glsl: Handle attribute aliasing in attribute storage limit check.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "main/core.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/hash_table.h"
74 #include "linker.h"
75 #include "link_varyings.h"
76 #include "ir_optimization.h"
77 #include "ir_rvalue_visitor.h"
78 #include "ir_uniform.h"
79
80 #include "main/shaderobj.h"
81 #include "main/enums.h"
82
83
84 void linker_error(gl_shader_program *, const char *, ...);
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (size && size != this->num_vertices) {
210 linker_error(this->prog, "size of array %s declared as %u, "
211 "but number of input vertices is %u\n",
212 var->name, size, this->num_vertices);
213 return visit_continue;
214 }
215
216 /* Generate a link error if the shader attempts to access an input
217 * array using an index too large for its actual size assigned at link
218 * time.
219 */
220 if (var->data.max_array_access >= this->num_vertices) {
221 linker_error(this->prog, "geometry shader accesses element %i of "
222 "%s, but only %i input vertices\n",
223 var->data.max_array_access, var->name, this->num_vertices);
224 return visit_continue;
225 }
226
227 var->type = glsl_type::get_array_instance(var->type->fields.array,
228 this->num_vertices);
229 var->data.max_array_access = this->num_vertices - 1;
230
231 return visit_continue;
232 }
233
234 /* Dereferences of input variables need to be updated so that their type
235 * matches the newly assigned type of the variable they are accessing. */
236 virtual ir_visitor_status visit(ir_dereference_variable *ir)
237 {
238 ir->type = ir->var->type;
239 return visit_continue;
240 }
241
242 /* Dereferences of 2D input arrays need to be updated so that their type
243 * matches the newly assigned type of the array they are accessing. */
244 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
245 {
246 const glsl_type *const vt = ir->array->type;
247 if (vt->is_array())
248 ir->type = vt->fields.array;
249 return visit_continue;
250 }
251 };
252
253 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
254 public:
255 unsigned num_vertices;
256 gl_shader_program *prog;
257
258 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
259 {
260 this->num_vertices = num_vertices;
261 this->prog = prog;
262 }
263
264 virtual ~tess_eval_array_resize_visitor()
265 {
266 /* empty */
267 }
268
269 virtual ir_visitor_status visit(ir_variable *var)
270 {
271 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
272 return visit_continue;
273
274 var->type = glsl_type::get_array_instance(var->type->fields.array,
275 this->num_vertices);
276 var->data.max_array_access = this->num_vertices - 1;
277
278 return visit_continue;
279 }
280
281 /* Dereferences of input variables need to be updated so that their type
282 * matches the newly assigned type of the variable they are accessing. */
283 virtual ir_visitor_status visit(ir_dereference_variable *ir)
284 {
285 ir->type = ir->var->type;
286 return visit_continue;
287 }
288
289 /* Dereferences of 2D input arrays need to be updated so that their type
290 * matches the newly assigned type of the array they are accessing. */
291 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
292 {
293 const glsl_type *const vt = ir->array->type;
294 if (vt->is_array())
295 ir->type = vt->fields.array;
296 return visit_continue;
297 }
298 };
299
300 class barrier_use_visitor : public ir_hierarchical_visitor {
301 public:
302 barrier_use_visitor(gl_shader_program *prog)
303 : prog(prog), in_main(false), after_return(false), control_flow(0)
304 {
305 }
306
307 virtual ~barrier_use_visitor()
308 {
309 /* empty */
310 }
311
312 virtual ir_visitor_status visit_enter(ir_function *ir)
313 {
314 if (strcmp(ir->name, "main") == 0)
315 in_main = true;
316
317 return visit_continue;
318 }
319
320 virtual ir_visitor_status visit_leave(ir_function *)
321 {
322 in_main = false;
323 after_return = false;
324 return visit_continue;
325 }
326
327 virtual ir_visitor_status visit_leave(ir_return *)
328 {
329 after_return = true;
330 return visit_continue;
331 }
332
333 virtual ir_visitor_status visit_enter(ir_if *)
334 {
335 ++control_flow;
336 return visit_continue;
337 }
338
339 virtual ir_visitor_status visit_leave(ir_if *)
340 {
341 --control_flow;
342 return visit_continue;
343 }
344
345 virtual ir_visitor_status visit_enter(ir_loop *)
346 {
347 ++control_flow;
348 return visit_continue;
349 }
350
351 virtual ir_visitor_status visit_leave(ir_loop *)
352 {
353 --control_flow;
354 return visit_continue;
355 }
356
357 /* FINISHME: `switch` is not expressed at the IR level -- it's already
358 * been lowered to a mess of `if`s. We'll correctly disallow any use of
359 * barrier() in a conditional path within the switch, but not in a path
360 * which is always hit.
361 */
362
363 virtual ir_visitor_status visit_enter(ir_call *ir)
364 {
365 if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
366 /* Use of barrier(); determine if it is legal: */
367 if (!in_main) {
368 linker_error(prog, "Builtin barrier() may only be used in main");
369 return visit_stop;
370 }
371
372 if (after_return) {
373 linker_error(prog, "Builtin barrier() may not be used after return");
374 return visit_stop;
375 }
376
377 if (control_flow != 0) {
378 linker_error(prog, "Builtin barrier() may not be used inside control flow");
379 return visit_stop;
380 }
381 }
382 return visit_continue;
383 }
384
385 private:
386 gl_shader_program *prog;
387 bool in_main, after_return;
388 int control_flow;
389 };
390
391 /**
392 * Visitor that determines the highest stream id to which a (geometry) shader
393 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
394 */
395 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
396 public:
397 find_emit_vertex_visitor(int max_allowed)
398 : max_stream_allowed(max_allowed),
399 invalid_stream_id(0),
400 invalid_stream_id_from_emit_vertex(false),
401 end_primitive_found(false),
402 uses_non_zero_stream(false)
403 {
404 /* empty */
405 }
406
407 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
408 {
409 int stream_id = ir->stream_id();
410
411 if (stream_id < 0) {
412 invalid_stream_id = stream_id;
413 invalid_stream_id_from_emit_vertex = true;
414 return visit_stop;
415 }
416
417 if (stream_id > max_stream_allowed) {
418 invalid_stream_id = stream_id;
419 invalid_stream_id_from_emit_vertex = true;
420 return visit_stop;
421 }
422
423 if (stream_id != 0)
424 uses_non_zero_stream = true;
425
426 return visit_continue;
427 }
428
429 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
430 {
431 end_primitive_found = true;
432
433 int stream_id = ir->stream_id();
434
435 if (stream_id < 0) {
436 invalid_stream_id = stream_id;
437 invalid_stream_id_from_emit_vertex = false;
438 return visit_stop;
439 }
440
441 if (stream_id > max_stream_allowed) {
442 invalid_stream_id = stream_id;
443 invalid_stream_id_from_emit_vertex = false;
444 return visit_stop;
445 }
446
447 if (stream_id != 0)
448 uses_non_zero_stream = true;
449
450 return visit_continue;
451 }
452
453 bool error()
454 {
455 return invalid_stream_id != 0;
456 }
457
458 const char *error_func()
459 {
460 return invalid_stream_id_from_emit_vertex ?
461 "EmitStreamVertex" : "EndStreamPrimitive";
462 }
463
464 int error_stream()
465 {
466 return invalid_stream_id;
467 }
468
469 bool uses_streams()
470 {
471 return uses_non_zero_stream;
472 }
473
474 bool uses_end_primitive()
475 {
476 return end_primitive_found;
477 }
478
479 private:
480 int max_stream_allowed;
481 int invalid_stream_id;
482 bool invalid_stream_id_from_emit_vertex;
483 bool end_primitive_found;
484 bool uses_non_zero_stream;
485 };
486
487 /* Class that finds array derefs and check if indexes are dynamic. */
488 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
489 {
490 public:
491 dynamic_sampler_array_indexing_visitor() :
492 dynamic_sampler_array_indexing(false)
493 {
494 }
495
496 ir_visitor_status visit_enter(ir_dereference_array *ir)
497 {
498 if (!ir->variable_referenced())
499 return visit_continue;
500
501 if (!ir->variable_referenced()->type->contains_sampler())
502 return visit_continue;
503
504 if (!ir->array_index->constant_expression_value()) {
505 dynamic_sampler_array_indexing = true;
506 return visit_stop;
507 }
508 return visit_continue;
509 }
510
511 bool uses_dynamic_sampler_array_indexing()
512 {
513 return dynamic_sampler_array_indexing;
514 }
515
516 private:
517 bool dynamic_sampler_array_indexing;
518 };
519
520 } /* anonymous namespace */
521
522 void
523 linker_error(gl_shader_program *prog, const char *fmt, ...)
524 {
525 va_list ap;
526
527 ralloc_strcat(&prog->InfoLog, "error: ");
528 va_start(ap, fmt);
529 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
530 va_end(ap);
531
532 prog->LinkStatus = false;
533 }
534
535
536 void
537 linker_warning(gl_shader_program *prog, const char *fmt, ...)
538 {
539 va_list ap;
540
541 ralloc_strcat(&prog->InfoLog, "warning: ");
542 va_start(ap, fmt);
543 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
544 va_end(ap);
545
546 }
547
548
549 /**
550 * Given a string identifying a program resource, break it into a base name
551 * and an optional array index in square brackets.
552 *
553 * If an array index is present, \c out_base_name_end is set to point to the
554 * "[" that precedes the array index, and the array index itself is returned
555 * as a long.
556 *
557 * If no array index is present (or if the array index is negative or
558 * mal-formed), \c out_base_name_end, is set to point to the null terminator
559 * at the end of the input string, and -1 is returned.
560 *
561 * Only the final array index is parsed; if the string contains other array
562 * indices (or structure field accesses), they are left in the base name.
563 *
564 * No attempt is made to check that the base name is properly formed;
565 * typically the caller will look up the base name in a hash table, so
566 * ill-formed base names simply turn into hash table lookup failures.
567 */
568 long
569 parse_program_resource_name(const GLchar *name,
570 const GLchar **out_base_name_end)
571 {
572 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
573 *
574 * "When an integer array element or block instance number is part of
575 * the name string, it will be specified in decimal form without a "+"
576 * or "-" sign or any extra leading zeroes. Additionally, the name
577 * string will not include white space anywhere in the string."
578 */
579
580 const size_t len = strlen(name);
581 *out_base_name_end = name + len;
582
583 if (len == 0 || name[len-1] != ']')
584 return -1;
585
586 /* Walk backwards over the string looking for a non-digit character. This
587 * had better be the opening bracket for an array index.
588 *
589 * Initially, i specifies the location of the ']'. Since the string may
590 * contain only the ']' charcater, walk backwards very carefully.
591 */
592 unsigned i;
593 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
594 /* empty */ ;
595
596 if ((i == 0) || name[i-1] != '[')
597 return -1;
598
599 long array_index = strtol(&name[i], NULL, 10);
600 if (array_index < 0)
601 return -1;
602
603 /* Check for leading zero */
604 if (name[i] == '0' && name[i+1] != ']')
605 return -1;
606
607 *out_base_name_end = name + (i - 1);
608 return array_index;
609 }
610
611
612 void
613 link_invalidate_variable_locations(exec_list *ir)
614 {
615 foreach_in_list(ir_instruction, node, ir) {
616 ir_variable *const var = node->as_variable();
617
618 if (var == NULL)
619 continue;
620
621 /* Only assign locations for variables that lack an explicit location.
622 * Explicit locations are set for all built-in variables, generic vertex
623 * shader inputs (via layout(location=...)), and generic fragment shader
624 * outputs (also via layout(location=...)).
625 */
626 if (!var->data.explicit_location) {
627 var->data.location = -1;
628 var->data.location_frac = 0;
629 }
630
631 /* ir_variable::is_unmatched_generic_inout is used by the linker while
632 * connecting outputs from one stage to inputs of the next stage.
633 *
634 * There are two implicit assumptions here. First, we assume that any
635 * built-in variable (i.e., non-generic in or out) will have
636 * explicit_location set. Second, we assume that any generic in or out
637 * will not have explicit_location set.
638 *
639 * This second assumption will only be valid until
640 * GL_ARB_separate_shader_objects is supported. When that extension is
641 * implemented, this function will need some modifications.
642 */
643 if (!var->data.explicit_location) {
644 var->data.is_unmatched_generic_inout = 1;
645 } else {
646 var->data.is_unmatched_generic_inout = 0;
647 }
648 }
649 }
650
651
652 /**
653 * Set UsesClipDistance and ClipDistanceArraySize based on the given shader.
654 *
655 * Also check for errors based on incorrect usage of gl_ClipVertex and
656 * gl_ClipDistance.
657 *
658 * Return false if an error was reported.
659 */
660 static void
661 analyze_clip_usage(struct gl_shader_program *prog,
662 struct gl_shader *shader, GLboolean *UsesClipDistance,
663 GLuint *ClipDistanceArraySize)
664 {
665 *ClipDistanceArraySize = 0;
666
667 if (!prog->IsES && prog->Version >= 130) {
668 /* From section 7.1 (Vertex Shader Special Variables) of the
669 * GLSL 1.30 spec:
670 *
671 * "It is an error for a shader to statically write both
672 * gl_ClipVertex and gl_ClipDistance."
673 *
674 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
675 * gl_ClipVertex nor gl_ClipDistance.
676 */
677 find_assignment_visitor clip_vertex("gl_ClipVertex");
678 find_assignment_visitor clip_distance("gl_ClipDistance");
679
680 clip_vertex.run(shader->ir);
681 clip_distance.run(shader->ir);
682 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
683 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
684 "and `gl_ClipDistance'\n",
685 _mesa_shader_stage_to_string(shader->Stage));
686 return;
687 }
688 *UsesClipDistance = clip_distance.variable_found();
689 ir_variable *clip_distance_var =
690 shader->symbols->get_variable("gl_ClipDistance");
691 if (clip_distance_var)
692 *ClipDistanceArraySize = clip_distance_var->type->length;
693 } else {
694 *UsesClipDistance = false;
695 }
696 }
697
698
699 /**
700 * Verify that a vertex shader executable meets all semantic requirements.
701 *
702 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
703 * as a side effect.
704 *
705 * \param shader Vertex shader executable to be verified
706 */
707 void
708 validate_vertex_shader_executable(struct gl_shader_program *prog,
709 struct gl_shader *shader)
710 {
711 if (shader == NULL)
712 return;
713
714 /* From the GLSL 1.10 spec, page 48:
715 *
716 * "The variable gl_Position is available only in the vertex
717 * language and is intended for writing the homogeneous vertex
718 * position. All executions of a well-formed vertex shader
719 * executable must write a value into this variable. [...] The
720 * variable gl_Position is available only in the vertex
721 * language and is intended for writing the homogeneous vertex
722 * position. All executions of a well-formed vertex shader
723 * executable must write a value into this variable."
724 *
725 * while in GLSL 1.40 this text is changed to:
726 *
727 * "The variable gl_Position is available only in the vertex
728 * language and is intended for writing the homogeneous vertex
729 * position. It can be written at any time during shader
730 * execution. It may also be read back by a vertex shader
731 * after being written. This value will be used by primitive
732 * assembly, clipping, culling, and other fixed functionality
733 * operations, if present, that operate on primitives after
734 * vertex processing has occurred. Its value is undefined if
735 * the vertex shader executable does not write gl_Position."
736 *
737 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
738 * gl_Position is not an error.
739 */
740 if (prog->Version < (prog->IsES ? 300 : 140)) {
741 find_assignment_visitor find("gl_Position");
742 find.run(shader->ir);
743 if (!find.variable_found()) {
744 if (prog->IsES) {
745 linker_warning(prog,
746 "vertex shader does not write to `gl_Position'."
747 "It's value is undefined. \n");
748 } else {
749 linker_error(prog,
750 "vertex shader does not write to `gl_Position'. \n");
751 }
752 return;
753 }
754 }
755
756 analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance,
757 &prog->Vert.ClipDistanceArraySize);
758 }
759
760 void
761 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
762 struct gl_shader *shader)
763 {
764 if (shader == NULL)
765 return;
766
767 analyze_clip_usage(prog, shader, &prog->TessEval.UsesClipDistance,
768 &prog->TessEval.ClipDistanceArraySize);
769 }
770
771
772 /**
773 * Verify that a fragment shader executable meets all semantic requirements
774 *
775 * \param shader Fragment shader executable to be verified
776 */
777 void
778 validate_fragment_shader_executable(struct gl_shader_program *prog,
779 struct gl_shader *shader)
780 {
781 if (shader == NULL)
782 return;
783
784 find_assignment_visitor frag_color("gl_FragColor");
785 find_assignment_visitor frag_data("gl_FragData");
786
787 frag_color.run(shader->ir);
788 frag_data.run(shader->ir);
789
790 if (frag_color.variable_found() && frag_data.variable_found()) {
791 linker_error(prog, "fragment shader writes to both "
792 "`gl_FragColor' and `gl_FragData'\n");
793 }
794 }
795
796 /**
797 * Verify that a geometry shader executable meets all semantic requirements
798 *
799 * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and
800 * prog->Geom.ClipDistanceArraySize as a side effect.
801 *
802 * \param shader Geometry shader executable to be verified
803 */
804 void
805 validate_geometry_shader_executable(struct gl_shader_program *prog,
806 struct gl_shader *shader)
807 {
808 if (shader == NULL)
809 return;
810
811 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
812 prog->Geom.VerticesIn = num_vertices;
813
814 analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance,
815 &prog->Geom.ClipDistanceArraySize);
816 }
817
818 /**
819 * Check if geometry shaders emit to non-zero streams and do corresponding
820 * validations.
821 */
822 static void
823 validate_geometry_shader_emissions(struct gl_context *ctx,
824 struct gl_shader_program *prog)
825 {
826 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
827 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
828 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
829 if (emit_vertex.error()) {
830 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
831 "stream parameter are in the range [0, %d].\n",
832 emit_vertex.error_func(),
833 emit_vertex.error_stream(),
834 ctx->Const.MaxVertexStreams - 1);
835 }
836 prog->Geom.UsesStreams = emit_vertex.uses_streams();
837 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
838
839 /* From the ARB_gpu_shader5 spec:
840 *
841 * "Multiple vertex streams are supported only if the output primitive
842 * type is declared to be "points". A program will fail to link if it
843 * contains a geometry shader calling EmitStreamVertex() or
844 * EndStreamPrimitive() if its output primitive type is not "points".
845 *
846 * However, in the same spec:
847 *
848 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
849 * with <stream> set to zero."
850 *
851 * And:
852 *
853 * "The function EndPrimitive() is equivalent to calling
854 * EndStreamPrimitive() with <stream> set to zero."
855 *
856 * Since we can call EmitVertex() and EndPrimitive() when we output
857 * primitives other than points, calling EmitStreamVertex(0) or
858 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
859 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
860 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
861 * stream.
862 */
863 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
864 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
865 "with n>0 requires point output\n");
866 }
867 }
868 }
869
870 bool
871 validate_intrastage_arrays(struct gl_shader_program *prog,
872 ir_variable *const var,
873 ir_variable *const existing)
874 {
875 /* Consider the types to be "the same" if both types are arrays
876 * of the same type and one of the arrays is implicitly sized.
877 * In addition, set the type of the linked variable to the
878 * explicitly sized array.
879 */
880 if (var->type->is_array() && existing->type->is_array() &&
881 (var->type->fields.array == existing->type->fields.array) &&
882 ((var->type->length == 0)|| (existing->type->length == 0))) {
883 if (var->type->length != 0) {
884 if (var->type->length <= existing->data.max_array_access) {
885 linker_error(prog, "%s `%s' declared as type "
886 "`%s' but outermost dimension has an index"
887 " of `%i'\n",
888 mode_string(var),
889 var->name, var->type->name,
890 existing->data.max_array_access);
891 }
892 existing->type = var->type;
893 return true;
894 } else if (existing->type->length != 0) {
895 if(existing->type->length <= var->data.max_array_access) {
896 linker_error(prog, "%s `%s' declared as type "
897 "`%s' but outermost dimension has an index"
898 " of `%i'\n",
899 mode_string(var),
900 var->name, existing->type->name,
901 var->data.max_array_access);
902 }
903 return true;
904 }
905 }
906 return false;
907 }
908
909
910 /**
911 * Perform validation of global variables used across multiple shaders
912 */
913 void
914 cross_validate_globals(struct gl_shader_program *prog,
915 struct gl_shader **shader_list,
916 unsigned num_shaders,
917 bool uniforms_only)
918 {
919 /* Examine all of the uniforms in all of the shaders and cross validate
920 * them.
921 */
922 glsl_symbol_table variables;
923 for (unsigned i = 0; i < num_shaders; i++) {
924 if (shader_list[i] == NULL)
925 continue;
926
927 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
928 ir_variable *const var = node->as_variable();
929
930 if (var == NULL)
931 continue;
932
933 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
934 continue;
935
936 /* don't cross validate subroutine uniforms */
937 if (var->type->contains_subroutine())
938 continue;
939
940 /* Don't cross validate temporaries that are at global scope. These
941 * will eventually get pulled into the shaders 'main'.
942 */
943 if (var->data.mode == ir_var_temporary)
944 continue;
945
946 /* If a global with this name has already been seen, verify that the
947 * new instance has the same type. In addition, if the globals have
948 * initializers, the values of the initializers must be the same.
949 */
950 ir_variable *const existing = variables.get_variable(var->name);
951 if (existing != NULL) {
952 /* Check if types match. Interface blocks have some special
953 * rules so we handle those elsewhere.
954 */
955 if (var->type != existing->type &&
956 !var->is_interface_instance()) {
957 if (!validate_intrastage_arrays(prog, var, existing)) {
958 if (var->type->is_record() && existing->type->is_record()
959 && existing->type->record_compare(var->type)) {
960 existing->type = var->type;
961 } else {
962 linker_error(prog, "%s `%s' declared as type "
963 "`%s' and type `%s'\n",
964 mode_string(var),
965 var->name, var->type->name,
966 existing->type->name);
967 return;
968 }
969 }
970 }
971
972 if (var->data.explicit_location) {
973 if (existing->data.explicit_location
974 && (var->data.location != existing->data.location)) {
975 linker_error(prog, "explicit locations for %s "
976 "`%s' have differing values\n",
977 mode_string(var), var->name);
978 return;
979 }
980
981 existing->data.location = var->data.location;
982 existing->data.explicit_location = true;
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.atomic.offset != existing->data.atomic.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did not
1070 * have an initializer but a later instance does, copy the
1071 * initializer to the version stored in the symbol table.
1072 */
1073 /* FINISHME: This is wrong. The constant_value field should
1074 * FINISHME: not be modified! Imagine a case where a shader
1075 * FINISHME: without an initializer is linked in two different
1076 * FINISHME: programs with shaders that have differing
1077 * FINISHME: initializers. Linking with the first will
1078 * FINISHME: modify the shader, and linking with the second
1079 * FINISHME: will fail.
1080 */
1081 existing->constant_initializer =
1082 var->constant_initializer->clone(ralloc_parent(existing),
1083 NULL);
1084 }
1085 }
1086
1087 if (var->data.has_initializer) {
1088 if (existing->data.has_initializer
1089 && (var->constant_initializer == NULL
1090 || existing->constant_initializer == NULL)) {
1091 linker_error(prog,
1092 "shared global variable `%s' has multiple "
1093 "non-constant initializers.\n",
1094 var->name);
1095 return;
1096 }
1097
1098 /* Some instance had an initializer, so keep track of that. In
1099 * this location, all sorts of initializers (constant or
1100 * otherwise) will propagate the existence to the variable
1101 * stored in the symbol table.
1102 */
1103 existing->data.has_initializer = true;
1104 }
1105
1106 if (existing->data.invariant != var->data.invariant) {
1107 linker_error(prog, "declarations for %s `%s' have "
1108 "mismatching invariant qualifiers\n",
1109 mode_string(var), var->name);
1110 return;
1111 }
1112 if (existing->data.centroid != var->data.centroid) {
1113 linker_error(prog, "declarations for %s `%s' have "
1114 "mismatching centroid qualifiers\n",
1115 mode_string(var), var->name);
1116 return;
1117 }
1118 if (existing->data.sample != var->data.sample) {
1119 linker_error(prog, "declarations for %s `%s` have "
1120 "mismatching sample qualifiers\n",
1121 mode_string(var), var->name);
1122 return;
1123 }
1124 } else
1125 variables.add_variable(var);
1126 }
1127 }
1128 }
1129
1130
1131 /**
1132 * Perform validation of uniforms used across multiple shader stages
1133 */
1134 void
1135 cross_validate_uniforms(struct gl_shader_program *prog)
1136 {
1137 cross_validate_globals(prog, prog->_LinkedShaders,
1138 MESA_SHADER_STAGES, true);
1139 }
1140
1141 /**
1142 * Accumulates the array of prog->UniformBlocks and checks that all
1143 * definitons of blocks agree on their contents.
1144 */
1145 static bool
1146 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
1147 {
1148 unsigned max_num_uniform_blocks = 0;
1149 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1150 if (prog->_LinkedShaders[i])
1151 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
1152 }
1153
1154 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1155 struct gl_shader *sh = prog->_LinkedShaders[i];
1156
1157 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
1158 max_num_uniform_blocks);
1159 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1160 prog->UniformBlockStageIndex[i][j] = -1;
1161
1162 if (sh == NULL)
1163 continue;
1164
1165 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
1166 int index = link_cross_validate_uniform_block(prog,
1167 &prog->UniformBlocks,
1168 &prog->NumUniformBlocks,
1169 &sh->UniformBlocks[j]);
1170
1171 if (index == -1) {
1172 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1173 sh->UniformBlocks[j].Name);
1174 return false;
1175 }
1176
1177 prog->UniformBlockStageIndex[i][index] = j;
1178 }
1179 }
1180
1181 return true;
1182 }
1183
1184
1185 /**
1186 * Populates a shaders symbol table with all global declarations
1187 */
1188 static void
1189 populate_symbol_table(gl_shader *sh)
1190 {
1191 sh->symbols = new(sh) glsl_symbol_table;
1192
1193 foreach_in_list(ir_instruction, inst, sh->ir) {
1194 ir_variable *var;
1195 ir_function *func;
1196
1197 if ((func = inst->as_function()) != NULL) {
1198 sh->symbols->add_function(func);
1199 } else if ((var = inst->as_variable()) != NULL) {
1200 if (var->data.mode != ir_var_temporary)
1201 sh->symbols->add_variable(var);
1202 }
1203 }
1204 }
1205
1206
1207 /**
1208 * Remap variables referenced in an instruction tree
1209 *
1210 * This is used when instruction trees are cloned from one shader and placed in
1211 * another. These trees will contain references to \c ir_variable nodes that
1212 * do not exist in the target shader. This function finds these \c ir_variable
1213 * references and replaces the references with matching variables in the target
1214 * shader.
1215 *
1216 * If there is no matching variable in the target shader, a clone of the
1217 * \c ir_variable is made and added to the target shader. The new variable is
1218 * added to \b both the instruction stream and the symbol table.
1219 *
1220 * \param inst IR tree that is to be processed.
1221 * \param symbols Symbol table containing global scope symbols in the
1222 * linked shader.
1223 * \param instructions Instruction stream where new variable declarations
1224 * should be added.
1225 */
1226 void
1227 remap_variables(ir_instruction *inst, struct gl_shader *target,
1228 hash_table *temps)
1229 {
1230 class remap_visitor : public ir_hierarchical_visitor {
1231 public:
1232 remap_visitor(struct gl_shader *target,
1233 hash_table *temps)
1234 {
1235 this->target = target;
1236 this->symbols = target->symbols;
1237 this->instructions = target->ir;
1238 this->temps = temps;
1239 }
1240
1241 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1242 {
1243 if (ir->var->data.mode == ir_var_temporary) {
1244 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1245
1246 assert(var != NULL);
1247 ir->var = var;
1248 return visit_continue;
1249 }
1250
1251 ir_variable *const existing =
1252 this->symbols->get_variable(ir->var->name);
1253 if (existing != NULL)
1254 ir->var = existing;
1255 else {
1256 ir_variable *copy = ir->var->clone(this->target, NULL);
1257
1258 this->symbols->add_variable(copy);
1259 this->instructions->push_head(copy);
1260 ir->var = copy;
1261 }
1262
1263 return visit_continue;
1264 }
1265
1266 private:
1267 struct gl_shader *target;
1268 glsl_symbol_table *symbols;
1269 exec_list *instructions;
1270 hash_table *temps;
1271 };
1272
1273 remap_visitor v(target, temps);
1274
1275 inst->accept(&v);
1276 }
1277
1278
1279 /**
1280 * Move non-declarations from one instruction stream to another
1281 *
1282 * The intended usage pattern of this function is to pass the pointer to the
1283 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1284 * pointer) for \c last and \c false for \c make_copies on the first
1285 * call. Successive calls pass the return value of the previous call for
1286 * \c last and \c true for \c make_copies.
1287 *
1288 * \param instructions Source instruction stream
1289 * \param last Instruction after which new instructions should be
1290 * inserted in the target instruction stream
1291 * \param make_copies Flag selecting whether instructions in \c instructions
1292 * should be copied (via \c ir_instruction::clone) into the
1293 * target list or moved.
1294 *
1295 * \return
1296 * The new "last" instruction in the target instruction stream. This pointer
1297 * is suitable for use as the \c last parameter of a later call to this
1298 * function.
1299 */
1300 exec_node *
1301 move_non_declarations(exec_list *instructions, exec_node *last,
1302 bool make_copies, gl_shader *target)
1303 {
1304 hash_table *temps = NULL;
1305
1306 if (make_copies)
1307 temps = hash_table_ctor(0, hash_table_pointer_hash,
1308 hash_table_pointer_compare);
1309
1310 foreach_in_list_safe(ir_instruction, inst, instructions) {
1311 if (inst->as_function())
1312 continue;
1313
1314 ir_variable *var = inst->as_variable();
1315 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1316 continue;
1317
1318 assert(inst->as_assignment()
1319 || inst->as_call()
1320 || inst->as_if() /* for initializers with the ?: operator */
1321 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1322
1323 if (make_copies) {
1324 inst = inst->clone(target, NULL);
1325
1326 if (var != NULL)
1327 hash_table_insert(temps, inst, var);
1328 else
1329 remap_variables(inst, target, temps);
1330 } else {
1331 inst->remove();
1332 }
1333
1334 last->insert_after(inst);
1335 last = inst;
1336 }
1337
1338 if (make_copies)
1339 hash_table_dtor(temps);
1340
1341 return last;
1342 }
1343
1344 /**
1345 * Get the function signature for main from a shader
1346 */
1347 ir_function_signature *
1348 link_get_main_function_signature(gl_shader *sh)
1349 {
1350 ir_function *const f = sh->symbols->get_function("main");
1351 if (f != NULL) {
1352 exec_list void_parameters;
1353
1354 /* Look for the 'void main()' signature and ensure that it's defined.
1355 * This keeps the linker from accidentally pick a shader that just
1356 * contains a prototype for main.
1357 *
1358 * We don't have to check for multiple definitions of main (in multiple
1359 * shaders) because that would have already been caught above.
1360 */
1361 ir_function_signature *sig =
1362 f->matching_signature(NULL, &void_parameters, false);
1363 if ((sig != NULL) && sig->is_defined) {
1364 return sig;
1365 }
1366 }
1367
1368 return NULL;
1369 }
1370
1371
1372 /**
1373 * This class is only used in link_intrastage_shaders() below but declaring
1374 * it inside that function leads to compiler warnings with some versions of
1375 * gcc.
1376 */
1377 class array_sizing_visitor : public ir_hierarchical_visitor {
1378 public:
1379 array_sizing_visitor()
1380 : mem_ctx(ralloc_context(NULL)),
1381 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1382 hash_table_pointer_compare))
1383 {
1384 }
1385
1386 ~array_sizing_visitor()
1387 {
1388 hash_table_dtor(this->unnamed_interfaces);
1389 ralloc_free(this->mem_ctx);
1390 }
1391
1392 virtual ir_visitor_status visit(ir_variable *var)
1393 {
1394 fixup_type(&var->type, var->data.max_array_access);
1395 if (var->type->is_interface()) {
1396 if (interface_contains_unsized_arrays(var->type)) {
1397 const glsl_type *new_type =
1398 resize_interface_members(var->type,
1399 var->get_max_ifc_array_access());
1400 var->type = new_type;
1401 var->change_interface_type(new_type);
1402 }
1403 } else if (var->type->is_array() &&
1404 var->type->fields.array->is_interface()) {
1405 if (interface_contains_unsized_arrays(var->type->fields.array)) {
1406 const glsl_type *new_type =
1407 resize_interface_members(var->type->fields.array,
1408 var->get_max_ifc_array_access());
1409 var->change_interface_type(new_type);
1410 var->type = update_interface_members_array(var->type, new_type);
1411 }
1412 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1413 /* Store a pointer to the variable in the unnamed_interfaces
1414 * hashtable.
1415 */
1416 ir_variable **interface_vars = (ir_variable **)
1417 hash_table_find(this->unnamed_interfaces, ifc_type);
1418 if (interface_vars == NULL) {
1419 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1420 ifc_type->length);
1421 hash_table_insert(this->unnamed_interfaces, interface_vars,
1422 ifc_type);
1423 }
1424 unsigned index = ifc_type->field_index(var->name);
1425 assert(index < ifc_type->length);
1426 assert(interface_vars[index] == NULL);
1427 interface_vars[index] = var;
1428 }
1429 return visit_continue;
1430 }
1431
1432 /**
1433 * For each unnamed interface block that was discovered while running the
1434 * visitor, adjust the interface type to reflect the newly assigned array
1435 * sizes, and fix up the ir_variable nodes to point to the new interface
1436 * type.
1437 */
1438 void fixup_unnamed_interface_types()
1439 {
1440 hash_table_call_foreach(this->unnamed_interfaces,
1441 fixup_unnamed_interface_type, NULL);
1442 }
1443
1444 private:
1445 /**
1446 * If the type pointed to by \c type represents an unsized array, replace
1447 * it with a sized array whose size is determined by max_array_access.
1448 */
1449 static void fixup_type(const glsl_type **type, unsigned max_array_access)
1450 {
1451 if ((*type)->is_unsized_array()) {
1452 *type = glsl_type::get_array_instance((*type)->fields.array,
1453 max_array_access + 1);
1454 assert(*type != NULL);
1455 }
1456 }
1457
1458 static const glsl_type *
1459 update_interface_members_array(const glsl_type *type,
1460 const glsl_type *new_interface_type)
1461 {
1462 const glsl_type *element_type = type->fields.array;
1463 if (element_type->is_array()) {
1464 const glsl_type *new_array_type =
1465 update_interface_members_array(element_type, new_interface_type);
1466 return glsl_type::get_array_instance(new_array_type, type->length);
1467 } else {
1468 return glsl_type::get_array_instance(new_interface_type,
1469 type->length);
1470 }
1471 }
1472
1473 /**
1474 * Determine whether the given interface type contains unsized arrays (if
1475 * it doesn't, array_sizing_visitor doesn't need to process it).
1476 */
1477 static bool interface_contains_unsized_arrays(const glsl_type *type)
1478 {
1479 for (unsigned i = 0; i < type->length; i++) {
1480 const glsl_type *elem_type = type->fields.structure[i].type;
1481 if (elem_type->is_unsized_array())
1482 return true;
1483 }
1484 return false;
1485 }
1486
1487 /**
1488 * Create a new interface type based on the given type, with unsized arrays
1489 * replaced by sized arrays whose size is determined by
1490 * max_ifc_array_access.
1491 */
1492 static const glsl_type *
1493 resize_interface_members(const glsl_type *type,
1494 const unsigned *max_ifc_array_access)
1495 {
1496 unsigned num_fields = type->length;
1497 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1498 memcpy(fields, type->fields.structure,
1499 num_fields * sizeof(*fields));
1500 for (unsigned i = 0; i < num_fields; i++) {
1501 fixup_type(&fields[i].type, max_ifc_array_access[i]);
1502 }
1503 glsl_interface_packing packing =
1504 (glsl_interface_packing) type->interface_packing;
1505 const glsl_type *new_ifc_type =
1506 glsl_type::get_interface_instance(fields, num_fields,
1507 packing, type->name);
1508 delete [] fields;
1509 return new_ifc_type;
1510 }
1511
1512 static void fixup_unnamed_interface_type(const void *key, void *data,
1513 void *)
1514 {
1515 const glsl_type *ifc_type = (const glsl_type *) key;
1516 ir_variable **interface_vars = (ir_variable **) data;
1517 unsigned num_fields = ifc_type->length;
1518 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1519 memcpy(fields, ifc_type->fields.structure,
1520 num_fields * sizeof(*fields));
1521 bool interface_type_changed = false;
1522 for (unsigned i = 0; i < num_fields; i++) {
1523 if (interface_vars[i] != NULL &&
1524 fields[i].type != interface_vars[i]->type) {
1525 fields[i].type = interface_vars[i]->type;
1526 interface_type_changed = true;
1527 }
1528 }
1529 if (!interface_type_changed) {
1530 delete [] fields;
1531 return;
1532 }
1533 glsl_interface_packing packing =
1534 (glsl_interface_packing) ifc_type->interface_packing;
1535 const glsl_type *new_ifc_type =
1536 glsl_type::get_interface_instance(fields, num_fields, packing,
1537 ifc_type->name);
1538 delete [] fields;
1539 for (unsigned i = 0; i < num_fields; i++) {
1540 if (interface_vars[i] != NULL)
1541 interface_vars[i]->change_interface_type(new_ifc_type);
1542 }
1543 }
1544
1545 /**
1546 * Memory context used to allocate the data in \c unnamed_interfaces.
1547 */
1548 void *mem_ctx;
1549
1550 /**
1551 * Hash table from const glsl_type * to an array of ir_variable *'s
1552 * pointing to the ir_variables constituting each unnamed interface block.
1553 */
1554 hash_table *unnamed_interfaces;
1555 };
1556
1557
1558 /**
1559 * Performs the cross-validation of tessellation control shader vertices and
1560 * layout qualifiers for the attached tessellation control shaders,
1561 * and propagates them to the linked TCS and linked shader program.
1562 */
1563 static void
1564 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1565 struct gl_shader *linked_shader,
1566 struct gl_shader **shader_list,
1567 unsigned num_shaders)
1568 {
1569 linked_shader->TessCtrl.VerticesOut = 0;
1570
1571 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1572 return;
1573
1574 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1575 *
1576 * "All tessellation control shader layout declarations in a program
1577 * must specify the same output patch vertex count. There must be at
1578 * least one layout qualifier specifying an output patch vertex count
1579 * in any program containing tessellation control shaders; however,
1580 * such a declaration is not required in all tessellation control
1581 * shaders."
1582 */
1583
1584 for (unsigned i = 0; i < num_shaders; i++) {
1585 struct gl_shader *shader = shader_list[i];
1586
1587 if (shader->TessCtrl.VerticesOut != 0) {
1588 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1589 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1590 linker_error(prog, "tessellation control shader defined with "
1591 "conflicting output vertex count (%d and %d)\n",
1592 linked_shader->TessCtrl.VerticesOut,
1593 shader->TessCtrl.VerticesOut);
1594 return;
1595 }
1596 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1597 }
1598 }
1599
1600 /* Just do the intrastage -> interstage propagation right now,
1601 * since we already know we're in the right type of shader program
1602 * for doing it.
1603 */
1604 if (linked_shader->TessCtrl.VerticesOut == 0) {
1605 linker_error(prog, "tessellation control shader didn't declare "
1606 "vertices out layout qualifier\n");
1607 return;
1608 }
1609 prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
1610 }
1611
1612
1613 /**
1614 * Performs the cross-validation of tessellation evaluation shader
1615 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1616 * for the attached tessellation evaluation shaders, and propagates them
1617 * to the linked TES and linked shader program.
1618 */
1619 static void
1620 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1621 struct gl_shader *linked_shader,
1622 struct gl_shader **shader_list,
1623 unsigned num_shaders)
1624 {
1625 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1626 linked_shader->TessEval.Spacing = 0;
1627 linked_shader->TessEval.VertexOrder = 0;
1628 linked_shader->TessEval.PointMode = -1;
1629
1630 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1631 return;
1632
1633 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1634 *
1635 * "At least one tessellation evaluation shader (compilation unit) in
1636 * a program must declare a primitive mode in its input layout.
1637 * Declaration vertex spacing, ordering, and point mode identifiers is
1638 * optional. It is not required that all tessellation evaluation
1639 * shaders in a program declare a primitive mode. If spacing or
1640 * vertex ordering declarations are omitted, the tessellation
1641 * primitive generator will use equal spacing or counter-clockwise
1642 * vertex ordering, respectively. If a point mode declaration is
1643 * omitted, the tessellation primitive generator will produce lines or
1644 * triangles according to the primitive mode."
1645 */
1646
1647 for (unsigned i = 0; i < num_shaders; i++) {
1648 struct gl_shader *shader = shader_list[i];
1649
1650 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1651 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1652 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1653 linker_error(prog, "tessellation evaluation shader defined with "
1654 "conflicting input primitive modes.\n");
1655 return;
1656 }
1657 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1658 }
1659
1660 if (shader->TessEval.Spacing != 0) {
1661 if (linked_shader->TessEval.Spacing != 0 &&
1662 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1663 linker_error(prog, "tessellation evaluation shader defined with "
1664 "conflicting vertex spacing.\n");
1665 return;
1666 }
1667 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1668 }
1669
1670 if (shader->TessEval.VertexOrder != 0) {
1671 if (linked_shader->TessEval.VertexOrder != 0 &&
1672 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1673 linker_error(prog, "tessellation evaluation shader defined with "
1674 "conflicting ordering.\n");
1675 return;
1676 }
1677 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1678 }
1679
1680 if (shader->TessEval.PointMode != -1) {
1681 if (linked_shader->TessEval.PointMode != -1 &&
1682 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1683 linker_error(prog, "tessellation evaluation shader defined with "
1684 "conflicting point modes.\n");
1685 return;
1686 }
1687 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1688 }
1689
1690 }
1691
1692 /* Just do the intrastage -> interstage propagation right now,
1693 * since we already know we're in the right type of shader program
1694 * for doing it.
1695 */
1696 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1697 linker_error(prog,
1698 "tessellation evaluation shader didn't declare input "
1699 "primitive modes.\n");
1700 return;
1701 }
1702 prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
1703
1704 if (linked_shader->TessEval.Spacing == 0)
1705 linked_shader->TessEval.Spacing = GL_EQUAL;
1706 prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
1707
1708 if (linked_shader->TessEval.VertexOrder == 0)
1709 linked_shader->TessEval.VertexOrder = GL_CCW;
1710 prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
1711
1712 if (linked_shader->TessEval.PointMode == -1)
1713 linked_shader->TessEval.PointMode = GL_FALSE;
1714 prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
1715 }
1716
1717
1718 /**
1719 * Performs the cross-validation of layout qualifiers specified in
1720 * redeclaration of gl_FragCoord for the attached fragment shaders,
1721 * and propagates them to the linked FS and linked shader program.
1722 */
1723 static void
1724 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1725 struct gl_shader *linked_shader,
1726 struct gl_shader **shader_list,
1727 unsigned num_shaders)
1728 {
1729 linked_shader->redeclares_gl_fragcoord = false;
1730 linked_shader->uses_gl_fragcoord = false;
1731 linked_shader->origin_upper_left = false;
1732 linked_shader->pixel_center_integer = false;
1733
1734 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1735 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1736 return;
1737
1738 for (unsigned i = 0; i < num_shaders; i++) {
1739 struct gl_shader *shader = shader_list[i];
1740 /* From the GLSL 1.50 spec, page 39:
1741 *
1742 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1743 * it must be redeclared in all the fragment shaders in that program
1744 * that have a static use gl_FragCoord."
1745 */
1746 if ((linked_shader->redeclares_gl_fragcoord
1747 && !shader->redeclares_gl_fragcoord
1748 && shader->uses_gl_fragcoord)
1749 || (shader->redeclares_gl_fragcoord
1750 && !linked_shader->redeclares_gl_fragcoord
1751 && linked_shader->uses_gl_fragcoord)) {
1752 linker_error(prog, "fragment shader defined with conflicting "
1753 "layout qualifiers for gl_FragCoord\n");
1754 }
1755
1756 /* From the GLSL 1.50 spec, page 39:
1757 *
1758 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1759 * single program must have the same set of qualifiers."
1760 */
1761 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1762 && (shader->origin_upper_left != linked_shader->origin_upper_left
1763 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1764 linker_error(prog, "fragment shader defined with conflicting "
1765 "layout qualifiers for gl_FragCoord\n");
1766 }
1767
1768 /* Update the linked shader state. Note that uses_gl_fragcoord should
1769 * accumulate the results. The other values should replace. If there
1770 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1771 * are already known to be the same.
1772 */
1773 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1774 linked_shader->redeclares_gl_fragcoord =
1775 shader->redeclares_gl_fragcoord;
1776 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1777 || shader->uses_gl_fragcoord;
1778 linked_shader->origin_upper_left = shader->origin_upper_left;
1779 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1780 }
1781
1782 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1783 }
1784 }
1785
1786 /**
1787 * Performs the cross-validation of geometry shader max_vertices and
1788 * primitive type layout qualifiers for the attached geometry shaders,
1789 * and propagates them to the linked GS and linked shader program.
1790 */
1791 static void
1792 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1793 struct gl_shader *linked_shader,
1794 struct gl_shader **shader_list,
1795 unsigned num_shaders)
1796 {
1797 linked_shader->Geom.VerticesOut = 0;
1798 linked_shader->Geom.Invocations = 0;
1799 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1800 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1801
1802 /* No in/out qualifiers defined for anything but GLSL 1.50+
1803 * geometry shaders so far.
1804 */
1805 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1806 return;
1807
1808 /* From the GLSL 1.50 spec, page 46:
1809 *
1810 * "All geometry shader output layout declarations in a program
1811 * must declare the same layout and same value for
1812 * max_vertices. There must be at least one geometry output
1813 * layout declaration somewhere in a program, but not all
1814 * geometry shaders (compilation units) are required to
1815 * declare it."
1816 */
1817
1818 for (unsigned i = 0; i < num_shaders; i++) {
1819 struct gl_shader *shader = shader_list[i];
1820
1821 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1822 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1823 linked_shader->Geom.InputType != shader->Geom.InputType) {
1824 linker_error(prog, "geometry shader defined with conflicting "
1825 "input types\n");
1826 return;
1827 }
1828 linked_shader->Geom.InputType = shader->Geom.InputType;
1829 }
1830
1831 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1832 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1833 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1834 linker_error(prog, "geometry shader defined with conflicting "
1835 "output types\n");
1836 return;
1837 }
1838 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1839 }
1840
1841 if (shader->Geom.VerticesOut != 0) {
1842 if (linked_shader->Geom.VerticesOut != 0 &&
1843 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1844 linker_error(prog, "geometry shader defined with conflicting "
1845 "output vertex count (%d and %d)\n",
1846 linked_shader->Geom.VerticesOut,
1847 shader->Geom.VerticesOut);
1848 return;
1849 }
1850 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1851 }
1852
1853 if (shader->Geom.Invocations != 0) {
1854 if (linked_shader->Geom.Invocations != 0 &&
1855 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1856 linker_error(prog, "geometry shader defined with conflicting "
1857 "invocation count (%d and %d)\n",
1858 linked_shader->Geom.Invocations,
1859 shader->Geom.Invocations);
1860 return;
1861 }
1862 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1863 }
1864 }
1865
1866 /* Just do the intrastage -> interstage propagation right now,
1867 * since we already know we're in the right type of shader program
1868 * for doing it.
1869 */
1870 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1871 linker_error(prog,
1872 "geometry shader didn't declare primitive input type\n");
1873 return;
1874 }
1875 prog->Geom.InputType = linked_shader->Geom.InputType;
1876
1877 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1878 linker_error(prog,
1879 "geometry shader didn't declare primitive output type\n");
1880 return;
1881 }
1882 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1883
1884 if (linked_shader->Geom.VerticesOut == 0) {
1885 linker_error(prog,
1886 "geometry shader didn't declare max_vertices\n");
1887 return;
1888 }
1889 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1890
1891 if (linked_shader->Geom.Invocations == 0)
1892 linked_shader->Geom.Invocations = 1;
1893
1894 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1895 }
1896
1897
1898 /**
1899 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1900 * qualifiers for the attached compute shaders, and propagate them to the
1901 * linked CS and linked shader program.
1902 */
1903 static void
1904 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1905 struct gl_shader *linked_shader,
1906 struct gl_shader **shader_list,
1907 unsigned num_shaders)
1908 {
1909 for (int i = 0; i < 3; i++)
1910 linked_shader->Comp.LocalSize[i] = 0;
1911
1912 /* This function is called for all shader stages, but it only has an effect
1913 * for compute shaders.
1914 */
1915 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1916 return;
1917
1918 /* From the ARB_compute_shader spec, in the section describing local size
1919 * declarations:
1920 *
1921 * If multiple compute shaders attached to a single program object
1922 * declare local work-group size, the declarations must be identical;
1923 * otherwise a link-time error results. Furthermore, if a program
1924 * object contains any compute shaders, at least one must contain an
1925 * input layout qualifier specifying the local work sizes of the
1926 * program, or a link-time error will occur.
1927 */
1928 for (unsigned sh = 0; sh < num_shaders; sh++) {
1929 struct gl_shader *shader = shader_list[sh];
1930
1931 if (shader->Comp.LocalSize[0] != 0) {
1932 if (linked_shader->Comp.LocalSize[0] != 0) {
1933 for (int i = 0; i < 3; i++) {
1934 if (linked_shader->Comp.LocalSize[i] !=
1935 shader->Comp.LocalSize[i]) {
1936 linker_error(prog, "compute shader defined with conflicting "
1937 "local sizes\n");
1938 return;
1939 }
1940 }
1941 }
1942 for (int i = 0; i < 3; i++)
1943 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1944 }
1945 }
1946
1947 /* Just do the intrastage -> interstage propagation right now,
1948 * since we already know we're in the right type of shader program
1949 * for doing it.
1950 */
1951 if (linked_shader->Comp.LocalSize[0] == 0) {
1952 linker_error(prog, "compute shader didn't declare local size\n");
1953 return;
1954 }
1955 for (int i = 0; i < 3; i++)
1956 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1957 }
1958
1959
1960 /**
1961 * Combine a group of shaders for a single stage to generate a linked shader
1962 *
1963 * \note
1964 * If this function is supplied a single shader, it is cloned, and the new
1965 * shader is returned.
1966 */
1967 static struct gl_shader *
1968 link_intrastage_shaders(void *mem_ctx,
1969 struct gl_context *ctx,
1970 struct gl_shader_program *prog,
1971 struct gl_shader **shader_list,
1972 unsigned num_shaders)
1973 {
1974 struct gl_uniform_block *uniform_blocks = NULL;
1975
1976 /* Check that global variables defined in multiple shaders are consistent.
1977 */
1978 cross_validate_globals(prog, shader_list, num_shaders, false);
1979 if (!prog->LinkStatus)
1980 return NULL;
1981
1982 /* Check that interface blocks defined in multiple shaders are consistent.
1983 */
1984 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1985 num_shaders);
1986 if (!prog->LinkStatus)
1987 return NULL;
1988
1989 /* Link up uniform blocks defined within this stage. */
1990 const unsigned num_uniform_blocks =
1991 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1992 &uniform_blocks);
1993 if (!prog->LinkStatus)
1994 return NULL;
1995
1996 /* Check that there is only a single definition of each function signature
1997 * across all shaders.
1998 */
1999 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2000 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2001 ir_function *const f = node->as_function();
2002
2003 if (f == NULL)
2004 continue;
2005
2006 for (unsigned j = i + 1; j < num_shaders; j++) {
2007 ir_function *const other =
2008 shader_list[j]->symbols->get_function(f->name);
2009
2010 /* If the other shader has no function (and therefore no function
2011 * signatures) with the same name, skip to the next shader.
2012 */
2013 if (other == NULL)
2014 continue;
2015
2016 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2017 if (!sig->is_defined || sig->is_builtin())
2018 continue;
2019
2020 ir_function_signature *other_sig =
2021 other->exact_matching_signature(NULL, &sig->parameters);
2022
2023 if ((other_sig != NULL) && other_sig->is_defined
2024 && !other_sig->is_builtin()) {
2025 linker_error(prog, "function `%s' is multiply defined\n",
2026 f->name);
2027 return NULL;
2028 }
2029 }
2030 }
2031 }
2032 }
2033
2034 /* Find the shader that defines main, and make a clone of it.
2035 *
2036 * Starting with the clone, search for undefined references. If one is
2037 * found, find the shader that defines it. Clone the reference and add
2038 * it to the shader. Repeat until there are no undefined references or
2039 * until a reference cannot be resolved.
2040 */
2041 gl_shader *main = NULL;
2042 for (unsigned i = 0; i < num_shaders; i++) {
2043 if (link_get_main_function_signature(shader_list[i]) != NULL) {
2044 main = shader_list[i];
2045 break;
2046 }
2047 }
2048
2049 if (main == NULL) {
2050 linker_error(prog, "%s shader lacks `main'\n",
2051 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2052 return NULL;
2053 }
2054
2055 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
2056 linked->ir = new(linked) exec_list;
2057 clone_ir_list(mem_ctx, linked->ir, main->ir);
2058
2059 linked->UniformBlocks = uniform_blocks;
2060 linked->NumUniformBlocks = num_uniform_blocks;
2061 ralloc_steal(linked, linked->UniformBlocks);
2062
2063 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2064 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2065 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2066 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2067 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2068
2069 populate_symbol_table(linked);
2070
2071 /* The pointer to the main function in the final linked shader (i.e., the
2072 * copy of the original shader that contained the main function).
2073 */
2074 ir_function_signature *const main_sig =
2075 link_get_main_function_signature(linked);
2076
2077 /* Move any instructions other than variable declarations or function
2078 * declarations into main.
2079 */
2080 exec_node *insertion_point =
2081 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2082 linked);
2083
2084 for (unsigned i = 0; i < num_shaders; i++) {
2085 if (shader_list[i] == main)
2086 continue;
2087
2088 insertion_point = move_non_declarations(shader_list[i]->ir,
2089 insertion_point, true, linked);
2090 }
2091
2092 /* Check if any shader needs built-in functions. */
2093 bool need_builtins = false;
2094 for (unsigned i = 0; i < num_shaders; i++) {
2095 if (shader_list[i]->uses_builtin_functions) {
2096 need_builtins = true;
2097 break;
2098 }
2099 }
2100
2101 bool ok;
2102 if (need_builtins) {
2103 /* Make a temporary array one larger than shader_list, which will hold
2104 * the built-in function shader as well.
2105 */
2106 gl_shader **linking_shaders = (gl_shader **)
2107 calloc(num_shaders + 1, sizeof(gl_shader *));
2108
2109 ok = linking_shaders != NULL;
2110
2111 if (ok) {
2112 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2113 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2114
2115 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2116
2117 free(linking_shaders);
2118 } else {
2119 _mesa_error_no_memory(__func__);
2120 }
2121 } else {
2122 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2123 }
2124
2125
2126 if (!ok) {
2127 ctx->Driver.DeleteShader(ctx, linked);
2128 return NULL;
2129 }
2130
2131 /* At this point linked should contain all of the linked IR, so
2132 * validate it to make sure nothing went wrong.
2133 */
2134 validate_ir_tree(linked->ir);
2135
2136 /* Set the size of geometry shader input arrays */
2137 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2138 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
2139 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2140 foreach_in_list(ir_instruction, ir, linked->ir) {
2141 ir->accept(&input_resize_visitor);
2142 }
2143 }
2144
2145 if (ctx->Const.VertexID_is_zero_based)
2146 lower_vertex_id(linked);
2147
2148 /* Validate correct usage of barrier() in the tess control shader */
2149 if (linked->Stage == MESA_SHADER_TESS_CTRL) {
2150 barrier_use_visitor visitor(prog);
2151 foreach_in_list(ir_instruction, ir, linked->ir) {
2152 ir->accept(&visitor);
2153 }
2154 }
2155
2156 /* Make a pass over all variable declarations to ensure that arrays with
2157 * unspecified sizes have a size specified. The size is inferred from the
2158 * max_array_access field.
2159 */
2160 array_sizing_visitor v;
2161 v.run(linked->ir);
2162 v.fixup_unnamed_interface_types();
2163
2164 return linked;
2165 }
2166
2167 /**
2168 * Update the sizes of linked shader uniform arrays to the maximum
2169 * array index used.
2170 *
2171 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2172 *
2173 * If one or more elements of an array are active,
2174 * GetActiveUniform will return the name of the array in name,
2175 * subject to the restrictions listed above. The type of the array
2176 * is returned in type. The size parameter contains the highest
2177 * array element index used, plus one. The compiler or linker
2178 * determines the highest index used. There will be only one
2179 * active uniform reported by the GL per uniform array.
2180
2181 */
2182 static void
2183 update_array_sizes(struct gl_shader_program *prog)
2184 {
2185 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2186 if (prog->_LinkedShaders[i] == NULL)
2187 continue;
2188
2189 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2190 ir_variable *const var = node->as_variable();
2191
2192 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2193 !var->type->is_array())
2194 continue;
2195
2196 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2197 * will not be eliminated. Since we always do std140, just
2198 * don't resize arrays in UBOs.
2199 *
2200 * Atomic counters are supposed to get deterministic
2201 * locations assigned based on the declaration ordering and
2202 * sizes, array compaction would mess that up.
2203 *
2204 * Subroutine uniforms are not removed.
2205 */
2206 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2207 var->type->contains_subroutine())
2208 continue;
2209
2210 unsigned int size = var->data.max_array_access;
2211 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2212 if (prog->_LinkedShaders[j] == NULL)
2213 continue;
2214
2215 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2216 ir_variable *other_var = node2->as_variable();
2217 if (!other_var)
2218 continue;
2219
2220 if (strcmp(var->name, other_var->name) == 0 &&
2221 other_var->data.max_array_access > size) {
2222 size = other_var->data.max_array_access;
2223 }
2224 }
2225 }
2226
2227 if (size + 1 != var->type->length) {
2228 /* If this is a built-in uniform (i.e., it's backed by some
2229 * fixed-function state), adjust the number of state slots to
2230 * match the new array size. The number of slots per array entry
2231 * is not known. It seems safe to assume that the total number of
2232 * slots is an integer multiple of the number of array elements.
2233 * Determine the number of slots per array element by dividing by
2234 * the old (total) size.
2235 */
2236 const unsigned num_slots = var->get_num_state_slots();
2237 if (num_slots > 0) {
2238 var->set_num_state_slots((size + 1)
2239 * (num_slots / var->type->length));
2240 }
2241
2242 var->type = glsl_type::get_array_instance(var->type->fields.array,
2243 size + 1);
2244 /* FINISHME: We should update the types of array
2245 * dereferences of this variable now.
2246 */
2247 }
2248 }
2249 }
2250 }
2251
2252 /**
2253 * Resize tessellation evaluation per-vertex inputs to the size of
2254 * tessellation control per-vertex outputs.
2255 */
2256 static void
2257 resize_tes_inputs(struct gl_context *ctx,
2258 struct gl_shader_program *prog)
2259 {
2260 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2261 return;
2262
2263 gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2264 gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2265
2266 /* If no control shader is present, then the TES inputs are statically
2267 * sized to MaxPatchVertices; the actual size of the arrays won't be
2268 * known until draw time.
2269 */
2270 const int num_vertices = tcs
2271 ? tcs->TessCtrl.VerticesOut
2272 : ctx->Const.MaxPatchVertices;
2273
2274 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2275 foreach_in_list(ir_instruction, ir, tes->ir) {
2276 ir->accept(&input_resize_visitor);
2277 }
2278 }
2279
2280 /**
2281 * Find a contiguous set of available bits in a bitmask.
2282 *
2283 * \param used_mask Bits representing used (1) and unused (0) locations
2284 * \param needed_count Number of contiguous bits needed.
2285 *
2286 * \return
2287 * Base location of the available bits on success or -1 on failure.
2288 */
2289 int
2290 find_available_slots(unsigned used_mask, unsigned needed_count)
2291 {
2292 unsigned needed_mask = (1 << needed_count) - 1;
2293 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2294
2295 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2296 * cannot optimize possibly infinite loops" for the loop below.
2297 */
2298 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2299 return -1;
2300
2301 for (int i = 0; i <= max_bit_to_test; i++) {
2302 if ((needed_mask & ~used_mask) == needed_mask)
2303 return i;
2304
2305 needed_mask <<= 1;
2306 }
2307
2308 return -1;
2309 }
2310
2311
2312 /**
2313 * Assign locations for either VS inputs or FS outputs
2314 *
2315 * \param prog Shader program whose variables need locations assigned
2316 * \param constants Driver specific constant values for the program.
2317 * \param target_index Selector for the program target to receive location
2318 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2319 * \c MESA_SHADER_FRAGMENT.
2320 *
2321 * \return
2322 * If locations are successfully assigned, true is returned. Otherwise an
2323 * error is emitted to the shader link log and false is returned.
2324 */
2325 bool
2326 assign_attribute_or_color_locations(gl_shader_program *prog,
2327 struct gl_constants *constants,
2328 unsigned target_index)
2329 {
2330 /* Maximum number of generic locations. This corresponds to either the
2331 * maximum number of draw buffers or the maximum number of generic
2332 * attributes.
2333 */
2334 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2335 constants->Program[target_index].MaxAttribs :
2336 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2337
2338 /* Mark invalid locations as being used.
2339 */
2340 unsigned used_locations = (max_index >= 32)
2341 ? ~0 : ~((1 << max_index) - 1);
2342 unsigned double_storage_locations = 0;
2343
2344 assert((target_index == MESA_SHADER_VERTEX)
2345 || (target_index == MESA_SHADER_FRAGMENT));
2346
2347 gl_shader *const sh = prog->_LinkedShaders[target_index];
2348 if (sh == NULL)
2349 return true;
2350
2351 /* Operate in a total of four passes.
2352 *
2353 * 1. Invalidate the location assignments for all vertex shader inputs.
2354 *
2355 * 2. Assign locations for inputs that have user-defined (via
2356 * glBindVertexAttribLocation) locations and outputs that have
2357 * user-defined locations (via glBindFragDataLocation).
2358 *
2359 * 3. Sort the attributes without assigned locations by number of slots
2360 * required in decreasing order. Fragmentation caused by attribute
2361 * locations assigned by the application may prevent large attributes
2362 * from having enough contiguous space.
2363 *
2364 * 4. Assign locations to any inputs without assigned locations.
2365 */
2366
2367 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2368 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2369
2370 const enum ir_variable_mode direction =
2371 (target_index == MESA_SHADER_VERTEX)
2372 ? ir_var_shader_in : ir_var_shader_out;
2373
2374
2375 /* Temporary storage for the set of attributes that need locations assigned.
2376 */
2377 struct temp_attr {
2378 unsigned slots;
2379 ir_variable *var;
2380
2381 /* Used below in the call to qsort. */
2382 static int compare(const void *a, const void *b)
2383 {
2384 const temp_attr *const l = (const temp_attr *) a;
2385 const temp_attr *const r = (const temp_attr *) b;
2386
2387 /* Reversed because we want a descending order sort below. */
2388 return r->slots - l->slots;
2389 }
2390 } to_assign[16];
2391
2392 unsigned num_attr = 0;
2393 unsigned total_attribs_size = 0;
2394
2395 foreach_in_list(ir_instruction, node, sh->ir) {
2396 ir_variable *const var = node->as_variable();
2397
2398 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2399 continue;
2400
2401 if (var->data.explicit_location) {
2402 if ((var->data.location >= (int)(max_index + generic_base))
2403 || (var->data.location < 0)) {
2404 linker_error(prog,
2405 "invalid explicit location %d specified for `%s'\n",
2406 (var->data.location < 0)
2407 ? var->data.location
2408 : var->data.location - generic_base,
2409 var->name);
2410 return false;
2411 }
2412 } else if (target_index == MESA_SHADER_VERTEX) {
2413 unsigned binding;
2414
2415 if (prog->AttributeBindings->get(binding, var->name)) {
2416 assert(binding >= VERT_ATTRIB_GENERIC0);
2417 var->data.location = binding;
2418 var->data.is_unmatched_generic_inout = 0;
2419 }
2420 } else if (target_index == MESA_SHADER_FRAGMENT) {
2421 unsigned binding;
2422 unsigned index;
2423
2424 if (prog->FragDataBindings->get(binding, var->name)) {
2425 assert(binding >= FRAG_RESULT_DATA0);
2426 var->data.location = binding;
2427 var->data.is_unmatched_generic_inout = 0;
2428
2429 if (prog->FragDataIndexBindings->get(index, var->name)) {
2430 var->data.index = index;
2431 }
2432 }
2433 }
2434
2435 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2436 *
2437 * "Output binding assignments will cause LinkProgram to fail:
2438 * ...
2439 * If the program has an active output assigned to a location greater
2440 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2441 * an active output assigned an index greater than or equal to one;"
2442 */
2443 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2444 var->data.location - generic_base >=
2445 (int) constants->MaxDualSourceDrawBuffers) {
2446 linker_error(prog,
2447 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2448 "with index %u for %s\n",
2449 var->data.location - generic_base, var->data.index,
2450 var->name);
2451 return false;
2452 }
2453
2454 const unsigned slots = var->type->count_attribute_slots();
2455
2456 /* If the variable is not a built-in and has a location statically
2457 * assigned in the shader (presumably via a layout qualifier), make sure
2458 * that it doesn't collide with other assigned locations. Otherwise,
2459 * add it to the list of variables that need linker-assigned locations.
2460 */
2461 if (var->data.location != -1) {
2462 if (var->data.location >= generic_base && var->data.index < 1) {
2463 /* From page 61 of the OpenGL 4.0 spec:
2464 *
2465 * "LinkProgram will fail if the attribute bindings assigned
2466 * by BindAttribLocation do not leave not enough space to
2467 * assign a location for an active matrix attribute or an
2468 * active attribute array, both of which require multiple
2469 * contiguous generic attributes."
2470 *
2471 * I think above text prohibits the aliasing of explicit and
2472 * automatic assignments. But, aliasing is allowed in manual
2473 * assignments of attribute locations. See below comments for
2474 * the details.
2475 *
2476 * From OpenGL 4.0 spec, page 61:
2477 *
2478 * "It is possible for an application to bind more than one
2479 * attribute name to the same location. This is referred to as
2480 * aliasing. This will only work if only one of the aliased
2481 * attributes is active in the executable program, or if no
2482 * path through the shader consumes more than one attribute of
2483 * a set of attributes aliased to the same location. A link
2484 * error can occur if the linker determines that every path
2485 * through the shader consumes multiple aliased attributes,
2486 * but implementations are not required to generate an error
2487 * in this case."
2488 *
2489 * From GLSL 4.30 spec, page 54:
2490 *
2491 * "A program will fail to link if any two non-vertex shader
2492 * input variables are assigned to the same location. For
2493 * vertex shaders, multiple input variables may be assigned
2494 * to the same location using either layout qualifiers or via
2495 * the OpenGL API. However, such aliasing is intended only to
2496 * support vertex shaders where each execution path accesses
2497 * at most one input per each location. Implementations are
2498 * permitted, but not required, to generate link-time errors
2499 * if they detect that every path through the vertex shader
2500 * executable accesses multiple inputs assigned to any single
2501 * location. For all shader types, a program will fail to link
2502 * if explicit location assignments leave the linker unable
2503 * to find space for other variables without explicit
2504 * assignments."
2505 *
2506 * From OpenGL ES 3.0 spec, page 56:
2507 *
2508 * "Binding more than one attribute name to the same location
2509 * is referred to as aliasing, and is not permitted in OpenGL
2510 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2511 * fail when this condition exists. However, aliasing is
2512 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2513 * This will only work if only one of the aliased attributes
2514 * is active in the executable program, or if no path through
2515 * the shader consumes more than one attribute of a set of
2516 * attributes aliased to the same location. A link error can
2517 * occur if the linker determines that every path through the
2518 * shader consumes multiple aliased attributes, but implemen-
2519 * tations are not required to generate an error in this case."
2520 *
2521 * After looking at above references from OpenGL, OpenGL ES and
2522 * GLSL specifications, we allow aliasing of vertex input variables
2523 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2524 *
2525 * NOTE: This is not required by the spec but its worth mentioning
2526 * here that we're not doing anything to make sure that no path
2527 * through the vertex shader executable accesses multiple inputs
2528 * assigned to any single location.
2529 */
2530
2531 /* Mask representing the contiguous slots that will be used by
2532 * this attribute.
2533 */
2534 const unsigned attr = var->data.location - generic_base;
2535 const unsigned use_mask = (1 << slots) - 1;
2536 const char *const string = (target_index == MESA_SHADER_VERTEX)
2537 ? "vertex shader input" : "fragment shader output";
2538
2539 /* Generate a link error if the requested locations for this
2540 * attribute exceed the maximum allowed attribute location.
2541 */
2542 if (attr + slots > max_index) {
2543 linker_error(prog,
2544 "insufficient contiguous locations "
2545 "available for %s `%s' %d %d %d\n", string,
2546 var->name, used_locations, use_mask, attr);
2547 return false;
2548 }
2549
2550 /* Generate a link error if the set of bits requested for this
2551 * attribute overlaps any previously allocated bits.
2552 */
2553 if ((~(use_mask << attr) & used_locations) != used_locations) {
2554 if (target_index == MESA_SHADER_FRAGMENT ||
2555 (prog->IsES && prog->Version >= 300)) {
2556 linker_error(prog,
2557 "overlapping location is assigned "
2558 "to %s `%s' %d %d %d\n", string,
2559 var->name, used_locations, use_mask, attr);
2560 return false;
2561 } else {
2562 linker_warning(prog,
2563 "overlapping location is assigned "
2564 "to %s `%s' %d %d %d\n", string,
2565 var->name, used_locations, use_mask, attr);
2566 }
2567 }
2568
2569 used_locations |= (use_mask << attr);
2570
2571 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2572 *
2573 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2574 * active attribute variables may fail to link, unless
2575 * device-dependent optimizations are able to make the program
2576 * fit within available hardware resources. For the purposes
2577 * of this test, attribute variables of the type dvec3, dvec4,
2578 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2579 * count as consuming twice as many attributes as equivalent
2580 * single-precision types. While these types use the same number
2581 * of generic attributes as their single-precision equivalents,
2582 * implementations are permitted to consume two single-precision
2583 * vectors of internal storage for each three- or four-component
2584 * double-precision vector."
2585 *
2586 * Mark this attribute slot as taking up twice as much space
2587 * so we can count it properly against limits. According to
2588 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2589 * is optional behavior, but it seems preferable.
2590 */
2591 const glsl_type *type = var->type->without_array();
2592 if (type == glsl_type::dvec3_type ||
2593 type == glsl_type::dvec4_type ||
2594 type == glsl_type::dmat2x3_type ||
2595 type == glsl_type::dmat2x4_type ||
2596 type == glsl_type::dmat3_type ||
2597 type == glsl_type::dmat3x4_type ||
2598 type == glsl_type::dmat4x3_type ||
2599 type == glsl_type::dmat4_type) {
2600 double_storage_locations |= (use_mask << attr);
2601 }
2602 }
2603
2604 continue;
2605 }
2606
2607 to_assign[num_attr].slots = slots;
2608 to_assign[num_attr].var = var;
2609 num_attr++;
2610 }
2611
2612 if (target_index == MESA_SHADER_VERTEX) {
2613 unsigned total_attribs_size =
2614 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2615 _mesa_bitcount(double_storage_locations);
2616 if (total_attribs_size > max_index) {
2617 linker_error(prog,
2618 "attempt to use %d vertex attribute slots only %d available ",
2619 total_attribs_size, max_index);
2620 return false;
2621 }
2622 }
2623
2624 /* If all of the attributes were assigned locations by the application (or
2625 * are built-in attributes with fixed locations), return early. This should
2626 * be the common case.
2627 */
2628 if (num_attr == 0)
2629 return true;
2630
2631 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2632
2633 if (target_index == MESA_SHADER_VERTEX) {
2634 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2635 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2636 * reserved to prevent it from being automatically allocated below.
2637 */
2638 find_deref_visitor find("gl_Vertex");
2639 find.run(sh->ir);
2640 if (find.variable_found())
2641 used_locations |= (1 << 0);
2642 }
2643
2644 for (unsigned i = 0; i < num_attr; i++) {
2645 /* Mask representing the contiguous slots that will be used by this
2646 * attribute.
2647 */
2648 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2649
2650 int location = find_available_slots(used_locations, to_assign[i].slots);
2651
2652 if (location < 0) {
2653 const char *const string = (target_index == MESA_SHADER_VERTEX)
2654 ? "vertex shader input" : "fragment shader output";
2655
2656 linker_error(prog,
2657 "insufficient contiguous locations "
2658 "available for %s `%s'\n",
2659 string, to_assign[i].var->name);
2660 return false;
2661 }
2662
2663 to_assign[i].var->data.location = generic_base + location;
2664 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2665 used_locations |= (use_mask << location);
2666 }
2667
2668 return true;
2669 }
2670
2671
2672 /**
2673 * Demote shader inputs and outputs that are not used in other stages
2674 */
2675 void
2676 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
2677 {
2678 foreach_in_list(ir_instruction, node, sh->ir) {
2679 ir_variable *const var = node->as_variable();
2680
2681 if ((var == NULL) || (var->data.mode != int(mode)))
2682 continue;
2683
2684 /* A shader 'in' or 'out' variable is only really an input or output if
2685 * its value is used by other shader stages. This will cause the variable
2686 * to have a location assigned.
2687 */
2688 if (var->data.is_unmatched_generic_inout) {
2689 assert(var->data.mode != ir_var_temporary);
2690 var->data.mode = ir_var_auto;
2691 }
2692 }
2693 }
2694
2695
2696 /**
2697 * Store the gl_FragDepth layout in the gl_shader_program struct.
2698 */
2699 static void
2700 store_fragdepth_layout(struct gl_shader_program *prog)
2701 {
2702 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2703 return;
2704 }
2705
2706 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2707
2708 /* We don't look up the gl_FragDepth symbol directly because if
2709 * gl_FragDepth is not used in the shader, it's removed from the IR.
2710 * However, the symbol won't be removed from the symbol table.
2711 *
2712 * We're only interested in the cases where the variable is NOT removed
2713 * from the IR.
2714 */
2715 foreach_in_list(ir_instruction, node, ir) {
2716 ir_variable *const var = node->as_variable();
2717
2718 if (var == NULL || var->data.mode != ir_var_shader_out) {
2719 continue;
2720 }
2721
2722 if (strcmp(var->name, "gl_FragDepth") == 0) {
2723 switch (var->data.depth_layout) {
2724 case ir_depth_layout_none:
2725 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2726 return;
2727 case ir_depth_layout_any:
2728 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2729 return;
2730 case ir_depth_layout_greater:
2731 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2732 return;
2733 case ir_depth_layout_less:
2734 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2735 return;
2736 case ir_depth_layout_unchanged:
2737 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2738 return;
2739 default:
2740 assert(0);
2741 return;
2742 }
2743 }
2744 }
2745 }
2746
2747 /**
2748 * Validate the resources used by a program versus the implementation limits
2749 */
2750 static void
2751 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2752 {
2753 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2754 struct gl_shader *sh = prog->_LinkedShaders[i];
2755
2756 if (sh == NULL)
2757 continue;
2758
2759 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2760 linker_error(prog, "Too many %s shader texture samplers\n",
2761 _mesa_shader_stage_to_string(i));
2762 }
2763
2764 if (sh->num_uniform_components >
2765 ctx->Const.Program[i].MaxUniformComponents) {
2766 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2767 linker_warning(prog, "Too many %s shader default uniform block "
2768 "components, but the driver will try to optimize "
2769 "them out; this is non-portable out-of-spec "
2770 "behavior\n",
2771 _mesa_shader_stage_to_string(i));
2772 } else {
2773 linker_error(prog, "Too many %s shader default uniform block "
2774 "components\n",
2775 _mesa_shader_stage_to_string(i));
2776 }
2777 }
2778
2779 if (sh->num_combined_uniform_components >
2780 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2781 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2782 linker_warning(prog, "Too many %s shader uniform components, "
2783 "but the driver will try to optimize them out; "
2784 "this is non-portable out-of-spec behavior\n",
2785 _mesa_shader_stage_to_string(i));
2786 } else {
2787 linker_error(prog, "Too many %s shader uniform components\n",
2788 _mesa_shader_stage_to_string(i));
2789 }
2790 }
2791 }
2792
2793 unsigned blocks[MESA_SHADER_STAGES] = {0};
2794 unsigned total_uniform_blocks = 0;
2795
2796 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
2797 if (prog->UniformBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2798 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2799 prog->UniformBlocks[i].Name,
2800 prog->UniformBlocks[i].UniformBufferSize,
2801 ctx->Const.MaxUniformBlockSize);
2802 }
2803
2804 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2805 if (prog->UniformBlockStageIndex[j][i] != -1) {
2806 blocks[j]++;
2807 total_uniform_blocks++;
2808 }
2809 }
2810
2811 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2812 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2813 prog->NumUniformBlocks,
2814 ctx->Const.MaxCombinedUniformBlocks);
2815 } else {
2816 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2817 const unsigned max_uniform_blocks =
2818 ctx->Const.Program[i].MaxUniformBlocks;
2819 if (blocks[i] > max_uniform_blocks) {
2820 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2821 _mesa_shader_stage_to_string(i),
2822 blocks[i],
2823 max_uniform_blocks);
2824 break;
2825 }
2826 }
2827 }
2828 }
2829 }
2830
2831 static void
2832 link_calculate_subroutine_compat(struct gl_shader_program *prog)
2833 {
2834 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2835 struct gl_shader *sh = prog->_LinkedShaders[i];
2836 int count;
2837 if (!sh)
2838 continue;
2839
2840 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
2841 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
2842
2843 if (!uni)
2844 continue;
2845
2846 count = 0;
2847 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
2848 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
2849 for (int k = 0; k < fn->num_compat_types; k++) {
2850 if (fn->types[k] == uni->type) {
2851 count++;
2852 break;
2853 }
2854 }
2855 }
2856 uni->num_compatible_subroutines = count;
2857 }
2858 }
2859 }
2860
2861 static void
2862 check_subroutine_resources(struct gl_shader_program *prog)
2863 {
2864 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2865 struct gl_shader *sh = prog->_LinkedShaders[i];
2866
2867 if (sh) {
2868 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
2869 linker_error(prog, "Too many %s shader subroutine uniforms\n",
2870 _mesa_shader_stage_to_string(i));
2871 }
2872 }
2873 }
2874 /**
2875 * Validate shader image resources.
2876 */
2877 static void
2878 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2879 {
2880 unsigned total_image_units = 0;
2881 unsigned fragment_outputs = 0;
2882
2883 if (!ctx->Extensions.ARB_shader_image_load_store)
2884 return;
2885
2886 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2887 struct gl_shader *sh = prog->_LinkedShaders[i];
2888
2889 if (sh) {
2890 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2891 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
2892 _mesa_shader_stage_to_string(i), sh->NumImages,
2893 ctx->Const.Program[i].MaxImageUniforms);
2894
2895 total_image_units += sh->NumImages;
2896
2897 if (i == MESA_SHADER_FRAGMENT) {
2898 foreach_in_list(ir_instruction, node, sh->ir) {
2899 ir_variable *var = node->as_variable();
2900 if (var && var->data.mode == ir_var_shader_out)
2901 fragment_outputs += var->type->count_attribute_slots();
2902 }
2903 }
2904 }
2905 }
2906
2907 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2908 linker_error(prog, "Too many combined image uniforms\n");
2909
2910 if (total_image_units + fragment_outputs >
2911 ctx->Const.MaxCombinedShaderOutputResources)
2912 linker_error(prog, "Too many combined image uniforms and fragment outputs\n");
2913 }
2914
2915
2916 /**
2917 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
2918 * for a variable, checks for overlaps between other uniforms using explicit
2919 * locations.
2920 */
2921 static bool
2922 reserve_explicit_locations(struct gl_shader_program *prog,
2923 string_to_uint_map *map, ir_variable *var)
2924 {
2925 unsigned slots = var->type->uniform_locations();
2926 unsigned max_loc = var->data.location + slots - 1;
2927
2928 /* Resize remap table if locations do not fit in the current one. */
2929 if (max_loc + 1 > prog->NumUniformRemapTable) {
2930 prog->UniformRemapTable =
2931 reralloc(prog, prog->UniformRemapTable,
2932 gl_uniform_storage *,
2933 max_loc + 1);
2934
2935 if (!prog->UniformRemapTable) {
2936 linker_error(prog, "Out of memory during linking.\n");
2937 return false;
2938 }
2939
2940 /* Initialize allocated space. */
2941 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
2942 prog->UniformRemapTable[i] = NULL;
2943
2944 prog->NumUniformRemapTable = max_loc + 1;
2945 }
2946
2947 for (unsigned i = 0; i < slots; i++) {
2948 unsigned loc = var->data.location + i;
2949
2950 /* Check if location is already used. */
2951 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
2952
2953 /* Possibly same uniform from a different stage, this is ok. */
2954 unsigned hash_loc;
2955 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
2956 continue;
2957
2958 /* ARB_explicit_uniform_location specification states:
2959 *
2960 * "No two default-block uniform variables in the program can have
2961 * the same location, even if they are unused, otherwise a compiler
2962 * or linker error will be generated."
2963 */
2964 linker_error(prog,
2965 "location qualifier for uniform %s overlaps "
2966 "previously used location\n",
2967 var->name);
2968 return false;
2969 }
2970
2971 /* Initialize location as inactive before optimization
2972 * rounds and location assignment.
2973 */
2974 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
2975 }
2976
2977 /* Note, base location used for arrays. */
2978 map->put(var->data.location, var->name);
2979
2980 return true;
2981 }
2982
2983 static bool
2984 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
2985 struct gl_shader *sh,
2986 ir_variable *var)
2987 {
2988 unsigned slots = var->type->uniform_locations();
2989 unsigned max_loc = var->data.location + slots - 1;
2990
2991 /* Resize remap table if locations do not fit in the current one. */
2992 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
2993 sh->SubroutineUniformRemapTable =
2994 reralloc(sh, sh->SubroutineUniformRemapTable,
2995 gl_uniform_storage *,
2996 max_loc + 1);
2997
2998 if (!sh->SubroutineUniformRemapTable) {
2999 linker_error(prog, "Out of memory during linking.\n");
3000 return false;
3001 }
3002
3003 /* Initialize allocated space. */
3004 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3005 sh->SubroutineUniformRemapTable[i] = NULL;
3006
3007 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3008 }
3009
3010 for (unsigned i = 0; i < slots; i++) {
3011 unsigned loc = var->data.location + i;
3012
3013 /* Check if location is already used. */
3014 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3015
3016 /* ARB_explicit_uniform_location specification states:
3017 * "No two subroutine uniform variables can have the same location
3018 * in the same shader stage, otherwise a compiler or linker error
3019 * will be generated."
3020 */
3021 linker_error(prog,
3022 "location qualifier for uniform %s overlaps "
3023 "previously used location\n",
3024 var->name);
3025 return false;
3026 }
3027
3028 /* Initialize location as inactive before optimization
3029 * rounds and location assignment.
3030 */
3031 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3032 }
3033
3034 return true;
3035 }
3036 /**
3037 * Check and reserve all explicit uniform locations, called before
3038 * any optimizations happen to handle also inactive uniforms and
3039 * inactive array elements that may get trimmed away.
3040 */
3041 static void
3042 check_explicit_uniform_locations(struct gl_context *ctx,
3043 struct gl_shader_program *prog)
3044 {
3045 if (!ctx->Extensions.ARB_explicit_uniform_location)
3046 return;
3047
3048 /* This map is used to detect if overlapping explicit locations
3049 * occur with the same uniform (from different stage) or a different one.
3050 */
3051 string_to_uint_map *uniform_map = new string_to_uint_map;
3052
3053 if (!uniform_map) {
3054 linker_error(prog, "Out of memory during linking.\n");
3055 return;
3056 }
3057
3058 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3059 struct gl_shader *sh = prog->_LinkedShaders[i];
3060
3061 if (!sh)
3062 continue;
3063
3064 foreach_in_list(ir_instruction, node, sh->ir) {
3065 ir_variable *var = node->as_variable();
3066 if (var && (var->data.mode == ir_var_uniform || var->data.mode == ir_var_shader_storage) &&
3067 var->data.explicit_location) {
3068 bool ret;
3069 if (var->type->is_subroutine())
3070 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3071 else
3072 ret = reserve_explicit_locations(prog, uniform_map, var);
3073 if (!ret) {
3074 delete uniform_map;
3075 return;
3076 }
3077 }
3078 }
3079 }
3080
3081 delete uniform_map;
3082 }
3083
3084 static bool
3085 add_program_resource(struct gl_shader_program *prog, GLenum type,
3086 const void *data, uint8_t stages)
3087 {
3088 assert(data);
3089
3090 /* If resource already exists, do not add it again. */
3091 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
3092 if (prog->ProgramResourceList[i].Data == data)
3093 return true;
3094
3095 prog->ProgramResourceList =
3096 reralloc(prog,
3097 prog->ProgramResourceList,
3098 gl_program_resource,
3099 prog->NumProgramResourceList + 1);
3100
3101 if (!prog->ProgramResourceList) {
3102 linker_error(prog, "Out of memory during linking.\n");
3103 return false;
3104 }
3105
3106 struct gl_program_resource *res =
3107 &prog->ProgramResourceList[prog->NumProgramResourceList];
3108
3109 res->Type = type;
3110 res->Data = data;
3111 res->StageReferences = stages;
3112
3113 prog->NumProgramResourceList++;
3114
3115 return true;
3116 }
3117
3118 /**
3119 * Function builds a stage reference bitmask from variable name.
3120 */
3121 static uint8_t
3122 build_stageref(struct gl_shader_program *shProg, const char *name,
3123 unsigned mode)
3124 {
3125 uint8_t stages = 0;
3126
3127 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3128 * used for reference mask in gl_program_resource will need to be changed.
3129 */
3130 assert(MESA_SHADER_STAGES < 8);
3131
3132 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3133 struct gl_shader *sh = shProg->_LinkedShaders[i];
3134 if (!sh)
3135 continue;
3136
3137 /* Shader symbol table may contain variables that have
3138 * been optimized away. Search IR for the variable instead.
3139 */
3140 foreach_in_list(ir_instruction, node, sh->ir) {
3141 ir_variable *var = node->as_variable();
3142 if (var) {
3143 unsigned baselen = strlen(var->name);
3144
3145 /* Type needs to match if specified, otherwise we might
3146 * pick a variable with same name but different interface.
3147 */
3148 if (var->data.mode != mode)
3149 continue;
3150
3151 if (strncmp(var->name, name, baselen) == 0) {
3152 /* Check for exact name matches but also check for arrays and
3153 * structs.
3154 */
3155 if (name[baselen] == '\0' ||
3156 name[baselen] == '[' ||
3157 name[baselen] == '.') {
3158 stages |= (1 << i);
3159 break;
3160 }
3161 }
3162 }
3163 }
3164 }
3165 return stages;
3166 }
3167
3168 static bool
3169 add_interface_variables(struct gl_shader_program *shProg,
3170 struct gl_shader *sh, GLenum programInterface)
3171 {
3172 foreach_in_list(ir_instruction, node, sh->ir) {
3173 ir_variable *var = node->as_variable();
3174 uint8_t mask = 0;
3175
3176 if (!var)
3177 continue;
3178
3179 switch (var->data.mode) {
3180 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
3181 * "For GetActiveAttrib, all active vertex shader input variables
3182 * are enumerated, including the special built-in inputs gl_VertexID
3183 * and gl_InstanceID."
3184 */
3185 case ir_var_system_value:
3186 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
3187 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
3188 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
3189 continue;
3190 /* Mark special built-in inputs referenced by the vertex stage so
3191 * that they are considered active by the shader queries.
3192 */
3193 mask = (1 << (MESA_SHADER_VERTEX));
3194 /* FALLTHROUGH */
3195 case ir_var_shader_in:
3196 if (programInterface != GL_PROGRAM_INPUT)
3197 continue;
3198 break;
3199 case ir_var_shader_out:
3200 if (programInterface != GL_PROGRAM_OUTPUT)
3201 continue;
3202 break;
3203 default:
3204 continue;
3205 };
3206
3207 if (!add_program_resource(shProg, programInterface, var,
3208 build_stageref(shProg, var->name,
3209 var->data.mode) | mask))
3210 return false;
3211 }
3212 return true;
3213 }
3214
3215 /**
3216 * Builds up a list of program resources that point to existing
3217 * resource data.
3218 */
3219 void
3220 build_program_resource_list(struct gl_context *ctx,
3221 struct gl_shader_program *shProg)
3222 {
3223 /* Rebuild resource list. */
3224 if (shProg->ProgramResourceList) {
3225 ralloc_free(shProg->ProgramResourceList);
3226 shProg->ProgramResourceList = NULL;
3227 shProg->NumProgramResourceList = 0;
3228 }
3229
3230 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
3231
3232 /* Determine first input and final output stage. These are used to
3233 * detect which variables should be enumerated in the resource list
3234 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
3235 */
3236 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3237 if (!shProg->_LinkedShaders[i])
3238 continue;
3239 if (input_stage == MESA_SHADER_STAGES)
3240 input_stage = i;
3241 output_stage = i;
3242 }
3243
3244 /* Empty shader, no resources. */
3245 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
3246 return;
3247
3248 /* Add inputs and outputs to the resource list. */
3249 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage],
3250 GL_PROGRAM_INPUT))
3251 return;
3252
3253 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage],
3254 GL_PROGRAM_OUTPUT))
3255 return;
3256
3257 /* Add transform feedback varyings. */
3258 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
3259 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
3260 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
3261 &shProg->LinkedTransformFeedback.Varyings[i],
3262 0))
3263 return;
3264 }
3265 }
3266
3267 /* Add uniforms from uniform storage. */
3268 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3269 /* Do not add uniforms internally used by Mesa. */
3270 if (shProg->UniformStorage[i].hidden)
3271 continue;
3272
3273 uint8_t stageref =
3274 build_stageref(shProg, shProg->UniformStorage[i].name,
3275 ir_var_uniform);
3276
3277 /* Add stagereferences for uniforms in a uniform block. */
3278 int block_index = shProg->UniformStorage[i].block_index;
3279 if (block_index != -1) {
3280 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
3281 if (shProg->UniformBlockStageIndex[j][block_index] != -1)
3282 stageref |= (1 << j);
3283 }
3284 }
3285
3286 if (!add_program_resource(shProg, GL_UNIFORM,
3287 &shProg->UniformStorage[i], stageref))
3288 return;
3289 }
3290
3291 /* Add program uniform blocks. */
3292 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
3293 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
3294 &shProg->UniformBlocks[i], 0))
3295 return;
3296 }
3297
3298 /* Add atomic counter buffers. */
3299 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
3300 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
3301 &shProg->AtomicBuffers[i], 0))
3302 return;
3303 }
3304
3305 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3306 GLenum type;
3307 if (!shProg->UniformStorage[i].hidden)
3308 continue;
3309
3310 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
3311 if (!shProg->UniformStorage[i].subroutine[j].active)
3312 continue;
3313
3314 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
3315 /* add shader subroutines */
3316 if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
3317 return;
3318 }
3319 }
3320
3321 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3322 struct gl_shader *sh = shProg->_LinkedShaders[i];
3323 GLuint type;
3324
3325 if (!sh)
3326 continue;
3327
3328 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
3329 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
3330 if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
3331 return;
3332 }
3333 }
3334
3335 /* TODO - following extensions will require more resource types:
3336 *
3337 * GL_ARB_shader_storage_buffer_object
3338 */
3339 }
3340
3341 /**
3342 * This check is done to make sure we allow only constant expression
3343 * indexing and "constant-index-expression" (indexing with an expression
3344 * that includes loop induction variable).
3345 */
3346 static bool
3347 validate_sampler_array_indexing(struct gl_context *ctx,
3348 struct gl_shader_program *prog)
3349 {
3350 dynamic_sampler_array_indexing_visitor v;
3351 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3352 if (prog->_LinkedShaders[i] == NULL)
3353 continue;
3354
3355 bool no_dynamic_indexing =
3356 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
3357
3358 /* Search for array derefs in shader. */
3359 v.run(prog->_LinkedShaders[i]->ir);
3360 if (v.uses_dynamic_sampler_array_indexing()) {
3361 const char *msg = "sampler arrays indexed with non-constant "
3362 "expressions is forbidden in GLSL %s %u";
3363 /* Backend has indicated that it has no dynamic indexing support. */
3364 if (no_dynamic_indexing) {
3365 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3366 return false;
3367 } else {
3368 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3369 }
3370 }
3371 }
3372 return true;
3373 }
3374
3375 static void
3376 link_assign_subroutine_types(struct gl_shader_program *prog)
3377 {
3378 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3379 gl_shader *sh = prog->_LinkedShaders[i];
3380
3381 if (sh == NULL)
3382 continue;
3383
3384 foreach_in_list(ir_instruction, node, sh->ir) {
3385 ir_function *fn = node->as_function();
3386 if (!fn)
3387 continue;
3388
3389 if (fn->is_subroutine)
3390 sh->NumSubroutineUniformTypes++;
3391
3392 if (!fn->num_subroutine_types)
3393 continue;
3394
3395 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
3396 struct gl_subroutine_function,
3397 sh->NumSubroutineFunctions + 1);
3398 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
3399 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
3400 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
3401 ralloc_array(sh, const struct glsl_type *,
3402 fn->num_subroutine_types);
3403 for (int j = 0; j < fn->num_subroutine_types; j++)
3404 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
3405 sh->NumSubroutineFunctions++;
3406 }
3407 }
3408 }
3409
3410 void
3411 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
3412 {
3413 tfeedback_decl *tfeedback_decls = NULL;
3414 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
3415
3416 void *mem_ctx = ralloc_context(NULL); // temporary linker context
3417
3418 prog->LinkStatus = true; /* All error paths will set this to false */
3419 prog->Validated = false;
3420 prog->_Used = false;
3421
3422 prog->ARB_fragment_coord_conventions_enable = false;
3423
3424 /* Separate the shaders into groups based on their type.
3425 */
3426 struct gl_shader **shader_list[MESA_SHADER_STAGES];
3427 unsigned num_shaders[MESA_SHADER_STAGES];
3428
3429 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
3430 shader_list[i] = (struct gl_shader **)
3431 calloc(prog->NumShaders, sizeof(struct gl_shader *));
3432 num_shaders[i] = 0;
3433 }
3434
3435 unsigned min_version = UINT_MAX;
3436 unsigned max_version = 0;
3437 const bool is_es_prog =
3438 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
3439 for (unsigned i = 0; i < prog->NumShaders; i++) {
3440 min_version = MIN2(min_version, prog->Shaders[i]->Version);
3441 max_version = MAX2(max_version, prog->Shaders[i]->Version);
3442
3443 if (prog->Shaders[i]->IsES != is_es_prog) {
3444 linker_error(prog, "all shaders must use same shading "
3445 "language version\n");
3446 goto done;
3447 }
3448
3449 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
3450 prog->ARB_fragment_coord_conventions_enable = true;
3451 }
3452
3453 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
3454 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
3455 num_shaders[shader_type]++;
3456 }
3457
3458 /* In desktop GLSL, different shader versions may be linked together. In
3459 * GLSL ES, all shader versions must be the same.
3460 */
3461 if (is_es_prog && min_version != max_version) {
3462 linker_error(prog, "all shaders must use same shading "
3463 "language version\n");
3464 goto done;
3465 }
3466
3467 prog->Version = max_version;
3468 prog->IsES = is_es_prog;
3469
3470 /* Some shaders have to be linked with some other shaders present.
3471 */
3472 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
3473 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3474 !prog->SeparateShader) {
3475 linker_error(prog, "Geometry shader must be linked with "
3476 "vertex shader\n");
3477 goto done;
3478 }
3479 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
3480 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3481 !prog->SeparateShader) {
3482 linker_error(prog, "Tessellation evaluation shader must be linked with "
3483 "vertex shader\n");
3484 goto done;
3485 }
3486 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
3487 num_shaders[MESA_SHADER_VERTEX] == 0 &&
3488 !prog->SeparateShader) {
3489 linker_error(prog, "Tessellation control shader must be linked with "
3490 "vertex shader\n");
3491 goto done;
3492 }
3493
3494 /* The spec is self-contradictory here. It allows linking without a tess
3495 * eval shader, but that can only be used with transform feedback and
3496 * rasterization disabled. However, transform feedback isn't allowed
3497 * with GL_PATCHES, so it can't be used.
3498 *
3499 * More investigation showed that the idea of transform feedback after
3500 * a tess control shader was dropped, because some hw vendors couldn't
3501 * support tessellation without a tess eval shader, but the linker section
3502 * wasn't updated to reflect that.
3503 *
3504 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
3505 * spec bug.
3506 *
3507 * Do what's reasonable and always require a tess eval shader if a tess
3508 * control shader is present.
3509 */
3510 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
3511 num_shaders[MESA_SHADER_TESS_EVAL] == 0 &&
3512 !prog->SeparateShader) {
3513 linker_error(prog, "Tessellation control shader must be linked with "
3514 "tessellation evaluation shader\n");
3515 goto done;
3516 }
3517
3518 /* Compute shaders have additional restrictions. */
3519 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
3520 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
3521 linker_error(prog, "Compute shaders may not be linked with any other "
3522 "type of shader\n");
3523 }
3524
3525 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3526 if (prog->_LinkedShaders[i] != NULL)
3527 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
3528
3529 prog->_LinkedShaders[i] = NULL;
3530 }
3531
3532 /* Link all shaders for a particular stage and validate the result.
3533 */
3534 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
3535 if (num_shaders[stage] > 0) {
3536 gl_shader *const sh =
3537 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
3538 num_shaders[stage]);
3539
3540 if (!prog->LinkStatus) {
3541 if (sh)
3542 ctx->Driver.DeleteShader(ctx, sh);
3543 goto done;
3544 }
3545
3546 switch (stage) {
3547 case MESA_SHADER_VERTEX:
3548 validate_vertex_shader_executable(prog, sh);
3549 break;
3550 case MESA_SHADER_TESS_CTRL:
3551 /* nothing to be done */
3552 break;
3553 case MESA_SHADER_TESS_EVAL:
3554 validate_tess_eval_shader_executable(prog, sh);
3555 break;
3556 case MESA_SHADER_GEOMETRY:
3557 validate_geometry_shader_executable(prog, sh);
3558 break;
3559 case MESA_SHADER_FRAGMENT:
3560 validate_fragment_shader_executable(prog, sh);
3561 break;
3562 }
3563 if (!prog->LinkStatus) {
3564 if (sh)
3565 ctx->Driver.DeleteShader(ctx, sh);
3566 goto done;
3567 }
3568
3569 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
3570 }
3571 }
3572
3573 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
3574 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
3575 else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0)
3576 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
3577 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
3578 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
3579 else
3580 prog->LastClipDistanceArraySize = 0; /* Not used */
3581
3582 /* Here begins the inter-stage linking phase. Some initial validation is
3583 * performed, then locations are assigned for uniforms, attributes, and
3584 * varyings.
3585 */
3586 cross_validate_uniforms(prog);
3587 if (!prog->LinkStatus)
3588 goto done;
3589
3590 unsigned prev;
3591
3592 for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) {
3593 if (prog->_LinkedShaders[prev] != NULL)
3594 break;
3595 }
3596
3597 check_explicit_uniform_locations(ctx, prog);
3598 link_assign_subroutine_types(prog);
3599
3600 if (!prog->LinkStatus)
3601 goto done;
3602
3603 resize_tes_inputs(ctx, prog);
3604
3605 /* Validate the inputs of each stage with the output of the preceding
3606 * stage.
3607 */
3608 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
3609 if (prog->_LinkedShaders[i] == NULL)
3610 continue;
3611
3612 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
3613 prog->_LinkedShaders[i]);
3614 if (!prog->LinkStatus)
3615 goto done;
3616
3617 cross_validate_outputs_to_inputs(prog,
3618 prog->_LinkedShaders[prev],
3619 prog->_LinkedShaders[i]);
3620 if (!prog->LinkStatus)
3621 goto done;
3622
3623 prev = i;
3624 }
3625
3626 /* Cross-validate uniform blocks between shader stages */
3627 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
3628 MESA_SHADER_STAGES);
3629 if (!prog->LinkStatus)
3630 goto done;
3631
3632 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
3633 if (prog->_LinkedShaders[i] != NULL)
3634 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
3635 }
3636
3637 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
3638 * it before optimization because we want most of the checks to get
3639 * dropped thanks to constant propagation.
3640 *
3641 * This rule also applies to GLSL ES 3.00.
3642 */
3643 if (max_version >= (is_es_prog ? 300 : 130)) {
3644 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3645 if (sh) {
3646 lower_discard_flow(sh->ir);
3647 }
3648 }
3649
3650 if (!interstage_cross_validate_uniform_blocks(prog))
3651 goto done;
3652
3653 /* Do common optimization before assigning storage for attributes,
3654 * uniforms, and varyings. Later optimization could possibly make
3655 * some of that unused.
3656 */
3657 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3658 if (prog->_LinkedShaders[i] == NULL)
3659 continue;
3660
3661 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
3662 if (!prog->LinkStatus)
3663 goto done;
3664
3665 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
3666 lower_clip_distance(prog->_LinkedShaders[i]);
3667 }
3668
3669 if (ctx->Const.LowerTessLevel) {
3670 lower_tess_level(prog->_LinkedShaders[i]);
3671 }
3672
3673 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
3674 &ctx->Const.ShaderCompilerOptions[i],
3675 ctx->Const.NativeIntegers))
3676 ;
3677
3678 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
3679 }
3680
3681 /* Validation for special cases where we allow sampler array indexing
3682 * with loop induction variable. This check emits a warning or error
3683 * depending if backend can handle dynamic indexing.
3684 */
3685 if ((!prog->IsES && prog->Version < 130) ||
3686 (prog->IsES && prog->Version < 300)) {
3687 if (!validate_sampler_array_indexing(ctx, prog))
3688 goto done;
3689 }
3690
3691 /* Check and validate stream emissions in geometry shaders */
3692 validate_geometry_shader_emissions(ctx, prog);
3693
3694 /* Mark all generic shader inputs and outputs as unpaired. */
3695 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
3696 if (prog->_LinkedShaders[i] != NULL) {
3697 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
3698 }
3699 }
3700
3701 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
3702 MESA_SHADER_VERTEX)) {
3703 goto done;
3704 }
3705
3706 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
3707 MESA_SHADER_FRAGMENT)) {
3708 goto done;
3709 }
3710
3711 unsigned first, last;
3712
3713 first = MESA_SHADER_STAGES;
3714 last = 0;
3715
3716 /* Determine first and last stage. */
3717 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3718 if (!prog->_LinkedShaders[i])
3719 continue;
3720 if (first == MESA_SHADER_STAGES)
3721 first = i;
3722 last = i;
3723 }
3724
3725 if (num_tfeedback_decls != 0) {
3726 /* From GL_EXT_transform_feedback:
3727 * A program will fail to link if:
3728 *
3729 * * the <count> specified by TransformFeedbackVaryingsEXT is
3730 * non-zero, but the program object has no vertex or geometry
3731 * shader;
3732 */
3733 if (first == MESA_SHADER_FRAGMENT) {
3734 linker_error(prog, "Transform feedback varyings specified, but "
3735 "no vertex or geometry shader is present.\n");
3736 goto done;
3737 }
3738
3739 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
3740 prog->TransformFeedback.NumVarying);
3741 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
3742 prog->TransformFeedback.VaryingNames,
3743 tfeedback_decls))
3744 goto done;
3745 }
3746
3747 /* Linking the stages in the opposite order (from fragment to vertex)
3748 * ensures that inter-shader outputs written to in an earlier stage are
3749 * eliminated if they are (transitively) not used in a later stage.
3750 */
3751 int next;
3752
3753 if (first < MESA_SHADER_FRAGMENT) {
3754 gl_shader *const sh = prog->_LinkedShaders[last];
3755
3756 if (first == MESA_SHADER_GEOMETRY) {
3757 /* There was no vertex shader, but we still have to assign varying
3758 * locations for use by geometry shader inputs in SSO.
3759 *
3760 * If the shader is not separable (i.e., prog->SeparateShader is
3761 * false), linking will have already failed when first is
3762 * MESA_SHADER_GEOMETRY.
3763 */
3764 if (!assign_varying_locations(ctx, mem_ctx, prog,
3765 NULL, prog->_LinkedShaders[first],
3766 num_tfeedback_decls, tfeedback_decls))
3767 goto done;
3768 }
3769
3770 if (last != MESA_SHADER_FRAGMENT &&
3771 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
3772 /* There was no fragment shader, but we still have to assign varying
3773 * locations for use by transform feedback.
3774 */
3775 if (!assign_varying_locations(ctx, mem_ctx, prog,
3776 sh, NULL,
3777 num_tfeedback_decls, tfeedback_decls))
3778 goto done;
3779 }
3780
3781 do_dead_builtin_varyings(ctx, sh, NULL,
3782 num_tfeedback_decls, tfeedback_decls);
3783
3784 if (!prog->SeparateShader)
3785 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
3786
3787 /* Eliminate code that is now dead due to unused outputs being demoted.
3788 */
3789 while (do_dead_code(sh->ir, false))
3790 ;
3791 }
3792 else if (first == MESA_SHADER_FRAGMENT) {
3793 /* If the program only contains a fragment shader...
3794 */
3795 gl_shader *const sh = prog->_LinkedShaders[first];
3796
3797 do_dead_builtin_varyings(ctx, NULL, sh,
3798 num_tfeedback_decls, tfeedback_decls);
3799
3800 if (prog->SeparateShader) {
3801 if (!assign_varying_locations(ctx, mem_ctx, prog,
3802 NULL /* producer */,
3803 sh /* consumer */,
3804 0 /* num_tfeedback_decls */,
3805 NULL /* tfeedback_decls */))
3806 goto done;
3807 } else
3808 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
3809
3810 while (do_dead_code(sh->ir, false))
3811 ;
3812 }
3813
3814 next = last;
3815 for (int i = next - 1; i >= 0; i--) {
3816 if (prog->_LinkedShaders[i] == NULL)
3817 continue;
3818
3819 gl_shader *const sh_i = prog->_LinkedShaders[i];
3820 gl_shader *const sh_next = prog->_LinkedShaders[next];
3821
3822 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
3823 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3824 tfeedback_decls))
3825 goto done;
3826
3827 do_dead_builtin_varyings(ctx, sh_i, sh_next,
3828 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
3829 tfeedback_decls);
3830
3831 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
3832 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
3833
3834 /* Eliminate code that is now dead due to unused outputs being demoted.
3835 */
3836 while (do_dead_code(sh_i->ir, false))
3837 ;
3838 while (do_dead_code(sh_next->ir, false))
3839 ;
3840
3841 /* This must be done after all dead varyings are eliminated. */
3842 if (!check_against_output_limit(ctx, prog, sh_i))
3843 goto done;
3844 if (!check_against_input_limit(ctx, prog, sh_next))
3845 goto done;
3846
3847 next = i;
3848 }
3849
3850 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
3851 goto done;
3852
3853 update_array_sizes(prog);
3854 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
3855 link_assign_atomic_counter_resources(ctx, prog);
3856 store_fragdepth_layout(prog);
3857
3858 link_calculate_subroutine_compat(prog);
3859 check_resources(ctx, prog);
3860 check_subroutine_resources(prog);
3861 check_image_resources(ctx, prog);
3862 link_check_atomic_counter_resources(ctx, prog);
3863
3864 if (!prog->LinkStatus)
3865 goto done;
3866
3867 /* OpenGL ES requires that a vertex shader and a fragment shader both be
3868 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
3869 * anything about shader linking when one of the shaders (vertex or
3870 * fragment shader) is absent. So, the extension shouldn't change the
3871 * behavior specified in GLSL specification.
3872 */
3873 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
3874 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
3875 linker_error(prog, "program lacks a vertex shader\n");
3876 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3877 linker_error(prog, "program lacks a fragment shader\n");
3878 }
3879 }
3880
3881 /* FINISHME: Assign fragment shader output locations. */
3882
3883 done:
3884 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3885 free(shader_list[i]);
3886 if (prog->_LinkedShaders[i] == NULL)
3887 continue;
3888
3889 /* Do a final validation step to make sure that the IR wasn't
3890 * invalidated by any modifications performed after intrastage linking.
3891 */
3892 validate_ir_tree(prog->_LinkedShaders[i]->ir);
3893
3894 /* Retain any live IR, but trash the rest. */
3895 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
3896
3897 /* The symbol table in the linked shaders may contain references to
3898 * variables that were removed (e.g., unused uniforms). Since it may
3899 * contain junk, there is no possible valid use. Delete it and set the
3900 * pointer to NULL.
3901 */
3902 delete prog->_LinkedShaders[i]->symbols;
3903 prog->_LinkedShaders[i]->symbols = NULL;
3904 }
3905
3906 ralloc_free(mem_ctx);
3907 }