mesa: Record transform feedback strides/offsets in linker output.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "ir_optimization.h"
74
75 extern "C" {
76 #include "main/shaderobj.h"
77 }
78
79 /**
80 * Visitor that determines whether or not a variable is ever written.
81 */
82 class find_assignment_visitor : public ir_hierarchical_visitor {
83 public:
84 find_assignment_visitor(const char *name)
85 : name(name), found(false)
86 {
87 /* empty */
88 }
89
90 virtual ir_visitor_status visit_enter(ir_assignment *ir)
91 {
92 ir_variable *const var = ir->lhs->variable_referenced();
93
94 if (strcmp(name, var->name) == 0) {
95 found = true;
96 return visit_stop;
97 }
98
99 return visit_continue_with_parent;
100 }
101
102 virtual ir_visitor_status visit_enter(ir_call *ir)
103 {
104 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
105 foreach_iter(exec_list_iterator, iter, *ir) {
106 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
107 ir_variable *sig_param = (ir_variable *)sig_iter.get();
108
109 if (sig_param->mode == ir_var_out ||
110 sig_param->mode == ir_var_inout) {
111 ir_variable *var = param_rval->variable_referenced();
112 if (var && strcmp(name, var->name) == 0) {
113 found = true;
114 return visit_stop;
115 }
116 }
117 sig_iter.next();
118 }
119
120 return visit_continue_with_parent;
121 }
122
123 bool variable_found()
124 {
125 return found;
126 }
127
128 private:
129 const char *name; /**< Find writes to a variable with this name. */
130 bool found; /**< Was a write to the variable found? */
131 };
132
133
134 /**
135 * Visitor that determines whether or not a variable is ever read.
136 */
137 class find_deref_visitor : public ir_hierarchical_visitor {
138 public:
139 find_deref_visitor(const char *name)
140 : name(name), found(false)
141 {
142 /* empty */
143 }
144
145 virtual ir_visitor_status visit(ir_dereference_variable *ir)
146 {
147 if (strcmp(this->name, ir->var->name) == 0) {
148 this->found = true;
149 return visit_stop;
150 }
151
152 return visit_continue;
153 }
154
155 bool variable_found() const
156 {
157 return this->found;
158 }
159
160 private:
161 const char *name; /**< Find writes to a variable with this name. */
162 bool found; /**< Was a write to the variable found? */
163 };
164
165
166 void
167 linker_error(gl_shader_program *prog, const char *fmt, ...)
168 {
169 va_list ap;
170
171 ralloc_strcat(&prog->InfoLog, "error: ");
172 va_start(ap, fmt);
173 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
174 va_end(ap);
175
176 prog->LinkStatus = false;
177 }
178
179
180 void
181 linker_warning(gl_shader_program *prog, const char *fmt, ...)
182 {
183 va_list ap;
184
185 ralloc_strcat(&prog->InfoLog, "error: ");
186 va_start(ap, fmt);
187 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
188 va_end(ap);
189
190 }
191
192
193 void
194 link_invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
195 int generic_base)
196 {
197 foreach_list(node, sh->ir) {
198 ir_variable *const var = ((ir_instruction *) node)->as_variable();
199
200 if ((var == NULL) || (var->mode != (unsigned) mode))
201 continue;
202
203 /* Only assign locations for generic attributes / varyings / etc.
204 */
205 if ((var->location >= generic_base) && !var->explicit_location)
206 var->location = -1;
207 }
208 }
209
210
211 /**
212 * Determine the number of attribute slots required for a particular type
213 *
214 * This code is here because it implements the language rules of a specific
215 * GLSL version. Since it's a property of the language and not a property of
216 * types in general, it doesn't really belong in glsl_type.
217 */
218 unsigned
219 count_attribute_slots(const glsl_type *t)
220 {
221 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
222 *
223 * "A scalar input counts the same amount against this limit as a vec4,
224 * so applications may want to consider packing groups of four
225 * unrelated float inputs together into a vector to better utilize the
226 * capabilities of the underlying hardware. A matrix input will use up
227 * multiple locations. The number of locations used will equal the
228 * number of columns in the matrix."
229 *
230 * The spec does not explicitly say how arrays are counted. However, it
231 * should be safe to assume the total number of slots consumed by an array
232 * is the number of entries in the array multiplied by the number of slots
233 * consumed by a single element of the array.
234 */
235
236 if (t->is_array())
237 return t->array_size() * count_attribute_slots(t->element_type());
238
239 if (t->is_matrix())
240 return t->matrix_columns;
241
242 return 1;
243 }
244
245
246 /**
247 * Verify that a vertex shader executable meets all semantic requirements.
248 *
249 * Also sets prog->Vert.UsesClipDistance as a side effect.
250 *
251 * \param shader Vertex shader executable to be verified
252 */
253 bool
254 validate_vertex_shader_executable(struct gl_shader_program *prog,
255 struct gl_shader *shader)
256 {
257 if (shader == NULL)
258 return true;
259
260 find_assignment_visitor find("gl_Position");
261 find.run(shader->ir);
262 if (!find.variable_found()) {
263 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
264 return false;
265 }
266
267 if (prog->Version >= 130) {
268 /* From section 7.1 (Vertex Shader Special Variables) of the
269 * GLSL 1.30 spec:
270 *
271 * "It is an error for a shader to statically write both
272 * gl_ClipVertex and gl_ClipDistance."
273 */
274 find_assignment_visitor clip_vertex("gl_ClipVertex");
275 find_assignment_visitor clip_distance("gl_ClipDistance");
276
277 clip_vertex.run(shader->ir);
278 clip_distance.run(shader->ir);
279 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
280 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
281 "and `gl_ClipDistance'\n");
282 return false;
283 }
284 prog->Vert.UsesClipDistance = clip_distance.variable_found();
285 }
286
287 return true;
288 }
289
290
291 /**
292 * Verify that a fragment shader executable meets all semantic requirements
293 *
294 * \param shader Fragment shader executable to be verified
295 */
296 bool
297 validate_fragment_shader_executable(struct gl_shader_program *prog,
298 struct gl_shader *shader)
299 {
300 if (shader == NULL)
301 return true;
302
303 find_assignment_visitor frag_color("gl_FragColor");
304 find_assignment_visitor frag_data("gl_FragData");
305
306 frag_color.run(shader->ir);
307 frag_data.run(shader->ir);
308
309 if (frag_color.variable_found() && frag_data.variable_found()) {
310 linker_error(prog, "fragment shader writes to both "
311 "`gl_FragColor' and `gl_FragData'\n");
312 return false;
313 }
314
315 return true;
316 }
317
318
319 /**
320 * Generate a string describing the mode of a variable
321 */
322 static const char *
323 mode_string(const ir_variable *var)
324 {
325 switch (var->mode) {
326 case ir_var_auto:
327 return (var->read_only) ? "global constant" : "global variable";
328
329 case ir_var_uniform: return "uniform";
330 case ir_var_in: return "shader input";
331 case ir_var_out: return "shader output";
332 case ir_var_inout: return "shader inout";
333
334 case ir_var_const_in:
335 case ir_var_temporary:
336 default:
337 assert(!"Should not get here.");
338 return "invalid variable";
339 }
340 }
341
342
343 /**
344 * Perform validation of global variables used across multiple shaders
345 */
346 bool
347 cross_validate_globals(struct gl_shader_program *prog,
348 struct gl_shader **shader_list,
349 unsigned num_shaders,
350 bool uniforms_only)
351 {
352 /* Examine all of the uniforms in all of the shaders and cross validate
353 * them.
354 */
355 glsl_symbol_table variables;
356 for (unsigned i = 0; i < num_shaders; i++) {
357 if (shader_list[i] == NULL)
358 continue;
359
360 foreach_list(node, shader_list[i]->ir) {
361 ir_variable *const var = ((ir_instruction *) node)->as_variable();
362
363 if (var == NULL)
364 continue;
365
366 if (uniforms_only && (var->mode != ir_var_uniform))
367 continue;
368
369 /* Don't cross validate temporaries that are at global scope. These
370 * will eventually get pulled into the shaders 'main'.
371 */
372 if (var->mode == ir_var_temporary)
373 continue;
374
375 /* If a global with this name has already been seen, verify that the
376 * new instance has the same type. In addition, if the globals have
377 * initializers, the values of the initializers must be the same.
378 */
379 ir_variable *const existing = variables.get_variable(var->name);
380 if (existing != NULL) {
381 if (var->type != existing->type) {
382 /* Consider the types to be "the same" if both types are arrays
383 * of the same type and one of the arrays is implicitly sized.
384 * In addition, set the type of the linked variable to the
385 * explicitly sized array.
386 */
387 if (var->type->is_array()
388 && existing->type->is_array()
389 && (var->type->fields.array == existing->type->fields.array)
390 && ((var->type->length == 0)
391 || (existing->type->length == 0))) {
392 if (var->type->length != 0) {
393 existing->type = var->type;
394 }
395 } else {
396 linker_error(prog, "%s `%s' declared as type "
397 "`%s' and type `%s'\n",
398 mode_string(var),
399 var->name, var->type->name,
400 existing->type->name);
401 return false;
402 }
403 }
404
405 if (var->explicit_location) {
406 if (existing->explicit_location
407 && (var->location != existing->location)) {
408 linker_error(prog, "explicit locations for %s "
409 "`%s' have differing values\n",
410 mode_string(var), var->name);
411 return false;
412 }
413
414 existing->location = var->location;
415 existing->explicit_location = true;
416 }
417
418 /* Validate layout qualifiers for gl_FragDepth.
419 *
420 * From the AMD/ARB_conservative_depth specs:
421 *
422 * "If gl_FragDepth is redeclared in any fragment shader in a
423 * program, it must be redeclared in all fragment shaders in
424 * that program that have static assignments to
425 * gl_FragDepth. All redeclarations of gl_FragDepth in all
426 * fragment shaders in a single program must have the same set
427 * of qualifiers."
428 */
429 if (strcmp(var->name, "gl_FragDepth") == 0) {
430 bool layout_declared = var->depth_layout != ir_depth_layout_none;
431 bool layout_differs =
432 var->depth_layout != existing->depth_layout;
433
434 if (layout_declared && layout_differs) {
435 linker_error(prog,
436 "All redeclarations of gl_FragDepth in all "
437 "fragment shaders in a single program must have "
438 "the same set of qualifiers.");
439 }
440
441 if (var->used && layout_differs) {
442 linker_error(prog,
443 "If gl_FragDepth is redeclared with a layout "
444 "qualifier in any fragment shader, it must be "
445 "redeclared with the same layout qualifier in "
446 "all fragment shaders that have assignments to "
447 "gl_FragDepth");
448 }
449 }
450
451 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
452 *
453 * "If a shared global has multiple initializers, the
454 * initializers must all be constant expressions, and they
455 * must all have the same value. Otherwise, a link error will
456 * result. (A shared global having only one initializer does
457 * not require that initializer to be a constant expression.)"
458 *
459 * Previous to 4.20 the GLSL spec simply said that initializers
460 * must have the same value. In this case of non-constant
461 * initializers, this was impossible to determine. As a result,
462 * no vendor actually implemented that behavior. The 4.20
463 * behavior matches the implemented behavior of at least one other
464 * vendor, so we'll implement that for all GLSL versions.
465 */
466 if (var->constant_initializer != NULL) {
467 if (existing->constant_initializer != NULL) {
468 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
469 linker_error(prog, "initializers for %s "
470 "`%s' have differing values\n",
471 mode_string(var), var->name);
472 return false;
473 }
474 } else {
475 /* If the first-seen instance of a particular uniform did not
476 * have an initializer but a later instance does, copy the
477 * initializer to the version stored in the symbol table.
478 */
479 /* FINISHME: This is wrong. The constant_value field should
480 * FINISHME: not be modified! Imagine a case where a shader
481 * FINISHME: without an initializer is linked in two different
482 * FINISHME: programs with shaders that have differing
483 * FINISHME: initializers. Linking with the first will
484 * FINISHME: modify the shader, and linking with the second
485 * FINISHME: will fail.
486 */
487 existing->constant_initializer =
488 var->constant_initializer->clone(ralloc_parent(existing),
489 NULL);
490 }
491 }
492
493 if (var->has_initializer) {
494 if (existing->has_initializer
495 && (var->constant_initializer == NULL
496 || existing->constant_initializer == NULL)) {
497 linker_error(prog,
498 "shared global variable `%s' has multiple "
499 "non-constant initializers.\n",
500 var->name);
501 return false;
502 }
503
504 /* Some instance had an initializer, so keep track of that. In
505 * this location, all sorts of initializers (constant or
506 * otherwise) will propagate the existence to the variable
507 * stored in the symbol table.
508 */
509 existing->has_initializer = true;
510 }
511
512 if (existing->invariant != var->invariant) {
513 linker_error(prog, "declarations for %s `%s' have "
514 "mismatching invariant qualifiers\n",
515 mode_string(var), var->name);
516 return false;
517 }
518 if (existing->centroid != var->centroid) {
519 linker_error(prog, "declarations for %s `%s' have "
520 "mismatching centroid qualifiers\n",
521 mode_string(var), var->name);
522 return false;
523 }
524 } else
525 variables.add_variable(var);
526 }
527 }
528
529 return true;
530 }
531
532
533 /**
534 * Perform validation of uniforms used across multiple shader stages
535 */
536 bool
537 cross_validate_uniforms(struct gl_shader_program *prog)
538 {
539 return cross_validate_globals(prog, prog->_LinkedShaders,
540 MESA_SHADER_TYPES, true);
541 }
542
543
544 /**
545 * Validate that outputs from one stage match inputs of another
546 */
547 bool
548 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
549 gl_shader *producer, gl_shader *consumer)
550 {
551 glsl_symbol_table parameters;
552 /* FINISHME: Figure these out dynamically. */
553 const char *const producer_stage = "vertex";
554 const char *const consumer_stage = "fragment";
555
556 /* Find all shader outputs in the "producer" stage.
557 */
558 foreach_list(node, producer->ir) {
559 ir_variable *const var = ((ir_instruction *) node)->as_variable();
560
561 /* FINISHME: For geometry shaders, this should also look for inout
562 * FINISHME: variables.
563 */
564 if ((var == NULL) || (var->mode != ir_var_out))
565 continue;
566
567 parameters.add_variable(var);
568 }
569
570
571 /* Find all shader inputs in the "consumer" stage. Any variables that have
572 * matching outputs already in the symbol table must have the same type and
573 * qualifiers.
574 */
575 foreach_list(node, consumer->ir) {
576 ir_variable *const input = ((ir_instruction *) node)->as_variable();
577
578 /* FINISHME: For geometry shaders, this should also look for inout
579 * FINISHME: variables.
580 */
581 if ((input == NULL) || (input->mode != ir_var_in))
582 continue;
583
584 ir_variable *const output = parameters.get_variable(input->name);
585 if (output != NULL) {
586 /* Check that the types match between stages.
587 */
588 if (input->type != output->type) {
589 /* There is a bit of a special case for gl_TexCoord. This
590 * built-in is unsized by default. Applications that variable
591 * access it must redeclare it with a size. There is some
592 * language in the GLSL spec that implies the fragment shader
593 * and vertex shader do not have to agree on this size. Other
594 * driver behave this way, and one or two applications seem to
595 * rely on it.
596 *
597 * Neither declaration needs to be modified here because the array
598 * sizes are fixed later when update_array_sizes is called.
599 *
600 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
601 *
602 * "Unlike user-defined varying variables, the built-in
603 * varying variables don't have a strict one-to-one
604 * correspondence between the vertex language and the
605 * fragment language."
606 */
607 if (!output->type->is_array()
608 || (strncmp("gl_", output->name, 3) != 0)) {
609 linker_error(prog,
610 "%s shader output `%s' declared as type `%s', "
611 "but %s shader input declared as type `%s'\n",
612 producer_stage, output->name,
613 output->type->name,
614 consumer_stage, input->type->name);
615 return false;
616 }
617 }
618
619 /* Check that all of the qualifiers match between stages.
620 */
621 if (input->centroid != output->centroid) {
622 linker_error(prog,
623 "%s shader output `%s' %s centroid qualifier, "
624 "but %s shader input %s centroid qualifier\n",
625 producer_stage,
626 output->name,
627 (output->centroid) ? "has" : "lacks",
628 consumer_stage,
629 (input->centroid) ? "has" : "lacks");
630 return false;
631 }
632
633 if (input->invariant != output->invariant) {
634 linker_error(prog,
635 "%s shader output `%s' %s invariant qualifier, "
636 "but %s shader input %s invariant qualifier\n",
637 producer_stage,
638 output->name,
639 (output->invariant) ? "has" : "lacks",
640 consumer_stage,
641 (input->invariant) ? "has" : "lacks");
642 return false;
643 }
644
645 if (input->interpolation != output->interpolation) {
646 linker_error(prog,
647 "%s shader output `%s' specifies %s "
648 "interpolation qualifier, "
649 "but %s shader input specifies %s "
650 "interpolation qualifier\n",
651 producer_stage,
652 output->name,
653 output->interpolation_string(),
654 consumer_stage,
655 input->interpolation_string());
656 return false;
657 }
658 }
659 }
660
661 return true;
662 }
663
664
665 /**
666 * Populates a shaders symbol table with all global declarations
667 */
668 static void
669 populate_symbol_table(gl_shader *sh)
670 {
671 sh->symbols = new(sh) glsl_symbol_table;
672
673 foreach_list(node, sh->ir) {
674 ir_instruction *const inst = (ir_instruction *) node;
675 ir_variable *var;
676 ir_function *func;
677
678 if ((func = inst->as_function()) != NULL) {
679 sh->symbols->add_function(func);
680 } else if ((var = inst->as_variable()) != NULL) {
681 sh->symbols->add_variable(var);
682 }
683 }
684 }
685
686
687 /**
688 * Remap variables referenced in an instruction tree
689 *
690 * This is used when instruction trees are cloned from one shader and placed in
691 * another. These trees will contain references to \c ir_variable nodes that
692 * do not exist in the target shader. This function finds these \c ir_variable
693 * references and replaces the references with matching variables in the target
694 * shader.
695 *
696 * If there is no matching variable in the target shader, a clone of the
697 * \c ir_variable is made and added to the target shader. The new variable is
698 * added to \b both the instruction stream and the symbol table.
699 *
700 * \param inst IR tree that is to be processed.
701 * \param symbols Symbol table containing global scope symbols in the
702 * linked shader.
703 * \param instructions Instruction stream where new variable declarations
704 * should be added.
705 */
706 void
707 remap_variables(ir_instruction *inst, struct gl_shader *target,
708 hash_table *temps)
709 {
710 class remap_visitor : public ir_hierarchical_visitor {
711 public:
712 remap_visitor(struct gl_shader *target,
713 hash_table *temps)
714 {
715 this->target = target;
716 this->symbols = target->symbols;
717 this->instructions = target->ir;
718 this->temps = temps;
719 }
720
721 virtual ir_visitor_status visit(ir_dereference_variable *ir)
722 {
723 if (ir->var->mode == ir_var_temporary) {
724 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
725
726 assert(var != NULL);
727 ir->var = var;
728 return visit_continue;
729 }
730
731 ir_variable *const existing =
732 this->symbols->get_variable(ir->var->name);
733 if (existing != NULL)
734 ir->var = existing;
735 else {
736 ir_variable *copy = ir->var->clone(this->target, NULL);
737
738 this->symbols->add_variable(copy);
739 this->instructions->push_head(copy);
740 ir->var = copy;
741 }
742
743 return visit_continue;
744 }
745
746 private:
747 struct gl_shader *target;
748 glsl_symbol_table *symbols;
749 exec_list *instructions;
750 hash_table *temps;
751 };
752
753 remap_visitor v(target, temps);
754
755 inst->accept(&v);
756 }
757
758
759 /**
760 * Move non-declarations from one instruction stream to another
761 *
762 * The intended usage pattern of this function is to pass the pointer to the
763 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
764 * pointer) for \c last and \c false for \c make_copies on the first
765 * call. Successive calls pass the return value of the previous call for
766 * \c last and \c true for \c make_copies.
767 *
768 * \param instructions Source instruction stream
769 * \param last Instruction after which new instructions should be
770 * inserted in the target instruction stream
771 * \param make_copies Flag selecting whether instructions in \c instructions
772 * should be copied (via \c ir_instruction::clone) into the
773 * target list or moved.
774 *
775 * \return
776 * The new "last" instruction in the target instruction stream. This pointer
777 * is suitable for use as the \c last parameter of a later call to this
778 * function.
779 */
780 exec_node *
781 move_non_declarations(exec_list *instructions, exec_node *last,
782 bool make_copies, gl_shader *target)
783 {
784 hash_table *temps = NULL;
785
786 if (make_copies)
787 temps = hash_table_ctor(0, hash_table_pointer_hash,
788 hash_table_pointer_compare);
789
790 foreach_list_safe(node, instructions) {
791 ir_instruction *inst = (ir_instruction *) node;
792
793 if (inst->as_function())
794 continue;
795
796 ir_variable *var = inst->as_variable();
797 if ((var != NULL) && (var->mode != ir_var_temporary))
798 continue;
799
800 assert(inst->as_assignment()
801 || ((var != NULL) && (var->mode == ir_var_temporary)));
802
803 if (make_copies) {
804 inst = inst->clone(target, NULL);
805
806 if (var != NULL)
807 hash_table_insert(temps, inst, var);
808 else
809 remap_variables(inst, target, temps);
810 } else {
811 inst->remove();
812 }
813
814 last->insert_after(inst);
815 last = inst;
816 }
817
818 if (make_copies)
819 hash_table_dtor(temps);
820
821 return last;
822 }
823
824 /**
825 * Get the function signature for main from a shader
826 */
827 static ir_function_signature *
828 get_main_function_signature(gl_shader *sh)
829 {
830 ir_function *const f = sh->symbols->get_function("main");
831 if (f != NULL) {
832 exec_list void_parameters;
833
834 /* Look for the 'void main()' signature and ensure that it's defined.
835 * This keeps the linker from accidentally pick a shader that just
836 * contains a prototype for main.
837 *
838 * We don't have to check for multiple definitions of main (in multiple
839 * shaders) because that would have already been caught above.
840 */
841 ir_function_signature *sig = f->matching_signature(&void_parameters);
842 if ((sig != NULL) && sig->is_defined) {
843 return sig;
844 }
845 }
846
847 return NULL;
848 }
849
850
851 /**
852 * Combine a group of shaders for a single stage to generate a linked shader
853 *
854 * \note
855 * If this function is supplied a single shader, it is cloned, and the new
856 * shader is returned.
857 */
858 static struct gl_shader *
859 link_intrastage_shaders(void *mem_ctx,
860 struct gl_context *ctx,
861 struct gl_shader_program *prog,
862 struct gl_shader **shader_list,
863 unsigned num_shaders)
864 {
865 /* Check that global variables defined in multiple shaders are consistent.
866 */
867 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
868 return NULL;
869
870 /* Check that there is only a single definition of each function signature
871 * across all shaders.
872 */
873 for (unsigned i = 0; i < (num_shaders - 1); i++) {
874 foreach_list(node, shader_list[i]->ir) {
875 ir_function *const f = ((ir_instruction *) node)->as_function();
876
877 if (f == NULL)
878 continue;
879
880 for (unsigned j = i + 1; j < num_shaders; j++) {
881 ir_function *const other =
882 shader_list[j]->symbols->get_function(f->name);
883
884 /* If the other shader has no function (and therefore no function
885 * signatures) with the same name, skip to the next shader.
886 */
887 if (other == NULL)
888 continue;
889
890 foreach_iter (exec_list_iterator, iter, *f) {
891 ir_function_signature *sig =
892 (ir_function_signature *) iter.get();
893
894 if (!sig->is_defined || sig->is_builtin)
895 continue;
896
897 ir_function_signature *other_sig =
898 other->exact_matching_signature(& sig->parameters);
899
900 if ((other_sig != NULL) && other_sig->is_defined
901 && !other_sig->is_builtin) {
902 linker_error(prog, "function `%s' is multiply defined",
903 f->name);
904 return NULL;
905 }
906 }
907 }
908 }
909 }
910
911 /* Find the shader that defines main, and make a clone of it.
912 *
913 * Starting with the clone, search for undefined references. If one is
914 * found, find the shader that defines it. Clone the reference and add
915 * it to the shader. Repeat until there are no undefined references or
916 * until a reference cannot be resolved.
917 */
918 gl_shader *main = NULL;
919 for (unsigned i = 0; i < num_shaders; i++) {
920 if (get_main_function_signature(shader_list[i]) != NULL) {
921 main = shader_list[i];
922 break;
923 }
924 }
925
926 if (main == NULL) {
927 linker_error(prog, "%s shader lacks `main'\n",
928 (shader_list[0]->Type == GL_VERTEX_SHADER)
929 ? "vertex" : "fragment");
930 return NULL;
931 }
932
933 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
934 linked->ir = new(linked) exec_list;
935 clone_ir_list(mem_ctx, linked->ir, main->ir);
936
937 populate_symbol_table(linked);
938
939 /* The a pointer to the main function in the final linked shader (i.e., the
940 * copy of the original shader that contained the main function).
941 */
942 ir_function_signature *const main_sig = get_main_function_signature(linked);
943
944 /* Move any instructions other than variable declarations or function
945 * declarations into main.
946 */
947 exec_node *insertion_point =
948 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
949 linked);
950
951 for (unsigned i = 0; i < num_shaders; i++) {
952 if (shader_list[i] == main)
953 continue;
954
955 insertion_point = move_non_declarations(shader_list[i]->ir,
956 insertion_point, true, linked);
957 }
958
959 /* Resolve initializers for global variables in the linked shader.
960 */
961 unsigned num_linking_shaders = num_shaders;
962 for (unsigned i = 0; i < num_shaders; i++)
963 num_linking_shaders += shader_list[i]->num_builtins_to_link;
964
965 gl_shader **linking_shaders =
966 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
967
968 memcpy(linking_shaders, shader_list,
969 sizeof(linking_shaders[0]) * num_shaders);
970
971 unsigned idx = num_shaders;
972 for (unsigned i = 0; i < num_shaders; i++) {
973 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
974 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
975 idx += shader_list[i]->num_builtins_to_link;
976 }
977
978 assert(idx == num_linking_shaders);
979
980 if (!link_function_calls(prog, linked, linking_shaders,
981 num_linking_shaders)) {
982 ctx->Driver.DeleteShader(ctx, linked);
983 linked = NULL;
984 }
985
986 free(linking_shaders);
987
988 #ifdef DEBUG
989 /* At this point linked should contain all of the linked IR, so
990 * validate it to make sure nothing went wrong.
991 */
992 if (linked)
993 validate_ir_tree(linked->ir);
994 #endif
995
996 /* Make a pass over all variable declarations to ensure that arrays with
997 * unspecified sizes have a size specified. The size is inferred from the
998 * max_array_access field.
999 */
1000 if (linked != NULL) {
1001 class array_sizing_visitor : public ir_hierarchical_visitor {
1002 public:
1003 virtual ir_visitor_status visit(ir_variable *var)
1004 {
1005 if (var->type->is_array() && (var->type->length == 0)) {
1006 const glsl_type *type =
1007 glsl_type::get_array_instance(var->type->fields.array,
1008 var->max_array_access + 1);
1009
1010 assert(type != NULL);
1011 var->type = type;
1012 }
1013
1014 return visit_continue;
1015 }
1016 } v;
1017
1018 v.run(linked->ir);
1019 }
1020
1021 return linked;
1022 }
1023
1024 /**
1025 * Update the sizes of linked shader uniform arrays to the maximum
1026 * array index used.
1027 *
1028 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1029 *
1030 * If one or more elements of an array are active,
1031 * GetActiveUniform will return the name of the array in name,
1032 * subject to the restrictions listed above. The type of the array
1033 * is returned in type. The size parameter contains the highest
1034 * array element index used, plus one. The compiler or linker
1035 * determines the highest index used. There will be only one
1036 * active uniform reported by the GL per uniform array.
1037
1038 */
1039 static void
1040 update_array_sizes(struct gl_shader_program *prog)
1041 {
1042 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1043 if (prog->_LinkedShaders[i] == NULL)
1044 continue;
1045
1046 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1047 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1048
1049 if ((var == NULL) || (var->mode != ir_var_uniform &&
1050 var->mode != ir_var_in &&
1051 var->mode != ir_var_out) ||
1052 !var->type->is_array())
1053 continue;
1054
1055 unsigned int size = var->max_array_access;
1056 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1057 if (prog->_LinkedShaders[j] == NULL)
1058 continue;
1059
1060 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1061 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1062 if (!other_var)
1063 continue;
1064
1065 if (strcmp(var->name, other_var->name) == 0 &&
1066 other_var->max_array_access > size) {
1067 size = other_var->max_array_access;
1068 }
1069 }
1070 }
1071
1072 if (size + 1 != var->type->fields.array->length) {
1073 /* If this is a built-in uniform (i.e., it's backed by some
1074 * fixed-function state), adjust the number of state slots to
1075 * match the new array size. The number of slots per array entry
1076 * is not known. It seems safe to assume that the total number of
1077 * slots is an integer multiple of the number of array elements.
1078 * Determine the number of slots per array element by dividing by
1079 * the old (total) size.
1080 */
1081 if (var->num_state_slots > 0) {
1082 var->num_state_slots = (size + 1)
1083 * (var->num_state_slots / var->type->length);
1084 }
1085
1086 var->type = glsl_type::get_array_instance(var->type->fields.array,
1087 size + 1);
1088 /* FINISHME: We should update the types of array
1089 * dereferences of this variable now.
1090 */
1091 }
1092 }
1093 }
1094 }
1095
1096 /**
1097 * Find a contiguous set of available bits in a bitmask.
1098 *
1099 * \param used_mask Bits representing used (1) and unused (0) locations
1100 * \param needed_count Number of contiguous bits needed.
1101 *
1102 * \return
1103 * Base location of the available bits on success or -1 on failure.
1104 */
1105 int
1106 find_available_slots(unsigned used_mask, unsigned needed_count)
1107 {
1108 unsigned needed_mask = (1 << needed_count) - 1;
1109 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1110
1111 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1112 * cannot optimize possibly infinite loops" for the loop below.
1113 */
1114 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1115 return -1;
1116
1117 for (int i = 0; i <= max_bit_to_test; i++) {
1118 if ((needed_mask & ~used_mask) == needed_mask)
1119 return i;
1120
1121 needed_mask <<= 1;
1122 }
1123
1124 return -1;
1125 }
1126
1127
1128 /**
1129 * Assign locations for either VS inputs for FS outputs
1130 *
1131 * \param prog Shader program whose variables need locations assigned
1132 * \param target_index Selector for the program target to receive location
1133 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1134 * \c MESA_SHADER_FRAGMENT.
1135 * \param max_index Maximum number of generic locations. This corresponds
1136 * to either the maximum number of draw buffers or the
1137 * maximum number of generic attributes.
1138 *
1139 * \return
1140 * If locations are successfully assigned, true is returned. Otherwise an
1141 * error is emitted to the shader link log and false is returned.
1142 */
1143 bool
1144 assign_attribute_or_color_locations(gl_shader_program *prog,
1145 unsigned target_index,
1146 unsigned max_index)
1147 {
1148 /* Mark invalid locations as being used.
1149 */
1150 unsigned used_locations = (max_index >= 32)
1151 ? ~0 : ~((1 << max_index) - 1);
1152
1153 assert((target_index == MESA_SHADER_VERTEX)
1154 || (target_index == MESA_SHADER_FRAGMENT));
1155
1156 gl_shader *const sh = prog->_LinkedShaders[target_index];
1157 if (sh == NULL)
1158 return true;
1159
1160 /* Operate in a total of four passes.
1161 *
1162 * 1. Invalidate the location assignments for all vertex shader inputs.
1163 *
1164 * 2. Assign locations for inputs that have user-defined (via
1165 * glBindVertexAttribLocation) locations and outputs that have
1166 * user-defined locations (via glBindFragDataLocation).
1167 *
1168 * 3. Sort the attributes without assigned locations by number of slots
1169 * required in decreasing order. Fragmentation caused by attribute
1170 * locations assigned by the application may prevent large attributes
1171 * from having enough contiguous space.
1172 *
1173 * 4. Assign locations to any inputs without assigned locations.
1174 */
1175
1176 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1177 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1178
1179 const enum ir_variable_mode direction =
1180 (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1181
1182
1183 link_invalidate_variable_locations(sh, direction, generic_base);
1184
1185 /* Temporary storage for the set of attributes that need locations assigned.
1186 */
1187 struct temp_attr {
1188 unsigned slots;
1189 ir_variable *var;
1190
1191 /* Used below in the call to qsort. */
1192 static int compare(const void *a, const void *b)
1193 {
1194 const temp_attr *const l = (const temp_attr *) a;
1195 const temp_attr *const r = (const temp_attr *) b;
1196
1197 /* Reversed because we want a descending order sort below. */
1198 return r->slots - l->slots;
1199 }
1200 } to_assign[16];
1201
1202 unsigned num_attr = 0;
1203
1204 foreach_list(node, sh->ir) {
1205 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1206
1207 if ((var == NULL) || (var->mode != (unsigned) direction))
1208 continue;
1209
1210 if (var->explicit_location) {
1211 if ((var->location >= (int)(max_index + generic_base))
1212 || (var->location < 0)) {
1213 linker_error(prog,
1214 "invalid explicit location %d specified for `%s'\n",
1215 (var->location < 0)
1216 ? var->location : var->location - generic_base,
1217 var->name);
1218 return false;
1219 }
1220 } else if (target_index == MESA_SHADER_VERTEX) {
1221 unsigned binding;
1222
1223 if (prog->AttributeBindings->get(binding, var->name)) {
1224 assert(binding >= VERT_ATTRIB_GENERIC0);
1225 var->location = binding;
1226 }
1227 } else if (target_index == MESA_SHADER_FRAGMENT) {
1228 unsigned binding;
1229
1230 if (prog->FragDataBindings->get(binding, var->name)) {
1231 assert(binding >= FRAG_RESULT_DATA0);
1232 var->location = binding;
1233 }
1234 }
1235
1236 /* If the variable is not a built-in and has a location statically
1237 * assigned in the shader (presumably via a layout qualifier), make sure
1238 * that it doesn't collide with other assigned locations. Otherwise,
1239 * add it to the list of variables that need linker-assigned locations.
1240 */
1241 const unsigned slots = count_attribute_slots(var->type);
1242 if (var->location != -1) {
1243 if (var->location >= generic_base) {
1244 /* From page 61 of the OpenGL 4.0 spec:
1245 *
1246 * "LinkProgram will fail if the attribute bindings assigned
1247 * by BindAttribLocation do not leave not enough space to
1248 * assign a location for an active matrix attribute or an
1249 * active attribute array, both of which require multiple
1250 * contiguous generic attributes."
1251 *
1252 * Previous versions of the spec contain similar language but omit
1253 * the bit about attribute arrays.
1254 *
1255 * Page 61 of the OpenGL 4.0 spec also says:
1256 *
1257 * "It is possible for an application to bind more than one
1258 * attribute name to the same location. This is referred to as
1259 * aliasing. This will only work if only one of the aliased
1260 * attributes is active in the executable program, or if no
1261 * path through the shader consumes more than one attribute of
1262 * a set of attributes aliased to the same location. A link
1263 * error can occur if the linker determines that every path
1264 * through the shader consumes multiple aliased attributes,
1265 * but implementations are not required to generate an error
1266 * in this case."
1267 *
1268 * These two paragraphs are either somewhat contradictory, or I
1269 * don't fully understand one or both of them.
1270 */
1271 /* FINISHME: The code as currently written does not support
1272 * FINISHME: attribute location aliasing (see comment above).
1273 */
1274 /* Mask representing the contiguous slots that will be used by
1275 * this attribute.
1276 */
1277 const unsigned attr = var->location - generic_base;
1278 const unsigned use_mask = (1 << slots) - 1;
1279
1280 /* Generate a link error if the set of bits requested for this
1281 * attribute overlaps any previously allocated bits.
1282 */
1283 if ((~(use_mask << attr) & used_locations) != used_locations) {
1284 linker_error(prog,
1285 "insufficient contiguous attribute locations "
1286 "available for vertex shader input `%s'",
1287 var->name);
1288 return false;
1289 }
1290
1291 used_locations |= (use_mask << attr);
1292 }
1293
1294 continue;
1295 }
1296
1297 to_assign[num_attr].slots = slots;
1298 to_assign[num_attr].var = var;
1299 num_attr++;
1300 }
1301
1302 /* If all of the attributes were assigned locations by the application (or
1303 * are built-in attributes with fixed locations), return early. This should
1304 * be the common case.
1305 */
1306 if (num_attr == 0)
1307 return true;
1308
1309 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1310
1311 if (target_index == MESA_SHADER_VERTEX) {
1312 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1313 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1314 * reserved to prevent it from being automatically allocated below.
1315 */
1316 find_deref_visitor find("gl_Vertex");
1317 find.run(sh->ir);
1318 if (find.variable_found())
1319 used_locations |= (1 << 0);
1320 }
1321
1322 for (unsigned i = 0; i < num_attr; i++) {
1323 /* Mask representing the contiguous slots that will be used by this
1324 * attribute.
1325 */
1326 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1327
1328 int location = find_available_slots(used_locations, to_assign[i].slots);
1329
1330 if (location < 0) {
1331 const char *const string = (target_index == MESA_SHADER_VERTEX)
1332 ? "vertex shader input" : "fragment shader output";
1333
1334 linker_error(prog,
1335 "insufficient contiguous attribute locations "
1336 "available for %s `%s'",
1337 string, to_assign[i].var->name);
1338 return false;
1339 }
1340
1341 to_assign[i].var->location = generic_base + location;
1342 used_locations |= (use_mask << location);
1343 }
1344
1345 return true;
1346 }
1347
1348
1349 /**
1350 * Demote shader inputs and outputs that are not used in other stages
1351 */
1352 void
1353 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1354 {
1355 foreach_list(node, sh->ir) {
1356 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1357
1358 if ((var == NULL) || (var->mode != int(mode)))
1359 continue;
1360
1361 /* A shader 'in' or 'out' variable is only really an input or output if
1362 * its value is used by other shader stages. This will cause the variable
1363 * to have a location assigned.
1364 */
1365 if (var->location == -1) {
1366 var->mode = ir_var_auto;
1367 }
1368 }
1369 }
1370
1371
1372 /**
1373 * Data structure tracking information about a transform feedback declaration
1374 * during linking.
1375 */
1376 class tfeedback_decl
1377 {
1378 public:
1379 bool init(struct gl_shader_program *prog, const void *mem_ctx,
1380 const char *input);
1381 static bool is_same(const tfeedback_decl &x, const tfeedback_decl &y);
1382 bool assign_location(struct gl_context *ctx, struct gl_shader_program *prog,
1383 ir_variable *output_var);
1384 bool store(struct gl_shader_program *prog,
1385 struct gl_transform_feedback_info *info, unsigned buffer) const;
1386
1387
1388 /**
1389 * True if assign_location() has been called for this object.
1390 */
1391 bool is_assigned() const
1392 {
1393 return this->location != -1;
1394 }
1395
1396 /**
1397 * Determine whether this object refers to the variable var.
1398 */
1399 bool matches_var(ir_variable *var) const
1400 {
1401 return strcmp(var->name, this->var_name) == 0;
1402 }
1403
1404 /**
1405 * The total number of varying components taken up by this variable. Only
1406 * valid if is_assigned() is true.
1407 */
1408 unsigned num_components() const
1409 {
1410 return this->vector_elements * this->matrix_columns;
1411 }
1412
1413 private:
1414 /**
1415 * The name that was supplied to glTransformFeedbackVaryings. Used for
1416 * error reporting.
1417 */
1418 const char *orig_name;
1419
1420 /**
1421 * The name of the variable, parsed from orig_name.
1422 */
1423 char *var_name;
1424
1425 /**
1426 * True if the declaration in orig_name represents an array.
1427 */
1428 bool is_array;
1429
1430 /**
1431 * If is_array is true, the array index that was specified in orig_name.
1432 */
1433 unsigned array_index;
1434
1435 /**
1436 * The vertex shader output location that the linker assigned for this
1437 * variable. -1 if a location hasn't been assigned yet.
1438 */
1439 int location;
1440
1441 /**
1442 * If location != -1, the number of vector elements in this variable, or 1
1443 * if this variable is a scalar.
1444 */
1445 unsigned vector_elements;
1446
1447 /**
1448 * If location != -1, the number of matrix columns in this variable, or 1
1449 * if this variable is not a matrix.
1450 */
1451 unsigned matrix_columns;
1452 };
1453
1454
1455 /**
1456 * Initialize this object based on a string that was passed to
1457 * glTransformFeedbackVaryings. If there is a parse error, the error is
1458 * reported using linker_error(), and false is returned.
1459 */
1460 bool
1461 tfeedback_decl::init(struct gl_shader_program *prog, const void *mem_ctx,
1462 const char *input)
1463 {
1464 /* We don't have to be pedantic about what is a valid GLSL variable name,
1465 * because any variable with an invalid name can't exist in the IR anyway.
1466 */
1467
1468 this->location = -1;
1469 this->orig_name = input;
1470
1471 const char *bracket = strrchr(input, '[');
1472
1473 if (bracket) {
1474 this->var_name = ralloc_strndup(mem_ctx, input, bracket - input);
1475 if (sscanf(bracket, "[%u]", &this->array_index) == 1) {
1476 this->is_array = true;
1477 return true;
1478 }
1479 } else {
1480 this->var_name = ralloc_strdup(mem_ctx, input);
1481 this->is_array = false;
1482 return true;
1483 }
1484
1485 linker_error(prog, "Cannot parse transform feedback varying %s", input);
1486 return false;
1487 }
1488
1489
1490 /**
1491 * Determine whether two tfeedback_decl objects refer to the same variable and
1492 * array index (if applicable).
1493 */
1494 bool
1495 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
1496 {
1497 if (strcmp(x.var_name, y.var_name) != 0)
1498 return false;
1499 if (x.is_array != y.is_array)
1500 return false;
1501 if (x.is_array && x.array_index != y.array_index)
1502 return false;
1503 return true;
1504 }
1505
1506
1507 /**
1508 * Assign a location for this tfeedback_decl object based on the location
1509 * assignment in output_var.
1510 *
1511 * If an error occurs, the error is reported through linker_error() and false
1512 * is returned.
1513 */
1514 bool
1515 tfeedback_decl::assign_location(struct gl_context *ctx,
1516 struct gl_shader_program *prog,
1517 ir_variable *output_var)
1518 {
1519 if (output_var->type->is_array()) {
1520 /* Array variable */
1521 if (!this->is_array) {
1522 linker_error(prog, "Transform feedback varying %s found, "
1523 "but it's not an array ([] not expected).",
1524 this->orig_name);
1525 return false;
1526 }
1527 /* Check array bounds. */
1528 if (this->array_index >=
1529 (unsigned) output_var->type->array_size()) {
1530 linker_error(prog, "Transform feedback varying %s has index "
1531 "%i, but the array size is %i.",
1532 this->orig_name, this->array_index,
1533 output_var->type->array_size());
1534 return false;
1535 }
1536 const unsigned matrix_cols =
1537 output_var->type->fields.array->matrix_columns;
1538 this->location = output_var->location + this->array_index * matrix_cols;
1539 this->vector_elements = output_var->type->fields.array->vector_elements;
1540 this->matrix_columns = matrix_cols;
1541 } else {
1542 /* Regular variable (scalar, vector, or matrix) */
1543 if (this->is_array) {
1544 linker_error(prog, "Transform feedback varying %s found, "
1545 "but it's an array ([] expected).",
1546 this->orig_name);
1547 return false;
1548 }
1549 this->location = output_var->location;
1550 this->vector_elements = output_var->type->vector_elements;
1551 this->matrix_columns = output_var->type->matrix_columns;
1552 }
1553 /* From GL_EXT_transform_feedback:
1554 * A program will fail to link if:
1555 *
1556 * * the total number of components to capture in any varying
1557 * variable in <varyings> is greater than the constant
1558 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
1559 * buffer mode is SEPARATE_ATTRIBS_EXT;
1560 */
1561 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1562 this->num_components() >
1563 ctx->Const.MaxTransformFeedbackSeparateComponents) {
1564 linker_error(prog, "Transform feedback varying %s exceeds "
1565 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
1566 this->orig_name);
1567 return false;
1568 }
1569
1570 return true;
1571 }
1572
1573
1574 /**
1575 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1576 *
1577 * If an error occurs, the error is reported through linker_error() and false
1578 * is returned.
1579 */
1580 bool
1581 tfeedback_decl::store(struct gl_shader_program *prog,
1582 struct gl_transform_feedback_info *info,
1583 unsigned buffer) const
1584 {
1585 if (!this->is_assigned()) {
1586 /* From GL_EXT_transform_feedback:
1587 * A program will fail to link if:
1588 *
1589 * * any variable name specified in the <varyings> array is not
1590 * declared as an output in the geometry shader (if present) or
1591 * the vertex shader (if no geometry shader is present);
1592 */
1593 linker_error(prog, "Transform feedback varying %s undeclared.",
1594 this->orig_name);
1595 return false;
1596 }
1597 for (unsigned v = 0; v < this->matrix_columns; ++v) {
1598 info->Outputs[info->NumOutputs].OutputRegister = this->location + v;
1599 info->Outputs[info->NumOutputs].NumComponents = this->vector_elements;
1600 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1601 info->Outputs[info->NumOutputs].DstOffset = info->BufferStride[buffer];
1602 ++info->NumOutputs;
1603 info->BufferStride[buffer] += this->vector_elements;
1604 }
1605 return true;
1606 }
1607
1608
1609 /**
1610 * Parse all the transform feedback declarations that were passed to
1611 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1612 *
1613 * If an error occurs, the error is reported through linker_error() and false
1614 * is returned.
1615 */
1616 static bool
1617 parse_tfeedback_decls(struct gl_shader_program *prog, const void *mem_ctx,
1618 unsigned num_names, char **varying_names,
1619 tfeedback_decl *decls)
1620 {
1621 for (unsigned i = 0; i < num_names; ++i) {
1622 if (!decls[i].init(prog, mem_ctx, varying_names[i]))
1623 return false;
1624 /* From GL_EXT_transform_feedback:
1625 * A program will fail to link if:
1626 *
1627 * * any two entries in the <varyings> array specify the same varying
1628 * variable;
1629 *
1630 * We interpret this to mean "any two entries in the <varyings> array
1631 * specify the same varying variable and array index", since transform
1632 * feedback of arrays would be useless otherwise.
1633 */
1634 for (unsigned j = 0; j < i; ++j) {
1635 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1636 linker_error(prog, "Transform feedback varying %s specified "
1637 "more than once.", varying_names[i]);
1638 return false;
1639 }
1640 }
1641 }
1642 return true;
1643 }
1644
1645
1646 /**
1647 * Assign a location for a variable that is produced in one pipeline stage
1648 * (the "producer") and consumed in the next stage (the "consumer").
1649 *
1650 * \param input_var is the input variable declaration in the consumer.
1651 *
1652 * \param output_var is the output variable declaration in the producer.
1653 *
1654 * \param input_index is the counter that keeps track of assigned input
1655 * locations in the consumer.
1656 *
1657 * \param output_index is the counter that keeps track of assigned output
1658 * locations in the producer.
1659 *
1660 * It is permissible for \c input_var to be NULL (this happens if a variable
1661 * is output by the producer and consumed by transform feedback, but not
1662 * consumed by the consumer).
1663 *
1664 * If the variable has already been assigned a location, this function has no
1665 * effect.
1666 */
1667 void
1668 assign_varying_location(ir_variable *input_var, ir_variable *output_var,
1669 unsigned *input_index, unsigned *output_index)
1670 {
1671 if (output_var->location != -1) {
1672 /* Location already assigned. */
1673 return;
1674 }
1675
1676 if (input_var) {
1677 assert(input_var->location == -1);
1678 input_var->location = *input_index;
1679 }
1680
1681 output_var->location = *output_index;
1682
1683 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1684 assert(!output_var->type->is_record());
1685
1686 if (output_var->type->is_array()) {
1687 const unsigned slots = output_var->type->length
1688 * output_var->type->fields.array->matrix_columns;
1689
1690 *output_index += slots;
1691 *input_index += slots;
1692 } else {
1693 const unsigned slots = output_var->type->matrix_columns;
1694
1695 *output_index += slots;
1696 *input_index += slots;
1697 }
1698 }
1699
1700
1701 /**
1702 * Assign locations for all variables that are produced in one pipeline stage
1703 * (the "producer") and consumed in the next stage (the "consumer").
1704 *
1705 * Variables produced by the producer may also be consumed by transform
1706 * feedback.
1707 *
1708 * \param num_tfeedback_decls is the number of declarations indicating
1709 * variables that may be consumed by transform feedback.
1710 *
1711 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
1712 * representing the result of parsing the strings passed to
1713 * glTransformFeedbackVaryings(). assign_location() will be called for
1714 * each of these objects that matches one of the outputs of the
1715 * producer.
1716 *
1717 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
1718 * be NULL. In this case, varying locations are assigned solely based on the
1719 * requirements of transform feedback.
1720 */
1721 bool
1722 assign_varying_locations(struct gl_context *ctx,
1723 struct gl_shader_program *prog,
1724 gl_shader *producer, gl_shader *consumer,
1725 unsigned num_tfeedback_decls,
1726 tfeedback_decl *tfeedback_decls)
1727 {
1728 /* FINISHME: Set dynamically when geometry shader support is added. */
1729 unsigned output_index = VERT_RESULT_VAR0;
1730 unsigned input_index = FRAG_ATTRIB_VAR0;
1731
1732 /* Operate in a total of three passes.
1733 *
1734 * 1. Assign locations for any matching inputs and outputs.
1735 *
1736 * 2. Mark output variables in the producer that do not have locations as
1737 * not being outputs. This lets the optimizer eliminate them.
1738 *
1739 * 3. Mark input variables in the consumer that do not have locations as
1740 * not being inputs. This lets the optimizer eliminate them.
1741 */
1742
1743 link_invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1744 if (consumer)
1745 link_invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1746
1747 foreach_list(node, producer->ir) {
1748 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1749
1750 if ((output_var == NULL) || (output_var->mode != ir_var_out))
1751 continue;
1752
1753 ir_variable *input_var =
1754 consumer ? consumer->symbols->get_variable(output_var->name) : NULL;
1755
1756 if (input_var && input_var->mode != ir_var_in)
1757 input_var = NULL;
1758
1759 if (input_var) {
1760 assign_varying_location(input_var, output_var, &input_index,
1761 &output_index);
1762 }
1763
1764 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1765 if (!tfeedback_decls[i].is_assigned() &&
1766 tfeedback_decls[i].matches_var(output_var)) {
1767 if (output_var->location == -1) {
1768 assign_varying_location(input_var, output_var, &input_index,
1769 &output_index);
1770 }
1771 if (!tfeedback_decls[i].assign_location(ctx, prog, output_var))
1772 return false;
1773 }
1774 }
1775 }
1776
1777 unsigned varying_vectors = 0;
1778
1779 if (consumer) {
1780 foreach_list(node, consumer->ir) {
1781 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1782
1783 if ((var == NULL) || (var->mode != ir_var_in))
1784 continue;
1785
1786 if (var->location == -1) {
1787 if (prog->Version <= 120) {
1788 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1789 *
1790 * Only those varying variables used (i.e. read) in
1791 * the fragment shader executable must be written to
1792 * by the vertex shader executable; declaring
1793 * superfluous varying variables in a vertex shader is
1794 * permissible.
1795 *
1796 * We interpret this text as meaning that the VS must
1797 * write the variable for the FS to read it. See
1798 * "glsl1-varying read but not written" in piglit.
1799 */
1800
1801 linker_error(prog, "fragment shader varying %s not written "
1802 "by vertex shader\n.", var->name);
1803 }
1804
1805 /* An 'in' variable is only really a shader input if its
1806 * value is written by the previous stage.
1807 */
1808 var->mode = ir_var_auto;
1809 } else {
1810 /* The packing rules are used for vertex shader inputs are also
1811 * used for fragment shader inputs.
1812 */
1813 varying_vectors += count_attribute_slots(var->type);
1814 }
1815 }
1816 }
1817
1818 if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
1819 if (varying_vectors > ctx->Const.MaxVarying) {
1820 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
1821 linker_warning(prog, "shader uses too many varying vectors "
1822 "(%u > %u), but the driver will try to optimize "
1823 "them out; this is non-portable out-of-spec "
1824 "behavior\n",
1825 varying_vectors, ctx->Const.MaxVarying);
1826 } else {
1827 linker_error(prog, "shader uses too many varying vectors "
1828 "(%u > %u)\n",
1829 varying_vectors, ctx->Const.MaxVarying);
1830 return false;
1831 }
1832 }
1833 } else {
1834 const unsigned float_components = varying_vectors * 4;
1835 if (float_components > ctx->Const.MaxVarying * 4) {
1836 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
1837 linker_warning(prog, "shader uses too many varying components "
1838 "(%u > %u), but the driver will try to optimize "
1839 "them out; this is non-portable out-of-spec "
1840 "behavior\n",
1841 float_components, ctx->Const.MaxVarying * 4);
1842 } else {
1843 linker_error(prog, "shader uses too many varying components "
1844 "(%u > %u)\n",
1845 float_components, ctx->Const.MaxVarying * 4);
1846 return false;
1847 }
1848 }
1849 }
1850
1851 return true;
1852 }
1853
1854
1855 /**
1856 * Store transform feedback location assignments into
1857 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
1858 *
1859 * If an error occurs, the error is reported through linker_error() and false
1860 * is returned.
1861 */
1862 static bool
1863 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
1864 unsigned num_tfeedback_decls,
1865 tfeedback_decl *tfeedback_decls)
1866 {
1867 unsigned total_tfeedback_components = 0;
1868 memset(&prog->LinkedTransformFeedback, 0,
1869 sizeof(prog->LinkedTransformFeedback));
1870 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
1871 unsigned buffer =
1872 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS ? i : 0;
1873 if (!tfeedback_decls[i].store(prog, &prog->LinkedTransformFeedback,
1874 buffer))
1875 return false;
1876 total_tfeedback_components += tfeedback_decls[i].num_components();
1877 }
1878
1879 /* From GL_EXT_transform_feedback:
1880 * A program will fail to link if:
1881 *
1882 * * the total number of components to capture is greater than
1883 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1884 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
1885 */
1886 if (prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS &&
1887 total_tfeedback_components >
1888 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1889 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1890 "limit has been exceeded.");
1891 return false;
1892 }
1893
1894 return true;
1895 }
1896
1897 /**
1898 * Store the gl_FragDepth layout in the gl_shader_program struct.
1899 */
1900 static void
1901 store_fragdepth_layout(struct gl_shader_program *prog)
1902 {
1903 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1904 return;
1905 }
1906
1907 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1908
1909 /* We don't look up the gl_FragDepth symbol directly because if
1910 * gl_FragDepth is not used in the shader, it's removed from the IR.
1911 * However, the symbol won't be removed from the symbol table.
1912 *
1913 * We're only interested in the cases where the variable is NOT removed
1914 * from the IR.
1915 */
1916 foreach_list(node, ir) {
1917 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1918
1919 if (var == NULL || var->mode != ir_var_out) {
1920 continue;
1921 }
1922
1923 if (strcmp(var->name, "gl_FragDepth") == 0) {
1924 switch (var->depth_layout) {
1925 case ir_depth_layout_none:
1926 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1927 return;
1928 case ir_depth_layout_any:
1929 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1930 return;
1931 case ir_depth_layout_greater:
1932 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1933 return;
1934 case ir_depth_layout_less:
1935 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1936 return;
1937 case ir_depth_layout_unchanged:
1938 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1939 return;
1940 default:
1941 assert(0);
1942 return;
1943 }
1944 }
1945 }
1946 }
1947
1948 /**
1949 * Validate the resources used by a program versus the implementation limits
1950 */
1951 static bool
1952 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1953 {
1954 static const char *const shader_names[MESA_SHADER_TYPES] = {
1955 "vertex", "fragment", "geometry"
1956 };
1957
1958 const unsigned max_samplers[MESA_SHADER_TYPES] = {
1959 ctx->Const.MaxVertexTextureImageUnits,
1960 ctx->Const.MaxTextureImageUnits,
1961 ctx->Const.MaxGeometryTextureImageUnits
1962 };
1963
1964 const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
1965 ctx->Const.VertexProgram.MaxUniformComponents,
1966 ctx->Const.FragmentProgram.MaxUniformComponents,
1967 0 /* FINISHME: Geometry shaders. */
1968 };
1969
1970 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1971 struct gl_shader *sh = prog->_LinkedShaders[i];
1972
1973 if (sh == NULL)
1974 continue;
1975
1976 if (sh->num_samplers > max_samplers[i]) {
1977 linker_error(prog, "Too many %s shader texture samplers",
1978 shader_names[i]);
1979 }
1980
1981 if (sh->num_uniform_components > max_uniform_components[i]) {
1982 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1983 linker_warning(prog, "Too many %s shader uniform components, "
1984 "but the driver will try to optimize them out; "
1985 "this is non-portable out-of-spec behavior\n",
1986 shader_names[i]);
1987 } else {
1988 linker_error(prog, "Too many %s shader uniform components",
1989 shader_names[i]);
1990 }
1991 }
1992 }
1993
1994 return prog->LinkStatus;
1995 }
1996
1997 void
1998 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1999 {
2000 tfeedback_decl *tfeedback_decls = NULL;
2001 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2002
2003 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2004
2005 prog->LinkStatus = false;
2006 prog->Validated = false;
2007 prog->_Used = false;
2008
2009 if (prog->InfoLog != NULL)
2010 ralloc_free(prog->InfoLog);
2011
2012 prog->InfoLog = ralloc_strdup(NULL, "");
2013
2014 /* Separate the shaders into groups based on their type.
2015 */
2016 struct gl_shader **vert_shader_list;
2017 unsigned num_vert_shaders = 0;
2018 struct gl_shader **frag_shader_list;
2019 unsigned num_frag_shaders = 0;
2020
2021 vert_shader_list = (struct gl_shader **)
2022 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
2023 frag_shader_list = &vert_shader_list[prog->NumShaders];
2024
2025 unsigned min_version = UINT_MAX;
2026 unsigned max_version = 0;
2027 for (unsigned i = 0; i < prog->NumShaders; i++) {
2028 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2029 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2030
2031 switch (prog->Shaders[i]->Type) {
2032 case GL_VERTEX_SHADER:
2033 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
2034 num_vert_shaders++;
2035 break;
2036 case GL_FRAGMENT_SHADER:
2037 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
2038 num_frag_shaders++;
2039 break;
2040 case GL_GEOMETRY_SHADER:
2041 /* FINISHME: Support geometry shaders. */
2042 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
2043 break;
2044 }
2045 }
2046
2047 /* Previous to GLSL version 1.30, different compilation units could mix and
2048 * match shading language versions. With GLSL 1.30 and later, the versions
2049 * of all shaders must match.
2050 */
2051 assert(min_version >= 100);
2052 assert(max_version <= 130);
2053 if ((max_version >= 130 || min_version == 100)
2054 && min_version != max_version) {
2055 linker_error(prog, "all shaders must use same shading "
2056 "language version\n");
2057 goto done;
2058 }
2059
2060 prog->Version = max_version;
2061
2062 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2063 if (prog->_LinkedShaders[i] != NULL)
2064 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2065
2066 prog->_LinkedShaders[i] = NULL;
2067 }
2068
2069 /* Link all shaders for a particular stage and validate the result.
2070 */
2071 if (num_vert_shaders > 0) {
2072 gl_shader *const sh =
2073 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
2074 num_vert_shaders);
2075
2076 if (sh == NULL)
2077 goto done;
2078
2079 if (!validate_vertex_shader_executable(prog, sh))
2080 goto done;
2081
2082 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
2083 sh);
2084 }
2085
2086 if (num_frag_shaders > 0) {
2087 gl_shader *const sh =
2088 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
2089 num_frag_shaders);
2090
2091 if (sh == NULL)
2092 goto done;
2093
2094 if (!validate_fragment_shader_executable(prog, sh))
2095 goto done;
2096
2097 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
2098 sh);
2099 }
2100
2101 /* Here begins the inter-stage linking phase. Some initial validation is
2102 * performed, then locations are assigned for uniforms, attributes, and
2103 * varyings.
2104 */
2105 if (cross_validate_uniforms(prog)) {
2106 unsigned prev;
2107
2108 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2109 if (prog->_LinkedShaders[prev] != NULL)
2110 break;
2111 }
2112
2113 /* Validate the inputs of each stage with the output of the preceding
2114 * stage.
2115 */
2116 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2117 if (prog->_LinkedShaders[i] == NULL)
2118 continue;
2119
2120 if (!cross_validate_outputs_to_inputs(prog,
2121 prog->_LinkedShaders[prev],
2122 prog->_LinkedShaders[i]))
2123 goto done;
2124
2125 prev = i;
2126 }
2127
2128 prog->LinkStatus = true;
2129 }
2130
2131 /* Do common optimization before assigning storage for attributes,
2132 * uniforms, and varyings. Later optimization could possibly make
2133 * some of that unused.
2134 */
2135 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2136 if (prog->_LinkedShaders[i] == NULL)
2137 continue;
2138
2139 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2140 if (!prog->LinkStatus)
2141 goto done;
2142
2143 if (ctx->ShaderCompilerOptions[i].LowerClipDistance)
2144 lower_clip_distance(prog->_LinkedShaders[i]->ir);
2145
2146 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, 32))
2147 ;
2148 }
2149
2150 /* FINISHME: The value of the max_attribute_index parameter is
2151 * FINISHME: implementation dependent based on the value of
2152 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2153 * FINISHME: at least 16, so hardcode 16 for now.
2154 */
2155 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2156 goto done;
2157 }
2158
2159 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, ctx->Const.MaxDrawBuffers)) {
2160 goto done;
2161 }
2162
2163 unsigned prev;
2164 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2165 if (prog->_LinkedShaders[prev] != NULL)
2166 break;
2167 }
2168
2169 if (num_tfeedback_decls != 0) {
2170 /* From GL_EXT_transform_feedback:
2171 * A program will fail to link if:
2172 *
2173 * * the <count> specified by TransformFeedbackVaryingsEXT is
2174 * non-zero, but the program object has no vertex or geometry
2175 * shader;
2176 */
2177 if (prev >= MESA_SHADER_FRAGMENT) {
2178 linker_error(prog, "Transform feedback varyings specified, but "
2179 "no vertex or geometry shader is present.");
2180 goto done;
2181 }
2182
2183 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2184 prog->TransformFeedback.NumVarying);
2185 if (!parse_tfeedback_decls(prog, mem_ctx, num_tfeedback_decls,
2186 prog->TransformFeedback.VaryingNames,
2187 tfeedback_decls))
2188 goto done;
2189 }
2190
2191 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2192 if (prog->_LinkedShaders[i] == NULL)
2193 continue;
2194
2195 if (!assign_varying_locations(
2196 ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
2197 i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2198 tfeedback_decls))
2199 goto done;
2200
2201 prev = i;
2202 }
2203
2204 if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
2205 /* There was no fragment shader, but we still have to assign varying
2206 * locations for use by transform feedback.
2207 */
2208 if (!assign_varying_locations(
2209 ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
2210 tfeedback_decls))
2211 goto done;
2212 }
2213
2214 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2215 goto done;
2216
2217 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2218 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
2219 ir_var_out);
2220
2221 /* Eliminate code that is now dead due to unused vertex outputs being
2222 * demoted.
2223 */
2224 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
2225 ;
2226 }
2227
2228 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2229 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
2230
2231 demote_shader_inputs_and_outputs(sh, ir_var_in);
2232 demote_shader_inputs_and_outputs(sh, ir_var_inout);
2233 demote_shader_inputs_and_outputs(sh, ir_var_out);
2234
2235 /* Eliminate code that is now dead due to unused geometry outputs being
2236 * demoted.
2237 */
2238 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
2239 ;
2240 }
2241
2242 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2243 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2244
2245 demote_shader_inputs_and_outputs(sh, ir_var_in);
2246
2247 /* Eliminate code that is now dead due to unused fragment inputs being
2248 * demoted. This shouldn't actually do anything other than remove
2249 * declarations of the (now unused) global variables.
2250 */
2251 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
2252 ;
2253 }
2254
2255 update_array_sizes(prog);
2256 link_assign_uniform_locations(prog);
2257 store_fragdepth_layout(prog);
2258
2259 if (!check_resources(ctx, prog))
2260 goto done;
2261
2262 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2263 * present in a linked program. By checking for use of shading language
2264 * version 1.00, we also catch the GL_ARB_ES2_compatibility case.
2265 */
2266 if (!prog->InternalSeparateShader &&
2267 (ctx->API == API_OPENGLES2 || prog->Version == 100)) {
2268 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2269 linker_error(prog, "program lacks a vertex shader\n");
2270 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2271 linker_error(prog, "program lacks a fragment shader\n");
2272 }
2273 }
2274
2275 /* FINISHME: Assign fragment shader output locations. */
2276
2277 done:
2278 free(vert_shader_list);
2279
2280 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2281 if (prog->_LinkedShaders[i] == NULL)
2282 continue;
2283
2284 /* Retain any live IR, but trash the rest. */
2285 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2286
2287 /* The symbol table in the linked shaders may contain references to
2288 * variables that were removed (e.g., unused uniforms). Since it may
2289 * contain junk, there is no possible valid use. Delete it and set the
2290 * pointer to NULL.
2291 */
2292 delete prog->_LinkedShaders[i]->symbols;
2293 prog->_LinkedShaders[i]->symbols = NULL;
2294 }
2295
2296 ralloc_free(mem_ctx);
2297 }