mesa: use implementation specified MAX_VERTEX_ATTRIBS rather than hardcoded value
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->fields.array,
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->fields.array;
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 /* Class that finds array derefs and check if indexes are dynamic. */
350 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
351 {
352 public:
353 dynamic_sampler_array_indexing_visitor() :
354 dynamic_sampler_array_indexing(false)
355 {
356 }
357
358 ir_visitor_status visit_enter(ir_dereference_array *ir)
359 {
360 if (!ir->variable_referenced())
361 return visit_continue;
362
363 if (!ir->variable_referenced()->type->contains_sampler())
364 return visit_continue;
365
366 if (!ir->array_index->constant_expression_value()) {
367 dynamic_sampler_array_indexing = true;
368 return visit_stop;
369 }
370 return visit_continue;
371 }
372
373 bool uses_dynamic_sampler_array_indexing()
374 {
375 return dynamic_sampler_array_indexing;
376 }
377
378 private:
379 bool dynamic_sampler_array_indexing;
380 };
381
382 } /* anonymous namespace */
383
384 void
385 linker_error(gl_shader_program *prog, const char *fmt, ...)
386 {
387 va_list ap;
388
389 ralloc_strcat(&prog->InfoLog, "error: ");
390 va_start(ap, fmt);
391 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
392 va_end(ap);
393
394 prog->LinkStatus = false;
395 }
396
397
398 void
399 linker_warning(gl_shader_program *prog, const char *fmt, ...)
400 {
401 va_list ap;
402
403 ralloc_strcat(&prog->InfoLog, "warning: ");
404 va_start(ap, fmt);
405 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
406 va_end(ap);
407
408 }
409
410
411 /**
412 * Given a string identifying a program resource, break it into a base name
413 * and an optional array index in square brackets.
414 *
415 * If an array index is present, \c out_base_name_end is set to point to the
416 * "[" that precedes the array index, and the array index itself is returned
417 * as a long.
418 *
419 * If no array index is present (or if the array index is negative or
420 * mal-formed), \c out_base_name_end, is set to point to the null terminator
421 * at the end of the input string, and -1 is returned.
422 *
423 * Only the final array index is parsed; if the string contains other array
424 * indices (or structure field accesses), they are left in the base name.
425 *
426 * No attempt is made to check that the base name is properly formed;
427 * typically the caller will look up the base name in a hash table, so
428 * ill-formed base names simply turn into hash table lookup failures.
429 */
430 long
431 parse_program_resource_name(const GLchar *name,
432 const GLchar **out_base_name_end)
433 {
434 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
435 *
436 * "When an integer array element or block instance number is part of
437 * the name string, it will be specified in decimal form without a "+"
438 * or "-" sign or any extra leading zeroes. Additionally, the name
439 * string will not include white space anywhere in the string."
440 */
441
442 const size_t len = strlen(name);
443 *out_base_name_end = name + len;
444
445 if (len == 0 || name[len-1] != ']')
446 return -1;
447
448 /* Walk backwards over the string looking for a non-digit character. This
449 * had better be the opening bracket for an array index.
450 *
451 * Initially, i specifies the location of the ']'. Since the string may
452 * contain only the ']' charcater, walk backwards very carefully.
453 */
454 unsigned i;
455 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
456 /* empty */ ;
457
458 if ((i == 0) || name[i-1] != '[')
459 return -1;
460
461 long array_index = strtol(&name[i], NULL, 10);
462 if (array_index < 0)
463 return -1;
464
465 *out_base_name_end = name + (i - 1);
466 return array_index;
467 }
468
469
470 void
471 link_invalidate_variable_locations(exec_list *ir)
472 {
473 foreach_in_list(ir_instruction, node, ir) {
474 ir_variable *const var = node->as_variable();
475
476 if (var == NULL)
477 continue;
478
479 /* Only assign locations for variables that lack an explicit location.
480 * Explicit locations are set for all built-in variables, generic vertex
481 * shader inputs (via layout(location=...)), and generic fragment shader
482 * outputs (also via layout(location=...)).
483 */
484 if (!var->data.explicit_location) {
485 var->data.location = -1;
486 var->data.location_frac = 0;
487 }
488
489 /* ir_variable::is_unmatched_generic_inout is used by the linker while
490 * connecting outputs from one stage to inputs of the next stage.
491 *
492 * There are two implicit assumptions here. First, we assume that any
493 * built-in variable (i.e., non-generic in or out) will have
494 * explicit_location set. Second, we assume that any generic in or out
495 * will not have explicit_location set.
496 *
497 * This second assumption will only be valid until
498 * GL_ARB_separate_shader_objects is supported. When that extension is
499 * implemented, this function will need some modifications.
500 */
501 if (!var->data.explicit_location) {
502 var->data.is_unmatched_generic_inout = 1;
503 } else {
504 var->data.is_unmatched_generic_inout = 0;
505 }
506 }
507 }
508
509
510 /**
511 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
512 *
513 * Also check for errors based on incorrect usage of gl_ClipVertex and
514 * gl_ClipDistance.
515 *
516 * Return false if an error was reported.
517 */
518 static void
519 analyze_clip_usage(struct gl_shader_program *prog,
520 struct gl_shader *shader, GLboolean *UsesClipDistance,
521 GLuint *ClipDistanceArraySize)
522 {
523 *ClipDistanceArraySize = 0;
524
525 if (!prog->IsES && prog->Version >= 130) {
526 /* From section 7.1 (Vertex Shader Special Variables) of the
527 * GLSL 1.30 spec:
528 *
529 * "It is an error for a shader to statically write both
530 * gl_ClipVertex and gl_ClipDistance."
531 *
532 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
533 * gl_ClipVertex nor gl_ClipDistance.
534 */
535 find_assignment_visitor clip_vertex("gl_ClipVertex");
536 find_assignment_visitor clip_distance("gl_ClipDistance");
537
538 clip_vertex.run(shader->ir);
539 clip_distance.run(shader->ir);
540 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
541 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
542 "and `gl_ClipDistance'\n",
543 _mesa_shader_stage_to_string(shader->Stage));
544 return;
545 }
546 *UsesClipDistance = clip_distance.variable_found();
547 ir_variable *clip_distance_var =
548 shader->symbols->get_variable("gl_ClipDistance");
549 if (clip_distance_var)
550 *ClipDistanceArraySize = clip_distance_var->type->length;
551 } else {
552 *UsesClipDistance = false;
553 }
554 }
555
556
557 /**
558 * Verify that a vertex shader executable meets all semantic requirements.
559 *
560 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
561 * as a side effect.
562 *
563 * \param shader Vertex shader executable to be verified
564 */
565 void
566 validate_vertex_shader_executable(struct gl_shader_program *prog,
567 struct gl_shader *shader)
568 {
569 if (shader == NULL)
570 return;
571
572 /* From the GLSL 1.10 spec, page 48:
573 *
574 * "The variable gl_Position is available only in the vertex
575 * language and is intended for writing the homogeneous vertex
576 * position. All executions of a well-formed vertex shader
577 * executable must write a value into this variable. [...] The
578 * variable gl_Position is available only in the vertex
579 * language and is intended for writing the homogeneous vertex
580 * position. All executions of a well-formed vertex shader
581 * executable must write a value into this variable."
582 *
583 * while in GLSL 1.40 this text is changed to:
584 *
585 * "The variable gl_Position is available only in the vertex
586 * language and is intended for writing the homogeneous vertex
587 * position. It can be written at any time during shader
588 * execution. It may also be read back by a vertex shader
589 * after being written. This value will be used by primitive
590 * assembly, clipping, culling, and other fixed functionality
591 * operations, if present, that operate on primitives after
592 * vertex processing has occurred. Its value is undefined if
593 * the vertex shader executable does not write gl_Position."
594 *
595 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
596 * gl_Position is not an error.
597 */
598 if (prog->Version < (prog->IsES ? 300 : 140)) {
599 find_assignment_visitor find("gl_Position");
600 find.run(shader->ir);
601 if (!find.variable_found()) {
602 if (prog->IsES) {
603 linker_warning(prog,
604 "vertex shader does not write to `gl_Position'."
605 "It's value is undefined. \n");
606 } else {
607 linker_error(prog,
608 "vertex shader does not write to `gl_Position'. \n");
609 }
610 return;
611 }
612 }
613
614 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
615 &prog->Vert.ClipDistanceArraySize);
616 }
617
618
619 /**
620 * Verify that a fragment shader executable meets all semantic requirements
621 *
622 * \param shader Fragment shader executable to be verified
623 */
624 void
625 validate_fragment_shader_executable(struct gl_shader_program *prog,
626 struct gl_shader *shader)
627 {
628 if (shader == NULL)
629 return;
630
631 find_assignment_visitor frag_color("gl_FragColor");
632 find_assignment_visitor frag_data("gl_FragData");
633
634 frag_color.run(shader->ir);
635 frag_data.run(shader->ir);
636
637 if (frag_color.variable_found() && frag_data.variable_found()) {
638 linker_error(prog, "fragment shader writes to both "
639 "`gl_FragColor' and `gl_FragData'\n");
640 }
641 }
642
643 /**
644 * Verify that a geometry shader executable meets all semantic requirements
645 *
646 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
647 * prog->Geom.ClipDistanceArraySize as a side effect.
648 *
649 * \param shader Geometry shader executable to be verified
650 */
651 void
652 validate_geometry_shader_executable(struct gl_shader_program *prog,
653 struct gl_shader *shader)
654 {
655 if (shader == NULL)
656 return;
657
658 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
659 prog->Geom.VerticesIn = num_vertices;
660
661 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
662 &prog->Geom.ClipDistanceArraySize);
663 }
664
665 /**
666 * Check if geometry shaders emit to non-zero streams and do corresponding
667 * validations.
668 */
669 static void
670 validate_geometry_shader_emissions(struct gl_context *ctx,
671 struct gl_shader_program *prog)
672 {
673 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
674 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
675 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
676 if (emit_vertex.error()) {
677 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
678 "stream parameter are in the range [0, %d].\n",
679 emit_vertex.error_func(),
680 emit_vertex.error_stream(),
681 ctx->Const.MaxVertexStreams - 1);
682 }
683 prog->Geom.UsesStreams = emit_vertex.uses_streams();
684 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
685
686 /* From the ARB_gpu_shader5 spec:
687 *
688 * "Multiple vertex streams are supported only if the output primitive
689 * type is declared to be "points". A program will fail to link if it
690 * contains a geometry shader calling EmitStreamVertex() or
691 * EndStreamPrimitive() if its output primitive type is not "points".
692 *
693 * However, in the same spec:
694 *
695 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
696 * with <stream> set to zero."
697 *
698 * And:
699 *
700 * "The function EndPrimitive() is equivalent to calling
701 * EndStreamPrimitive() with <stream> set to zero."
702 *
703 * Since we can call EmitVertex() and EndPrimitive() when we output
704 * primitives other than points, calling EmitStreamVertex(0) or
705 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
706 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
707 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
708 * stream.
709 */
710 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
711 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
712 "with n>0 requires point output\n");
713 }
714 }
715 }
716
717 bool
718 validate_intrastage_arrays(struct gl_shader_program *prog,
719 ir_variable *const var,
720 ir_variable *const existing)
721 {
722 /* Consider the types to be "the same" if both types are arrays
723 * of the same type and one of the arrays is implicitly sized.
724 * In addition, set the type of the linked variable to the
725 * explicitly sized array.
726 */
727 if (var->type->is_array() && existing->type->is_array() &&
728 (var->type->fields.array == existing->type->fields.array) &&
729 ((var->type->length == 0)|| (existing->type->length == 0))) {
730 if (var->type->length != 0) {
731 if (var->type->length <= existing->data.max_array_access) {
732 linker_error(prog, "%s `%s' declared as type "
733 "`%s' but outermost dimension has an index"
734 " of `%i'\n",
735 mode_string(var),
736 var->name, var->type->name,
737 existing->data.max_array_access);
738 }
739 existing->type = var->type;
740 return true;
741 } else if (existing->type->length != 0) {
742 if(existing->type->length <= var->data.max_array_access) {
743 linker_error(prog, "%s `%s' declared as type "
744 "`%s' but outermost dimension has an index"
745 " of `%i'\n",
746 mode_string(var),
747 var->name, existing->type->name,
748 var->data.max_array_access);
749 }
750 return true;
751 }
752 }
753 return false;
754 }
755
756
757 /**
758 * Perform validation of global variables used across multiple shaders
759 */
760 void
761 cross_validate_globals(struct gl_shader_program *prog,
762 struct gl_shader **shader_list,
763 unsigned num_shaders,
764 bool uniforms_only)
765 {
766 /* Examine all of the uniforms in all of the shaders and cross validate
767 * them.
768 */
769 glsl_symbol_table variables;
770 for (unsigned i = 0; i < num_shaders; i++) {
771 if (shader_list[i] == NULL)
772 continue;
773
774 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
775 ir_variable *const var = node->as_variable();
776
777 if (var == NULL)
778 continue;
779
780 if (uniforms_only && (var->data.mode != ir_var_uniform))
781 continue;
782
783 /* Don't cross validate temporaries that are at global scope. These
784 * will eventually get pulled into the shaders 'main'.
785 */
786 if (var->data.mode == ir_var_temporary)
787 continue;
788
789 /* If a global with this name has already been seen, verify that the
790 * new instance has the same type. In addition, if the globals have
791 * initializers, the values of the initializers must be the same.
792 */
793 ir_variable *const existing = variables.get_variable(var->name);
794 if (existing != NULL) {
795 /* Check if types match. Interface blocks have some special
796 * rules so we handle those elsewhere.
797 */
798 if (var->type != existing->type &&
799 !var->is_interface_instance()) {
800 if (!validate_intrastage_arrays(prog, var, existing)) {
801 if (var->type->is_record() && existing->type->is_record()
802 && existing->type->record_compare(var->type)) {
803 existing->type = var->type;
804 } else {
805 linker_error(prog, "%s `%s' declared as type "
806 "`%s' and type `%s'\n",
807 mode_string(var),
808 var->name, var->type->name,
809 existing->type->name);
810 return;
811 }
812 }
813 }
814
815 if (var->data.explicit_location) {
816 if (existing->data.explicit_location
817 && (var->data.location != existing->data.location)) {
818 linker_error(prog, "explicit locations for %s "
819 "`%s' have differing values\n",
820 mode_string(var), var->name);
821 return;
822 }
823
824 existing->data.location = var->data.location;
825 existing->data.explicit_location = true;
826 }
827
828 /* From the GLSL 4.20 specification:
829 * "A link error will result if two compilation units in a program
830 * specify different integer-constant bindings for the same
831 * opaque-uniform name. However, it is not an error to specify a
832 * binding on some but not all declarations for the same name"
833 */
834 if (var->data.explicit_binding) {
835 if (existing->data.explicit_binding &&
836 var->data.binding != existing->data.binding) {
837 linker_error(prog, "explicit bindings for %s "
838 "`%s' have differing values\n",
839 mode_string(var), var->name);
840 return;
841 }
842
843 existing->data.binding = var->data.binding;
844 existing->data.explicit_binding = true;
845 }
846
847 if (var->type->contains_atomic() &&
848 var->data.atomic.offset != existing->data.atomic.offset) {
849 linker_error(prog, "offset specifications for %s "
850 "`%s' have differing values\n",
851 mode_string(var), var->name);
852 return;
853 }
854
855 /* Validate layout qualifiers for gl_FragDepth.
856 *
857 * From the AMD/ARB_conservative_depth specs:
858 *
859 * "If gl_FragDepth is redeclared in any fragment shader in a
860 * program, it must be redeclared in all fragment shaders in
861 * that program that have static assignments to
862 * gl_FragDepth. All redeclarations of gl_FragDepth in all
863 * fragment shaders in a single program must have the same set
864 * of qualifiers."
865 */
866 if (strcmp(var->name, "gl_FragDepth") == 0) {
867 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
868 bool layout_differs =
869 var->data.depth_layout != existing->data.depth_layout;
870
871 if (layout_declared && layout_differs) {
872 linker_error(prog,
873 "All redeclarations of gl_FragDepth in all "
874 "fragment shaders in a single program must have "
875 "the same set of qualifiers.\n");
876 }
877
878 if (var->data.used && layout_differs) {
879 linker_error(prog,
880 "If gl_FragDepth is redeclared with a layout "
881 "qualifier in any fragment shader, it must be "
882 "redeclared with the same layout qualifier in "
883 "all fragment shaders that have assignments to "
884 "gl_FragDepth\n");
885 }
886 }
887
888 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
889 *
890 * "If a shared global has multiple initializers, the
891 * initializers must all be constant expressions, and they
892 * must all have the same value. Otherwise, a link error will
893 * result. (A shared global having only one initializer does
894 * not require that initializer to be a constant expression.)"
895 *
896 * Previous to 4.20 the GLSL spec simply said that initializers
897 * must have the same value. In this case of non-constant
898 * initializers, this was impossible to determine. As a result,
899 * no vendor actually implemented that behavior. The 4.20
900 * behavior matches the implemented behavior of at least one other
901 * vendor, so we'll implement that for all GLSL versions.
902 */
903 if (var->constant_initializer != NULL) {
904 if (existing->constant_initializer != NULL) {
905 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
906 linker_error(prog, "initializers for %s "
907 "`%s' have differing values\n",
908 mode_string(var), var->name);
909 return;
910 }
911 } else {
912 /* If the first-seen instance of a particular uniform did not
913 * have an initializer but a later instance does, copy the
914 * initializer to the version stored in the symbol table.
915 */
916 /* FINISHME: This is wrong. The constant_value field should
917 * FINISHME: not be modified! Imagine a case where a shader
918 * FINISHME: without an initializer is linked in two different
919 * FINISHME: programs with shaders that have differing
920 * FINISHME: initializers. Linking with the first will
921 * FINISHME: modify the shader, and linking with the second
922 * FINISHME: will fail.
923 */
924 existing->constant_initializer =
925 var->constant_initializer->clone(ralloc_parent(existing),
926 NULL);
927 }
928 }
929
930 if (var->data.has_initializer) {
931 if (existing->data.has_initializer
932 && (var->constant_initializer == NULL
933 || existing->constant_initializer == NULL)) {
934 linker_error(prog,
935 "shared global variable `%s' has multiple "
936 "non-constant initializers.\n",
937 var->name);
938 return;
939 }
940
941 /* Some instance had an initializer, so keep track of that. In
942 * this location, all sorts of initializers (constant or
943 * otherwise) will propagate the existence to the variable
944 * stored in the symbol table.
945 */
946 existing->data.has_initializer = true;
947 }
948
949 if (existing->data.invariant != var->data.invariant) {
950 linker_error(prog, "declarations for %s `%s' have "
951 "mismatching invariant qualifiers\n",
952 mode_string(var), var->name);
953 return;
954 }
955 if (existing->data.centroid != var->data.centroid) {
956 linker_error(prog, "declarations for %s `%s' have "
957 "mismatching centroid qualifiers\n",
958 mode_string(var), var->name);
959 return;
960 }
961 if (existing->data.sample != var->data.sample) {
962 linker_error(prog, "declarations for %s `%s` have "
963 "mismatching sample qualifiers\n",
964 mode_string(var), var->name);
965 return;
966 }
967 } else
968 variables.add_variable(var);
969 }
970 }
971 }
972
973
974 /**
975 * Perform validation of uniforms used across multiple shader stages
976 */
977 void
978 cross_validate_uniforms(struct gl_shader_program *prog)
979 {
980 cross_validate_globals(prog, prog->_LinkedShaders,
981 MESA_SHADER_STAGES, true);
982 }
983
984 /**
985 * Accumulates the array of prog->UniformBlocks and checks that all
986 * definitons of blocks agree on their contents.
987 */
988 static bool
989 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
990 {
991 unsigned max_num_uniform_blocks = 0;
992 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
993 if (prog->_LinkedShaders[i])
994 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
995 }
996
997 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
998 struct gl_shader *sh = prog->_LinkedShaders[i];
999
1000 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
1001 max_num_uniform_blocks);
1002 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1003 prog->UniformBlockStageIndex[i][j] = -1;
1004
1005 if (sh == NULL)
1006 continue;
1007
1008 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
1009 int index = link_cross_validate_uniform_block(prog,
1010 &prog->UniformBlocks,
1011 &prog->NumUniformBlocks,
1012 &sh->UniformBlocks[j]);
1013
1014 if (index == -1) {
1015 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1016 sh->UniformBlocks[j].Name);
1017 return false;
1018 }
1019
1020 prog->UniformBlockStageIndex[i][index] = j;
1021 }
1022 }
1023
1024 return true;
1025 }
1026
1027
1028 /**
1029 * Populates a shaders symbol table with all global declarations
1030 */
1031 static void
1032 populate_symbol_table(gl_shader *sh)
1033 {
1034 sh->symbols = new(sh) glsl_symbol_table;
1035
1036 foreach_in_list(ir_instruction, inst, sh->ir) {
1037 ir_variable *var;
1038 ir_function *func;
1039
1040 if ((func = inst->as_function()) != NULL) {
1041 sh->symbols->add_function(func);
1042 } else if ((var = inst->as_variable()) != NULL) {
1043 if (var->data.mode != ir_var_temporary)
1044 sh->symbols->add_variable(var);
1045 }
1046 }
1047 }
1048
1049
1050 /**
1051 * Remap variables referenced in an instruction tree
1052 *
1053 * This is used when instruction trees are cloned from one shader and placed in
1054 * another. These trees will contain references to \c ir_variable nodes that
1055 * do not exist in the target shader. This function finds these \c ir_variable
1056 * references and replaces the references with matching variables in the target
1057 * shader.
1058 *
1059 * If there is no matching variable in the target shader, a clone of the
1060 * \c ir_variable is made and added to the target shader. The new variable is
1061 * added to \b both the instruction stream and the symbol table.
1062 *
1063 * \param inst IR tree that is to be processed.
1064 * \param symbols Symbol table containing global scope symbols in the
1065 * linked shader.
1066 * \param instructions Instruction stream where new variable declarations
1067 * should be added.
1068 */
1069 void
1070 remap_variables(ir_instruction *inst, struct gl_shader *target,
1071 hash_table *temps)
1072 {
1073 class remap_visitor : public ir_hierarchical_visitor {
1074 public:
1075 remap_visitor(struct gl_shader *target,
1076 hash_table *temps)
1077 {
1078 this->target = target;
1079 this->symbols = target->symbols;
1080 this->instructions = target->ir;
1081 this->temps = temps;
1082 }
1083
1084 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1085 {
1086 if (ir->var->data.mode == ir_var_temporary) {
1087 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1088
1089 assert(var != NULL);
1090 ir->var = var;
1091 return visit_continue;
1092 }
1093
1094 ir_variable *const existing =
1095 this->symbols->get_variable(ir->var->name);
1096 if (existing != NULL)
1097 ir->var = existing;
1098 else {
1099 ir_variable *copy = ir->var->clone(this->target, NULL);
1100
1101 this->symbols->add_variable(copy);
1102 this->instructions->push_head(copy);
1103 ir->var = copy;
1104 }
1105
1106 return visit_continue;
1107 }
1108
1109 private:
1110 struct gl_shader *target;
1111 glsl_symbol_table *symbols;
1112 exec_list *instructions;
1113 hash_table *temps;
1114 };
1115
1116 remap_visitor v(target, temps);
1117
1118 inst->accept(&v);
1119 }
1120
1121
1122 /**
1123 * Move non-declarations from one instruction stream to another
1124 *
1125 * The intended usage pattern of this function is to pass the pointer to the
1126 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1127 * pointer) for \c last and \c false for \c make_copies on the first
1128 * call. Successive calls pass the return value of the previous call for
1129 * \c last and \c true for \c make_copies.
1130 *
1131 * \param instructions Source instruction stream
1132 * \param last Instruction after which new instructions should be
1133 * inserted in the target instruction stream
1134 * \param make_copies Flag selecting whether instructions in \c instructions
1135 * should be copied (via \c ir_instruction::clone) into the
1136 * target list or moved.
1137 *
1138 * \return
1139 * The new "last" instruction in the target instruction stream. This pointer
1140 * is suitable for use as the \c last parameter of a later call to this
1141 * function.
1142 */
1143 exec_node *
1144 move_non_declarations(exec_list *instructions, exec_node *last,
1145 bool make_copies, gl_shader *target)
1146 {
1147 hash_table *temps = NULL;
1148
1149 if (make_copies)
1150 temps = hash_table_ctor(0, hash_table_pointer_hash,
1151 hash_table_pointer_compare);
1152
1153 foreach_in_list_safe(ir_instruction, inst, instructions) {
1154 if (inst->as_function())
1155 continue;
1156
1157 ir_variable *var = inst->as_variable();
1158 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1159 continue;
1160
1161 assert(inst->as_assignment()
1162 || inst->as_call()
1163 || inst->as_if() /* for initializers with the ?: operator */
1164 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1165
1166 if (make_copies) {
1167 inst = inst->clone(target, NULL);
1168
1169 if (var != NULL)
1170 hash_table_insert(temps, inst, var);
1171 else
1172 remap_variables(inst, target, temps);
1173 } else {
1174 inst->remove();
1175 }
1176
1177 last->insert_after(inst);
1178 last = inst;
1179 }
1180
1181 if (make_copies)
1182 hash_table_dtor(temps);
1183
1184 return last;
1185 }
1186
1187 /**
1188 * Get the function signature for main from a shader
1189 */
1190 ir_function_signature *
1191 link_get_main_function_signature(gl_shader *sh)
1192 {
1193 ir_function *const f = sh->symbols->get_function("main");
1194 if (f != NULL) {
1195 exec_list void_parameters;
1196
1197 /* Look for the 'void main()' signature and ensure that it's defined.
1198 * This keeps the linker from accidentally pick a shader that just
1199 * contains a prototype for main.
1200 *
1201 * We don't have to check for multiple definitions of main (in multiple
1202 * shaders) because that would have already been caught above.
1203 */
1204 ir_function_signature *sig =
1205 f->matching_signature(NULL, &void_parameters, false);
1206 if ((sig != NULL) && sig->is_defined) {
1207 return sig;
1208 }
1209 }
1210
1211 return NULL;
1212 }
1213
1214
1215 /**
1216 * This class is only used in link_intrastage_shaders() below but declaring
1217 * it inside that function leads to compiler warnings with some versions of
1218 * gcc.
1219 */
1220 class array_sizing_visitor : public ir_hierarchical_visitor {
1221 public:
1222 array_sizing_visitor()
1223 : mem_ctx(ralloc_context(NULL)),
1224 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1225 hash_table_pointer_compare))
1226 {
1227 }
1228
1229 ~array_sizing_visitor()
1230 {
1231 hash_table_dtor(this->unnamed_interfaces);
1232 ralloc_free(this->mem_ctx);
1233 }
1234
1235 virtual ir_visitor_status visit(ir_variable *var)
1236 {
1237 fixup_type(&var->type, var->data.max_array_access);
1238 if (var->type->is_interface()) {
1239 if (interface_contains_unsized_arrays(var->type)) {
1240 const glsl_type *new_type =
1241 resize_interface_members(var->type,
1242 var->get_max_ifc_array_access());
1243 var->type = new_type;
1244 var->change_interface_type(new_type);
1245 }
1246 } else if (var->type->is_array() &&
1247 var->type->fields.array->is_interface()) {
1248 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1249 const glsl_type *new_type =
1250 resize_interface_members(var->type->fields.array,
1251 var->get_max_ifc_array_access());
1252 var->change_interface_type(new_type);
1253 var->type = update_interface_members_array(var->type, new_type);
1254 }
1255 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1256 /* Store a pointer to the variable in the unnamed_interfaces
1257 * hashtable.
1258 */
1259 ir_variable **interface_vars = (ir_variable **)
1260 hash_table_find(this->unnamed_interfaces, ifc_type);
1261 if (interface_vars == NULL) {
1262 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1263 ifc_type->length);
1264 hash_table_insert(this->unnamed_interfaces, interface_vars,
1265 ifc_type);
1266 }
1267 unsigned index = ifc_type->field_index(var->name);
1268 assert(index < ifc_type->length);
1269 assert(interface_vars[index] == NULL);
1270 interface_vars[index] = var;
1271 }
1272 return visit_continue;
1273 }
1274
1275 /**
1276 * For each unnamed interface block that was discovered while running the
1277 * visitor, adjust the interface type to reflect the newly assigned array
1278 * sizes, and fix up the ir_variable nodes to point to the new interface
1279 * type.
1280 */
1281 void fixup_unnamed_interface_types()
1282 {
1283 hash_table_call_foreach(this->unnamed_interfaces,
1284 fixup_unnamed_interface_type, NULL);
1285 }
1286
1287 private:
1288 /**
1289 * If the type pointed to by \c type represents an unsized array, replace
1290 * it with a sized array whose size is determined by max_array_access.
1291 */
1292 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1293 {
1294 if ((*type)->is_unsized_array()) {
1295 *type = glsl_type::get_array_instance((*type)->fields.array,
1296 max_array_access + 1);
1297 assert(*type != NULL);
1298 }
1299 }
1300
1301 static const glsl_type *
1302 update_interface_members_array(const glsl_type *type,
1303 const glsl_type *new_interface_type)
1304 {
1305 const glsl_type *element_type = type->fields.array;
1306 if (element_type->is_array()) {
1307 const glsl_type *new_array_type =
1308 update_interface_members_array(element_type, new_interface_type);
1309 return glsl_type::get_array_instance(new_array_type, type->length);
1310 } else {
1311 return glsl_type::get_array_instance(new_interface_type,
1312 type->length);
1313 }
1314 }
1315
1316 /**
1317 * Determine whether the given interface type contains unsized arrays (if
1318 * it doesn't, array_sizing_visitor doesn't need to process it).
1319 */
1320 static bool interface_contains_unsized_arrays(const glsl_type *type)
1321 {
1322 for (unsigned i = 0; i < type->length; i++) {
1323 const glsl_type *elem_type = type->fields.structure[i].type;
1324 if (elem_type->is_unsized_array())
1325 return true;
1326 }
1327 return false;
1328 }
1329
1330 /**
1331 * Create a new interface type based on the given type, with unsized arrays
1332 * replaced by sized arrays whose size is determined by
1333 * max_ifc_array_access.
1334 */
1335 static const glsl_type *
1336 resize_interface_members(const glsl_type *type,
1337 const unsigned *max_ifc_array_access)
1338 {
1339 unsigned num_fields = type->length;
1340 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1341 memcpy(fields, type->fields.structure,
1342 num_fields * sizeof(*fields));
1343 for (unsigned i = 0; i < num_fields; i++) {
1344 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1345 }
1346 glsl_interface_packing packing =
1347 (glsl_interface_packing) type->interface_packing;
1348 const glsl_type *new_ifc_type =
1349 glsl_type::get_interface_instance(fields, num_fields,
1350 packing, type->name);
1351 delete [] fields;
1352 return new_ifc_type;
1353 }
1354
1355 static void fixup_unnamed_interface_type(const void *key, void *data,
1356 void *)
1357 {
1358 const glsl_type *ifc_type = (const glsl_type *) key;
1359 ir_variable **interface_vars = (ir_variable **) data;
1360 unsigned num_fields = ifc_type->length;
1361 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1362 memcpy(fields, ifc_type->fields.structure,
1363 num_fields * sizeof(*fields));
1364 bool interface_type_changed = false;
1365 for (unsigned i = 0; i < num_fields; i++) {
1366 if (interface_vars[i] != NULL &&
1367 fields[i].type != interface_vars[i]->type) {
1368 fields[i].type = interface_vars[i]->type;
1369 interface_type_changed = true;
1370 }
1371 }
1372 if (!interface_type_changed) {
1373 delete [] fields;
1374 return;
1375 }
1376 glsl_interface_packing packing =
1377 (glsl_interface_packing) ifc_type->interface_packing;
1378 const glsl_type *new_ifc_type =
1379 glsl_type::get_interface_instance(fields, num_fields, packing,
1380 ifc_type->name);
1381 delete [] fields;
1382 for (unsigned i = 0; i < num_fields; i++) {
1383 if (interface_vars[i] != NULL)
1384 interface_vars[i]->change_interface_type(new_ifc_type);
1385 }
1386 }
1387
1388 /**
1389 * Memory context used to allocate the data in \c unnamed_interfaces.
1390 */
1391 void *mem_ctx;
1392
1393 /**
1394 * Hash table from const glsl_type * to an array of ir_variable *'s
1395 * pointing to the ir_variables constituting each unnamed interface block.
1396 */
1397 hash_table *unnamed_interfaces;
1398 };
1399
1400 /**
1401 * Performs the cross-validation of layout qualifiers specified in
1402 * redeclaration of gl_FragCoord for the attached fragment shaders,
1403 * and propagates them to the linked FS and linked shader program.
1404 */
1405 static void
1406 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1407 struct gl_shader *linked_shader,
1408 struct gl_shader **shader_list,
1409 unsigned num_shaders)
1410 {
1411 linked_shader->redeclares_gl_fragcoord = false;
1412 linked_shader->uses_gl_fragcoord = false;
1413 linked_shader->origin_upper_left = false;
1414 linked_shader->pixel_center_integer = false;
1415
1416 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1417 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1418 return;
1419
1420 for (unsigned i = 0; i < num_shaders; i++) {
1421 struct gl_shader *shader = shader_list[i];
1422 /* From the GLSL 1.50 spec, page 39:
1423 *
1424 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1425 * it must be redeclared in all the fragment shaders in that program
1426 * that have a static use gl_FragCoord."
1427 */
1428 if ((linked_shader->redeclares_gl_fragcoord
1429 && !shader->redeclares_gl_fragcoord
1430 && shader->uses_gl_fragcoord)
1431 || (shader->redeclares_gl_fragcoord
1432 && !linked_shader->redeclares_gl_fragcoord
1433 && linked_shader->uses_gl_fragcoord)) {
1434 linker_error(prog, "fragment shader defined with conflicting "
1435 "layout qualifiers for gl_FragCoord\n");
1436 }
1437
1438 /* From the GLSL 1.50 spec, page 39:
1439 *
1440 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1441 * single program must have the same set of qualifiers."
1442 */
1443 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1444 && (shader->origin_upper_left != linked_shader->origin_upper_left
1445 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1446 linker_error(prog, "fragment shader defined with conflicting "
1447 "layout qualifiers for gl_FragCoord\n");
1448 }
1449
1450 /* Update the linked shader state. Note that uses_gl_fragcoord should
1451 * accumulate the results. The other values should replace. If there
1452 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1453 * are already known to be the same.
1454 */
1455 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1456 linked_shader->redeclares_gl_fragcoord =
1457 shader->redeclares_gl_fragcoord;
1458 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1459 || shader->uses_gl_fragcoord;
1460 linked_shader->origin_upper_left = shader->origin_upper_left;
1461 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1462 }
1463
1464 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1465 }
1466 }
1467
1468 /**
1469 * Performs the cross-validation of geometry shader max_vertices and
1470 * primitive type layout qualifiers for the attached geometry shaders,
1471 * and propagates them to the linked GS and linked shader program.
1472 */
1473 static void
1474 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1475 struct gl_shader *linked_shader,
1476 struct gl_shader **shader_list,
1477 unsigned num_shaders)
1478 {
1479 linked_shader->Geom.VerticesOut = 0;
1480 linked_shader->Geom.Invocations = 0;
1481 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1482 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1483
1484 /* No in/out qualifiers defined for anything but GLSL 1.50+
1485 * geometry shaders so far.
1486 */
1487 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1488 return;
1489
1490 /* From the GLSL 1.50 spec, page 46:
1491 *
1492 * "All geometry shader output layout declarations in a program
1493 * must declare the same layout and same value for
1494 * max_vertices. There must be at least one geometry output
1495 * layout declaration somewhere in a program, but not all
1496 * geometry shaders (compilation units) are required to
1497 * declare it."
1498 */
1499
1500 for (unsigned i = 0; i < num_shaders; i++) {
1501 struct gl_shader *shader = shader_list[i];
1502
1503 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1504 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1505 linked_shader->Geom.InputType != shader->Geom.InputType) {
1506 linker_error(prog, "geometry shader defined with conflicting "
1507 "input types\n");
1508 return;
1509 }
1510 linked_shader->Geom.InputType = shader->Geom.InputType;
1511 }
1512
1513 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1514 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1515 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1516 linker_error(prog, "geometry shader defined with conflicting "
1517 "output types\n");
1518 return;
1519 }
1520 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1521 }
1522
1523 if (shader->Geom.VerticesOut != 0) {
1524 if (linked_shader->Geom.VerticesOut != 0 &&
1525 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1526 linker_error(prog, "geometry shader defined with conflicting "
1527 "output vertex count (%d and %d)\n",
1528 linked_shader->Geom.VerticesOut,
1529 shader->Geom.VerticesOut);
1530 return;
1531 }
1532 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1533 }
1534
1535 if (shader->Geom.Invocations != 0) {
1536 if (linked_shader->Geom.Invocations != 0 &&
1537 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1538 linker_error(prog, "geometry shader defined with conflicting "
1539 "invocation count (%d and %d)\n",
1540 linked_shader->Geom.Invocations,
1541 shader->Geom.Invocations);
1542 return;
1543 }
1544 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1545 }
1546 }
1547
1548 /* Just do the intrastage -> interstage propagation right now,
1549 * since we already know we're in the right type of shader program
1550 * for doing it.
1551 */
1552 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1553 linker_error(prog,
1554 "geometry shader didn't declare primitive input type\n");
1555 return;
1556 }
1557 prog->Geom.InputType = linked_shader->Geom.InputType;
1558
1559 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1560 linker_error(prog,
1561 "geometry shader didn't declare primitive output type\n");
1562 return;
1563 }
1564 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1565
1566 if (linked_shader->Geom.VerticesOut == 0) {
1567 linker_error(prog,
1568 "geometry shader didn't declare max_vertices\n");
1569 return;
1570 }
1571 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1572
1573 if (linked_shader->Geom.Invocations == 0)
1574 linked_shader->Geom.Invocations = 1;
1575
1576 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1577 }
1578
1579
1580 /**
1581 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1582 * qualifiers for the attached compute shaders, and propagate them to the
1583 * linked CS and linked shader program.
1584 */
1585 static void
1586 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1587 struct gl_shader *linked_shader,
1588 struct gl_shader **shader_list,
1589 unsigned num_shaders)
1590 {
1591 for (int i = 0; i < 3; i++)
1592 linked_shader->Comp.LocalSize[i] = 0;
1593
1594 /* This function is called for all shader stages, but it only has an effect
1595 * for compute shaders.
1596 */
1597 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1598 return;
1599
1600 /* From the ARB_compute_shader spec, in the section describing local size
1601 * declarations:
1602 *
1603 * If multiple compute shaders attached to a single program object
1604 * declare local work-group size, the declarations must be identical;
1605 * otherwise a link-time error results. Furthermore, if a program
1606 * object contains any compute shaders, at least one must contain an
1607 * input layout qualifier specifying the local work sizes of the
1608 * program, or a link-time error will occur.
1609 */
1610 for (unsigned sh = 0; sh < num_shaders; sh++) {
1611 struct gl_shader *shader = shader_list[sh];
1612
1613 if (shader->Comp.LocalSize[0] != 0) {
1614 if (linked_shader->Comp.LocalSize[0] != 0) {
1615 for (int i = 0; i < 3; i++) {
1616 if (linked_shader->Comp.LocalSize[i] !=
1617 shader->Comp.LocalSize[i]) {
1618 linker_error(prog, "compute shader defined with conflicting "
1619 "local sizes\n");
1620 return;
1621 }
1622 }
1623 }
1624 for (int i = 0; i < 3; i++)
1625 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1626 }
1627 }
1628
1629 /* Just do the intrastage -> interstage propagation right now,
1630 * since we already know we're in the right type of shader program
1631 * for doing it.
1632 */
1633 if (linked_shader->Comp.LocalSize[0] == 0) {
1634 linker_error(prog, "compute shader didn't declare local size\n");
1635 return;
1636 }
1637 for (int i = 0; i < 3; i++)
1638 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1639 }
1640
1641
1642 /**
1643 * Combine a group of shaders for a single stage to generate a linked shader
1644 *
1645 * \note
1646 * If this function is supplied a single shader, it is cloned, and the new
1647 * shader is returned.
1648 */
1649 static struct gl_shader *
1650 link_intrastage_shaders(void *mem_ctx,
1651 struct gl_context *ctx,
1652 struct gl_shader_program *prog,
1653 struct gl_shader **shader_list,
1654 unsigned num_shaders)
1655 {
1656 struct gl_uniform_block *uniform_blocks = NULL;
1657
1658 /* Check that global variables defined in multiple shaders are consistent.
1659 */
1660 cross_validate_globals(prog, shader_list, num_shaders, false);
1661 if (!prog->LinkStatus)
1662 return NULL;
1663
1664 /* Check that interface blocks defined in multiple shaders are consistent.
1665 */
1666 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1667 num_shaders);
1668 if (!prog->LinkStatus)
1669 return NULL;
1670
1671 /* Link up uniform blocks defined within this stage. */
1672 const unsigned num_uniform_blocks =
1673 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1674 &uniform_blocks);
1675 if (!prog->LinkStatus)
1676 return NULL;
1677
1678 /* Check that there is only a single definition of each function signature
1679 * across all shaders.
1680 */
1681 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1682 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1683 ir_function *const f = node->as_function();
1684
1685 if (f == NULL)
1686 continue;
1687
1688 for (unsigned j = i + 1; j < num_shaders; j++) {
1689 ir_function *const other =
1690 shader_list[j]->symbols->get_function(f->name);
1691
1692 /* If the other shader has no function (and therefore no function
1693 * signatures) with the same name, skip to the next shader.
1694 */
1695 if (other == NULL)
1696 continue;
1697
1698 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1699 if (!sig->is_defined || sig->is_builtin())
1700 continue;
1701
1702 ir_function_signature *other_sig =
1703 other->exact_matching_signature(NULL, &sig->parameters);
1704
1705 if ((other_sig != NULL) && other_sig->is_defined
1706 && !other_sig->is_builtin()) {
1707 linker_error(prog, "function `%s' is multiply defined\n",
1708 f->name);
1709 return NULL;
1710 }
1711 }
1712 }
1713 }
1714 }
1715
1716 /* Find the shader that defines main, and make a clone of it.
1717 *
1718 * Starting with the clone, search for undefined references. If one is
1719 * found, find the shader that defines it. Clone the reference and add
1720 * it to the shader. Repeat until there are no undefined references or
1721 * until a reference cannot be resolved.
1722 */
1723 gl_shader *main = NULL;
1724 for (unsigned i = 0; i < num_shaders; i++) {
1725 if (link_get_main_function_signature(shader_list[i]) != NULL) {
1726 main = shader_list[i];
1727 break;
1728 }
1729 }
1730
1731 if (main == NULL) {
1732 linker_error(prog, "%s shader lacks `main'\n",
1733 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1734 return NULL;
1735 }
1736
1737 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1738 linked->ir = new(linked) exec_list;
1739 clone_ir_list(mem_ctx, linked->ir, main->ir);
1740
1741 linked->UniformBlocks = uniform_blocks;
1742 linked->NumUniformBlocks = num_uniform_blocks;
1743 ralloc_steal(linked, linked->UniformBlocks);
1744
1745 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1746 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1747 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1748
1749 populate_symbol_table(linked);
1750
1751 /* The pointer to the main function in the final linked shader (i.e., the
1752 * copy of the original shader that contained the main function).
1753 */
1754 ir_function_signature *const main_sig =
1755 link_get_main_function_signature(linked);
1756
1757 /* Move any instructions other than variable declarations or function
1758 * declarations into main.
1759 */
1760 exec_node *insertion_point =
1761 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1762 linked);
1763
1764 for (unsigned i = 0; i < num_shaders; i++) {
1765 if (shader_list[i] == main)
1766 continue;
1767
1768 insertion_point = move_non_declarations(shader_list[i]->ir,
1769 insertion_point, true, linked);
1770 }
1771
1772 /* Check if any shader needs built-in functions. */
1773 bool need_builtins = false;
1774 for (unsigned i = 0; i < num_shaders; i++) {
1775 if (shader_list[i]->uses_builtin_functions) {
1776 need_builtins = true;
1777 break;
1778 }
1779 }
1780
1781 bool ok;
1782 if (need_builtins) {
1783 /* Make a temporary array one larger than shader_list, which will hold
1784 * the built-in function shader as well.
1785 */
1786 gl_shader **linking_shaders = (gl_shader **)
1787 calloc(num_shaders + 1, sizeof(gl_shader *));
1788
1789 ok = linking_shaders != NULL;
1790
1791 if (ok) {
1792 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1793 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1794
1795 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1796
1797 free(linking_shaders);
1798 } else {
1799 _mesa_error_no_memory(__func__);
1800 }
1801 } else {
1802 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1803 }
1804
1805
1806 if (!ok) {
1807 ctx->Driver.DeleteShader(ctx, linked);
1808 return NULL;
1809 }
1810
1811 /* At this point linked should contain all of the linked IR, so
1812 * validate it to make sure nothing went wrong.
1813 */
1814 validate_ir_tree(linked->ir);
1815
1816 /* Set the size of geometry shader input arrays */
1817 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1818 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1819 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1820 foreach_in_list(ir_instruction, ir, linked->ir) {
1821 ir->accept(&input_resize_visitor);
1822 }
1823 }
1824
1825 if (ctx->Const.VertexID_is_zero_based)
1826 lower_vertex_id(linked);
1827
1828 /* Make a pass over all variable declarations to ensure that arrays with
1829 * unspecified sizes have a size specified. The size is inferred from the
1830 * max_array_access field.
1831 */
1832 array_sizing_visitor v;
1833 v.run(linked->ir);
1834 v.fixup_unnamed_interface_types();
1835
1836 return linked;
1837 }
1838
1839 /**
1840 * Update the sizes of linked shader uniform arrays to the maximum
1841 * array index used.
1842 *
1843 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1844 *
1845 * If one or more elements of an array are active,
1846 * GetActiveUniform will return the name of the array in name,
1847 * subject to the restrictions listed above. The type of the array
1848 * is returned in type. The size parameter contains the highest
1849 * array element index used, plus one. The compiler or linker
1850 * determines the highest index used. There will be only one
1851 * active uniform reported by the GL per uniform array.
1852
1853 */
1854 static void
1855 update_array_sizes(struct gl_shader_program *prog)
1856 {
1857 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1858 if (prog->_LinkedShaders[i] == NULL)
1859 continue;
1860
1861 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1862 ir_variable *const var = node->as_variable();
1863
1864 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1865 !var->type->is_array())
1866 continue;
1867
1868 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1869 * will not be eliminated. Since we always do std140, just
1870 * don't resize arrays in UBOs.
1871 *
1872 * Atomic counters are supposed to get deterministic
1873 * locations assigned based on the declaration ordering and
1874 * sizes, array compaction would mess that up.
1875 */
1876 if (var->is_in_uniform_block() || var->type->contains_atomic())
1877 continue;
1878
1879 unsigned int size = var->data.max_array_access;
1880 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1881 if (prog->_LinkedShaders[j] == NULL)
1882 continue;
1883
1884 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1885 ir_variable *other_var = node2->as_variable();
1886 if (!other_var)
1887 continue;
1888
1889 if (strcmp(var->name, other_var->name) == 0 &&
1890 other_var->data.max_array_access > size) {
1891 size = other_var->data.max_array_access;
1892 }
1893 }
1894 }
1895
1896 if (size + 1 != var->type->length) {
1897 /* If this is a built-in uniform (i.e., it's backed by some
1898 * fixed-function state), adjust the number of state slots to
1899 * match the new array size. The number of slots per array entry
1900 * is not known. It seems safe to assume that the total number of
1901 * slots is an integer multiple of the number of array elements.
1902 * Determine the number of slots per array element by dividing by
1903 * the old (total) size.
1904 */
1905 const unsigned num_slots = var->get_num_state_slots();
1906 if (num_slots > 0) {
1907 var->set_num_state_slots((size + 1)
1908 * (num_slots / var->type->length));
1909 }
1910
1911 var->type = glsl_type::get_array_instance(var->type->fields.array,
1912 size + 1);
1913 /* FINISHME: We should update the types of array
1914 * dereferences of this variable now.
1915 */
1916 }
1917 }
1918 }
1919 }
1920
1921 /**
1922 * Find a contiguous set of available bits in a bitmask.
1923 *
1924 * \param used_mask Bits representing used (1) and unused (0) locations
1925 * \param needed_count Number of contiguous bits needed.
1926 *
1927 * \return
1928 * Base location of the available bits on success or -1 on failure.
1929 */
1930 int
1931 find_available_slots(unsigned used_mask, unsigned needed_count)
1932 {
1933 unsigned needed_mask = (1 << needed_count) - 1;
1934 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1935
1936 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1937 * cannot optimize possibly infinite loops" for the loop below.
1938 */
1939 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1940 return -1;
1941
1942 for (int i = 0; i <= max_bit_to_test; i++) {
1943 if ((needed_mask & ~used_mask) == needed_mask)
1944 return i;
1945
1946 needed_mask <<= 1;
1947 }
1948
1949 return -1;
1950 }
1951
1952
1953 /**
1954 * Assign locations for either VS inputs or FS outputs
1955 *
1956 * \param prog Shader program whose variables need locations assigned
1957 * \param target_index Selector for the program target to receive location
1958 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1959 * \c MESA_SHADER_FRAGMENT.
1960 * \param max_index Maximum number of generic locations. This corresponds
1961 * to either the maximum number of draw buffers or the
1962 * maximum number of generic attributes.
1963 *
1964 * \return
1965 * If locations are successfully assigned, true is returned. Otherwise an
1966 * error is emitted to the shader link log and false is returned.
1967 */
1968 bool
1969 assign_attribute_or_color_locations(gl_shader_program *prog,
1970 unsigned target_index,
1971 unsigned max_index)
1972 {
1973 /* Mark invalid locations as being used.
1974 */
1975 unsigned used_locations = (max_index >= 32)
1976 ? ~0 : ~((1 << max_index) - 1);
1977
1978 assert((target_index == MESA_SHADER_VERTEX)
1979 || (target_index == MESA_SHADER_FRAGMENT));
1980
1981 gl_shader *const sh = prog->_LinkedShaders[target_index];
1982 if (sh == NULL)
1983 return true;
1984
1985 /* Operate in a total of four passes.
1986 *
1987 * 1. Invalidate the location assignments for all vertex shader inputs.
1988 *
1989 * 2. Assign locations for inputs that have user-defined (via
1990 * glBindVertexAttribLocation) locations and outputs that have
1991 * user-defined locations (via glBindFragDataLocation).
1992 *
1993 * 3. Sort the attributes without assigned locations by number of slots
1994 * required in decreasing order. Fragmentation caused by attribute
1995 * locations assigned by the application may prevent large attributes
1996 * from having enough contiguous space.
1997 *
1998 * 4. Assign locations to any inputs without assigned locations.
1999 */
2000
2001 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2002 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2003
2004 const enum ir_variable_mode direction =
2005 (target_index == MESA_SHADER_VERTEX)
2006 ? ir_var_shader_in : ir_var_shader_out;
2007
2008
2009 /* Temporary storage for the set of attributes that need locations assigned.
2010 */
2011 struct temp_attr {
2012 unsigned slots;
2013 ir_variable *var;
2014
2015 /* Used below in the call to qsort. */
2016 static int compare(const void *a, const void *b)
2017 {
2018 const temp_attr *const l = (const temp_attr *) a;
2019 const temp_attr *const r = (const temp_attr *) b;
2020
2021 /* Reversed because we want a descending order sort below. */
2022 return r->slots - l->slots;
2023 }
2024 } to_assign[16];
2025
2026 unsigned num_attr = 0;
2027 unsigned total_attribs_size = 0;
2028
2029 foreach_in_list(ir_instruction, node, sh->ir) {
2030 ir_variable *const var = node->as_variable();
2031
2032 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2033 continue;
2034
2035 if (var->data.explicit_location) {
2036 if ((var->data.location >= (int)(max_index + generic_base))
2037 || (var->data.location < 0)) {
2038 linker_error(prog,
2039 "invalid explicit location %d specified for `%s'\n",
2040 (var->data.location < 0)
2041 ? var->data.location
2042 : var->data.location - generic_base,
2043 var->name);
2044 return false;
2045 }
2046 } else if (target_index == MESA_SHADER_VERTEX) {
2047 unsigned binding;
2048
2049 if (prog->AttributeBindings->get(binding, var->name)) {
2050 assert(binding >= VERT_ATTRIB_GENERIC0);
2051 var->data.location = binding;
2052 var->data.is_unmatched_generic_inout = 0;
2053 }
2054 } else if (target_index == MESA_SHADER_FRAGMENT) {
2055 unsigned binding;
2056 unsigned index;
2057
2058 if (prog->FragDataBindings->get(binding, var->name)) {
2059 assert(binding >= FRAG_RESULT_DATA0);
2060 var->data.location = binding;
2061 var->data.is_unmatched_generic_inout = 0;
2062
2063 if (prog->FragDataIndexBindings->get(index, var->name)) {
2064 var->data.index = index;
2065 }
2066 }
2067 }
2068
2069 const unsigned slots = var->type->count_attribute_slots();
2070
2071 /* From GL4.5 core spec, section 11.1.1 (Vertex Attributes):
2072 *
2073 * "A program with more than the value of MAX_VERTEX_ATTRIBS active
2074 * attribute variables may fail to link, unless device-dependent
2075 * optimizations are able to make the program fit within available
2076 * hardware resources. For the purposes of this test, attribute variables
2077 * of the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3,
2078 * and dmat4 may count as consuming twice as many attributes as equivalent
2079 * single-precision types. While these types use the same number of
2080 * generic attributes as their single-precision equivalents,
2081 * implementations are permitted to consume two single-precision vectors
2082 * of internal storage for each three- or four-component double-precision
2083 * vector."
2084 * Until someone has a good reason in Mesa, enforce that now.
2085 */
2086 if (target_index == MESA_SHADER_VERTEX) {
2087 total_attribs_size += slots;
2088 if (var->type->without_array() == glsl_type::dvec3_type ||
2089 var->type->without_array() == glsl_type::dvec4_type ||
2090 var->type->without_array() == glsl_type::dmat2x3_type ||
2091 var->type->without_array() == glsl_type::dmat2x4_type ||
2092 var->type->without_array() == glsl_type::dmat3_type ||
2093 var->type->without_array() == glsl_type::dmat3x4_type ||
2094 var->type->without_array() == glsl_type::dmat4x3_type ||
2095 var->type->without_array() == glsl_type::dmat4_type)
2096 total_attribs_size += slots;
2097 }
2098
2099 /* If the variable is not a built-in and has a location statically
2100 * assigned in the shader (presumably via a layout qualifier), make sure
2101 * that it doesn't collide with other assigned locations. Otherwise,
2102 * add it to the list of variables that need linker-assigned locations.
2103 */
2104 if (var->data.location != -1) {
2105 if (var->data.location >= generic_base && var->data.index < 1) {
2106 /* From page 61 of the OpenGL 4.0 spec:
2107 *
2108 * "LinkProgram will fail if the attribute bindings assigned
2109 * by BindAttribLocation do not leave not enough space to
2110 * assign a location for an active matrix attribute or an
2111 * active attribute array, both of which require multiple
2112 * contiguous generic attributes."
2113 *
2114 * I think above text prohibits the aliasing of explicit and
2115 * automatic assignments. But, aliasing is allowed in manual
2116 * assignments of attribute locations. See below comments for
2117 * the details.
2118 *
2119 * From OpenGL 4.0 spec, page 61:
2120 *
2121 * "It is possible for an application to bind more than one
2122 * attribute name to the same location. This is referred to as
2123 * aliasing. This will only work if only one of the aliased
2124 * attributes is active in the executable program, or if no
2125 * path through the shader consumes more than one attribute of
2126 * a set of attributes aliased to the same location. A link
2127 * error can occur if the linker determines that every path
2128 * through the shader consumes multiple aliased attributes,
2129 * but implementations are not required to generate an error
2130 * in this case."
2131 *
2132 * From GLSL 4.30 spec, page 54:
2133 *
2134 * "A program will fail to link if any two non-vertex shader
2135 * input variables are assigned to the same location. For
2136 * vertex shaders, multiple input variables may be assigned
2137 * to the same location using either layout qualifiers or via
2138 * the OpenGL API. However, such aliasing is intended only to
2139 * support vertex shaders where each execution path accesses
2140 * at most one input per each location. Implementations are
2141 * permitted, but not required, to generate link-time errors
2142 * if they detect that every path through the vertex shader
2143 * executable accesses multiple inputs assigned to any single
2144 * location. For all shader types, a program will fail to link
2145 * if explicit location assignments leave the linker unable
2146 * to find space for other variables without explicit
2147 * assignments."
2148 *
2149 * From OpenGL ES 3.0 spec, page 56:
2150 *
2151 * "Binding more than one attribute name to the same location
2152 * is referred to as aliasing, and is not permitted in OpenGL
2153 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2154 * fail when this condition exists. However, aliasing is
2155 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2156 * This will only work if only one of the aliased attributes
2157 * is active in the executable program, or if no path through
2158 * the shader consumes more than one attribute of a set of
2159 * attributes aliased to the same location. A link error can
2160 * occur if the linker determines that every path through the
2161 * shader consumes multiple aliased attributes, but implemen-
2162 * tations are not required to generate an error in this case."
2163 *
2164 * After looking at above references from OpenGL, OpenGL ES and
2165 * GLSL specifications, we allow aliasing of vertex input variables
2166 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2167 *
2168 * NOTE: This is not required by the spec but its worth mentioning
2169 * here that we're not doing anything to make sure that no path
2170 * through the vertex shader executable accesses multiple inputs
2171 * assigned to any single location.
2172 */
2173
2174 /* Mask representing the contiguous slots that will be used by
2175 * this attribute.
2176 */
2177 const unsigned attr = var->data.location - generic_base;
2178 const unsigned use_mask = (1 << slots) - 1;
2179 const char *const string = (target_index == MESA_SHADER_VERTEX)
2180 ? "vertex shader input" : "fragment shader output";
2181
2182 /* Generate a link error if the requested locations for this
2183 * attribute exceed the maximum allowed attribute location.
2184 */
2185 if (attr + slots > max_index) {
2186 linker_error(prog,
2187 "insufficient contiguous locations "
2188 "available for %s `%s' %d %d %d\n", string,
2189 var->name, used_locations, use_mask, attr);
2190 return false;
2191 }
2192
2193 /* Generate a link error if the set of bits requested for this
2194 * attribute overlaps any previously allocated bits.
2195 */
2196 if ((~(use_mask << attr) & used_locations) != used_locations) {
2197 if (target_index == MESA_SHADER_FRAGMENT ||
2198 (prog->IsES && prog->Version >= 300)) {
2199 linker_error(prog,
2200 "overlapping location is assigned "
2201 "to %s `%s' %d %d %d\n", string,
2202 var->name, used_locations, use_mask, attr);
2203 return false;
2204 } else {
2205 linker_warning(prog,
2206 "overlapping location is assigned "
2207 "to %s `%s' %d %d %d\n", string,
2208 var->name, used_locations, use_mask, attr);
2209 }
2210 }
2211
2212 used_locations |= (use_mask << attr);
2213 }
2214
2215 continue;
2216 }
2217
2218 to_assign[num_attr].slots = slots;
2219 to_assign[num_attr].var = var;
2220 num_attr++;
2221 }
2222
2223 if (target_index == MESA_SHADER_VERTEX) {
2224 if (total_attribs_size > max_index) {
2225 linker_error(prog,
2226 "attempt to use %d vertex attribute slots only %d available ",
2227 total_attribs_size, max_index);
2228 return false;
2229 }
2230 }
2231
2232 /* If all of the attributes were assigned locations by the application (or
2233 * are built-in attributes with fixed locations), return early. This should
2234 * be the common case.
2235 */
2236 if (num_attr == 0)
2237 return true;
2238
2239 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2240
2241 if (target_index == MESA_SHADER_VERTEX) {
2242 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2243 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2244 * reserved to prevent it from being automatically allocated below.
2245 */
2246 find_deref_visitor find("gl_Vertex");
2247 find.run(sh->ir);
2248 if (find.variable_found())
2249 used_locations |= (1 << 0);
2250 }
2251
2252 for (unsigned i = 0; i < num_attr; i++) {
2253 /* Mask representing the contiguous slots that will be used by this
2254 * attribute.
2255 */
2256 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2257
2258 int location = find_available_slots(used_locations, to_assign[i].slots);
2259
2260 if (location < 0) {
2261 const char *const string = (target_index == MESA_SHADER_VERTEX)
2262 ? "vertex shader input" : "fragment shader output";
2263
2264 linker_error(prog,
2265 "insufficient contiguous locations "
2266 "available for %s `%s'\n",
2267 string, to_assign[i].var->name);
2268 return false;
2269 }
2270
2271 to_assign[i].var->data.location = generic_base + location;
2272 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2273 used_locations |= (use_mask << location);
2274 }
2275
2276 return true;
2277 }
2278
2279
2280 /**
2281 * Demote shader inputs and outputs that are not used in other stages
2282 */
2283 void
2284 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2285 {
2286 foreach_in_list(ir_instruction, node, sh->ir) {
2287 ir_variable *const var = node->as_variable();
2288
2289 if ((var == NULL) || (var->data.mode != int(mode)))
2290 continue;
2291
2292 /* A shader 'in' or 'out' variable is only really an input or output if
2293 * its value is used by other shader stages. This will cause the variable
2294 * to have a location assigned.
2295 */
2296 if (var->data.is_unmatched_generic_inout) {
2297 assert(var->data.mode != ir_var_temporary);
2298 var->data.mode = ir_var_auto;
2299 }
2300 }
2301 }
2302
2303
2304 /**
2305 * Store the gl_FragDepth layout in the gl_shader_program struct.
2306 */
2307 static void
2308 store_fragdepth_layout(struct gl_shader_program *prog)
2309 {
2310 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2311 return;
2312 }
2313
2314 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2315
2316 /* We don't look up the gl_FragDepth symbol directly because if
2317 * gl_FragDepth is not used in the shader, it's removed from the IR.
2318 * However, the symbol won't be removed from the symbol table.
2319 *
2320 * We're only interested in the cases where the variable is NOT removed
2321 * from the IR.
2322 */
2323 foreach_in_list(ir_instruction, node, ir) {
2324 ir_variable *const var = node->as_variable();
2325
2326 if (var == NULL || var->data.mode != ir_var_shader_out) {
2327 continue;
2328 }
2329
2330 if (strcmp(var->name, "gl_FragDepth") == 0) {
2331 switch (var->data.depth_layout) {
2332 case ir_depth_layout_none:
2333 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2334 return;
2335 case ir_depth_layout_any:
2336 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2337 return;
2338 case ir_depth_layout_greater:
2339 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2340 return;
2341 case ir_depth_layout_less:
2342 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2343 return;
2344 case ir_depth_layout_unchanged:
2345 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2346 return;
2347 default:
2348 assert(0);
2349 return;
2350 }
2351 }
2352 }
2353 }
2354
2355 /**
2356 * Validate the resources used by a program versus the implementation limits
2357 */
2358 static void
2359 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2360 {
2361 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2362 struct gl_shader *sh = prog->_LinkedShaders[i];
2363
2364 if (sh == NULL)
2365 continue;
2366
2367 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2368 linker_error(prog, "Too many %s shader texture samplers\n",
2369 _mesa_shader_stage_to_string(i));
2370 }
2371
2372 if (sh->num_uniform_components >
2373 ctx->Const.Program[i].MaxUniformComponents) {
2374 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2375 linker_warning(prog, "Too many %s shader default uniform block "
2376 "components, but the driver will try to optimize "
2377 "them out; this is non-portable out-of-spec "
2378 "behavior\n",
2379 _mesa_shader_stage_to_string(i));
2380 } else {
2381 linker_error(prog, "Too many %s shader default uniform block "
2382 "components\n",
2383 _mesa_shader_stage_to_string(i));
2384 }
2385 }
2386
2387 if (sh->num_combined_uniform_components >
2388 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2389 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2390 linker_warning(prog, "Too many %s shader uniform components, "
2391 "but the driver will try to optimize them out; "
2392 "this is non-portable out-of-spec behavior\n",
2393 _mesa_shader_stage_to_string(i));
2394 } else {
2395 linker_error(prog, "Too many %s shader uniform components\n",
2396 _mesa_shader_stage_to_string(i));
2397 }
2398 }
2399 }
2400
2401 unsigned blocks[MESA_SHADER_STAGES] = {0};
2402 unsigned total_uniform_blocks = 0;
2403
2404 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2405 if (prog->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2406 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2407 prog->UniformBlocks[i].Name,
2408 prog->UniformBlocks[i].UniformBufferSize,
2409 ctx->Const.MaxUniformBlockSize);
2410 }
2411
2412 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2413 if (prog->UniformBlockStageIndex[j][i] != -1) {
2414 blocks[j]++;
2415 total_uniform_blocks++;
2416 }
2417 }
2418
2419 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2420 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2421 prog->NumUniformBlocks,
2422 ctx->Const.MaxCombinedUniformBlocks);
2423 } else {
2424 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2425 const unsigned max_uniform_blocks =
2426 ctx->Const.Program[i].MaxUniformBlocks;
2427 if (blocks[i] > max_uniform_blocks) {
2428 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2429 _mesa_shader_stage_to_string(i),
2430 blocks[i],
2431 max_uniform_blocks);
2432 break;
2433 }
2434 }
2435 }
2436 }
2437 }
2438
2439 /**
2440 * Validate shader image resources.
2441 */
2442 static void
2443 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2444 {
2445 unsigned total_image_units = 0;
2446 unsigned fragment_outputs = 0;
2447
2448 if (!ctx->Extensions.ARB_shader_image_load_store)
2449 return;
2450
2451 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2452 struct gl_shader *sh = prog->_LinkedShaders[i];
2453
2454 if (sh) {
2455 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2456 linker_error(prog, "Too many %s shader image uniforms\n",
2457 _mesa_shader_stage_to_string(i));
2458
2459 total_image_units += sh->NumImages;
2460
2461 if (i == MESA_SHADER_FRAGMENT) {
2462 foreach_in_list(ir_instruction, node, sh->ir) {
2463 ir_variable *var = node->as_variable();
2464 if (var && var->data.mode == ir_var_shader_out)
2465 fragment_outputs += var->type->count_attribute_slots();
2466 }
2467 }
2468 }
2469 }
2470
2471 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2472 linker_error(prog, "Too many combined image uniforms\n");
2473
2474 if (total_image_units + fragment_outputs >
2475 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2476 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2477 }
2478
2479
2480 /**
2481 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2482 * for a variable, checks for overlaps between other uniforms using explicit
2483 * locations.
2484 */
2485 static bool
2486 reserve_explicit_locations(struct gl_shader_program *prog,
2487 string_to_uint_map *map, ir_variable *var)
2488 {
2489 unsigned slots = var->type->uniform_locations();
2490 unsigned max_loc = var->data.location + slots - 1;
2491
2492 /* Resize remap table if locations do not fit in the current one. */
2493 if (max_loc + 1 > prog->NumUniformRemapTable) {
2494 prog->UniformRemapTable =
2495 reralloc(prog, prog->UniformRemapTable,
2496 gl_uniform_storage *,
2497 max_loc + 1);
2498
2499 if (!prog->UniformRemapTable) {
2500 linker_error(prog, "Out of memory during linking.\n");
2501 return false;
2502 }
2503
2504 /* Initialize allocated space. */
2505 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2506 prog->UniformRemapTable[i] = NULL;
2507
2508 prog->NumUniformRemapTable = max_loc + 1;
2509 }
2510
2511 for (unsigned i = 0; i < slots; i++) {
2512 unsigned loc = var->data.location + i;
2513
2514 /* Check if location is already used. */
2515 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2516
2517 /* Possibly same uniform from a different stage, this is ok. */
2518 unsigned hash_loc;
2519 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2520 continue;
2521
2522 /* ARB_explicit_uniform_location specification states:
2523 *
2524 * "No two default-block uniform variables in the program can have
2525 * the same location, even if they are unused, otherwise a compiler
2526 * or linker error will be generated."
2527 */
2528 linker_error(prog,
2529 "location qualifier for uniform %s overlaps "
2530 "previously used location\n",
2531 var->name);
2532 return false;
2533 }
2534
2535 /* Initialize location as inactive before optimization
2536 * rounds and location assignment.
2537 */
2538 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2539 }
2540
2541 /* Note, base location used for arrays. */
2542 map->put(var->data.location, var->name);
2543
2544 return true;
2545 }
2546
2547 /**
2548 * Check and reserve all explicit uniform locations, called before
2549 * any optimizations happen to handle also inactive uniforms and
2550 * inactive array elements that may get trimmed away.
2551 */
2552 static void
2553 check_explicit_uniform_locations(struct gl_context *ctx,
2554 struct gl_shader_program *prog)
2555 {
2556 if (!ctx->Extensions.ARB_explicit_uniform_location)
2557 return;
2558
2559 /* This map is used to detect if overlapping explicit locations
2560 * occur with the same uniform (from different stage) or a different one.
2561 */
2562 string_to_uint_map *uniform_map = new string_to_uint_map;
2563
2564 if (!uniform_map) {
2565 linker_error(prog, "Out of memory during linking.\n");
2566 return;
2567 }
2568
2569 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2570 struct gl_shader *sh = prog->_LinkedShaders[i];
2571
2572 if (!sh)
2573 continue;
2574
2575 foreach_in_list(ir_instruction, node, sh->ir) {
2576 ir_variable *var = node->as_variable();
2577 if ((var && var->data.mode == ir_var_uniform) &&
2578 var->data.explicit_location) {
2579 if (!reserve_explicit_locations(prog, uniform_map, var)) {
2580 delete uniform_map;
2581 return;
2582 }
2583 }
2584 }
2585 }
2586
2587 delete uniform_map;
2588 }
2589
2590 static bool
2591 add_program_resource(struct gl_shader_program *prog, GLenum type,
2592 const void *data, uint8_t stages)
2593 {
2594 assert(data);
2595
2596 /* If resource already exists, do not add it again. */
2597 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
2598 if (prog->ProgramResourceList[i].Data == data)
2599 return true;
2600
2601 prog->ProgramResourceList =
2602 reralloc(prog,
2603 prog->ProgramResourceList,
2604 gl_program_resource,
2605 prog->NumProgramResourceList + 1);
2606
2607 if (!prog->ProgramResourceList) {
2608 linker_error(prog, "Out of memory during linking.\n");
2609 return false;
2610 }
2611
2612 struct gl_program_resource *res =
2613 &prog->ProgramResourceList[prog->NumProgramResourceList];
2614
2615 res->Type = type;
2616 res->Data = data;
2617 res->StageReferences = stages;
2618
2619 prog->NumProgramResourceList++;
2620
2621 return true;
2622 }
2623
2624 /**
2625 * Function builds a stage reference bitmask from variable name.
2626 */
2627 static uint8_t
2628 build_stageref(struct gl_shader_program *shProg, const char *name)
2629 {
2630 uint8_t stages = 0;
2631
2632 /* Note, that we assume MAX 8 stages, if there will be more stages, type
2633 * used for reference mask in gl_program_resource will need to be changed.
2634 */
2635 assert(MESA_SHADER_STAGES < 8);
2636
2637 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2638 struct gl_shader *sh = shProg->_LinkedShaders[i];
2639 if (!sh)
2640 continue;
2641
2642 /* Shader symbol table may contain variables that have
2643 * been optimized away. Search IR for the variable instead.
2644 */
2645 foreach_in_list(ir_instruction, node, sh->ir) {
2646 ir_variable *var = node->as_variable();
2647 if (var && strcmp(var->name, name) == 0) {
2648 stages |= (1 << i);
2649 break;
2650 }
2651 }
2652 }
2653 return stages;
2654 }
2655
2656 static bool
2657 add_interface_variables(struct gl_shader_program *shProg,
2658 struct gl_shader *sh, GLenum programInterface)
2659 {
2660 foreach_in_list(ir_instruction, node, sh->ir) {
2661 ir_variable *var = node->as_variable();
2662 uint8_t mask = 0;
2663
2664 if (!var)
2665 continue;
2666
2667 switch (var->data.mode) {
2668 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
2669 * "For GetActiveAttrib, all active vertex shader input variables
2670 * are enumerated, including the special built-in inputs gl_VertexID
2671 * and gl_InstanceID."
2672 */
2673 case ir_var_system_value:
2674 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
2675 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
2676 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
2677 continue;
2678 /* Mark special built-in inputs referenced by the vertex stage so
2679 * that they are considered active by the shader queries.
2680 */
2681 mask = (1 << (MESA_SHADER_VERTEX));
2682 /* FALLTHROUGH */
2683 case ir_var_shader_in:
2684 if (programInterface != GL_PROGRAM_INPUT)
2685 continue;
2686 break;
2687 case ir_var_shader_out:
2688 if (programInterface != GL_PROGRAM_OUTPUT)
2689 continue;
2690 break;
2691 default:
2692 continue;
2693 };
2694
2695 if (!add_program_resource(shProg, programInterface, var,
2696 build_stageref(shProg, var->name) | mask))
2697 return false;
2698 }
2699 return true;
2700 }
2701
2702 /**
2703 * Builds up a list of program resources that point to existing
2704 * resource data.
2705 */
2706 void
2707 build_program_resource_list(struct gl_context *ctx,
2708 struct gl_shader_program *shProg)
2709 {
2710 /* Rebuild resource list. */
2711 if (shProg->ProgramResourceList) {
2712 ralloc_free(shProg->ProgramResourceList);
2713 shProg->ProgramResourceList = NULL;
2714 shProg->NumProgramResourceList = 0;
2715 }
2716
2717 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
2718
2719 /* Determine first input and final output stage. These are used to
2720 * detect which variables should be enumerated in the resource list
2721 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
2722 */
2723 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2724 if (!shProg->_LinkedShaders[i])
2725 continue;
2726 if (input_stage == MESA_SHADER_STAGES)
2727 input_stage = i;
2728 output_stage = i;
2729 }
2730
2731 /* Empty shader, no resources. */
2732 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
2733 return;
2734
2735 /* Add inputs and outputs to the resource list. */
2736 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage],
2737 GL_PROGRAM_INPUT))
2738 return;
2739
2740 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage],
2741 GL_PROGRAM_OUTPUT))
2742 return;
2743
2744 /* Add transform feedback varyings. */
2745 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
2746 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
2747 uint8_t stageref =
2748 build_stageref(shProg,
2749 shProg->LinkedTransformFeedback.Varyings[i].Name);
2750 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
2751 &shProg->LinkedTransformFeedback.Varyings[i],
2752 stageref))
2753 return;
2754 }
2755 }
2756
2757 /* Add uniforms from uniform storage. */
2758 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
2759 /* Do not add uniforms internally used by Mesa. */
2760 if (shProg->UniformStorage[i].hidden)
2761 continue;
2762
2763 uint8_t stageref =
2764 build_stageref(shProg, shProg->UniformStorage[i].name);
2765
2766 /* Add stagereferences for uniforms in a uniform block. */
2767 int block_index = shProg->UniformStorage[i].block_index;
2768 if (block_index != -1) {
2769 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2770 if (shProg->UniformBlockStageIndex[j][block_index] != -1)
2771 stageref |= (1 << j);
2772 }
2773 }
2774
2775 if (!add_program_resource(shProg, GL_UNIFORM,
2776 &shProg->UniformStorage[i], stageref))
2777 return;
2778 }
2779
2780 /* Add program uniform blocks. */
2781 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
2782 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
2783 &shProg->UniformBlocks[i], 0))
2784 return;
2785 }
2786
2787 /* Add atomic counter buffers. */
2788 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
2789 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
2790 &shProg->AtomicBuffers[i], 0))
2791 return;
2792 }
2793
2794 /* TODO - following extensions will require more resource types:
2795 *
2796 * GL_ARB_shader_storage_buffer_object
2797 * GL_ARB_shader_subroutine
2798 */
2799 }
2800
2801 /**
2802 * This check is done to make sure we allow only constant expression
2803 * indexing and "constant-index-expression" (indexing with an expression
2804 * that includes loop induction variable).
2805 */
2806 static bool
2807 validate_sampler_array_indexing(struct gl_context *ctx,
2808 struct gl_shader_program *prog)
2809 {
2810 dynamic_sampler_array_indexing_visitor v;
2811 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2812 if (prog->_LinkedShaders[i] == NULL)
2813 continue;
2814
2815 bool no_dynamic_indexing =
2816 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
2817
2818 /* Search for array derefs in shader. */
2819 v.run(prog->_LinkedShaders[i]->ir);
2820 if (v.uses_dynamic_sampler_array_indexing()) {
2821 const char *msg = "sampler arrays indexed with non-constant "
2822 "expressions is forbidden in GLSL %s %u";
2823 /* Backend has indicated that it has no dynamic indexing support. */
2824 if (no_dynamic_indexing) {
2825 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
2826 return false;
2827 } else {
2828 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
2829 }
2830 }
2831 }
2832 return true;
2833 }
2834
2835
2836 void
2837 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2838 {
2839 tfeedback_decl *tfeedback_decls = NULL;
2840 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2841
2842 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2843
2844 prog->LinkStatus = true; /* All error paths will set this to false */
2845 prog->Validated = false;
2846 prog->_Used = false;
2847
2848 prog->ARB_fragment_coord_conventions_enable = false;
2849
2850 /* Separate the shaders into groups based on their type.
2851 */
2852 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2853 unsigned num_shaders[MESA_SHADER_STAGES];
2854
2855 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2856 shader_list[i] = (struct gl_shader **)
2857 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2858 num_shaders[i] = 0;
2859 }
2860
2861 unsigned min_version = UINT_MAX;
2862 unsigned max_version = 0;
2863 const bool is_es_prog =
2864 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2865 for (unsigned i = 0; i < prog->NumShaders; i++) {
2866 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2867 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2868
2869 if (prog->Shaders[i]->IsES != is_es_prog) {
2870 linker_error(prog, "all shaders must use same shading "
2871 "language version\n");
2872 goto done;
2873 }
2874
2875 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
2876 prog->ARB_fragment_coord_conventions_enable = true;
2877 }
2878
2879 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2880 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2881 num_shaders[shader_type]++;
2882 }
2883
2884 /* In desktop GLSL, different shader versions may be linked together. In
2885 * GLSL ES, all shader versions must be the same.
2886 */
2887 if (is_es_prog && min_version != max_version) {
2888 linker_error(prog, "all shaders must use same shading "
2889 "language version\n");
2890 goto done;
2891 }
2892
2893 prog->Version = max_version;
2894 prog->IsES = is_es_prog;
2895
2896 /* Geometry shaders have to be linked with vertex shaders.
2897 */
2898 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2899 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2900 !prog->SeparateShader) {
2901 linker_error(prog, "Geometry shader must be linked with "
2902 "vertex shader\n");
2903 goto done;
2904 }
2905
2906 /* Compute shaders have additional restrictions. */
2907 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2908 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2909 linker_error(prog, "Compute shaders may not be linked with any other "
2910 "type of shader\n");
2911 }
2912
2913 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2914 if (prog->_LinkedShaders[i] != NULL)
2915 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2916
2917 prog->_LinkedShaders[i] = NULL;
2918 }
2919
2920 /* Link all shaders for a particular stage and validate the result.
2921 */
2922 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2923 if (num_shaders[stage] > 0) {
2924 gl_shader *const sh =
2925 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2926 num_shaders[stage]);
2927
2928 if (!prog->LinkStatus) {
2929 if (sh)
2930 ctx->Driver.DeleteShader(ctx, sh);
2931 goto done;
2932 }
2933
2934 switch (stage) {
2935 case MESA_SHADER_VERTEX:
2936 validate_vertex_shader_executable(prog, sh);
2937 break;
2938 case MESA_SHADER_GEOMETRY:
2939 validate_geometry_shader_executable(prog, sh);
2940 break;
2941 case MESA_SHADER_FRAGMENT:
2942 validate_fragment_shader_executable(prog, sh);
2943 break;
2944 }
2945 if (!prog->LinkStatus) {
2946 if (sh)
2947 ctx->Driver.DeleteShader(ctx, sh);
2948 goto done;
2949 }
2950
2951 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2952 }
2953 }
2954
2955 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2956 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2957 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2958 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2959 else
2960 prog->LastClipDistanceArraySize = 0; /* Not used */
2961
2962 /* Here begins the inter-stage linking phase. Some initial validation is
2963 * performed, then locations are assigned for uniforms, attributes, and
2964 * varyings.
2965 */
2966 cross_validate_uniforms(prog);
2967 if (!prog->LinkStatus)
2968 goto done;
2969
2970 unsigned prev;
2971
2972 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2973 if (prog->_LinkedShaders[prev] != NULL)
2974 break;
2975 }
2976
2977 check_explicit_uniform_locations(ctx, prog);
2978 if (!prog->LinkStatus)
2979 goto done;
2980
2981 /* Validate the inputs of each stage with the output of the preceding
2982 * stage.
2983 */
2984 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2985 if (prog->_LinkedShaders[i] == NULL)
2986 continue;
2987
2988 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2989 prog->_LinkedShaders[i]);
2990 if (!prog->LinkStatus)
2991 goto done;
2992
2993 cross_validate_outputs_to_inputs(prog,
2994 prog->_LinkedShaders[prev],
2995 prog->_LinkedShaders[i]);
2996 if (!prog->LinkStatus)
2997 goto done;
2998
2999 prev = i;
3000 }
3001
3002 /* Cross-validate uniform blocks between shader stages */
3003 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
3004 MESA_SHADER_STAGES);
3005 if (!prog->LinkStatus)
3006 goto done;
3007
3008 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3009 if (prog->_LinkedShaders[i] != NULL)
3010 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
3011 }
3012
3013 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
3014 * it before optimization because we want most of the checks to get
3015 * dropped thanks to constant propagation.
3016 *
3017 * This rule also applies to GLSL ES 3.00.
3018 */
3019 if (max_version >= (is_es_prog ? 300 : 130)) {
3020 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3021 if (sh) {
3022 lower_discard_flow(sh->ir);
3023 }
3024 }
3025
3026 if (!interstage_cross_validate_uniform_blocks(prog))
3027 goto done;
3028
3029 /* Do common optimization before assigning storage for attributes,
3030 * uniforms, and varyings. Later optimization could possibly make
3031 * some of that unused.
3032 */
3033 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3034 if (prog->_LinkedShaders[i] == NULL)
3035 continue;
3036
3037 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
3038 if (!prog->LinkStatus)
3039 goto done;
3040
3041 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
3042 lower_clip_distance(prog->_LinkedShaders[i]);
3043 }
3044
3045 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
3046 &ctx->Const.ShaderCompilerOptions[i],
3047 ctx->Const.NativeIntegers))
3048 ;
3049
3050 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
3051 }
3052
3053 /* Validation for special cases where we allow sampler array indexing
3054 * with loop induction variable. This check emits a warning or error
3055 * depending if backend can handle dynamic indexing.
3056 */
3057 if ((!prog->IsES && prog->Version < 130) ||
3058 (prog->IsES && prog->Version < 300)) {
3059 if (!validate_sampler_array_indexing(ctx, prog))
3060 goto done;
3061 }
3062
3063 /* Check and validate stream emissions in geometry shaders */
3064 validate_geometry_shader_emissions(ctx, prog);
3065
3066 /* Mark all generic shader inputs and outputs as unpaired. */
3067 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
3068 if (prog->_LinkedShaders[i] != NULL) {
3069 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
3070 }
3071 }
3072
3073 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX,
3074 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)) {
3075 goto done;
3076 }
3077
3078 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
3079 goto done;
3080 }
3081
3082 unsigned first, last;
3083
3084 first = MESA_SHADER_STAGES;
3085 last = 0;
3086
3087 /* Determine first and last stage. */
3088 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3089 if (!prog->_LinkedShaders[i])
3090 continue;
3091 if (first == MESA_SHADER_STAGES)
3092 first = i;
3093 last = i;
3094 }
3095
3096 if (num_tfeedback_decls != 0) {
3097 /* From GL_EXT_transform_feedback:
3098 * A program will fail to link if:
3099 *
3100 * * the <count> specified by TransformFeedbackVaryingsEXT is
3101 * non-zero, but the program object has no vertex or geometry
3102 * shader;
3103 */
3104 if (first == MESA_SHADER_FRAGMENT) {
3105 linker_error(prog, "Transform feedback varyings specified, but "
3106 "no vertex or geometry shader is present.\n");
3107 goto done;
3108 }
3109
3110 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
3111 prog->TransformFeedback.NumVarying);
3112 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
3113 prog->TransformFeedback.VaryingNames,
3114 tfeedback_decls))
3115 goto done;
3116 }
3117
3118 /* Linking the stages in the opposite order (from fragment to vertex)
3119 * ensures that inter-shader outputs written to in an earlier stage are
3120 * eliminated if they are (transitively) not used in a later stage.
3121 */
3122 int next;
3123
3124 if (first < MESA_SHADER_FRAGMENT) {
3125 gl_shader *const sh = prog->_LinkedShaders[last];
3126
3127 if (first == MESA_SHADER_GEOMETRY) {
3128 /* There was no vertex shader, but we still have to assign varying
3129 * locations for use by geometry shader inputs in SSO.
3130 *
3131 * If the shader is not separable (i.e., prog->SeparateShader is
3132 * false), linking will have already failed when first is
3133 * MESA_SHADER_GEOMETRY.
3134 */
3135 if (!assign_varying_locations(ctx, mem_ctx, prog,
3136 NULL, prog->_LinkedShaders[first],
3137 num_tfeedback_decls, tfeedback_decls,
3138 prog->Geom.VerticesIn))
3139 goto done;
3140 }
3141
3142 if (last != MESA_SHADER_FRAGMENT &&
3143 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
3144 /* There was no fragment shader, but we still have to assign varying
3145 * locations for use by transform feedback.
3146 */
3147 if (!assign_varying_locations(ctx, mem_ctx, prog,
3148 sh, NULL,
3149 num_tfeedback_decls, tfeedback_decls,
3150 0))
3151 goto done;
3152 }
3153
3154 do_dead_builtin_varyings(ctx, sh, NULL,
3155 num_tfeedback_decls, tfeedback_decls);
3156
3157 if (!prog->SeparateShader)
3158 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
3159
3160 /* Eliminate code that is now dead due to unused outputs being demoted.
3161 */
3162 while (do_dead_code(sh->ir, false))
3163 ;
3164 }
3165 else if (first == MESA_SHADER_FRAGMENT) {
3166 /* If the program only contains a fragment shader...
3167 */
3168 gl_shader *const sh = prog->_LinkedShaders[first];
3169
3170 do_dead_builtin_varyings(ctx, NULL, sh,
3171 num_tfeedback_decls, tfeedback_decls);
3172
3173 if (prog->SeparateShader) {
3174 if (!assign_varying_locations(ctx, mem_ctx, prog,
3175 NULL /* producer */,
3176 sh /* consumer */,
3177 0 /* num_tfeedback_decls */,
3178 NULL /* tfeedback_decls */,
3179 0 /* gs_input_vertices */))
3180 goto done;
3181 } else
3182 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
3183
3184 while (do_dead_code(sh->ir, false))
3185 ;
3186 }
3187
3188 next = last;
3189 for (int i = next - 1; i >= 0; i--) {
3190 if (prog->_LinkedShaders[i] == NULL)
3191 continue;
3192
3193 gl_shader *const sh_i = prog->_LinkedShaders[i];
3194 gl_shader *const sh_next = prog->_LinkedShaders[next];
3195 unsigned gs_input_vertices =
3196 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
3197
3198 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3199 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3200 tfeedback_decls, gs_input_vertices))
3201 goto done;
3202
3203 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3204 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3205 tfeedback_decls);
3206
3207 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
3208 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
3209
3210 /* Eliminate code that is now dead due to unused outputs being demoted.
3211 */
3212 while (do_dead_code(sh_i->ir, false))
3213 ;
3214 while (do_dead_code(sh_next->ir, false))
3215 ;
3216
3217 /* This must be done after all dead varyings are eliminated. */
3218 if (!check_against_output_limit(ctx, prog, sh_i))
3219 goto done;
3220 if (!check_against_input_limit(ctx, prog, sh_next))
3221 goto done;
3222
3223 next = i;
3224 }
3225
3226 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
3227 goto done;
3228
3229 update_array_sizes(prog);
3230 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
3231 link_assign_atomic_counter_resources(ctx, prog);
3232 store_fragdepth_layout(prog);
3233
3234 check_resources(ctx, prog);
3235 check_image_resources(ctx, prog);
3236 link_check_atomic_counter_resources(ctx, prog);
3237
3238 if (!prog->LinkStatus)
3239 goto done;
3240
3241 /* OpenGL ES requires that a vertex shader and a fragment shader both be
3242 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
3243 * anything about shader linking when one of the shaders (vertex or
3244 * fragment shader) is absent. So, the extension shouldn't change the
3245 * behavior specified in GLSL specification.
3246 */
3247 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
3248 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
3249 linker_error(prog, "program lacks a vertex shader\n");
3250 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3251 linker_error(prog, "program lacks a fragment shader\n");
3252 }
3253 }
3254
3255 /* FINISHME: Assign fragment shader output locations. */
3256
3257 done:
3258 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3259 free(shader_list[i]);
3260 if (prog->_LinkedShaders[i] == NULL)
3261 continue;
3262
3263 /* Do a final validation step to make sure that the IR wasn't
3264 * invalidated by any modifications performed after intrastage linking.
3265 */
3266 validate_ir_tree(prog->_LinkedShaders[i]->ir);
3267
3268 /* Retain any live IR, but trash the rest. */
3269 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
3270
3271 /* The symbol table in the linked shaders may contain references to
3272 * variables that were removed (e.g., unused uniforms). Since it may
3273 * contain junk, there is no possible valid use. Delete it and set the
3274 * pointer to NULL.
3275 */
3276 delete prog->_LinkedShaders[i]->symbols;
3277 prog->_LinkedShaders[i]->symbols = NULL;
3278 }
3279
3280 ralloc_free(mem_ctx);
3281 }