glsl: Use UniformBooleanTrue value for uniform initializers.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77 #include "ir_uniform.h"
78
79 extern "C" {
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82 }
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->element_type(),
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->element_type();
249 return visit_continue;
250 }
251 };
252
253 /**
254 * Visitor that determines the highest stream id to which a (geometry) shader
255 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
256 */
257 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
258 public:
259 find_emit_vertex_visitor(int max_allowed)
260 : max_stream_allowed(max_allowed),
261 invalid_stream_id(0),
262 invalid_stream_id_from_emit_vertex(false),
263 end_primitive_found(false),
264 uses_non_zero_stream(false)
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
270 {
271 int stream_id = ir->stream_id();
272
273 if (stream_id < 0) {
274 invalid_stream_id = stream_id;
275 invalid_stream_id_from_emit_vertex = true;
276 return visit_stop;
277 }
278
279 if (stream_id > max_stream_allowed) {
280 invalid_stream_id = stream_id;
281 invalid_stream_id_from_emit_vertex = true;
282 return visit_stop;
283 }
284
285 if (stream_id != 0)
286 uses_non_zero_stream = true;
287
288 return visit_continue;
289 }
290
291 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
292 {
293 end_primitive_found = true;
294
295 int stream_id = ir->stream_id();
296
297 if (stream_id < 0) {
298 invalid_stream_id = stream_id;
299 invalid_stream_id_from_emit_vertex = false;
300 return visit_stop;
301 }
302
303 if (stream_id > max_stream_allowed) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = false;
306 return visit_stop;
307 }
308
309 if (stream_id != 0)
310 uses_non_zero_stream = true;
311
312 return visit_continue;
313 }
314
315 bool error()
316 {
317 return invalid_stream_id != 0;
318 }
319
320 const char *error_func()
321 {
322 return invalid_stream_id_from_emit_vertex ?
323 "EmitStreamVertex" : "EndStreamPrimitive";
324 }
325
326 int error_stream()
327 {
328 return invalid_stream_id;
329 }
330
331 bool uses_streams()
332 {
333 return uses_non_zero_stream;
334 }
335
336 bool uses_end_primitive()
337 {
338 return end_primitive_found;
339 }
340
341 private:
342 int max_stream_allowed;
343 int invalid_stream_id;
344 bool invalid_stream_id_from_emit_vertex;
345 bool end_primitive_found;
346 bool uses_non_zero_stream;
347 };
348
349 } /* anonymous namespace */
350
351 void
352 linker_error(gl_shader_program *prog, const char *fmt, ...)
353 {
354 va_list ap;
355
356 ralloc_strcat(&prog->InfoLog, "error: ");
357 va_start(ap, fmt);
358 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
359 va_end(ap);
360
361 prog->LinkStatus = false;
362 }
363
364
365 void
366 linker_warning(gl_shader_program *prog, const char *fmt, ...)
367 {
368 va_list ap;
369
370 ralloc_strcat(&prog->InfoLog, "warning: ");
371 va_start(ap, fmt);
372 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
373 va_end(ap);
374
375 }
376
377
378 /**
379 * Given a string identifying a program resource, break it into a base name
380 * and an optional array index in square brackets.
381 *
382 * If an array index is present, \c out_base_name_end is set to point to the
383 * "[" that precedes the array index, and the array index itself is returned
384 * as a long.
385 *
386 * If no array index is present (or if the array index is negative or
387 * mal-formed), \c out_base_name_end, is set to point to the null terminator
388 * at the end of the input string, and -1 is returned.
389 *
390 * Only the final array index is parsed; if the string contains other array
391 * indices (or structure field accesses), they are left in the base name.
392 *
393 * No attempt is made to check that the base name is properly formed;
394 * typically the caller will look up the base name in a hash table, so
395 * ill-formed base names simply turn into hash table lookup failures.
396 */
397 long
398 parse_program_resource_name(const GLchar *name,
399 const GLchar **out_base_name_end)
400 {
401 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
402 *
403 * "When an integer array element or block instance number is part of
404 * the name string, it will be specified in decimal form without a "+"
405 * or "-" sign or any extra leading zeroes. Additionally, the name
406 * string will not include white space anywhere in the string."
407 */
408
409 const size_t len = strlen(name);
410 *out_base_name_end = name + len;
411
412 if (len == 0 || name[len-1] != ']')
413 return -1;
414
415 /* Walk backwards over the string looking for a non-digit character. This
416 * had better be the opening bracket for an array index.
417 *
418 * Initially, i specifies the location of the ']'. Since the string may
419 * contain only the ']' charcater, walk backwards very carefully.
420 */
421 unsigned i;
422 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
423 /* empty */ ;
424
425 if ((i == 0) || name[i-1] != '[')
426 return -1;
427
428 long array_index = strtol(&name[i], NULL, 10);
429 if (array_index < 0)
430 return -1;
431
432 *out_base_name_end = name + (i - 1);
433 return array_index;
434 }
435
436
437 void
438 link_invalidate_variable_locations(exec_list *ir)
439 {
440 foreach_in_list(ir_instruction, node, ir) {
441 ir_variable *const var = node->as_variable();
442
443 if (var == NULL)
444 continue;
445
446 /* Only assign locations for variables that lack an explicit location.
447 * Explicit locations are set for all built-in variables, generic vertex
448 * shader inputs (via layout(location=...)), and generic fragment shader
449 * outputs (also via layout(location=...)).
450 */
451 if (!var->data.explicit_location) {
452 var->data.location = -1;
453 var->data.location_frac = 0;
454 }
455
456 /* ir_variable::is_unmatched_generic_inout is used by the linker while
457 * connecting outputs from one stage to inputs of the next stage.
458 *
459 * There are two implicit assumptions here. First, we assume that any
460 * built-in variable (i.e., non-generic in or out) will have
461 * explicit_location set. Second, we assume that any generic in or out
462 * will not have explicit_location set.
463 *
464 * This second assumption will only be valid until
465 * GL_ARB_separate_shader_objects is supported. When that extension is
466 * implemented, this function will need some modifications.
467 */
468 if (!var->data.explicit_location) {
469 var->data.is_unmatched_generic_inout = 1;
470 } else {
471 var->data.is_unmatched_generic_inout = 0;
472 }
473 }
474 }
475
476
477 /**
478 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
479 *
480 * Also check for errors based on incorrect usage of gl_ClipVertex and
481 * gl_ClipDistance.
482 *
483 * Return false if an error was reported.
484 */
485 static void
486 analyze_clip_usage(struct gl_shader_program *prog,
487 struct gl_shader *shader, GLboolean *UsesClipDistance,
488 GLuint *ClipDistanceArraySize)
489 {
490 *ClipDistanceArraySize = 0;
491
492 if (!prog->IsES && prog->Version >= 130) {
493 /* From section 7.1 (Vertex Shader Special Variables) of the
494 * GLSL 1.30 spec:
495 *
496 * "It is an error for a shader to statically write both
497 * gl_ClipVertex and gl_ClipDistance."
498 *
499 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
500 * gl_ClipVertex nor gl_ClipDistance.
501 */
502 find_assignment_visitor clip_vertex("gl_ClipVertex");
503 find_assignment_visitor clip_distance("gl_ClipDistance");
504
505 clip_vertex.run(shader->ir);
506 clip_distance.run(shader->ir);
507 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
508 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
509 "and `gl_ClipDistance'\n",
510 _mesa_shader_stage_to_string(shader->Stage));
511 return;
512 }
513 *UsesClipDistance = clip_distance.variable_found();
514 ir_variable *clip_distance_var =
515 shader->symbols->get_variable("gl_ClipDistance");
516 if (clip_distance_var)
517 *ClipDistanceArraySize = clip_distance_var->type->length;
518 } else {
519 *UsesClipDistance = false;
520 }
521 }
522
523
524 /**
525 * Verify that a vertex shader executable meets all semantic requirements.
526 *
527 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
528 * as a side effect.
529 *
530 * \param shader Vertex shader executable to be verified
531 */
532 void
533 validate_vertex_shader_executable(struct gl_shader_program *prog,
534 struct gl_shader *shader)
535 {
536 if (shader == NULL)
537 return;
538
539 /* From the GLSL 1.10 spec, page 48:
540 *
541 * "The variable gl_Position is available only in the vertex
542 * language and is intended for writing the homogeneous vertex
543 * position. All executions of a well-formed vertex shader
544 * executable must write a value into this variable. [...] The
545 * variable gl_Position is available only in the vertex
546 * language and is intended for writing the homogeneous vertex
547 * position. All executions of a well-formed vertex shader
548 * executable must write a value into this variable."
549 *
550 * while in GLSL 1.40 this text is changed to:
551 *
552 * "The variable gl_Position is available only in the vertex
553 * language and is intended for writing the homogeneous vertex
554 * position. It can be written at any time during shader
555 * execution. It may also be read back by a vertex shader
556 * after being written. This value will be used by primitive
557 * assembly, clipping, culling, and other fixed functionality
558 * operations, if present, that operate on primitives after
559 * vertex processing has occurred. Its value is undefined if
560 * the vertex shader executable does not write gl_Position."
561 *
562 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
563 * not an error.
564 */
565 if (prog->Version < (prog->IsES ? 300 : 140)) {
566 find_assignment_visitor find("gl_Position");
567 find.run(shader->ir);
568 if (!find.variable_found()) {
569 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
570 return;
571 }
572 }
573
574 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
575 &prog->Vert.ClipDistanceArraySize);
576 }
577
578
579 /**
580 * Verify that a fragment shader executable meets all semantic requirements
581 *
582 * \param shader Fragment shader executable to be verified
583 */
584 void
585 validate_fragment_shader_executable(struct gl_shader_program *prog,
586 struct gl_shader *shader)
587 {
588 if (shader == NULL)
589 return;
590
591 find_assignment_visitor frag_color("gl_FragColor");
592 find_assignment_visitor frag_data("gl_FragData");
593
594 frag_color.run(shader->ir);
595 frag_data.run(shader->ir);
596
597 if (frag_color.variable_found() && frag_data.variable_found()) {
598 linker_error(prog, "fragment shader writes to both "
599 "`gl_FragColor' and `gl_FragData'\n");
600 }
601 }
602
603 /**
604 * Verify that a geometry shader executable meets all semantic requirements
605 *
606 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
607 * prog->Geom.ClipDistanceArraySize as a side effect.
608 *
609 * \param shader Geometry shader executable to be verified
610 */
611 void
612 validate_geometry_shader_executable(struct gl_shader_program *prog,
613 struct gl_shader *shader)
614 {
615 if (shader == NULL)
616 return;
617
618 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
619 prog->Geom.VerticesIn = num_vertices;
620
621 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
622 &prog->Geom.ClipDistanceArraySize);
623 }
624
625 /**
626 * Check if geometry shaders emit to non-zero streams and do corresponding
627 * validations.
628 */
629 static void
630 validate_geometry_shader_emissions(struct gl_context *ctx,
631 struct gl_shader_program *prog)
632 {
633 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
634 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
635 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
636 if (emit_vertex.error()) {
637 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
638 "stream parameter are in the range [0, %d].",
639 emit_vertex.error_func(),
640 emit_vertex.error_stream(),
641 ctx->Const.MaxVertexStreams - 1);
642 }
643 prog->Geom.UsesStreams = emit_vertex.uses_streams();
644 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
645
646 /* From the ARB_gpu_shader5 spec:
647 *
648 * "Multiple vertex streams are supported only if the output primitive
649 * type is declared to be "points". A program will fail to link if it
650 * contains a geometry shader calling EmitStreamVertex() or
651 * EndStreamPrimitive() if its output primitive type is not "points".
652 *
653 * However, in the same spec:
654 *
655 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
656 * with <stream> set to zero."
657 *
658 * And:
659 *
660 * "The function EndPrimitive() is equivalent to calling
661 * EndStreamPrimitive() with <stream> set to zero."
662 *
663 * Since we can call EmitVertex() and EndPrimitive() when we output
664 * primitives other than points, calling EmitStreamVertex(0) or
665 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
666 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
667 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
668 * stream.
669 */
670 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
671 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
672 "with n>0 requires point output");
673 }
674 }
675 }
676
677
678 /**
679 * Perform validation of global variables used across multiple shaders
680 */
681 void
682 cross_validate_globals(struct gl_shader_program *prog,
683 struct gl_shader **shader_list,
684 unsigned num_shaders,
685 bool uniforms_only)
686 {
687 /* Examine all of the uniforms in all of the shaders and cross validate
688 * them.
689 */
690 glsl_symbol_table variables;
691 for (unsigned i = 0; i < num_shaders; i++) {
692 if (shader_list[i] == NULL)
693 continue;
694
695 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
696 ir_variable *const var = node->as_variable();
697
698 if (var == NULL)
699 continue;
700
701 if (uniforms_only && (var->data.mode != ir_var_uniform))
702 continue;
703
704 /* Don't cross validate temporaries that are at global scope. These
705 * will eventually get pulled into the shaders 'main'.
706 */
707 if (var->data.mode == ir_var_temporary)
708 continue;
709
710 /* If a global with this name has already been seen, verify that the
711 * new instance has the same type. In addition, if the globals have
712 * initializers, the values of the initializers must be the same.
713 */
714 ir_variable *const existing = variables.get_variable(var->name);
715 if (existing != NULL) {
716 if (var->type != existing->type) {
717 /* Consider the types to be "the same" if both types are arrays
718 * of the same type and one of the arrays is implicitly sized.
719 * In addition, set the type of the linked variable to the
720 * explicitly sized array.
721 */
722 if (var->type->is_array()
723 && existing->type->is_array()
724 && (var->type->fields.array == existing->type->fields.array)
725 && ((var->type->length == 0)
726 || (existing->type->length == 0))) {
727 if (var->type->length != 0) {
728 existing->type = var->type;
729 }
730 } else if (var->type->is_record()
731 && existing->type->is_record()
732 && existing->type->record_compare(var->type)) {
733 existing->type = var->type;
734 } else {
735 linker_error(prog, "%s `%s' declared as type "
736 "`%s' and type `%s'\n",
737 mode_string(var),
738 var->name, var->type->name,
739 existing->type->name);
740 return;
741 }
742 }
743
744 if (var->data.explicit_location) {
745 if (existing->data.explicit_location
746 && (var->data.location != existing->data.location)) {
747 linker_error(prog, "explicit locations for %s "
748 "`%s' have differing values\n",
749 mode_string(var), var->name);
750 return;
751 }
752
753 existing->data.location = var->data.location;
754 existing->data.explicit_location = true;
755 }
756
757 /* From the GLSL 4.20 specification:
758 * "A link error will result if two compilation units in a program
759 * specify different integer-constant bindings for the same
760 * opaque-uniform name. However, it is not an error to specify a
761 * binding on some but not all declarations for the same name"
762 */
763 if (var->data.explicit_binding) {
764 if (existing->data.explicit_binding &&
765 var->data.binding != existing->data.binding) {
766 linker_error(prog, "explicit bindings for %s "
767 "`%s' have differing values\n",
768 mode_string(var), var->name);
769 return;
770 }
771
772 existing->data.binding = var->data.binding;
773 existing->data.explicit_binding = true;
774 }
775
776 if (var->type->contains_atomic() &&
777 var->data.atomic.offset != existing->data.atomic.offset) {
778 linker_error(prog, "offset specifications for %s "
779 "`%s' have differing values\n",
780 mode_string(var), var->name);
781 return;
782 }
783
784 /* Validate layout qualifiers for gl_FragDepth.
785 *
786 * From the AMD/ARB_conservative_depth specs:
787 *
788 * "If gl_FragDepth is redeclared in any fragment shader in a
789 * program, it must be redeclared in all fragment shaders in
790 * that program that have static assignments to
791 * gl_FragDepth. All redeclarations of gl_FragDepth in all
792 * fragment shaders in a single program must have the same set
793 * of qualifiers."
794 */
795 if (strcmp(var->name, "gl_FragDepth") == 0) {
796 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
797 bool layout_differs =
798 var->data.depth_layout != existing->data.depth_layout;
799
800 if (layout_declared && layout_differs) {
801 linker_error(prog,
802 "All redeclarations of gl_FragDepth in all "
803 "fragment shaders in a single program must have "
804 "the same set of qualifiers.");
805 }
806
807 if (var->data.used && layout_differs) {
808 linker_error(prog,
809 "If gl_FragDepth is redeclared with a layout "
810 "qualifier in any fragment shader, it must be "
811 "redeclared with the same layout qualifier in "
812 "all fragment shaders that have assignments to "
813 "gl_FragDepth");
814 }
815 }
816
817 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
818 *
819 * "If a shared global has multiple initializers, the
820 * initializers must all be constant expressions, and they
821 * must all have the same value. Otherwise, a link error will
822 * result. (A shared global having only one initializer does
823 * not require that initializer to be a constant expression.)"
824 *
825 * Previous to 4.20 the GLSL spec simply said that initializers
826 * must have the same value. In this case of non-constant
827 * initializers, this was impossible to determine. As a result,
828 * no vendor actually implemented that behavior. The 4.20
829 * behavior matches the implemented behavior of at least one other
830 * vendor, so we'll implement that for all GLSL versions.
831 */
832 if (var->constant_initializer != NULL) {
833 if (existing->constant_initializer != NULL) {
834 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
835 linker_error(prog, "initializers for %s "
836 "`%s' have differing values\n",
837 mode_string(var), var->name);
838 return;
839 }
840 } else {
841 /* If the first-seen instance of a particular uniform did not
842 * have an initializer but a later instance does, copy the
843 * initializer to the version stored in the symbol table.
844 */
845 /* FINISHME: This is wrong. The constant_value field should
846 * FINISHME: not be modified! Imagine a case where a shader
847 * FINISHME: without an initializer is linked in two different
848 * FINISHME: programs with shaders that have differing
849 * FINISHME: initializers. Linking with the first will
850 * FINISHME: modify the shader, and linking with the second
851 * FINISHME: will fail.
852 */
853 existing->constant_initializer =
854 var->constant_initializer->clone(ralloc_parent(existing),
855 NULL);
856 }
857 }
858
859 if (var->data.has_initializer) {
860 if (existing->data.has_initializer
861 && (var->constant_initializer == NULL
862 || existing->constant_initializer == NULL)) {
863 linker_error(prog,
864 "shared global variable `%s' has multiple "
865 "non-constant initializers.\n",
866 var->name);
867 return;
868 }
869
870 /* Some instance had an initializer, so keep track of that. In
871 * this location, all sorts of initializers (constant or
872 * otherwise) will propagate the existence to the variable
873 * stored in the symbol table.
874 */
875 existing->data.has_initializer = true;
876 }
877
878 if (existing->data.invariant != var->data.invariant) {
879 linker_error(prog, "declarations for %s `%s' have "
880 "mismatching invariant qualifiers\n",
881 mode_string(var), var->name);
882 return;
883 }
884 if (existing->data.centroid != var->data.centroid) {
885 linker_error(prog, "declarations for %s `%s' have "
886 "mismatching centroid qualifiers\n",
887 mode_string(var), var->name);
888 return;
889 }
890 if (existing->data.sample != var->data.sample) {
891 linker_error(prog, "declarations for %s `%s` have "
892 "mismatching sample qualifiers\n",
893 mode_string(var), var->name);
894 return;
895 }
896 } else
897 variables.add_variable(var);
898 }
899 }
900 }
901
902
903 /**
904 * Perform validation of uniforms used across multiple shader stages
905 */
906 void
907 cross_validate_uniforms(struct gl_shader_program *prog)
908 {
909 cross_validate_globals(prog, prog->_LinkedShaders,
910 MESA_SHADER_STAGES, true);
911 }
912
913 /**
914 * Accumulates the array of prog->UniformBlocks and checks that all
915 * definitons of blocks agree on their contents.
916 */
917 static bool
918 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
919 {
920 unsigned max_num_uniform_blocks = 0;
921 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
922 if (prog->_LinkedShaders[i])
923 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
924 }
925
926 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
927 struct gl_shader *sh = prog->_LinkedShaders[i];
928
929 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
930 max_num_uniform_blocks);
931 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
932 prog->UniformBlockStageIndex[i][j] = -1;
933
934 if (sh == NULL)
935 continue;
936
937 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
938 int index = link_cross_validate_uniform_block(prog,
939 &prog->UniformBlocks,
940 &prog->NumUniformBlocks,
941 &sh->UniformBlocks[j]);
942
943 if (index == -1) {
944 linker_error(prog, "uniform block `%s' has mismatching definitions",
945 sh->UniformBlocks[j].Name);
946 return false;
947 }
948
949 prog->UniformBlockStageIndex[i][index] = j;
950 }
951 }
952
953 return true;
954 }
955
956
957 /**
958 * Populates a shaders symbol table with all global declarations
959 */
960 static void
961 populate_symbol_table(gl_shader *sh)
962 {
963 sh->symbols = new(sh) glsl_symbol_table;
964
965 foreach_in_list(ir_instruction, inst, sh->ir) {
966 ir_variable *var;
967 ir_function *func;
968
969 if ((func = inst->as_function()) != NULL) {
970 sh->symbols->add_function(func);
971 } else if ((var = inst->as_variable()) != NULL) {
972 sh->symbols->add_variable(var);
973 }
974 }
975 }
976
977
978 /**
979 * Remap variables referenced in an instruction tree
980 *
981 * This is used when instruction trees are cloned from one shader and placed in
982 * another. These trees will contain references to \c ir_variable nodes that
983 * do not exist in the target shader. This function finds these \c ir_variable
984 * references and replaces the references with matching variables in the target
985 * shader.
986 *
987 * If there is no matching variable in the target shader, a clone of the
988 * \c ir_variable is made and added to the target shader. The new variable is
989 * added to \b both the instruction stream and the symbol table.
990 *
991 * \param inst IR tree that is to be processed.
992 * \param symbols Symbol table containing global scope symbols in the
993 * linked shader.
994 * \param instructions Instruction stream where new variable declarations
995 * should be added.
996 */
997 void
998 remap_variables(ir_instruction *inst, struct gl_shader *target,
999 hash_table *temps)
1000 {
1001 class remap_visitor : public ir_hierarchical_visitor {
1002 public:
1003 remap_visitor(struct gl_shader *target,
1004 hash_table *temps)
1005 {
1006 this->target = target;
1007 this->symbols = target->symbols;
1008 this->instructions = target->ir;
1009 this->temps = temps;
1010 }
1011
1012 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1013 {
1014 if (ir->var->data.mode == ir_var_temporary) {
1015 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1016
1017 assert(var != NULL);
1018 ir->var = var;
1019 return visit_continue;
1020 }
1021
1022 ir_variable *const existing =
1023 this->symbols->get_variable(ir->var->name);
1024 if (existing != NULL)
1025 ir->var = existing;
1026 else {
1027 ir_variable *copy = ir->var->clone(this->target, NULL);
1028
1029 this->symbols->add_variable(copy);
1030 this->instructions->push_head(copy);
1031 ir->var = copy;
1032 }
1033
1034 return visit_continue;
1035 }
1036
1037 private:
1038 struct gl_shader *target;
1039 glsl_symbol_table *symbols;
1040 exec_list *instructions;
1041 hash_table *temps;
1042 };
1043
1044 remap_visitor v(target, temps);
1045
1046 inst->accept(&v);
1047 }
1048
1049
1050 /**
1051 * Move non-declarations from one instruction stream to another
1052 *
1053 * The intended usage pattern of this function is to pass the pointer to the
1054 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1055 * pointer) for \c last and \c false for \c make_copies on the first
1056 * call. Successive calls pass the return value of the previous call for
1057 * \c last and \c true for \c make_copies.
1058 *
1059 * \param instructions Source instruction stream
1060 * \param last Instruction after which new instructions should be
1061 * inserted in the target instruction stream
1062 * \param make_copies Flag selecting whether instructions in \c instructions
1063 * should be copied (via \c ir_instruction::clone) into the
1064 * target list or moved.
1065 *
1066 * \return
1067 * The new "last" instruction in the target instruction stream. This pointer
1068 * is suitable for use as the \c last parameter of a later call to this
1069 * function.
1070 */
1071 exec_node *
1072 move_non_declarations(exec_list *instructions, exec_node *last,
1073 bool make_copies, gl_shader *target)
1074 {
1075 hash_table *temps = NULL;
1076
1077 if (make_copies)
1078 temps = hash_table_ctor(0, hash_table_pointer_hash,
1079 hash_table_pointer_compare);
1080
1081 foreach_in_list_safe(ir_instruction, inst, instructions) {
1082 if (inst->as_function())
1083 continue;
1084
1085 ir_variable *var = inst->as_variable();
1086 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1087 continue;
1088
1089 assert(inst->as_assignment()
1090 || inst->as_call()
1091 || inst->as_if() /* for initializers with the ?: operator */
1092 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1093
1094 if (make_copies) {
1095 inst = inst->clone(target, NULL);
1096
1097 if (var != NULL)
1098 hash_table_insert(temps, inst, var);
1099 else
1100 remap_variables(inst, target, temps);
1101 } else {
1102 inst->remove();
1103 }
1104
1105 last->insert_after(inst);
1106 last = inst;
1107 }
1108
1109 if (make_copies)
1110 hash_table_dtor(temps);
1111
1112 return last;
1113 }
1114
1115 /**
1116 * Get the function signature for main from a shader
1117 */
1118 static ir_function_signature *
1119 get_main_function_signature(gl_shader *sh)
1120 {
1121 ir_function *const f = sh->symbols->get_function("main");
1122 if (f != NULL) {
1123 exec_list void_parameters;
1124
1125 /* Look for the 'void main()' signature and ensure that it's defined.
1126 * This keeps the linker from accidentally pick a shader that just
1127 * contains a prototype for main.
1128 *
1129 * We don't have to check for multiple definitions of main (in multiple
1130 * shaders) because that would have already been caught above.
1131 */
1132 ir_function_signature *sig =
1133 f->matching_signature(NULL, &void_parameters, false);
1134 if ((sig != NULL) && sig->is_defined) {
1135 return sig;
1136 }
1137 }
1138
1139 return NULL;
1140 }
1141
1142
1143 /**
1144 * This class is only used in link_intrastage_shaders() below but declaring
1145 * it inside that function leads to compiler warnings with some versions of
1146 * gcc.
1147 */
1148 class array_sizing_visitor : public ir_hierarchical_visitor {
1149 public:
1150 array_sizing_visitor()
1151 : mem_ctx(ralloc_context(NULL)),
1152 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1153 hash_table_pointer_compare))
1154 {
1155 }
1156
1157 ~array_sizing_visitor()
1158 {
1159 hash_table_dtor(this->unnamed_interfaces);
1160 ralloc_free(this->mem_ctx);
1161 }
1162
1163 virtual ir_visitor_status visit(ir_variable *var)
1164 {
1165 fixup_type(&var->type, var->data.max_array_access);
1166 if (var->type->is_interface()) {
1167 if (interface_contains_unsized_arrays(var->type)) {
1168 const glsl_type *new_type =
1169 resize_interface_members(var->type, var->max_ifc_array_access);
1170 var->type = new_type;
1171 var->change_interface_type(new_type);
1172 }
1173 } else if (var->type->is_array() &&
1174 var->type->fields.array->is_interface()) {
1175 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1176 const glsl_type *new_type =
1177 resize_interface_members(var->type->fields.array,
1178 var->max_ifc_array_access);
1179 var->change_interface_type(new_type);
1180 var->type =
1181 glsl_type::get_array_instance(new_type, var->type->length);
1182 }
1183 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1184 /* Store a pointer to the variable in the unnamed_interfaces
1185 * hashtable.
1186 */
1187 ir_variable **interface_vars = (ir_variable **)
1188 hash_table_find(this->unnamed_interfaces, ifc_type);
1189 if (interface_vars == NULL) {
1190 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1191 ifc_type->length);
1192 hash_table_insert(this->unnamed_interfaces, interface_vars,
1193 ifc_type);
1194 }
1195 unsigned index = ifc_type->field_index(var->name);
1196 assert(index < ifc_type->length);
1197 assert(interface_vars[index] == NULL);
1198 interface_vars[index] = var;
1199 }
1200 return visit_continue;
1201 }
1202
1203 /**
1204 * For each unnamed interface block that was discovered while running the
1205 * visitor, adjust the interface type to reflect the newly assigned array
1206 * sizes, and fix up the ir_variable nodes to point to the new interface
1207 * type.
1208 */
1209 void fixup_unnamed_interface_types()
1210 {
1211 hash_table_call_foreach(this->unnamed_interfaces,
1212 fixup_unnamed_interface_type, NULL);
1213 }
1214
1215 private:
1216 /**
1217 * If the type pointed to by \c type represents an unsized array, replace
1218 * it with a sized array whose size is determined by max_array_access.
1219 */
1220 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1221 {
1222 if ((*type)->is_unsized_array()) {
1223 *type = glsl_type::get_array_instance((*type)->fields.array,
1224 max_array_access + 1);
1225 assert(*type != NULL);
1226 }
1227 }
1228
1229 /**
1230 * Determine whether the given interface type contains unsized arrays (if
1231 * it doesn't, array_sizing_visitor doesn't need to process it).
1232 */
1233 static bool interface_contains_unsized_arrays(const glsl_type *type)
1234 {
1235 for (unsigned i = 0; i < type->length; i++) {
1236 const glsl_type *elem_type = type->fields.structure[i].type;
1237 if (elem_type->is_unsized_array())
1238 return true;
1239 }
1240 return false;
1241 }
1242
1243 /**
1244 * Create a new interface type based on the given type, with unsized arrays
1245 * replaced by sized arrays whose size is determined by
1246 * max_ifc_array_access.
1247 */
1248 static const glsl_type *
1249 resize_interface_members(const glsl_type *type,
1250 const unsigned *max_ifc_array_access)
1251 {
1252 unsigned num_fields = type->length;
1253 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1254 memcpy(fields, type->fields.structure,
1255 num_fields * sizeof(*fields));
1256 for (unsigned i = 0; i < num_fields; i++) {
1257 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1258 }
1259 glsl_interface_packing packing =
1260 (glsl_interface_packing) type->interface_packing;
1261 const glsl_type *new_ifc_type =
1262 glsl_type::get_interface_instance(fields, num_fields,
1263 packing, type->name);
1264 delete [] fields;
1265 return new_ifc_type;
1266 }
1267
1268 static void fixup_unnamed_interface_type(const void *key, void *data,
1269 void *)
1270 {
1271 const glsl_type *ifc_type = (const glsl_type *) key;
1272 ir_variable **interface_vars = (ir_variable **) data;
1273 unsigned num_fields = ifc_type->length;
1274 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1275 memcpy(fields, ifc_type->fields.structure,
1276 num_fields * sizeof(*fields));
1277 bool interface_type_changed = false;
1278 for (unsigned i = 0; i < num_fields; i++) {
1279 if (interface_vars[i] != NULL &&
1280 fields[i].type != interface_vars[i]->type) {
1281 fields[i].type = interface_vars[i]->type;
1282 interface_type_changed = true;
1283 }
1284 }
1285 if (!interface_type_changed) {
1286 delete [] fields;
1287 return;
1288 }
1289 glsl_interface_packing packing =
1290 (glsl_interface_packing) ifc_type->interface_packing;
1291 const glsl_type *new_ifc_type =
1292 glsl_type::get_interface_instance(fields, num_fields, packing,
1293 ifc_type->name);
1294 delete [] fields;
1295 for (unsigned i = 0; i < num_fields; i++) {
1296 if (interface_vars[i] != NULL)
1297 interface_vars[i]->change_interface_type(new_ifc_type);
1298 }
1299 }
1300
1301 /**
1302 * Memory context used to allocate the data in \c unnamed_interfaces.
1303 */
1304 void *mem_ctx;
1305
1306 /**
1307 * Hash table from const glsl_type * to an array of ir_variable *'s
1308 * pointing to the ir_variables constituting each unnamed interface block.
1309 */
1310 hash_table *unnamed_interfaces;
1311 };
1312
1313 /**
1314 * Performs the cross-validation of layout qualifiers specified in
1315 * redeclaration of gl_FragCoord for the attached fragment shaders,
1316 * and propagates them to the linked FS and linked shader program.
1317 */
1318 static void
1319 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1320 struct gl_shader *linked_shader,
1321 struct gl_shader **shader_list,
1322 unsigned num_shaders)
1323 {
1324 linked_shader->redeclares_gl_fragcoord = false;
1325 linked_shader->uses_gl_fragcoord = false;
1326 linked_shader->origin_upper_left = false;
1327 linked_shader->pixel_center_integer = false;
1328
1329 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1330 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1331 return;
1332
1333 for (unsigned i = 0; i < num_shaders; i++) {
1334 struct gl_shader *shader = shader_list[i];
1335 /* From the GLSL 1.50 spec, page 39:
1336 *
1337 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1338 * it must be redeclared in all the fragment shaders in that program
1339 * that have a static use gl_FragCoord."
1340 *
1341 * Exclude the case when one of the 'linked_shader' or 'shader' redeclares
1342 * gl_FragCoord with no layout qualifiers but the other one doesn't
1343 * redeclare it. If we strictly follow GLSL 1.50 spec's language, it
1344 * should be a link error. But, generating link error for this case will
1345 * be a wrong behaviour which spec didn't intend to do and it could also
1346 * break some applications.
1347 */
1348 if ((linked_shader->redeclares_gl_fragcoord
1349 && !shader->redeclares_gl_fragcoord
1350 && shader->uses_gl_fragcoord
1351 && (linked_shader->origin_upper_left
1352 || linked_shader->pixel_center_integer))
1353 || (shader->redeclares_gl_fragcoord
1354 && !linked_shader->redeclares_gl_fragcoord
1355 && linked_shader->uses_gl_fragcoord
1356 && (shader->origin_upper_left
1357 || shader->pixel_center_integer))) {
1358 linker_error(prog, "fragment shader defined with conflicting "
1359 "layout qualifiers for gl_FragCoord\n");
1360 }
1361
1362 /* From the GLSL 1.50 spec, page 39:
1363 *
1364 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1365 * single program must have the same set of qualifiers."
1366 */
1367 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1368 && (shader->origin_upper_left != linked_shader->origin_upper_left
1369 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1370 linker_error(prog, "fragment shader defined with conflicting "
1371 "layout qualifiers for gl_FragCoord\n");
1372 }
1373
1374 /* Update the linked shader state.  Note that uses_gl_fragcoord should
1375 * accumulate the results.  The other values should replace.  If there
1376 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1377 * are already known to be the same.
1378 */
1379 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1380 linked_shader->redeclares_gl_fragcoord =
1381 shader->redeclares_gl_fragcoord;
1382 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1383 || shader->uses_gl_fragcoord;
1384 linked_shader->origin_upper_left = shader->origin_upper_left;
1385 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1386 }
1387 }
1388 }
1389
1390 /**
1391 * Performs the cross-validation of geometry shader max_vertices and
1392 * primitive type layout qualifiers for the attached geometry shaders,
1393 * and propagates them to the linked GS and linked shader program.
1394 */
1395 static void
1396 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1397 struct gl_shader *linked_shader,
1398 struct gl_shader **shader_list,
1399 unsigned num_shaders)
1400 {
1401 linked_shader->Geom.VerticesOut = 0;
1402 linked_shader->Geom.Invocations = 0;
1403 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1404 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1405
1406 /* No in/out qualifiers defined for anything but GLSL 1.50+
1407 * geometry shaders so far.
1408 */
1409 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1410 return;
1411
1412 /* From the GLSL 1.50 spec, page 46:
1413 *
1414 * "All geometry shader output layout declarations in a program
1415 * must declare the same layout and same value for
1416 * max_vertices. There must be at least one geometry output
1417 * layout declaration somewhere in a program, but not all
1418 * geometry shaders (compilation units) are required to
1419 * declare it."
1420 */
1421
1422 for (unsigned i = 0; i < num_shaders; i++) {
1423 struct gl_shader *shader = shader_list[i];
1424
1425 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1426 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1427 linked_shader->Geom.InputType != shader->Geom.InputType) {
1428 linker_error(prog, "geometry shader defined with conflicting "
1429 "input types\n");
1430 return;
1431 }
1432 linked_shader->Geom.InputType = shader->Geom.InputType;
1433 }
1434
1435 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1436 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1437 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1438 linker_error(prog, "geometry shader defined with conflicting "
1439 "output types\n");
1440 return;
1441 }
1442 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1443 }
1444
1445 if (shader->Geom.VerticesOut != 0) {
1446 if (linked_shader->Geom.VerticesOut != 0 &&
1447 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1448 linker_error(prog, "geometry shader defined with conflicting "
1449 "output vertex count (%d and %d)\n",
1450 linked_shader->Geom.VerticesOut,
1451 shader->Geom.VerticesOut);
1452 return;
1453 }
1454 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1455 }
1456
1457 if (shader->Geom.Invocations != 0) {
1458 if (linked_shader->Geom.Invocations != 0 &&
1459 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1460 linker_error(prog, "geometry shader defined with conflicting "
1461 "invocation count (%d and %d)\n",
1462 linked_shader->Geom.Invocations,
1463 shader->Geom.Invocations);
1464 return;
1465 }
1466 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1467 }
1468 }
1469
1470 /* Just do the intrastage -> interstage propagation right now,
1471 * since we already know we're in the right type of shader program
1472 * for doing it.
1473 */
1474 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1475 linker_error(prog,
1476 "geometry shader didn't declare primitive input type\n");
1477 return;
1478 }
1479 prog->Geom.InputType = linked_shader->Geom.InputType;
1480
1481 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1482 linker_error(prog,
1483 "geometry shader didn't declare primitive output type\n");
1484 return;
1485 }
1486 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1487
1488 if (linked_shader->Geom.VerticesOut == 0) {
1489 linker_error(prog,
1490 "geometry shader didn't declare max_vertices\n");
1491 return;
1492 }
1493 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1494
1495 if (linked_shader->Geom.Invocations == 0)
1496 linked_shader->Geom.Invocations = 1;
1497
1498 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1499 }
1500
1501
1502 /**
1503 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1504 * qualifiers for the attached compute shaders, and propagate them to the
1505 * linked CS and linked shader program.
1506 */
1507 static void
1508 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1509 struct gl_shader *linked_shader,
1510 struct gl_shader **shader_list,
1511 unsigned num_shaders)
1512 {
1513 for (int i = 0; i < 3; i++)
1514 linked_shader->Comp.LocalSize[i] = 0;
1515
1516 /* This function is called for all shader stages, but it only has an effect
1517 * for compute shaders.
1518 */
1519 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1520 return;
1521
1522 /* From the ARB_compute_shader spec, in the section describing local size
1523 * declarations:
1524 *
1525 * If multiple compute shaders attached to a single program object
1526 * declare local work-group size, the declarations must be identical;
1527 * otherwise a link-time error results. Furthermore, if a program
1528 * object contains any compute shaders, at least one must contain an
1529 * input layout qualifier specifying the local work sizes of the
1530 * program, or a link-time error will occur.
1531 */
1532 for (unsigned sh = 0; sh < num_shaders; sh++) {
1533 struct gl_shader *shader = shader_list[sh];
1534
1535 if (shader->Comp.LocalSize[0] != 0) {
1536 if (linked_shader->Comp.LocalSize[0] != 0) {
1537 for (int i = 0; i < 3; i++) {
1538 if (linked_shader->Comp.LocalSize[i] !=
1539 shader->Comp.LocalSize[i]) {
1540 linker_error(prog, "compute shader defined with conflicting "
1541 "local sizes\n");
1542 return;
1543 }
1544 }
1545 }
1546 for (int i = 0; i < 3; i++)
1547 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1548 }
1549 }
1550
1551 /* Just do the intrastage -> interstage propagation right now,
1552 * since we already know we're in the right type of shader program
1553 * for doing it.
1554 */
1555 if (linked_shader->Comp.LocalSize[0] == 0) {
1556 linker_error(prog, "compute shader didn't declare local size\n");
1557 return;
1558 }
1559 for (int i = 0; i < 3; i++)
1560 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1561 }
1562
1563
1564 /**
1565 * Combine a group of shaders for a single stage to generate a linked shader
1566 *
1567 * \note
1568 * If this function is supplied a single shader, it is cloned, and the new
1569 * shader is returned.
1570 */
1571 static struct gl_shader *
1572 link_intrastage_shaders(void *mem_ctx,
1573 struct gl_context *ctx,
1574 struct gl_shader_program *prog,
1575 struct gl_shader **shader_list,
1576 unsigned num_shaders)
1577 {
1578 struct gl_uniform_block *uniform_blocks = NULL;
1579
1580 /* Check that global variables defined in multiple shaders are consistent.
1581 */
1582 cross_validate_globals(prog, shader_list, num_shaders, false);
1583 if (!prog->LinkStatus)
1584 return NULL;
1585
1586 /* Check that interface blocks defined in multiple shaders are consistent.
1587 */
1588 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1589 num_shaders);
1590 if (!prog->LinkStatus)
1591 return NULL;
1592
1593 /* Link up uniform blocks defined within this stage. */
1594 const unsigned num_uniform_blocks =
1595 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1596 &uniform_blocks);
1597 if (!prog->LinkStatus)
1598 return NULL;
1599
1600 /* Check that there is only a single definition of each function signature
1601 * across all shaders.
1602 */
1603 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1604 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
1605 ir_function *const f = node->as_function();
1606
1607 if (f == NULL)
1608 continue;
1609
1610 for (unsigned j = i + 1; j < num_shaders; j++) {
1611 ir_function *const other =
1612 shader_list[j]->symbols->get_function(f->name);
1613
1614 /* If the other shader has no function (and therefore no function
1615 * signatures) with the same name, skip to the next shader.
1616 */
1617 if (other == NULL)
1618 continue;
1619
1620 foreach_in_list(ir_function_signature, sig, &f->signatures) {
1621 if (!sig->is_defined || sig->is_builtin())
1622 continue;
1623
1624 ir_function_signature *other_sig =
1625 other->exact_matching_signature(NULL, &sig->parameters);
1626
1627 if ((other_sig != NULL) && other_sig->is_defined
1628 && !other_sig->is_builtin()) {
1629 linker_error(prog, "function `%s' is multiply defined",
1630 f->name);
1631 return NULL;
1632 }
1633 }
1634 }
1635 }
1636 }
1637
1638 /* Find the shader that defines main, and make a clone of it.
1639 *
1640 * Starting with the clone, search for undefined references. If one is
1641 * found, find the shader that defines it. Clone the reference and add
1642 * it to the shader. Repeat until there are no undefined references or
1643 * until a reference cannot be resolved.
1644 */
1645 gl_shader *main = NULL;
1646 for (unsigned i = 0; i < num_shaders; i++) {
1647 if (get_main_function_signature(shader_list[i]) != NULL) {
1648 main = shader_list[i];
1649 break;
1650 }
1651 }
1652
1653 if (main == NULL) {
1654 linker_error(prog, "%s shader lacks `main'\n",
1655 _mesa_shader_stage_to_string(shader_list[0]->Stage));
1656 return NULL;
1657 }
1658
1659 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1660 linked->ir = new(linked) exec_list;
1661 clone_ir_list(mem_ctx, linked->ir, main->ir);
1662
1663 linked->UniformBlocks = uniform_blocks;
1664 linked->NumUniformBlocks = num_uniform_blocks;
1665 ralloc_steal(linked, linked->UniformBlocks);
1666
1667 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1668 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1669 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
1670
1671 populate_symbol_table(linked);
1672
1673 /* The a pointer to the main function in the final linked shader (i.e., the
1674 * copy of the original shader that contained the main function).
1675 */
1676 ir_function_signature *const main_sig = get_main_function_signature(linked);
1677
1678 /* Move any instructions other than variable declarations or function
1679 * declarations into main.
1680 */
1681 exec_node *insertion_point =
1682 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1683 linked);
1684
1685 for (unsigned i = 0; i < num_shaders; i++) {
1686 if (shader_list[i] == main)
1687 continue;
1688
1689 insertion_point = move_non_declarations(shader_list[i]->ir,
1690 insertion_point, true, linked);
1691 }
1692
1693 /* Check if any shader needs built-in functions. */
1694 bool need_builtins = false;
1695 for (unsigned i = 0; i < num_shaders; i++) {
1696 if (shader_list[i]->uses_builtin_functions) {
1697 need_builtins = true;
1698 break;
1699 }
1700 }
1701
1702 bool ok;
1703 if (need_builtins) {
1704 /* Make a temporary array one larger than shader_list, which will hold
1705 * the built-in function shader as well.
1706 */
1707 gl_shader **linking_shaders = (gl_shader **)
1708 calloc(num_shaders + 1, sizeof(gl_shader *));
1709 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
1710 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
1711
1712 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
1713
1714 free(linking_shaders);
1715 } else {
1716 ok = link_function_calls(prog, linked, shader_list, num_shaders);
1717 }
1718
1719
1720 if (!ok) {
1721 ctx->Driver.DeleteShader(ctx, linked);
1722 return NULL;
1723 }
1724
1725 /* At this point linked should contain all of the linked IR, so
1726 * validate it to make sure nothing went wrong.
1727 */
1728 validate_ir_tree(linked->ir);
1729
1730 /* Set the size of geometry shader input arrays */
1731 if (linked->Stage == MESA_SHADER_GEOMETRY) {
1732 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1733 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1734 foreach_in_list(ir_instruction, ir, linked->ir) {
1735 ir->accept(&input_resize_visitor);
1736 }
1737 }
1738
1739 /* Make a pass over all variable declarations to ensure that arrays with
1740 * unspecified sizes have a size specified. The size is inferred from the
1741 * max_array_access field.
1742 */
1743 array_sizing_visitor v;
1744 v.run(linked->ir);
1745 v.fixup_unnamed_interface_types();
1746
1747 return linked;
1748 }
1749
1750 /**
1751 * Update the sizes of linked shader uniform arrays to the maximum
1752 * array index used.
1753 *
1754 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1755 *
1756 * If one or more elements of an array are active,
1757 * GetActiveUniform will return the name of the array in name,
1758 * subject to the restrictions listed above. The type of the array
1759 * is returned in type. The size parameter contains the highest
1760 * array element index used, plus one. The compiler or linker
1761 * determines the highest index used. There will be only one
1762 * active uniform reported by the GL per uniform array.
1763
1764 */
1765 static void
1766 update_array_sizes(struct gl_shader_program *prog)
1767 {
1768 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1769 if (prog->_LinkedShaders[i] == NULL)
1770 continue;
1771
1772 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
1773 ir_variable *const var = node->as_variable();
1774
1775 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
1776 !var->type->is_array())
1777 continue;
1778
1779 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1780 * will not be eliminated. Since we always do std140, just
1781 * don't resize arrays in UBOs.
1782 *
1783 * Atomic counters are supposed to get deterministic
1784 * locations assigned based on the declaration ordering and
1785 * sizes, array compaction would mess that up.
1786 */
1787 if (var->is_in_uniform_block() || var->type->contains_atomic())
1788 continue;
1789
1790 unsigned int size = var->data.max_array_access;
1791 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
1792 if (prog->_LinkedShaders[j] == NULL)
1793 continue;
1794
1795 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
1796 ir_variable *other_var = node2->as_variable();
1797 if (!other_var)
1798 continue;
1799
1800 if (strcmp(var->name, other_var->name) == 0 &&
1801 other_var->data.max_array_access > size) {
1802 size = other_var->data.max_array_access;
1803 }
1804 }
1805 }
1806
1807 if (size + 1 != var->type->length) {
1808 /* If this is a built-in uniform (i.e., it's backed by some
1809 * fixed-function state), adjust the number of state slots to
1810 * match the new array size. The number of slots per array entry
1811 * is not known. It seems safe to assume that the total number of
1812 * slots is an integer multiple of the number of array elements.
1813 * Determine the number of slots per array element by dividing by
1814 * the old (total) size.
1815 */
1816 if (var->num_state_slots > 0) {
1817 var->num_state_slots = (size + 1)
1818 * (var->num_state_slots / var->type->length);
1819 }
1820
1821 var->type = glsl_type::get_array_instance(var->type->fields.array,
1822 size + 1);
1823 /* FINISHME: We should update the types of array
1824 * dereferences of this variable now.
1825 */
1826 }
1827 }
1828 }
1829 }
1830
1831 /**
1832 * Find a contiguous set of available bits in a bitmask.
1833 *
1834 * \param used_mask Bits representing used (1) and unused (0) locations
1835 * \param needed_count Number of contiguous bits needed.
1836 *
1837 * \return
1838 * Base location of the available bits on success or -1 on failure.
1839 */
1840 int
1841 find_available_slots(unsigned used_mask, unsigned needed_count)
1842 {
1843 unsigned needed_mask = (1 << needed_count) - 1;
1844 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1845
1846 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1847 * cannot optimize possibly infinite loops" for the loop below.
1848 */
1849 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1850 return -1;
1851
1852 for (int i = 0; i <= max_bit_to_test; i++) {
1853 if ((needed_mask & ~used_mask) == needed_mask)
1854 return i;
1855
1856 needed_mask <<= 1;
1857 }
1858
1859 return -1;
1860 }
1861
1862
1863 /**
1864 * Assign locations for either VS inputs for FS outputs
1865 *
1866 * \param prog Shader program whose variables need locations assigned
1867 * \param target_index Selector for the program target to receive location
1868 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1869 * \c MESA_SHADER_FRAGMENT.
1870 * \param max_index Maximum number of generic locations. This corresponds
1871 * to either the maximum number of draw buffers or the
1872 * maximum number of generic attributes.
1873 *
1874 * \return
1875 * If locations are successfully assigned, true is returned. Otherwise an
1876 * error is emitted to the shader link log and false is returned.
1877 */
1878 bool
1879 assign_attribute_or_color_locations(gl_shader_program *prog,
1880 unsigned target_index,
1881 unsigned max_index)
1882 {
1883 /* Mark invalid locations as being used.
1884 */
1885 unsigned used_locations = (max_index >= 32)
1886 ? ~0 : ~((1 << max_index) - 1);
1887
1888 assert((target_index == MESA_SHADER_VERTEX)
1889 || (target_index == MESA_SHADER_FRAGMENT));
1890
1891 gl_shader *const sh = prog->_LinkedShaders[target_index];
1892 if (sh == NULL)
1893 return true;
1894
1895 /* Operate in a total of four passes.
1896 *
1897 * 1. Invalidate the location assignments for all vertex shader inputs.
1898 *
1899 * 2. Assign locations for inputs that have user-defined (via
1900 * glBindVertexAttribLocation) locations and outputs that have
1901 * user-defined locations (via glBindFragDataLocation).
1902 *
1903 * 3. Sort the attributes without assigned locations by number of slots
1904 * required in decreasing order. Fragmentation caused by attribute
1905 * locations assigned by the application may prevent large attributes
1906 * from having enough contiguous space.
1907 *
1908 * 4. Assign locations to any inputs without assigned locations.
1909 */
1910
1911 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1912 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1913
1914 const enum ir_variable_mode direction =
1915 (target_index == MESA_SHADER_VERTEX)
1916 ? ir_var_shader_in : ir_var_shader_out;
1917
1918
1919 /* Temporary storage for the set of attributes that need locations assigned.
1920 */
1921 struct temp_attr {
1922 unsigned slots;
1923 ir_variable *var;
1924
1925 /* Used below in the call to qsort. */
1926 static int compare(const void *a, const void *b)
1927 {
1928 const temp_attr *const l = (const temp_attr *) a;
1929 const temp_attr *const r = (const temp_attr *) b;
1930
1931 /* Reversed because we want a descending order sort below. */
1932 return r->slots - l->slots;
1933 }
1934 } to_assign[16];
1935
1936 unsigned num_attr = 0;
1937
1938 foreach_in_list(ir_instruction, node, sh->ir) {
1939 ir_variable *const var = node->as_variable();
1940
1941 if ((var == NULL) || (var->data.mode != (unsigned) direction))
1942 continue;
1943
1944 if (var->data.explicit_location) {
1945 if ((var->data.location >= (int)(max_index + generic_base))
1946 || (var->data.location < 0)) {
1947 linker_error(prog,
1948 "invalid explicit location %d specified for `%s'\n",
1949 (var->data.location < 0)
1950 ? var->data.location
1951 : var->data.location - generic_base,
1952 var->name);
1953 return false;
1954 }
1955 } else if (target_index == MESA_SHADER_VERTEX) {
1956 unsigned binding;
1957
1958 if (prog->AttributeBindings->get(binding, var->name)) {
1959 assert(binding >= VERT_ATTRIB_GENERIC0);
1960 var->data.location = binding;
1961 var->data.is_unmatched_generic_inout = 0;
1962 }
1963 } else if (target_index == MESA_SHADER_FRAGMENT) {
1964 unsigned binding;
1965 unsigned index;
1966
1967 if (prog->FragDataBindings->get(binding, var->name)) {
1968 assert(binding >= FRAG_RESULT_DATA0);
1969 var->data.location = binding;
1970 var->data.is_unmatched_generic_inout = 0;
1971
1972 if (prog->FragDataIndexBindings->get(index, var->name)) {
1973 var->data.index = index;
1974 }
1975 }
1976 }
1977
1978 /* If the variable is not a built-in and has a location statically
1979 * assigned in the shader (presumably via a layout qualifier), make sure
1980 * that it doesn't collide with other assigned locations. Otherwise,
1981 * add it to the list of variables that need linker-assigned locations.
1982 */
1983 const unsigned slots = var->type->count_attribute_slots();
1984 if (var->data.location != -1) {
1985 if (var->data.location >= generic_base && var->data.index < 1) {
1986 /* From page 61 of the OpenGL 4.0 spec:
1987 *
1988 * "LinkProgram will fail if the attribute bindings assigned
1989 * by BindAttribLocation do not leave not enough space to
1990 * assign a location for an active matrix attribute or an
1991 * active attribute array, both of which require multiple
1992 * contiguous generic attributes."
1993 *
1994 * I think above text prohibits the aliasing of explicit and
1995 * automatic assignments. But, aliasing is allowed in manual
1996 * assignments of attribute locations. See below comments for
1997 * the details.
1998 *
1999 * From OpenGL 4.0 spec, page 61:
2000 *
2001 * "It is possible for an application to bind more than one
2002 * attribute name to the same location. This is referred to as
2003 * aliasing. This will only work if only one of the aliased
2004 * attributes is active in the executable program, or if no
2005 * path through the shader consumes more than one attribute of
2006 * a set of attributes aliased to the same location. A link
2007 * error can occur if the linker determines that every path
2008 * through the shader consumes multiple aliased attributes,
2009 * but implementations are not required to generate an error
2010 * in this case."
2011 *
2012 * From GLSL 4.30 spec, page 54:
2013 *
2014 * "A program will fail to link if any two non-vertex shader
2015 * input variables are assigned to the same location. For
2016 * vertex shaders, multiple input variables may be assigned
2017 * to the same location using either layout qualifiers or via
2018 * the OpenGL API. However, such aliasing is intended only to
2019 * support vertex shaders where each execution path accesses
2020 * at most one input per each location. Implementations are
2021 * permitted, but not required, to generate link-time errors
2022 * if they detect that every path through the vertex shader
2023 * executable accesses multiple inputs assigned to any single
2024 * location. For all shader types, a program will fail to link
2025 * if explicit location assignments leave the linker unable
2026 * to find space for other variables without explicit
2027 * assignments."
2028 *
2029 * From OpenGL ES 3.0 spec, page 56:
2030 *
2031 * "Binding more than one attribute name to the same location
2032 * is referred to as aliasing, and is not permitted in OpenGL
2033 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2034 * fail when this condition exists. However, aliasing is
2035 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2036 * This will only work if only one of the aliased attributes
2037 * is active in the executable program, or if no path through
2038 * the shader consumes more than one attribute of a set of
2039 * attributes aliased to the same location. A link error can
2040 * occur if the linker determines that every path through the
2041 * shader consumes multiple aliased attributes, but implemen-
2042 * tations are not required to generate an error in this case."
2043 *
2044 * After looking at above references from OpenGL, OpenGL ES and
2045 * GLSL specifications, we allow aliasing of vertex input variables
2046 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2047 *
2048 * NOTE: This is not required by the spec but its worth mentioning
2049 * here that we're not doing anything to make sure that no path
2050 * through the vertex shader executable accesses multiple inputs
2051 * assigned to any single location.
2052 */
2053
2054 /* Mask representing the contiguous slots that will be used by
2055 * this attribute.
2056 */
2057 const unsigned attr = var->data.location - generic_base;
2058 const unsigned use_mask = (1 << slots) - 1;
2059 const char *const string = (target_index == MESA_SHADER_VERTEX)
2060 ? "vertex shader input" : "fragment shader output";
2061
2062 /* Generate a link error if the requested locations for this
2063 * attribute exceed the maximum allowed attribute location.
2064 */
2065 if (attr + slots > max_index) {
2066 linker_error(prog,
2067 "insufficient contiguous locations "
2068 "available for %s `%s' %d %d %d", string,
2069 var->name, used_locations, use_mask, attr);
2070 return false;
2071 }
2072
2073 /* Generate a link error if the set of bits requested for this
2074 * attribute overlaps any previously allocated bits.
2075 */
2076 if ((~(use_mask << attr) & used_locations) != used_locations) {
2077 if (target_index == MESA_SHADER_FRAGMENT ||
2078 (prog->IsES && prog->Version >= 300)) {
2079 linker_error(prog,
2080 "overlapping location is assigned "
2081 "to %s `%s' %d %d %d\n", string,
2082 var->name, used_locations, use_mask, attr);
2083 return false;
2084 } else {
2085 linker_warning(prog,
2086 "overlapping location is assigned "
2087 "to %s `%s' %d %d %d\n", string,
2088 var->name, used_locations, use_mask, attr);
2089 }
2090 }
2091
2092 used_locations |= (use_mask << attr);
2093 }
2094
2095 continue;
2096 }
2097
2098 to_assign[num_attr].slots = slots;
2099 to_assign[num_attr].var = var;
2100 num_attr++;
2101 }
2102
2103 /* If all of the attributes were assigned locations by the application (or
2104 * are built-in attributes with fixed locations), return early. This should
2105 * be the common case.
2106 */
2107 if (num_attr == 0)
2108 return true;
2109
2110 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2111
2112 if (target_index == MESA_SHADER_VERTEX) {
2113 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2114 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2115 * reserved to prevent it from being automatically allocated below.
2116 */
2117 find_deref_visitor find("gl_Vertex");
2118 find.run(sh->ir);
2119 if (find.variable_found())
2120 used_locations |= (1 << 0);
2121 }
2122
2123 for (unsigned i = 0; i < num_attr; i++) {
2124 /* Mask representing the contiguous slots that will be used by this
2125 * attribute.
2126 */
2127 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2128
2129 int location = find_available_slots(used_locations, to_assign[i].slots);
2130
2131 if (location < 0) {
2132 const char *const string = (target_index == MESA_SHADER_VERTEX)
2133 ? "vertex shader input" : "fragment shader output";
2134
2135 linker_error(prog,
2136 "insufficient contiguous locations "
2137 "available for %s `%s'",
2138 string, to_assign[i].var->name);
2139 return false;
2140 }
2141
2142 to_assign[i].var->data.location = generic_base + location;
2143 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2144 used_locations |= (use_mask << location);
2145 }
2146
2147 return true;
2148 }
2149
2150
2151 /**
2152 * Demote shader inputs and outputs that are not used in other stages
2153 */
2154 void
2155 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2156 {
2157 foreach_in_list(ir_instruction, node, sh->ir) {
2158 ir_variable *const var = node->as_variable();
2159
2160 if ((var == NULL) || (var->data.mode != int(mode)))
2161 continue;
2162
2163 /* A shader 'in' or 'out' variable is only really an input or output if
2164 * its value is used by other shader stages. This will cause the variable
2165 * to have a location assigned.
2166 */
2167 if (var->data.is_unmatched_generic_inout) {
2168 var->data.mode = ir_var_auto;
2169 }
2170 }
2171 }
2172
2173
2174 /**
2175 * Store the gl_FragDepth layout in the gl_shader_program struct.
2176 */
2177 static void
2178 store_fragdepth_layout(struct gl_shader_program *prog)
2179 {
2180 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2181 return;
2182 }
2183
2184 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2185
2186 /* We don't look up the gl_FragDepth symbol directly because if
2187 * gl_FragDepth is not used in the shader, it's removed from the IR.
2188 * However, the symbol won't be removed from the symbol table.
2189 *
2190 * We're only interested in the cases where the variable is NOT removed
2191 * from the IR.
2192 */
2193 foreach_in_list(ir_instruction, node, ir) {
2194 ir_variable *const var = node->as_variable();
2195
2196 if (var == NULL || var->data.mode != ir_var_shader_out) {
2197 continue;
2198 }
2199
2200 if (strcmp(var->name, "gl_FragDepth") == 0) {
2201 switch (var->data.depth_layout) {
2202 case ir_depth_layout_none:
2203 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2204 return;
2205 case ir_depth_layout_any:
2206 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2207 return;
2208 case ir_depth_layout_greater:
2209 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2210 return;
2211 case ir_depth_layout_less:
2212 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2213 return;
2214 case ir_depth_layout_unchanged:
2215 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2216 return;
2217 default:
2218 assert(0);
2219 return;
2220 }
2221 }
2222 }
2223 }
2224
2225 /**
2226 * Validate the resources used by a program versus the implementation limits
2227 */
2228 static void
2229 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2230 {
2231 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2232 struct gl_shader *sh = prog->_LinkedShaders[i];
2233
2234 if (sh == NULL)
2235 continue;
2236
2237 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2238 linker_error(prog, "Too many %s shader texture samplers",
2239 _mesa_shader_stage_to_string(i));
2240 }
2241
2242 if (sh->num_uniform_components >
2243 ctx->Const.Program[i].MaxUniformComponents) {
2244 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2245 linker_warning(prog, "Too many %s shader default uniform block "
2246 "components, but the driver will try to optimize "
2247 "them out; this is non-portable out-of-spec "
2248 "behavior\n",
2249 _mesa_shader_stage_to_string(i));
2250 } else {
2251 linker_error(prog, "Too many %s shader default uniform block "
2252 "components",
2253 _mesa_shader_stage_to_string(i));
2254 }
2255 }
2256
2257 if (sh->num_combined_uniform_components >
2258 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2259 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2260 linker_warning(prog, "Too many %s shader uniform components, "
2261 "but the driver will try to optimize them out; "
2262 "this is non-portable out-of-spec behavior\n",
2263 _mesa_shader_stage_to_string(i));
2264 } else {
2265 linker_error(prog, "Too many %s shader uniform components",
2266 _mesa_shader_stage_to_string(i));
2267 }
2268 }
2269 }
2270
2271 unsigned blocks[MESA_SHADER_STAGES] = {0};
2272 unsigned total_uniform_blocks = 0;
2273
2274 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2275 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2276 if (prog->UniformBlockStageIndex[j][i] != -1) {
2277 blocks[j]++;
2278 total_uniform_blocks++;
2279 }
2280 }
2281
2282 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2283 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
2284 prog->NumUniformBlocks,
2285 ctx->Const.MaxCombinedUniformBlocks);
2286 } else {
2287 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2288 const unsigned max_uniform_blocks =
2289 ctx->Const.Program[i].MaxUniformBlocks;
2290 if (blocks[i] > max_uniform_blocks) {
2291 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
2292 _mesa_shader_stage_to_string(i),
2293 blocks[i],
2294 max_uniform_blocks);
2295 break;
2296 }
2297 }
2298 }
2299 }
2300 }
2301
2302 /**
2303 * Validate shader image resources.
2304 */
2305 static void
2306 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2307 {
2308 unsigned total_image_units = 0;
2309 unsigned fragment_outputs = 0;
2310
2311 if (!ctx->Extensions.ARB_shader_image_load_store)
2312 return;
2313
2314 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2315 struct gl_shader *sh = prog->_LinkedShaders[i];
2316
2317 if (sh) {
2318 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2319 linker_error(prog, "Too many %s shader image uniforms",
2320 _mesa_shader_stage_to_string(i));
2321
2322 total_image_units += sh->NumImages;
2323
2324 if (i == MESA_SHADER_FRAGMENT) {
2325 foreach_in_list(ir_instruction, node, sh->ir) {
2326 ir_variable *var = node->as_variable();
2327 if (var && var->data.mode == ir_var_shader_out)
2328 fragment_outputs += var->type->count_attribute_slots();
2329 }
2330 }
2331 }
2332 }
2333
2334 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2335 linker_error(prog, "Too many combined image uniforms");
2336
2337 if (total_image_units + fragment_outputs >
2338 ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs)
2339 linker_error(prog, "Too many combined image uniforms and fragment outputs");
2340 }
2341
2342
2343 /**
2344 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2345 * for a variable, checks for overlaps between other uniforms using explicit
2346 * locations.
2347 */
2348 static bool
2349 reserve_explicit_locations(struct gl_shader_program *prog,
2350 string_to_uint_map *map, ir_variable *var)
2351 {
2352 unsigned slots = var->type->uniform_locations();
2353 unsigned max_loc = var->data.location + slots - 1;
2354
2355 /* Resize remap table if locations do not fit in the current one. */
2356 if (max_loc + 1 > prog->NumUniformRemapTable) {
2357 prog->UniformRemapTable =
2358 reralloc(prog, prog->UniformRemapTable,
2359 gl_uniform_storage *,
2360 max_loc + 1);
2361
2362 if (!prog->UniformRemapTable) {
2363 linker_error(prog, "Out of memory during linking.");
2364 return false;
2365 }
2366
2367 /* Initialize allocated space. */
2368 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2369 prog->UniformRemapTable[i] = NULL;
2370
2371 prog->NumUniformRemapTable = max_loc + 1;
2372 }
2373
2374 for (unsigned i = 0; i < slots; i++) {
2375 unsigned loc = var->data.location + i;
2376
2377 /* Check if location is already used. */
2378 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2379
2380 /* Possibly same uniform from a different stage, this is ok. */
2381 unsigned hash_loc;
2382 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2383 continue;
2384
2385 /* ARB_explicit_uniform_location specification states:
2386 *
2387 * "No two default-block uniform variables in the program can have
2388 * the same location, even if they are unused, otherwise a compiler
2389 * or linker error will be generated."
2390 */
2391 linker_error(prog,
2392 "location qualifier for uniform %s overlaps"
2393 "previously used location",
2394 var->name);
2395 return false;
2396 }
2397
2398 /* Initialize location as inactive before optimization
2399 * rounds and location assignment.
2400 */
2401 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2402 }
2403
2404 /* Note, base location used for arrays. */
2405 map->put(var->data.location, var->name);
2406
2407 return true;
2408 }
2409
2410 /**
2411 * Check and reserve all explicit uniform locations, called before
2412 * any optimizations happen to handle also inactive uniforms and
2413 * inactive array elements that may get trimmed away.
2414 */
2415 static void
2416 check_explicit_uniform_locations(struct gl_context *ctx,
2417 struct gl_shader_program *prog)
2418 {
2419 if (!ctx->Extensions.ARB_explicit_uniform_location)
2420 return;
2421
2422 /* This map is used to detect if overlapping explicit locations
2423 * occur with the same uniform (from different stage) or a different one.
2424 */
2425 string_to_uint_map *uniform_map = new string_to_uint_map;
2426
2427 if (!uniform_map) {
2428 linker_error(prog, "Out of memory during linking.");
2429 return;
2430 }
2431
2432 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2433 struct gl_shader *sh = prog->_LinkedShaders[i];
2434
2435 if (!sh)
2436 continue;
2437
2438 foreach_in_list(ir_instruction, node, sh->ir) {
2439 ir_variable *var = node->as_variable();
2440 if ((var && var->data.mode == ir_var_uniform) &&
2441 var->data.explicit_location) {
2442 if (!reserve_explicit_locations(prog, uniform_map, var))
2443 return;
2444 }
2445 }
2446 }
2447
2448 delete uniform_map;
2449 }
2450
2451 void
2452 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2453 {
2454 tfeedback_decl *tfeedback_decls = NULL;
2455 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2456
2457 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2458
2459 prog->LinkStatus = true; /* All error paths will set this to false */
2460 prog->Validated = false;
2461 prog->_Used = false;
2462
2463 ralloc_free(prog->InfoLog);
2464 prog->InfoLog = ralloc_strdup(NULL, "");
2465
2466 ralloc_free(prog->UniformBlocks);
2467 prog->UniformBlocks = NULL;
2468 prog->NumUniformBlocks = 0;
2469 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2470 ralloc_free(prog->UniformBlockStageIndex[i]);
2471 prog->UniformBlockStageIndex[i] = NULL;
2472 }
2473
2474 ralloc_free(prog->AtomicBuffers);
2475 prog->AtomicBuffers = NULL;
2476 prog->NumAtomicBuffers = 0;
2477 prog->ARB_fragment_coord_conventions_enable = false;
2478
2479 /* Separate the shaders into groups based on their type.
2480 */
2481 struct gl_shader **shader_list[MESA_SHADER_STAGES];
2482 unsigned num_shaders[MESA_SHADER_STAGES];
2483
2484 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2485 shader_list[i] = (struct gl_shader **)
2486 calloc(prog->NumShaders, sizeof(struct gl_shader *));
2487 num_shaders[i] = 0;
2488 }
2489
2490 unsigned min_version = UINT_MAX;
2491 unsigned max_version = 0;
2492 const bool is_es_prog =
2493 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
2494 for (unsigned i = 0; i < prog->NumShaders; i++) {
2495 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2496 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2497
2498 if (prog->Shaders[i]->IsES != is_es_prog) {
2499 linker_error(prog, "all shaders must use same shading "
2500 "language version\n");
2501 goto done;
2502 }
2503
2504 prog->ARB_fragment_coord_conventions_enable |=
2505 prog->Shaders[i]->ARB_fragment_coord_conventions_enable;
2506
2507 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
2508 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
2509 num_shaders[shader_type]++;
2510 }
2511
2512 /* In desktop GLSL, different shader versions may be linked together. In
2513 * GLSL ES, all shader versions must be the same.
2514 */
2515 if (is_es_prog && min_version != max_version) {
2516 linker_error(prog, "all shaders must use same shading "
2517 "language version\n");
2518 goto done;
2519 }
2520
2521 prog->Version = max_version;
2522 prog->IsES = is_es_prog;
2523
2524 /* Geometry shaders have to be linked with vertex shaders.
2525 */
2526 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
2527 num_shaders[MESA_SHADER_VERTEX] == 0 &&
2528 !prog->SeparateShader) {
2529 linker_error(prog, "Geometry shader must be linked with "
2530 "vertex shader\n");
2531 goto done;
2532 }
2533
2534 /* Compute shaders have additional restrictions. */
2535 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
2536 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
2537 linker_error(prog, "Compute shaders may not be linked with any other "
2538 "type of shader\n");
2539 }
2540
2541 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2542 if (prog->_LinkedShaders[i] != NULL)
2543 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2544
2545 prog->_LinkedShaders[i] = NULL;
2546 }
2547
2548 /* Link all shaders for a particular stage and validate the result.
2549 */
2550 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2551 if (num_shaders[stage] > 0) {
2552 gl_shader *const sh =
2553 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
2554 num_shaders[stage]);
2555
2556 if (!prog->LinkStatus)
2557 goto done;
2558
2559 switch (stage) {
2560 case MESA_SHADER_VERTEX:
2561 validate_vertex_shader_executable(prog, sh);
2562 break;
2563 case MESA_SHADER_GEOMETRY:
2564 validate_geometry_shader_executable(prog, sh);
2565 break;
2566 case MESA_SHADER_FRAGMENT:
2567 validate_fragment_shader_executable(prog, sh);
2568 break;
2569 }
2570 if (!prog->LinkStatus)
2571 goto done;
2572
2573 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
2574 }
2575 }
2576
2577 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
2578 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
2579 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
2580 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
2581 else
2582 prog->LastClipDistanceArraySize = 0; /* Not used */
2583
2584 /* Here begins the inter-stage linking phase. Some initial validation is
2585 * performed, then locations are assigned for uniforms, attributes, and
2586 * varyings.
2587 */
2588 cross_validate_uniforms(prog);
2589 if (!prog->LinkStatus)
2590 goto done;
2591
2592 unsigned prev;
2593
2594 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
2595 if (prog->_LinkedShaders[prev] != NULL)
2596 break;
2597 }
2598
2599 check_explicit_uniform_locations(ctx, prog);
2600 if (!prog->LinkStatus)
2601 goto done;
2602
2603 /* Validate the inputs of each stage with the output of the preceding
2604 * stage.
2605 */
2606 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
2607 if (prog->_LinkedShaders[i] == NULL)
2608 continue;
2609
2610 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
2611 prog->_LinkedShaders[i]);
2612 if (!prog->LinkStatus)
2613 goto done;
2614
2615 cross_validate_outputs_to_inputs(prog,
2616 prog->_LinkedShaders[prev],
2617 prog->_LinkedShaders[i]);
2618 if (!prog->LinkStatus)
2619 goto done;
2620
2621 prev = i;
2622 }
2623
2624 /* Cross-validate uniform blocks between shader stages */
2625 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
2626 MESA_SHADER_STAGES);
2627 if (!prog->LinkStatus)
2628 goto done;
2629
2630 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
2631 if (prog->_LinkedShaders[i] != NULL)
2632 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
2633 }
2634
2635 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2636 * it before optimization because we want most of the checks to get
2637 * dropped thanks to constant propagation.
2638 *
2639 * This rule also applies to GLSL ES 3.00.
2640 */
2641 if (max_version >= (is_es_prog ? 300 : 130)) {
2642 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2643 if (sh) {
2644 lower_discard_flow(sh->ir);
2645 }
2646 }
2647
2648 if (!interstage_cross_validate_uniform_blocks(prog))
2649 goto done;
2650
2651 /* Do common optimization before assigning storage for attributes,
2652 * uniforms, and varyings. Later optimization could possibly make
2653 * some of that unused.
2654 */
2655 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2656 if (prog->_LinkedShaders[i] == NULL)
2657 continue;
2658
2659 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2660 if (!prog->LinkStatus)
2661 goto done;
2662
2663 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
2664 lower_clip_distance(prog->_LinkedShaders[i]);
2665 }
2666
2667 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
2668 &ctx->Const.ShaderCompilerOptions[i],
2669 ctx->Const.NativeIntegers))
2670 ;
2671 }
2672
2673 /* Check and validate stream emissions in geometry shaders */
2674 validate_geometry_shader_emissions(ctx, prog);
2675
2676 /* Mark all generic shader inputs and outputs as unpaired. */
2677 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
2678 if (prog->_LinkedShaders[i] != NULL) {
2679 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
2680 }
2681 }
2682
2683 /* FINISHME: The value of the max_attribute_index parameter is
2684 * FINISHME: implementation dependent based on the value of
2685 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2686 * FINISHME: at least 16, so hardcode 16 for now.
2687 */
2688 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2689 goto done;
2690 }
2691
2692 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2693 goto done;
2694 }
2695
2696 unsigned first;
2697 for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) {
2698 if (prog->_LinkedShaders[first] != NULL)
2699 break;
2700 }
2701
2702 if (num_tfeedback_decls != 0) {
2703 /* From GL_EXT_transform_feedback:
2704 * A program will fail to link if:
2705 *
2706 * * the <count> specified by TransformFeedbackVaryingsEXT is
2707 * non-zero, but the program object has no vertex or geometry
2708 * shader;
2709 */
2710 if (first == MESA_SHADER_FRAGMENT) {
2711 linker_error(prog, "Transform feedback varyings specified, but "
2712 "no vertex or geometry shader is present.");
2713 goto done;
2714 }
2715
2716 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2717 prog->TransformFeedback.NumVarying);
2718 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2719 prog->TransformFeedback.VaryingNames,
2720 tfeedback_decls))
2721 goto done;
2722 }
2723
2724 /* Linking the stages in the opposite order (from fragment to vertex)
2725 * ensures that inter-shader outputs written to in an earlier stage are
2726 * eliminated if they are (transitively) not used in a later stage.
2727 */
2728 int last, next;
2729 for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) {
2730 if (prog->_LinkedShaders[last] != NULL)
2731 break;
2732 }
2733
2734 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2735 gl_shader *const sh = prog->_LinkedShaders[last];
2736
2737 if (num_tfeedback_decls != 0 || prog->SeparateShader) {
2738 /* There was no fragment shader, but we still have to assign varying
2739 * locations for use by transform feedback.
2740 */
2741 if (!assign_varying_locations(ctx, mem_ctx, prog,
2742 sh, NULL,
2743 num_tfeedback_decls, tfeedback_decls,
2744 0))
2745 goto done;
2746 }
2747
2748 do_dead_builtin_varyings(ctx, sh, NULL,
2749 num_tfeedback_decls, tfeedback_decls);
2750
2751 if (!prog->SeparateShader)
2752 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2753
2754 /* Eliminate code that is now dead due to unused outputs being demoted.
2755 */
2756 while (do_dead_code(sh->ir, false))
2757 ;
2758 }
2759 else if (first == MESA_SHADER_FRAGMENT) {
2760 /* If the program only contains a fragment shader...
2761 */
2762 gl_shader *const sh = prog->_LinkedShaders[first];
2763
2764 do_dead_builtin_varyings(ctx, NULL, sh,
2765 num_tfeedback_decls, tfeedback_decls);
2766
2767 if (prog->SeparateShader) {
2768 if (!assign_varying_locations(ctx, mem_ctx, prog,
2769 NULL /* producer */,
2770 sh /* consumer */,
2771 0 /* num_tfeedback_decls */,
2772 NULL /* tfeedback_decls */,
2773 0 /* gs_input_vertices */))
2774 goto done;
2775 } else
2776 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2777
2778 while (do_dead_code(sh->ir, false))
2779 ;
2780 }
2781
2782 next = last;
2783 for (int i = next - 1; i >= 0; i--) {
2784 if (prog->_LinkedShaders[i] == NULL)
2785 continue;
2786
2787 gl_shader *const sh_i = prog->_LinkedShaders[i];
2788 gl_shader *const sh_next = prog->_LinkedShaders[next];
2789 unsigned gs_input_vertices =
2790 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2791
2792 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2793 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2794 tfeedback_decls, gs_input_vertices))
2795 goto done;
2796
2797 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2798 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2799 tfeedback_decls);
2800
2801 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2802 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2803
2804 /* Eliminate code that is now dead due to unused outputs being demoted.
2805 */
2806 while (do_dead_code(sh_i->ir, false))
2807 ;
2808 while (do_dead_code(sh_next->ir, false))
2809 ;
2810
2811 /* This must be done after all dead varyings are eliminated. */
2812 if (!check_against_output_limit(ctx, prog, sh_i))
2813 goto done;
2814 if (!check_against_input_limit(ctx, prog, sh_next))
2815 goto done;
2816
2817 next = i;
2818 }
2819
2820 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2821 goto done;
2822
2823 update_array_sizes(prog);
2824 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
2825 link_assign_atomic_counter_resources(ctx, prog);
2826 store_fragdepth_layout(prog);
2827
2828 check_resources(ctx, prog);
2829 check_image_resources(ctx, prog);
2830 link_check_atomic_counter_resources(ctx, prog);
2831
2832 if (!prog->LinkStatus)
2833 goto done;
2834
2835 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2836 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
2837 * anything about shader linking when one of the shaders (vertex or
2838 * fragment shader) is absent. So, the extension shouldn't change the
2839 * behavior specified in GLSL specification.
2840 */
2841 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
2842 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2843 linker_error(prog, "program lacks a vertex shader\n");
2844 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2845 linker_error(prog, "program lacks a fragment shader\n");
2846 }
2847 }
2848
2849 /* FINISHME: Assign fragment shader output locations. */
2850
2851 done:
2852 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2853 free(shader_list[i]);
2854 if (prog->_LinkedShaders[i] == NULL)
2855 continue;
2856
2857 /* Do a final validation step to make sure that the IR wasn't
2858 * invalidated by any modifications performed after intrastage linking.
2859 */
2860 validate_ir_tree(prog->_LinkedShaders[i]->ir);
2861
2862 /* Retain any live IR, but trash the rest. */
2863 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2864
2865 /* The symbol table in the linked shaders may contain references to
2866 * variables that were removed (e.g., unused uniforms). Since it may
2867 * contain junk, there is no possible valid use. Delete it and set the
2868 * pointer to NULL.
2869 */
2870 delete prog->_LinkedShaders[i]->symbols;
2871 prog->_LinkedShaders[i]->symbols = NULL;
2872 }
2873
2874 ralloc_free(mem_ctx);
2875 }