous space.
2239 *
2240 * 4. Assign locations to any inputs without assigned locations.
2241 */
2242
2243 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2244 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2245
2246 const enum ir_variable_mode direction =
2247 (target_index == MESA_SHADER_VERTEX)
2248 ? ir_var_shader_in : ir_var_shader_out;
2249
2250
2251 /* Temporary storage for the set of attributes that need locations assigned.
2252 */
2253 struct temp_attr {
2254 unsigned slots;
2255 ir_variable *var;
2256
2257 /* Used below in the call to qsort. */
2258 static int compare(const void *a, const void *b)
2259 {
2260 const temp_attr *const l = (const temp_attr *) a;
2261 const temp_attr *const r = (const temp_attr *) b;
2262
2263 /* Reversed because we want a descending order sort below. */
2264 return r->slots - l->slots;
2265 }
2266 } to_assign[16];
2267
2268 unsigned num_attr = 0;
2269 unsigned total_attribs_size = 0;
2270
2271 foreach_in_list(ir_instruction, node, sh->ir) {
2272 ir_variable *const var = node->as_variable();
2273
2274 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2275 continue;
2276
2277 if (var->data.explicit_location) {
2278 if ((var->data.location >= (int)(max_index + generic_base))
2279 || (var->data.location < 0)) {
2280 linker_error(prog,
2281 "invalid explicit location %d specified for `%s'\n",
2282 (var->data.location < 0)
2283 ? var->data.location
2284 : var->data.location - generic_base,
2285 var->name);
2286 return false;
2287 }
2288 } else if (target_index == MESA_SHADER_VERTEX) {
2289 unsigned binding;
2290
2291 if (prog->AttributeBindings->get(binding, var->name)) {
2292 assert(binding >= VERT_ATTRIB_GENERIC0);
2293 var->data.location = binding;
2294 var->data.is_unmatched_generic_inout = 0;
2295 }
2296 } else if (target_index == MESA_SHADER_FRAGMENT) {
2297 unsigned binding;
2298 unsigned index;
2299
2300 if (prog->FragDataBindings->get(binding, var->name)) {
2301 assert(binding >= FRAG_RESULT_DATA0);
2302 var->data.location = binding;
2303 var->data.is_unmatched_generic_inout = 0;
2304
2305 if (prog->FragDataIndexBindings->get(index, var->name)) {
2306 var->data.index = index;
2307 }
2308 }
2309 }
2310
2311 const unsigned slots = var->type->count_attribute_slots();
2312
2313 /* From GL4.5 core spec, section 11.1.1 (Vertex Attributes):
2314 *
2315 * "A program with more than the value of MAX_VERTEX_ATTRIBS active
2316 * attribute variables may fail to link, unless device-dependent
2317 * optimizations are able to make the program fit within available
2318 * hardware resources. For the purposes of this test, attribute variables
2319 * of the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3,
2320 * and dmat4 may count as consuming twice as many attributes as equivalent
2321 * single-precision types. While these types use the same number of
2322 * generic attributes as their single-precision equivalents,
2323 * implementations are permitted to consume two single-precision vectors
2324 * of internal storage for each three- or four-component double-precision
2325 * vector."
2326 * Until someone has a good reason in Mesa, enforce that now.
2327 */
2328 if (target_index == MESA_SHADER_VERTEX) {
2329 total_attribs_size += slots;
2330 if (var->type->without_array() == glsl_type::dvec3_type ||
2331 var->type->without_array() == glsl_type::dvec4_type ||
2332 var->type->without_array() == glsl_type::dmat2x3_type ||
2333 var->type->without_array() == glsl_type::dmat2x4_type ||
2334 var->type->without_array() == glsl_type::dmat3_type ||
2335 var->type->without_array() == glsl_type::dmat3x4_type ||
2336 var->type->without_array() == glsl_type::dmat4x3_type ||
2337 var->type->without_array() == glsl_type::dmat4_type)
2338 total_attribs_size += slots;
2339 }
2340
2341 /* If the variable is not a built-in and has a location statically
2342 * assigned in the shader (presumably via a layout qualifier), make sure
2343 * that it doesn't collide with other assigned locations. Otherwise,
2344 * add it to the list of variables that need linker-assigned locations.
2345 */
2346 if (var->data.location != -1) {
2347 if (var->data.location >= generic_base && var->data.index < 1) {
2348 /* From page 61 of the OpenGL 4.0 spec:
2349 *
2350 * "LinkProgram will fail if the attribute bindings assigned
2351 * by BindAttribLocation do not leave not enough space to
2352 * assign a location for an active matrix attribute or an
2353 * active attribute array, both of which require multiple
2354 * contiguous generic attributes."
2355 *
2356 * I think above text prohibits the aliasing of explicit and
2357 * automatic assignments. But, aliasing is allowed in manual
2358 * assignments of attribute locations. See below comments for
2359 * the details.
2360 *
2361 * From OpenGL 4.0 spec, page 61:
2362 *
2363 * "It is possible for an application to bind more than one
2364 * attribute name to the same location. This is referred to as
2365 * aliasing. This will only work if only one of the aliased
2366 * attributes is active in the executable program, or if no
2367 * path through the shader consumes more than one attribute of
2368 * a set of attributes aliased to the same location. A link
2369 * error can occur if the linker determines that every path
2370 * through the shader consumes multiple aliased attributes,
2371 * but implementations are not required to generate an error
2372 * in this case."
2373 *
2374 * From GLSL 4.30 spec, page 54:
2375 *
2376 * "A program will fail to link if any two non-vertex shader
2377 * input variables are assigned to the same location. For
2378 * vertex shaders, multiple input variables may be assigned
2379 * to the same location using either layout qualifiers or via
2380 * the OpenGL API. However, such aliasing is intended only to
2381 * support vertex shaders where each execution path accesses
2382 * at most one input per each location. Implementations are
2383 * permitted, but not required, to generate link-time errors
2384 * if they detect that every path through the vertex shader
2385 * executable accesses multiple inputs assigned to any single
2386 * location. For all shader types, a program will fail to link
2387 * if explicit location assignments leave the linker unable
2388 * to find space for other variables without explicit
2389 * assignments."
2390 *
2391 * From OpenGL ES 3.0 spec, page 56:
2392 *
2393 * "Binding more than one attribute name to the same location
2394 * is referred to as aliasing, and is not permitted in OpenGL
2395 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2396 * fail when this condition exists. However, aliasing is
2397 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2398 * This will only work if only one of the aliased attributes
2399 * is active in the executable program, or if no path through
2400 * the shader consumes more than one attribute of a set of
2401 * attributes aliased to the same location. A link error can
2402 * occur if the linker determines that every path through the
2403 * shader consumes multiple aliased attributes, but implemen-
2404 * tations are not required to generate an error in this case."
2405 *
2406 * After looking at above references from OpenGL, OpenGL ES and
2407 * GLSL specifications, we allow aliasing of vertex input variables
2408 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2409 *
2410 * NOTE: This is not required by the spec but its worth mentioning
2411 * here that we're not doing anything to make sure that no path
2412 * through the vertex shader executable accesses multiple inputs
2413 * assigned to any single location.
2414 */
2415
2416 /* Mask representing the contiguous slots that will be used by
2417 * this attribute.
2418 */
2419 const unsigned attr = var->data.location - generic_base;
2420 const unsigned use_mask = (1 << slots) - 1;
2421 const char *const string = (target_index == MESA_SHADER_VERTEX)
2422 ? "vertex shader input" : "fragment shader output";
2423
2424 /* Generate a link error if the requested locations for this
2425 * attribute exceed the maximum allowed attribute location.
2426 */
2427 if (attr + slots > max_index) {
2428 linker_error(prog,
2429 "insufficient contiguous locations "
2430 "available for %s `%s' %d %d %d\n", string,
2431 var->name, used_locations, use_mask, attr);
2432 return false;
2433 }
2434
2435 /* Generate a link error if the set of bits requested for this
2436 * attribute overlaps any previously allocated bits.
2437 */
2438 if ((~(use_mask << attr) & used_locations) != used_locations) {
2439 if (target_index == MESA_SHADER_FRAGMENT ||
2440 (prog->IsES && prog->Version >= 300)) {
2441 linker_error(prog,
2442 "overlapping location is assigned "
2443 "to %s `%s' %d %d %d\n", string,
2444 var->name, used_locations, use_mask, attr);
2445 return false;
2446 } else {
2447 linker_warning(prog,
2448 "overlapping location is assigned "
2449 "to %s `%s' %d %d %d\n", string,
2450 var->name, used_locations, use_mask, attr);
2451 }
2452 }
2453
2454 used_locations |= (use_mask << attr);
2455 }
2456
2457 continue;
2458 }
2459
2460 to_assign[num_attr].slots = slots;
2461 to_assign[num_attr].var = var;
2462 num_attr++;
2463 }
2464
2465 if (target_index == MESA_SHADER_VERTEX) {
2466 if (total_attribs_size > max_index) {
2467 linker_error(prog,
2468 "attempt to use %d vertex attribute slots only %d available ",
2469 total_attribs_size, max_index);
2470 return false;
2471 }
2472 }
2473
2474 /* If all of the attributes were assigned locations by the application (or
2475 * are built-in attributes with fixed locations), return early. This should
2476 * be the common case.
2477 */
2478 if (num_attr == 0)
2479 return true;
2480
2481 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2482
2483 if (target_index == MESA_SHADER_VERTEX) {
2484 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2485 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2486 * reserved to prevent it from being automatically allocated below.
2487 */
2488 find_deref_visitor find("gl_Vertex");
2489 find.run(sh->ir);
2490 if (find.variable_found())
2491 used_locations |= (1 << 0);
2492 }
2493
2494 for (unsigned i = 0; i < num_attr; i++) {
2495 /* Mask representing the contiguous slots that will be used by this
2496 * attribute.
2497 */
2498 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2499
2500 int location = find_available_slots(used_locations, to_assign[i].slots);
2501
2502 if (location < 0) {
2503 const char *const string = (target_index == MESA_SHADER_VERTEX)
2504 ? "vertex shader input" : "fragment shader output";
2505
2506 linker_error(prog,
2507 "insufficient contiguous locations "
2508 "available for %s `%s'\n",
2509 string, to_assign[i].var->name);
2510 return false;
2511 }
2512
2513 to_assign[i].var->data.location = generic_base + location;
2514 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2515 used_locations |= (use_mask << location);
2516 }
2517
2518 return true;
2519 }
2520
2521
2522 /**
2523 * Demote shader inputs and outputs that are not used in other stages
2524 */
2525 void
2526 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2527 {
2528 foreach_in_list(ir_instruction, node, sh->ir) {
2529 ir_variable *const var = node->as_variable();
2530
2531 if ((var == NULL) || (var->data.mode != int(mode)))
2532 continue;
2533
2534 /* A shader 'in' or 'out' variable is only really an input or output if
2535 * its value is used by other shader stages. This will cause the variable
2536 * to have a location assigned.
2537 */
2538 if (var->data.is_unmatched_generic_inout) {
2539 assert(var->data.mode != ir_var_temporary);
2540 var->data.mode = ir_var_auto;
2541 }
2542 }
2543 }
2544
2545
2546 /**
2547 * Store the gl_FragDepth layout in the gl_shader_program struct.
2548 */
2549 static void
2550 store_fragdepth_layout(struct gl_shader_program *prog)
2551 {
2552 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2553 return;
2554 }
2555
2556 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2557
2558 /* We don't look up the gl_FragDepth symbol directly because if
2559 * gl_FragDepth is not used in the shader, it's removed from the IR.
2560 * However, the symbol won't be removed from the symbol table.
2561 *
2562 * We're only interested in the cases where the variable is NOT removed
2563 * from the IR.
2564 */
2565 foreach_in_list(ir_instruction, node, ir) {
2566 ir_variable *const var = node->as_variable();
2567
2568 if (var == NULL || var->data.mode != ir_var_shader_out) {
2569 continue;
2570 }
2571
2572 if (strcmp(var->name, "gl_FragDepth") == 0) {
2573 switch (var->data.depth_layout) {
2574 case ir_depth_layout_none:
2575 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2576 return;
2577 case ir_depth_layout_any:
2578 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2579 return;
2580 case ir_depth_layout_greater:
2581 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2582 return;
2583 case ir_depth_layout_less:
2584 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2585 return;
2586 case ir_depth_layout_unchanged:
2587 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2588 return;
2589 default:
2590 assert(0);
2591 return;
2592 }
2593 }
2594 }
2595 }
2596
2597 /**
2598 * Validate the resources used by a program versus the implementation limits
2599 */
2600 static void
2601 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2602 {
2603 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2604 struct gl_shader *sh = prog->_LinkedShaders[i];
2605
2606 if (sh == NULL)
2607 continue;
2608
2609 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2610 linker_error(prog, "Too many %s shader texture samplers\n",
2611 _mesa_shader_stage_to_string(i));
2612 }
2613
2614 if (sh->num_uniform_components >
2615 ctx->Const.Program[i].MaxUniformComponents) {
2616 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2617 linker_warning(prog, "Too many %s shader default uniform block "
2618 "components, but the driver will try to optimize "
2619 "them out; this is non-portable out-of-spec "
2620 "behavior\n",
2621 _mesa_shader_stage_to_string(i));
2622 } else {
2623 linker_error(prog, "Too many %s shader default uniform block "
2624 "components\n",
2625 _mesa_shader_stage_to_string(i));
2626 }
2627 }
2628
2629 if (sh->num_combined_uniform_components >
2630 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2631 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2632 linker_warning(prog, "Too many %s shader uniform components, "
2633 "but the driver will try to optimize them out; "
2634 "this is non-portable out-of-spec behavior\n",
2635 _mesa_shader_stage_to_string(i));
2636 } else {
2637 linker_error(prog, "Too many %s shader uniform components\n",
2638 _mesa_shader_stage_to_string(i));
2639 }
2640 }
2641 }
2642
2643 unsigned blocks[MESA_SHADER_STAGES] = {0};
2644 unsigned total_uniform_blocks = 0;
2645
2646 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2647 if (prog->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2648 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2649 prog->UniformBlocks[i].Name,
2650 prog->UniformBlocks[i].UniformBufferSize,
2651 ctx->Const.MaxUniformBlockSize);
2652 }
2653
2654 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2655 if (prog->UniformBlockStageIndex[j][i] != -1) {
2656 blocks[j]++;
2657 total_uniform_blocks++;
2658 }
2659 }
2660
2661 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2662 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2663 prog->NumUniformBlocks,
2664 ctx->Const.MaxCombinedUniformBlocks);
2665 } else {
2666 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2667 const unsigned max_uniform_blocks =
2668 ctx->Const.Program[i].MaxUniformBlocks;
2669 if (blocks[i] > max_uniform_blocks) {
2670 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2671 _mesa_shader_stage_to_string(i),
2672 blocks[i],
2673 max_uniform_blocks);
2674 break;
2675 }
2676 }
2677 }
2678 }
2679 }
2680
2681 /**
2682 * Validate shader image resources.
2683 */
2684 static void
2685 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2686 {
2687 unsigned total_image_units = 0;
2688 unsigned fragment_outputs = 0;
2689
2690 if (!ctx->Extensions.ARB_shader_image_load_store)
2691 return;
2692
2693 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2694 struct gl_shader *sh = prog->_LinkedShaders[i];
2695
2696 if (sh) {
2697 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2698 linker_error(prog, "Too many %s shader image uniforms\n",
2699 _mesa_shader_stage_to_string(i));
2700
2701 total_image_units += sh->NumImages;
2702
2703 if (i == MESA_SHADER_FRAGMENT) {
2704 foreach_in_list(ir_instruction, node, sh->ir) {
2705 ir_variable *var = node->as_variable();
2706 if (var && var->data.mode == ir_var_shader_out)
2707 fragment_outputs += var->type->count_attribute_slots();
2708 }
2709 }
2710 }
2711 }
2712
2713 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2714 linker_error(prog, "Too many combined image uniforms\n");
2715
2716 if (total_image_units + fragment_outputs >
2717 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2718 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2719 }
2720
2721
2722 /**
2723 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2724 * for a variable, checks for overlaps between other uniforms using explicit
2725 * locations.
2726 */
2727 static bool
2728 reserve_explicit_locations(struct gl_shader_program *prog,
2729 string_to_uint_map *map, ir_variable *var)
2730 {
2731 unsigned slots = var->type->uniform_locations();
2732 unsigned max_loc = var->data.location + slots - 1;
2733
2734 /* Resize remap table if locations do not fit in the current one. */
2735 if (max_loc + 1 > prog->NumUniformRemapTable) {
2736 prog->UniformRemapTable =
2737 reralloc(prog, prog->UniformRemapTable,
2738 gl_uniform_storage *,
2739 max_loc + 1);
2740
2741 if (!prog->UniformRemapTable) {
2742 linker_error(prog, "Out of memory during linking.\n");
2743 return false;
2744 }
2745
2746 /* Initialize allocated space. */
2747 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2748 prog->UniformRemapTable[i] = NULL;
2749
2750 prog->NumUniformRemapTable = max_loc + 1;
2751 }
2752
2753 for (unsigned i = 0; i < slots; i++) {
2754 unsigned loc = var->data.location + i;
2755
2756 /* Check if location is already used. */
2757 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2758
2759 /* Possibly same uniform from a different stage, this is ok. */
2760 unsigned hash_loc;
2761 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2762 continue;
2763
2764 /* ARB_explicit_uniform_location specification states:
2765 *
2766 * "No two default-block uniform variables in the program can have
2767 * the same location, even if they are unused, otherwise a compiler
2768 * or linker error will be generated."
2769 */
2770 linker_error(prog,
2771 "location qualifier for uniform %s overlaps "
2772 "previously used location\n",
2773 var->name);
2774 return false;
2775 }
2776
2777 /* Initialize location as inactive before optimization
2778 * rounds and location assignment.
2779 */
2780 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2781 }
2782
2783 /* Note, base location used for arrays. */
2784 map->put(var->data.location, var->name);
2785
2786 return true;
2787 }
2788
2789 /**
2790 * Check and reserve all explicit uniform locations, called before
2791 * any optimizations happen to handle also inactive uniforms and
2792 * inactive array elements that may get trimmed away.
2793 */
2794 static void
2795 check_explicit_uniform_locations(struct gl_context *ctx,
2796 struct gl_shader_program *prog)
2797 {
2798 if (!ctx->Extensions.ARB_explicit_uniform_location)
2799 return;
2800
2801 /* This map is used to detect if overlapping explicit locations
2802 * occur with the same uniform (from different stage) or a different one.
2803 */
2804 string_to_uint_map *uniform_map = new string_to_uint_map;
2805
2806 if (!uniform_map) {
2807 linker_error(prog, "Out of memory during linking.\n");
2808 return;
2809 }
2810
2811 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2812 struct gl_shader *sh = prog->_LinkedShaders[i];
2813
2814 if (!sh)
2815 continue;
2816
2817 foreach_in_list(ir_instruction, node, sh->ir) {
2818 ir_variable *var = node->as_variable();
2819 if (var && (var->data.mode == ir_var_uniform || var->data.mode == ir_var_shader_storage) &&
2820 var->data.explicit_location) {
2821 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2822 delete uniform_map;
2823 return;
2824 }
2825 }
2826 }
2827 }
2828
2829 delete uniform_map;
2830 }
2831
2832 static bool
2833 add_program_resource(struct gl_shader_program *prog, GLenum type,
2834 const void *data, uint8_t stages)
2835 {
2836 assert(data);
2837
2838 /* If resource already exists, do not add it again. */
2839 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
2840 if (prog->ProgramResourceList[i].Data == data)
2841 return true;
2842
2843 prog->ProgramResourceList =
2844 reralloc(prog,
2845 prog->ProgramResourceList,
2846 gl_program_resource,
2847 prog->NumProgramResourceList + 1);
2848
2849 if (!prog->ProgramResourceList) {
2850 linker_error(prog, "Out of memory during linking.\n");
2851 return false;
2852 }
2853
2854 struct gl_program_resource *res =
2855 &prog->ProgramResourceList[prog->NumProgramResourceList];
2856
2857 res->Type = type;
2858 res->Data = data;
2859 res->StageReferences = stages;
2860
2861 prog->NumProgramResourceList++;
2862
2863 return true;
2864 }
2865
2866 /**
2867 * Function builds a stage reference bitmask from variable name.
2868 */
2869 static uint8_t
2870 build_stageref(struct gl_shader_program *shProg, const char *name)
2871 {
2872 uint8_t stages = 0;
2873
2874 /* Note, that we assume MAX 8 stages, if there will be more stages, type
2875 * used for reference mask in gl_program_resource will need to be changed.
2876 */
2877 assert(MESA_SHADER_STAGES < 8);
2878
2879 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2880 struct gl_shader *sh = shProg->_LinkedShaders[i];
2881 if (!sh)
2882 continue;
2883
2884 /* Shader symbol table may contain variables that have
2885 * been optimized away. Search IR for the variable instead.
2886 */
2887 foreach_in_list(ir_instruction, node, sh->ir) {
2888 ir_variable *var = node->as_variable();
2889 if (var && strcmp(var->name, name) == 0) {
2890 stages |= (1 << i);
2891 break;
2892 }
2893 }
2894 }
2895 return stages;
2896 }
2897
2898 static bool
2899 add_interface_variables(struct gl_shader_program *shProg,
2900 struct gl_shader *sh, GLenum programInterface)
2901 {
2902 foreach_in_list(ir_instruction, node, sh->ir) {
2903 ir_variable *var = node->as_variable();
2904 uint8_t mask = 0;
2905
2906 if (!var)
2907 continue;
2908
2909 switch (var->data.mode) {
2910 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
2911 * "For GetActiveAttrib, all active vertex shader input variables
2912 * are enumerated, including the special built-in inputs gl_VertexID
2913 * and gl_InstanceID."
2914 */
2915 case ir_var_system_value:
2916 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
2917 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
2918 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
2919 continue;
2920 /* Mark special built-in inputs referenced by the vertex stage so
2921 * that they are considered active by the shader queries.
2922 */
2923 mask = (1 << (MESA_SHADER_VERTEX));
2924 /* FALLTHROUGH */
2925 case ir_var_shader_in:
2926 if (programInterface != GL_PROGRAM_INPUT)
2927 continue;
2928 break;
2929 case ir_var_shader_out:
2930 if (programInterface != GL_PROGRAM_OUTPUT)
2931 continue;
2932 break;
2933 default:
2934 continue;
2935 };
2936
2937 if (!add_program_resource(shProg, programInterface, var,
2938 build_stageref(shProg, var->name) | mask))
2939 return false;
2940 }
2941 return true;
2942 }
2943
2944 /**
2945 * Builds up a list of program resources that point to existing
2946 * resource data.
2947 */
2948 void
2949 build_program_resource_list(struct gl_context *ctx,
2950 struct gl_shader_program *shProg)
2951 {
2952 /* Rebuild resource list. */
2953 if (shProg->ProgramResourceList) {
2954 ralloc_free(shProg->ProgramResourceList);
2955 shProg->ProgramResourceList = NULL;
2956 shProg->NumProgramResourceList = 0;
2957 }
2958
2959 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
2960
2961 /* Determine first input and final output stage. These are used to
2962 * detect which variables should be enumerated in the resource list
2963 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
2964 */
2965 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2966 if (!shProg->_LinkedShaders[i])
2967 continue;
2968 if (input_stage == MESA_SHADER_STAGES)
2969 input_stage = i;
2970 output_stage = i;
2971 }
2972
2973 /* Empty shader, no resources. */
2974 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
2975 return;
2976
2977 /* Add inputs and outputs to the resource list. */
2978 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage],
2979 GL_PROGRAM_INPUT))
2980 return;
2981
2982 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage],
2983 GL_PROGRAM_OUTPUT))
2984 return;
2985
2986 /* Add transform feedback varyings. */
2987 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
2988 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
2989 uint8_t stageref =
2990 build_stageref(shProg,
2991 shProg->LinkedTransformFeedback.Varyings[i].Name);
2992 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
2993 &shProg->LinkedTransformFeedback.Varyings[i],
2994 stageref))
2995 return;
2996 }
2997 }
2998
2999 /* Add uniforms from uniform storage. */
3000 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3001 /* Do not add uniforms internally used by Mesa. */
3002 if (shProg->UniformStorage[i].hidden)
3003 continue;
3004
3005 uint8_t stageref =
3006 build_stageref(shProg, shProg->UniformStorage[i].name);
3007
3008 /* Add stagereferences for uniforms in a uniform block. */
3009 int block_index = shProg->UniformStorage[i].block_index;
3010 if (block_index != -1) {
3011 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
3012 if (shProg->UniformBlockStageIndex[j][block_index] != -1)
3013 stageref |= (1 << j);
3014 }
3015 }
3016
3017 if (!add_program_resource(shProg, GL_UNIFORM,
3018 &shProg->UniformStorage[i], stageref))
3019 return;
3020 }
3021
3022 /* Add program uniform blocks. */
3023 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
3024 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
3025 &shProg->UniformBlocks[i], 0))
3026 return;
3027 }
3028
3029 /* Add atomic counter buffers. */
3030 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
3031 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
3032 &shProg->AtomicBuffers[i], 0))
3033 return;
3034 }
3035
3036 /* TODO - following extensions will require more resource types:
3037 *
3038 * GL_ARB_shader_storage_buffer_object
3039 * GL_ARB_shader_subroutine
3040 */
3041 }
3042
3043 /**
3044 * This check is done to make sure we allow only constant expression
3045 * indexing and "constant-index-expression" (indexing with an expression
3046 * that includes loop induction variable).
3047 */
3048 static bool
3049 validate_sampler_array_indexing(struct gl_context *ctx,
3050 struct gl_shader_program *prog)
3051 {
3052 dynamic_sampler_array_indexing_visitor v;
3053 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3054 if (prog->_LinkedShaders[i] == NULL)
3055 continue;
3056
3057 bool no_dynamic_indexing =
3058 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
3059
3060 /* Search for array derefs in shader. */
3061 v.run(prog->_LinkedShaders[i]->ir);
3062 if (v.uses_dynamic_sampler_array_indexing()) {
3063 const char *msg = "sampler arrays indexed with non-constant "
3064 "expressions is forbidden in GLSL %s %u";
3065 /* Backend has indicated that it has no dynamic indexing support. */
3066 if (no_dynamic_indexing) {
3067 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3068 return false;
3069 } else {
3070 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3071 }
3072 }
3073 }
3074 return true;
3075 }
3076
3077
3078 void
3079 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
3080 {
3081 tfeedback_decl *tfeedback_decls = NULL;
3082 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
3083
3084 void *mem_ctx = ralloc_context(NULL); // temporary linker context
3085
3086 prog->LinkStatus = true; /* All error paths will set this to false */
3087 prog->Validated = false;
3088 prog->_Used = false;
3089
3090 prog->ARB_fragment_coord_conventions_enable = false;
3091
3092 /* Separate the shaders into groups based on their type.
3093 */
3094 struct gl_shader **shader_list[MESA_SHADER_STAGES];
3095 unsigned num_shaders[MESA_SHADER_STAGES];
3096
3097 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
3098 shader_list[i] = (struct gl_shader **)
3099 calloc(prog->NumShaders, sizeof(struct gl_shader *));
3100 num_shaders[i] = 0;
3101 }
3102
3103 unsigned min_version = UINT_MAX;
3104 unsigned max_version = 0;
3105 const bool is_es_prog =
3106 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
3107 for (unsigned i = 0; i < prog->NumShaders; i++) {
3108 min_version = MIN2(min_version, prog->Shaders[i]->Version);
3109 max_version = MAX2(max_version, prog->Shaders[i]->Version);
3110
3111 if (prog->Shaders[i]->IsES != is_es_prog) {
3112 linker_error(prog, "all shaders must use same shading "
3113 "language version\n");
3114 goto done;
3115 }
3116
3117 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
3118 prog->ARB_fragment_coord_conventions_enable = true;
3119 }
3120
3121 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
3122 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
3123 num_shaders[shader_type]++;
3124 }
3125
3126 /* In desktop GLSL, different shader versions may be linked together. In
3127 * GLSL ES, all shader versions must be the same.
3128 */
3129 if (is_es_prog && min_version != max_version) {
3130 linker_error(prog, "all shaders must use same shading "
3131 "language version\n");
3132 goto done;
3133 }
3134
3135 prog->Version = max_version;
3136 prog->IsES = is_es_prog;
3137
3138 /* Some shaders have to be linked with some other shaders present.
3139 */
3140 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
3141 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3142 !prog->SeparateShader) {
3143 linker_error(prog, "Geometry shader must be linked with "
3144 "vertex shader\n");
3145 goto done;
3146 }
3147 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
3148 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3149 !prog->SeparateShader) {
3150 linker_error(prog, "Tessellation evaluation shader must be linked with "
3151 "vertex shader\n");
3152 goto done;
3153 }
3154 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
3155 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3156 !prog->SeparateShader) {
3157 linker_error(prog, "Tessellation control shader must be linked with "
3158 "vertex shader\n");
3159 goto done;
3160 }
3161
3162 /* The spec is self-contradictory here. It allows linking without a tess
3163 * eval shader, but that can only be used with transform feedback and
3164 * rasterization disabled. However, transform feedback isn't allowed
3165 * with GL_PATCHES, so it can't be used.
3166 *
3167 * More investigation showed that the idea of transform feedback after
3168 * a tess control shader was dropped, because some hw vendors couldn't
3169 * support tessellation without a tess eval shader, but the linker section
3170 * wasn't updated to reflect that.
3171 *
3172 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
3173 * spec bug.
3174 *
3175 * Do what's reasonable and always require a tess eval shader if a tess
3176 * control shader is present.
3177 */
3178 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
3179 num_shaders[MESA_SHADER_TESS_EVAL] == 0 &&
3180 !prog->SeparateShader) {
3181 linker_error(prog, "Tessellation control shader must be linked with "
3182 "tessellation evaluation shader\n");
3183 goto done;
3184 }
3185
3186 /* Compute shaders have additional restrictions. */
3187 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
3188 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
3189 linker_error(prog, "Compute shaders may not be linked with any other "
3190 "type of shader\n");
3191 }
3192
3193 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3194 if (prog->_LinkedShaders[i] != NULL)
3195 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
3196
3197 prog->_LinkedShaders[i] = NULL;
3198 }
3199
3200 /* Link all shaders for a particular stage and validate the result.
3201 */
3202 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
3203 if (num_shaders[stage] > 0) {
3204 gl_shader *const sh =
3205 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
3206 num_shaders[stage]);
3207
3208 if (!prog->LinkStatus) {
3209 if (sh)
3210 ctx->Driver.DeleteShader(ctx, sh);
3211 goto done;
3212 }
3213
3214 switch (stage) {
3215 case MESA_SHADER_VERTEX:
3216 validate_vertex_shader_executable(prog, sh);
3217 break;
3218 case MESA_SHADER_GEOMETRY:
3219 validate_geometry_shader_executable(prog, sh);
3220 break;
3221 case MESA_SHADER_FRAGMENT:
3222 validate_fragment_shader_executable(prog, sh);
3223 break;
3224 }
3225 if (!prog->LinkStatus) {
3226 if (sh)
3227 ctx->Driver.DeleteShader(ctx, sh);
3228 goto done;
3229 }
3230
3231 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
3232 }
3233 }
3234
3235 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
3236 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
3237 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
3238 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
3239 else
3240 prog->LastClipDistanceArraySize = 0; /* Not used */
3241
3242 /* Here begins the inter-stage linking phase. Some initial validation is
3243 * performed, then locations are assigned for uniforms, attributes, and
3244 * varyings.
3245 */
3246 cross_validate_uniforms(prog);
3247 if (!prog->LinkStatus)
3248 goto done;
3249
3250 unsigned prev;
3251
3252 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
3253 if (prog->_LinkedShaders[prev] != NULL)
3254 break;
3255 }
3256
3257 check_explicit_uniform_locations(ctx, prog);
3258 if (!prog->LinkStatus)
3259 goto done;
3260
3261 resize_tes_inputs(ctx, prog);
3262
3263 /* Validate the inputs of each stage with the output of the preceding
3264 * stage.
3265 */
3266 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
3267 if (prog->_LinkedShaders[i] == NULL)
3268 continue;
3269
3270 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
3271 prog->_LinkedShaders[i]);
3272 if (!prog->LinkStatus)
3273 goto done;
3274
3275 cross_validate_outputs_to_inputs(prog,
3276 prog->_LinkedShaders[prev],
3277 prog->_LinkedShaders[i]);
3278 if (!prog->LinkStatus)
3279 goto done;
3280
3281 prev = i;
3282 }
3283
3284 /* Cross-validate uniform blocks between shader stages */
3285 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
3286 MESA_SHADER_STAGES);
3287 if (!prog->LinkStatus)
3288 goto done;
3289
3290 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3291 if (prog->_LinkedShaders[i] != NULL)
3292 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
3293 }
3294
3295 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
3296 * it before optimization because we want most of the checks to get
3297 * dropped thanks to constant propagation.
3298 *
3299 * This rule also applies to GLSL ES 3.00.
3300 */
3301 if (max_version >= (is_es_prog ? 300 : 130)) {
3302 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3303 if (sh) {
3304 lower_discard_flow(sh->ir);
3305 }
3306 }
3307
3308 if (!interstage_cross_validate_uniform_blocks(prog))
3309 goto done;
3310
3311 /* Do common optimization before assigning storage for attributes,
3312 * uniforms, and varyings. Later optimization could possibly make
3313 * some of that unused.
3314 */
3315 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3316 if (prog->_LinkedShaders[i] == NULL)
3317 continue;
3318
3319 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
3320 if (!prog->LinkStatus)
3321 goto done;
3322
3323 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
3324 lower_clip_distance(prog->_LinkedShaders[i]);
3325 }
3326
3327 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
3328 &ctx->Const.ShaderCompilerOptions[i],
3329 ctx->Const.NativeIntegers))
3330 ;
3331
3332 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
3333 }
3334
3335 /* Validation for special cases where we allow sampler array indexing
3336 * with loop induction variable. This check emits a warning or error
3337 * depending if backend can handle dynamic indexing.
3338 */
3339 if ((!prog->IsES && prog->Version < 130) ||
3340 (prog->IsES && prog->Version < 300)) {
3341 if (!validate_sampler_array_indexing(ctx, prog))
3342 goto done;
3343 }
3344
3345 /* Check and validate stream emissions in geometry shaders */
3346 validate_geometry_shader_emissions(ctx, prog);
3347
3348 /* Mark all generic shader inputs and outputs as unpaired. */
3349 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
3350 if (prog->_LinkedShaders[i] != NULL) {
3351 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
3352 }
3353 }
3354
3355 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX,
3356 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)) {
3357 goto done;
3358 }
3359
3360 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
3361 goto done;
3362 }
3363
3364 unsigned first, last;
3365
3366 first = MESA_SHADER_STAGES;
3367 last = 0;
3368
3369 /* Determine first and last stage. */
3370 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3371 if (!prog->_LinkedShaders[i])
3372 continue;
3373 if (first == MESA_SHADER_STAGES)
3374 first = i;
3375 last = i;
3376 }
3377
3378 if (num_tfeedback_decls != 0) {
3379 /* From GL_EXT_transform_feedback:
3380 * A program will fail to link if:
3381 *
3382 * * the <count> specified by TransformFeedbackVaryingsEXT is
3383 * non-zero, but the program object has no vertex or geometry
3384 * shader;
3385 */
3386 if (first == MESA_SHADER_FRAGMENT) {
3387 linker_error(prog, "Transform feedback varyings specified, but "
3388 "no vertex or geometry shader is present.\n");
3389 goto done;
3390 }
3391
3392 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
3393 prog->TransformFeedback.NumVarying);
3394 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
3395 prog->TransformFeedback.VaryingNames,
3396 tfeedback_decls))
3397 goto done;
3398 }
3399
3400 /* Linking the stages in the opposite order (from fragment to vertex)
3401 * ensures that inter-shader outputs written to in an earlier stage are
3402 * eliminated if they are (transitively) not used in a later stage.
3403 */
3404 int next;
3405
3406 if (first < MESA_SHADER_FRAGMENT) {
3407 gl_shader *const sh = prog->_LinkedShaders[last];
3408
3409 if (first == MESA_SHADER_GEOMETRY) {
3410 /* There was no vertex shader, but we still have to assign varying
3411 * locations for use by geometry shader inputs in SSO.
3412 *
3413 * If the shader is not separable (i.e., prog->SeparateShader is
3414 * false), linking will have already failed when first is
3415 * MESA_SHADER_GEOMETRY.
3416 */
3417 if (!assign_varying_locations(ctx, mem_ctx, prog,
3418 NULL, prog->_LinkedShaders[first],
3419 num_tfeedback_decls, tfeedback_decls,
3420 prog->Geom.VerticesIn))
3421 goto done;
3422 }
3423
3424 if (last != MESA_SHADER_FRAGMENT &&
3425 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
3426 /* There was no fragment shader, but we still have to assign varying
3427 * locations for use by transform feedback.
3428 */
3429 if (!assign_varying_locations(ctx, mem_ctx, prog,
3430 sh, NULL,
3431 num_tfeedback_decls, tfeedback_decls,
3432 0))
3433 goto done;
3434 }
3435
3436 do_dead_builtin_varyings(ctx, sh, NULL,
3437 num_tfeedback_decls, tfeedback_decls);
3438
3439 if (!prog->SeparateShader)
3440 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
3441
3442 /* Eliminate code that is now dead due to unused outputs being demoted.
3443 */
3444 while (do_dead_code(sh->ir, false))
3445 ;
3446 }
3447 else if (first == MESA_SHADER_FRAGMENT) {
3448 /* If the program only contains a fragment shader...
3449 */
3450 gl_shader *const sh = prog->_LinkedShaders[first];
3451
3452 do_dead_builtin_varyings(ctx, NULL, sh,
3453 num_tfeedback_decls, tfeedback_decls);
3454
3455 if (prog->SeparateShader) {
3456 if (!assign_varying_locations(ctx, mem_ctx, prog,
3457 NULL /* producer */,
3458 sh /* consumer */,
3459 0 /* num_tfeedback_decls */,
3460 NULL /* tfeedback_decls */,
3461 0 /* gs_input_vertices */))
3462 goto done;
3463 } else
3464 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
3465
3466 while (do_dead_code(sh->ir, false))
3467 ;
3468 }
3469
3470 next = last;
3471 for (int i = next - 1; i >= 0; i--) {
3472 if (prog->_LinkedShaders[i] == NULL)
3473 continue;
3474
3475 gl_shader *const sh_i = prog->_LinkedShaders[i];
3476 gl_shader *const sh_next = prog->_LinkedShaders[next];
3477 unsigned gs_input_vertices =
3478 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
3479
3480 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3481 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3482 tfeedback_decls, gs_input_vertices))
3483 goto done;
3484
3485 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3486 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3487 tfeedback_decls);
3488
3489 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
3490 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
3491
3492 /* Eliminate code that is now dead due to unused outputs being demoted.
3493 */
3494 while (do_dead_code(sh_i->ir, false))
3495 ;
3496 while (do_dead_code(sh_next->ir, false))
3497 ;
3498
3499 /* This must be done after all dead varyings are eliminated. */
3500 if (!check_against_output_limit(ctx, prog, sh_i))
3501 goto done;
3502 if (!check_against_input_limit(ctx, prog, sh_next))
3503 goto done;
3504
3505 next = i;
3506 }
3507
3508 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
3509 goto done;
3510
3511 update_array_sizes(prog);
3512 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
3513 link_assign_atomic_counter_resources(ctx, prog);
3514 store_fragdepth_layout(prog);
3515
3516 check_resources(ctx, prog);
3517 check_image_resources(ctx, prog);
3518 link_check_atomic_counter_resources(ctx, prog);
3519
3520 if (!prog->LinkStatus)
3521 goto done;
3522
3523 /* OpenGL ES requires that a vertex shader and a fragment shader both be
3524 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
3525 * anything about shader linking when one of the shaders (vertex or
3526 * fragment shader) is absent. So, the extension shouldn't change the
3527 * behavior specified in GLSL specification.
3528 */
3529 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
3530 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
3531 linker_error(prog, "program lacks a vertex shader\n");
3532 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3533 linker_error(prog, "program lacks a fragment shader\n");
3534 }
3535 }
3536
3537 /* FINISHME: Assign fragment shader output locations. */
3538
3539 done:
3540 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3541 free(shader_list[i]);
3542 if (prog->_LinkedShaders[i] == NULL)
3543 continue;
3544
3545 /* Do a final validation step to make sure that the IR wasn't
3546 * invalidated by any modifications performed after intrastage linking.
3547 */
3548 validate_ir_tree(prog->_LinkedShaders[i]->ir);
3549
3550 /* Retain any live IR, but trash the rest. */
3551 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
3552
3553 /* The symbol table in the linked shaders may contain references to
3554 * variables that were removed (e.g., unused uniforms). Since it may
3555 * contain junk, there is no possible valid use. Delete it and set the
3556 * pointer to NULL.
3557 */
3558 delete prog->_LinkedShaders[i]->symbols;
3559 prog->_LinkedShaders[i]->symbols = NULL;
3560 }
3561
3562 ralloc_free(mem_ctx);
3563 }