glsl: don't eliminate texcoords that can be set by GL_COORD_REPLACE
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "glsl_parser_extras.h"
70 #include "ir.h"
71 #include "program.h"
72 #include "program/hash_table.h"
73 #include "linker.h"
74 #include "link_varyings.h"
75 #include "ir_optimization.h"
76 #include "ir_rvalue_visitor.h"
77
78 extern "C" {
79 #include "main/shaderobj.h"
80 #include "main/enums.h"
81 }
82
83 void linker_error(gl_shader_program *, const char *, ...);
84
85 /**
86 * Visitor that determines whether or not a variable is ever written.
87 */
88 class find_assignment_visitor : public ir_hierarchical_visitor {
89 public:
90 find_assignment_visitor(const char *name)
91 : name(name), found(false)
92 {
93 /* empty */
94 }
95
96 virtual ir_visitor_status visit_enter(ir_assignment *ir)
97 {
98 ir_variable *const var = ir->lhs->variable_referenced();
99
100 if (strcmp(name, var->name) == 0) {
101 found = true;
102 return visit_stop;
103 }
104
105 return visit_continue_with_parent;
106 }
107
108 virtual ir_visitor_status visit_enter(ir_call *ir)
109 {
110 exec_list_iterator sig_iter = ir->callee->parameters.iterator();
111 foreach_iter(exec_list_iterator, iter, *ir) {
112 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
113 ir_variable *sig_param = (ir_variable *)sig_iter.get();
114
115 if (sig_param->mode == ir_var_function_out ||
116 sig_param->mode == ir_var_function_inout) {
117 ir_variable *var = param_rval->variable_referenced();
118 if (var && strcmp(name, var->name) == 0) {
119 found = true;
120 return visit_stop;
121 }
122 }
123 sig_iter.next();
124 }
125
126 if (ir->return_deref != NULL) {
127 ir_variable *const var = ir->return_deref->variable_referenced();
128
129 if (strcmp(name, var->name) == 0) {
130 found = true;
131 return visit_stop;
132 }
133 }
134
135 return visit_continue_with_parent;
136 }
137
138 bool variable_found()
139 {
140 return found;
141 }
142
143 private:
144 const char *name; /**< Find writes to a variable with this name. */
145 bool found; /**< Was a write to the variable found? */
146 };
147
148
149 /**
150 * Visitor that determines whether or not a variable is ever read.
151 */
152 class find_deref_visitor : public ir_hierarchical_visitor {
153 public:
154 find_deref_visitor(const char *name)
155 : name(name), found(false)
156 {
157 /* empty */
158 }
159
160 virtual ir_visitor_status visit(ir_dereference_variable *ir)
161 {
162 if (strcmp(this->name, ir->var->name) == 0) {
163 this->found = true;
164 return visit_stop;
165 }
166
167 return visit_continue;
168 }
169
170 bool variable_found() const
171 {
172 return this->found;
173 }
174
175 private:
176 const char *name; /**< Find writes to a variable with this name. */
177 bool found; /**< Was a write to the variable found? */
178 };
179
180
181 class geom_array_resize_visitor : public ir_hierarchical_visitor {
182 public:
183 unsigned num_vertices;
184 gl_shader_program *prog;
185
186 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
187 {
188 this->num_vertices = num_vertices;
189 this->prog = prog;
190 }
191
192 virtual ~geom_array_resize_visitor()
193 {
194 /* empty */
195 }
196
197 virtual ir_visitor_status visit(ir_variable *var)
198 {
199 if (!var->type->is_array() || var->mode != ir_var_shader_in)
200 return visit_continue;
201
202 unsigned size = var->type->length;
203
204 /* Generate a link error if the shader has declared this array with an
205 * incorrect size.
206 */
207 if (size && size != this->num_vertices) {
208 linker_error(this->prog, "size of array %s declared as %u, "
209 "but number of input vertices is %u\n",
210 var->name, size, this->num_vertices);
211 return visit_continue;
212 }
213
214 /* Generate a link error if the shader attempts to access an input
215 * array using an index too large for its actual size assigned at link
216 * time.
217 */
218 if (var->max_array_access >= this->num_vertices) {
219 linker_error(this->prog, "geometry shader accesses element %i of "
220 "%s, but only %i input vertices\n",
221 var->max_array_access, var->name, this->num_vertices);
222 return visit_continue;
223 }
224
225 var->type = glsl_type::get_array_instance(var->type->element_type(),
226 this->num_vertices);
227 var->max_array_access = this->num_vertices - 1;
228
229 return visit_continue;
230 }
231
232 /* Dereferences of input variables need to be updated so that their type
233 * matches the newly assigned type of the variable they are accessing. */
234 virtual ir_visitor_status visit(ir_dereference_variable *ir)
235 {
236 ir->type = ir->var->type;
237 return visit_continue;
238 }
239
240 /* Dereferences of 2D input arrays need to be updated so that their type
241 * matches the newly assigned type of the array they are accessing. */
242 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
243 {
244 const glsl_type *const vt = ir->array->type;
245 if (vt->is_array())
246 ir->type = vt->element_type();
247 return visit_continue;
248 }
249 };
250
251
252 void
253 linker_error(gl_shader_program *prog, const char *fmt, ...)
254 {
255 va_list ap;
256
257 ralloc_strcat(&prog->InfoLog, "error: ");
258 va_start(ap, fmt);
259 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
260 va_end(ap);
261
262 prog->LinkStatus = false;
263 }
264
265
266 void
267 linker_warning(gl_shader_program *prog, const char *fmt, ...)
268 {
269 va_list ap;
270
271 ralloc_strcat(&prog->InfoLog, "error: ");
272 va_start(ap, fmt);
273 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
274 va_end(ap);
275
276 }
277
278
279 /**
280 * Given a string identifying a program resource, break it into a base name
281 * and an optional array index in square brackets.
282 *
283 * If an array index is present, \c out_base_name_end is set to point to the
284 * "[" that precedes the array index, and the array index itself is returned
285 * as a long.
286 *
287 * If no array index is present (or if the array index is negative or
288 * mal-formed), \c out_base_name_end, is set to point to the null terminator
289 * at the end of the input string, and -1 is returned.
290 *
291 * Only the final array index is parsed; if the string contains other array
292 * indices (or structure field accesses), they are left in the base name.
293 *
294 * No attempt is made to check that the base name is properly formed;
295 * typically the caller will look up the base name in a hash table, so
296 * ill-formed base names simply turn into hash table lookup failures.
297 */
298 long
299 parse_program_resource_name(const GLchar *name,
300 const GLchar **out_base_name_end)
301 {
302 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
303 *
304 * "When an integer array element or block instance number is part of
305 * the name string, it will be specified in decimal form without a "+"
306 * or "-" sign or any extra leading zeroes. Additionally, the name
307 * string will not include white space anywhere in the string."
308 */
309
310 const size_t len = strlen(name);
311 *out_base_name_end = name + len;
312
313 if (len == 0 || name[len-1] != ']')
314 return -1;
315
316 /* Walk backwards over the string looking for a non-digit character. This
317 * had better be the opening bracket for an array index.
318 *
319 * Initially, i specifies the location of the ']'. Since the string may
320 * contain only the ']' charcater, walk backwards very carefully.
321 */
322 unsigned i;
323 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
324 /* empty */ ;
325
326 if ((i == 0) || name[i-1] != '[')
327 return -1;
328
329 long array_index = strtol(&name[i], NULL, 10);
330 if (array_index < 0)
331 return -1;
332
333 *out_base_name_end = name + (i - 1);
334 return array_index;
335 }
336
337
338 void
339 link_invalidate_variable_locations(gl_shader *sh, int input_base,
340 int output_base)
341 {
342 foreach_list(node, sh->ir) {
343 ir_variable *const var = ((ir_instruction *) node)->as_variable();
344
345 if (var == NULL)
346 continue;
347
348 int base;
349 switch (var->mode) {
350 case ir_var_shader_in:
351 base = input_base;
352 break;
353 case ir_var_shader_out:
354 base = output_base;
355 break;
356 default:
357 continue;
358 }
359
360 /* Only assign locations for generic attributes / varyings / etc.
361 */
362 if ((var->location >= base) && !var->explicit_location)
363 var->location = -1;
364
365 if ((var->location == -1) && !var->explicit_location) {
366 var->is_unmatched_generic_inout = 1;
367 var->location_frac = 0;
368 } else {
369 var->is_unmatched_generic_inout = 0;
370 }
371 }
372 }
373
374
375 /**
376 * Verify that a vertex shader executable meets all semantic requirements.
377 *
378 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
379 * as a side effect.
380 *
381 * \param shader Vertex shader executable to be verified
382 */
383 void
384 validate_vertex_shader_executable(struct gl_shader_program *prog,
385 struct gl_shader *shader)
386 {
387 if (shader == NULL)
388 return;
389
390 /* From the GLSL 1.10 spec, page 48:
391 *
392 * "The variable gl_Position is available only in the vertex
393 * language and is intended for writing the homogeneous vertex
394 * position. All executions of a well-formed vertex shader
395 * executable must write a value into this variable. [...] The
396 * variable gl_Position is available only in the vertex
397 * language and is intended for writing the homogeneous vertex
398 * position. All executions of a well-formed vertex shader
399 * executable must write a value into this variable."
400 *
401 * while in GLSL 1.40 this text is changed to:
402 *
403 * "The variable gl_Position is available only in the vertex
404 * language and is intended for writing the homogeneous vertex
405 * position. It can be written at any time during shader
406 * execution. It may also be read back by a vertex shader
407 * after being written. This value will be used by primitive
408 * assembly, clipping, culling, and other fixed functionality
409 * operations, if present, that operate on primitives after
410 * vertex processing has occurred. Its value is undefined if
411 * the vertex shader executable does not write gl_Position."
412 *
413 * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is
414 * not an error.
415 */
416 if (prog->Version < (prog->IsES ? 300 : 140)) {
417 find_assignment_visitor find("gl_Position");
418 find.run(shader->ir);
419 if (!find.variable_found()) {
420 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
421 return;
422 }
423 }
424
425 prog->Vert.ClipDistanceArraySize = 0;
426
427 if (!prog->IsES && prog->Version >= 130) {
428 /* From section 7.1 (Vertex Shader Special Variables) of the
429 * GLSL 1.30 spec:
430 *
431 * "It is an error for a shader to statically write both
432 * gl_ClipVertex and gl_ClipDistance."
433 *
434 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
435 * gl_ClipVertex nor gl_ClipDistance.
436 */
437 find_assignment_visitor clip_vertex("gl_ClipVertex");
438 find_assignment_visitor clip_distance("gl_ClipDistance");
439
440 clip_vertex.run(shader->ir);
441 clip_distance.run(shader->ir);
442 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
443 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
444 "and `gl_ClipDistance'\n");
445 return;
446 }
447 prog->Vert.UsesClipDistance = clip_distance.variable_found();
448 ir_variable *clip_distance_var =
449 shader->symbols->get_variable("gl_ClipDistance");
450 if (clip_distance_var)
451 prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length;
452 }
453 }
454
455
456 /**
457 * Verify that a fragment shader executable meets all semantic requirements
458 *
459 * \param shader Fragment shader executable to be verified
460 */
461 void
462 validate_fragment_shader_executable(struct gl_shader_program *prog,
463 struct gl_shader *shader)
464 {
465 if (shader == NULL)
466 return;
467
468 find_assignment_visitor frag_color("gl_FragColor");
469 find_assignment_visitor frag_data("gl_FragData");
470
471 frag_color.run(shader->ir);
472 frag_data.run(shader->ir);
473
474 if (frag_color.variable_found() && frag_data.variable_found()) {
475 linker_error(prog, "fragment shader writes to both "
476 "`gl_FragColor' and `gl_FragData'\n");
477 }
478 }
479
480 /**
481 * Verify that a geometry shader executable meets all semantic requirements
482 *
483 * Also sets prog->Geom.VerticesIn as a side effect.
484 *
485 * \param shader Geometry shader executable to be verified
486 */
487 void
488 validate_geometry_shader_executable(struct gl_shader_program *prog,
489 struct gl_shader *shader)
490 {
491 if (shader == NULL)
492 return;
493
494 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
495 prog->Geom.VerticesIn = num_vertices;
496 }
497
498
499 /**
500 * Generate a string describing the mode of a variable
501 */
502 static const char *
503 mode_string(const ir_variable *var)
504 {
505 switch (var->mode) {
506 case ir_var_auto:
507 return (var->read_only) ? "global constant" : "global variable";
508
509 case ir_var_uniform: return "uniform";
510 case ir_var_shader_in: return "shader input";
511 case ir_var_shader_out: return "shader output";
512
513 case ir_var_const_in:
514 case ir_var_temporary:
515 default:
516 assert(!"Should not get here.");
517 return "invalid variable";
518 }
519 }
520
521
522 /**
523 * Perform validation of global variables used across multiple shaders
524 */
525 void
526 cross_validate_globals(struct gl_shader_program *prog,
527 struct gl_shader **shader_list,
528 unsigned num_shaders,
529 bool uniforms_only)
530 {
531 /* Examine all of the uniforms in all of the shaders and cross validate
532 * them.
533 */
534 glsl_symbol_table variables;
535 for (unsigned i = 0; i < num_shaders; i++) {
536 if (shader_list[i] == NULL)
537 continue;
538
539 foreach_list(node, shader_list[i]->ir) {
540 ir_variable *const var = ((ir_instruction *) node)->as_variable();
541
542 if (var == NULL)
543 continue;
544
545 if (uniforms_only && (var->mode != ir_var_uniform))
546 continue;
547
548 /* Don't cross validate temporaries that are at global scope. These
549 * will eventually get pulled into the shaders 'main'.
550 */
551 if (var->mode == ir_var_temporary)
552 continue;
553
554 /* If a global with this name has already been seen, verify that the
555 * new instance has the same type. In addition, if the globals have
556 * initializers, the values of the initializers must be the same.
557 */
558 ir_variable *const existing = variables.get_variable(var->name);
559 if (existing != NULL) {
560 if (var->type != existing->type) {
561 /* Consider the types to be "the same" if both types are arrays
562 * of the same type and one of the arrays is implicitly sized.
563 * In addition, set the type of the linked variable to the
564 * explicitly sized array.
565 */
566 if (var->type->is_array()
567 && existing->type->is_array()
568 && (var->type->fields.array == existing->type->fields.array)
569 && ((var->type->length == 0)
570 || (existing->type->length == 0))) {
571 if (var->type->length != 0) {
572 existing->type = var->type;
573 }
574 } else {
575 linker_error(prog, "%s `%s' declared as type "
576 "`%s' and type `%s'\n",
577 mode_string(var),
578 var->name, var->type->name,
579 existing->type->name);
580 return;
581 }
582 }
583
584 if (var->explicit_location) {
585 if (existing->explicit_location
586 && (var->location != existing->location)) {
587 linker_error(prog, "explicit locations for %s "
588 "`%s' have differing values\n",
589 mode_string(var), var->name);
590 return;
591 }
592
593 existing->location = var->location;
594 existing->explicit_location = true;
595 }
596
597 /* From the GLSL 4.20 specification:
598 * "A link error will result if two compilation units in a program
599 * specify different integer-constant bindings for the same
600 * opaque-uniform name. However, it is not an error to specify a
601 * binding on some but not all declarations for the same name"
602 */
603 if (var->explicit_binding) {
604 if (existing->explicit_binding &&
605 var->binding != existing->binding) {
606 linker_error(prog, "explicit bindings for %s "
607 "`%s' have differing values\n",
608 mode_string(var), var->name);
609 return;
610 }
611
612 existing->binding = var->binding;
613 existing->explicit_binding = true;
614 }
615
616 /* Validate layout qualifiers for gl_FragDepth.
617 *
618 * From the AMD/ARB_conservative_depth specs:
619 *
620 * "If gl_FragDepth is redeclared in any fragment shader in a
621 * program, it must be redeclared in all fragment shaders in
622 * that program that have static assignments to
623 * gl_FragDepth. All redeclarations of gl_FragDepth in all
624 * fragment shaders in a single program must have the same set
625 * of qualifiers."
626 */
627 if (strcmp(var->name, "gl_FragDepth") == 0) {
628 bool layout_declared = var->depth_layout != ir_depth_layout_none;
629 bool layout_differs =
630 var->depth_layout != existing->depth_layout;
631
632 if (layout_declared && layout_differs) {
633 linker_error(prog,
634 "All redeclarations of gl_FragDepth in all "
635 "fragment shaders in a single program must have "
636 "the same set of qualifiers.");
637 }
638
639 if (var->used && layout_differs) {
640 linker_error(prog,
641 "If gl_FragDepth is redeclared with a layout "
642 "qualifier in any fragment shader, it must be "
643 "redeclared with the same layout qualifier in "
644 "all fragment shaders that have assignments to "
645 "gl_FragDepth");
646 }
647 }
648
649 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
650 *
651 * "If a shared global has multiple initializers, the
652 * initializers must all be constant expressions, and they
653 * must all have the same value. Otherwise, a link error will
654 * result. (A shared global having only one initializer does
655 * not require that initializer to be a constant expression.)"
656 *
657 * Previous to 4.20 the GLSL spec simply said that initializers
658 * must have the same value. In this case of non-constant
659 * initializers, this was impossible to determine. As a result,
660 * no vendor actually implemented that behavior. The 4.20
661 * behavior matches the implemented behavior of at least one other
662 * vendor, so we'll implement that for all GLSL versions.
663 */
664 if (var->constant_initializer != NULL) {
665 if (existing->constant_initializer != NULL) {
666 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
667 linker_error(prog, "initializers for %s "
668 "`%s' have differing values\n",
669 mode_string(var), var->name);
670 return;
671 }
672 } else {
673 /* If the first-seen instance of a particular uniform did not
674 * have an initializer but a later instance does, copy the
675 * initializer to the version stored in the symbol table.
676 */
677 /* FINISHME: This is wrong. The constant_value field should
678 * FINISHME: not be modified! Imagine a case where a shader
679 * FINISHME: without an initializer is linked in two different
680 * FINISHME: programs with shaders that have differing
681 * FINISHME: initializers. Linking with the first will
682 * FINISHME: modify the shader, and linking with the second
683 * FINISHME: will fail.
684 */
685 existing->constant_initializer =
686 var->constant_initializer->clone(ralloc_parent(existing),
687 NULL);
688 }
689 }
690
691 if (var->has_initializer) {
692 if (existing->has_initializer
693 && (var->constant_initializer == NULL
694 || existing->constant_initializer == NULL)) {
695 linker_error(prog,
696 "shared global variable `%s' has multiple "
697 "non-constant initializers.\n",
698 var->name);
699 return;
700 }
701
702 /* Some instance had an initializer, so keep track of that. In
703 * this location, all sorts of initializers (constant or
704 * otherwise) will propagate the existence to the variable
705 * stored in the symbol table.
706 */
707 existing->has_initializer = true;
708 }
709
710 if (existing->invariant != var->invariant) {
711 linker_error(prog, "declarations for %s `%s' have "
712 "mismatching invariant qualifiers\n",
713 mode_string(var), var->name);
714 return;
715 }
716 if (existing->centroid != var->centroid) {
717 linker_error(prog, "declarations for %s `%s' have "
718 "mismatching centroid qualifiers\n",
719 mode_string(var), var->name);
720 return;
721 }
722 } else
723 variables.add_variable(var);
724 }
725 }
726 }
727
728
729 /**
730 * Perform validation of uniforms used across multiple shader stages
731 */
732 void
733 cross_validate_uniforms(struct gl_shader_program *prog)
734 {
735 cross_validate_globals(prog, prog->_LinkedShaders,
736 MESA_SHADER_TYPES, true);
737 }
738
739 /**
740 * Accumulates the array of prog->UniformBlocks and checks that all
741 * definitons of blocks agree on their contents.
742 */
743 static bool
744 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
745 {
746 unsigned max_num_uniform_blocks = 0;
747 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
748 if (prog->_LinkedShaders[i])
749 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
750 }
751
752 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
753 struct gl_shader *sh = prog->_LinkedShaders[i];
754
755 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
756 max_num_uniform_blocks);
757 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
758 prog->UniformBlockStageIndex[i][j] = -1;
759
760 if (sh == NULL)
761 continue;
762
763 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
764 int index = link_cross_validate_uniform_block(prog,
765 &prog->UniformBlocks,
766 &prog->NumUniformBlocks,
767 &sh->UniformBlocks[j]);
768
769 if (index == -1) {
770 linker_error(prog, "uniform block `%s' has mismatching definitions",
771 sh->UniformBlocks[j].Name);
772 return false;
773 }
774
775 prog->UniformBlockStageIndex[i][index] = j;
776 }
777 }
778
779 return true;
780 }
781
782
783 /**
784 * Populates a shaders symbol table with all global declarations
785 */
786 static void
787 populate_symbol_table(gl_shader *sh)
788 {
789 sh->symbols = new(sh) glsl_symbol_table;
790
791 foreach_list(node, sh->ir) {
792 ir_instruction *const inst = (ir_instruction *) node;
793 ir_variable *var;
794 ir_function *func;
795
796 if ((func = inst->as_function()) != NULL) {
797 sh->symbols->add_function(func);
798 } else if ((var = inst->as_variable()) != NULL) {
799 sh->symbols->add_variable(var);
800 }
801 }
802 }
803
804
805 /**
806 * Remap variables referenced in an instruction tree
807 *
808 * This is used when instruction trees are cloned from one shader and placed in
809 * another. These trees will contain references to \c ir_variable nodes that
810 * do not exist in the target shader. This function finds these \c ir_variable
811 * references and replaces the references with matching variables in the target
812 * shader.
813 *
814 * If there is no matching variable in the target shader, a clone of the
815 * \c ir_variable is made and added to the target shader. The new variable is
816 * added to \b both the instruction stream and the symbol table.
817 *
818 * \param inst IR tree that is to be processed.
819 * \param symbols Symbol table containing global scope symbols in the
820 * linked shader.
821 * \param instructions Instruction stream where new variable declarations
822 * should be added.
823 */
824 void
825 remap_variables(ir_instruction *inst, struct gl_shader *target,
826 hash_table *temps)
827 {
828 class remap_visitor : public ir_hierarchical_visitor {
829 public:
830 remap_visitor(struct gl_shader *target,
831 hash_table *temps)
832 {
833 this->target = target;
834 this->symbols = target->symbols;
835 this->instructions = target->ir;
836 this->temps = temps;
837 }
838
839 virtual ir_visitor_status visit(ir_dereference_variable *ir)
840 {
841 if (ir->var->mode == ir_var_temporary) {
842 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
843
844 assert(var != NULL);
845 ir->var = var;
846 return visit_continue;
847 }
848
849 ir_variable *const existing =
850 this->symbols->get_variable(ir->var->name);
851 if (existing != NULL)
852 ir->var = existing;
853 else {
854 ir_variable *copy = ir->var->clone(this->target, NULL);
855
856 this->symbols->add_variable(copy);
857 this->instructions->push_head(copy);
858 ir->var = copy;
859 }
860
861 return visit_continue;
862 }
863
864 private:
865 struct gl_shader *target;
866 glsl_symbol_table *symbols;
867 exec_list *instructions;
868 hash_table *temps;
869 };
870
871 remap_visitor v(target, temps);
872
873 inst->accept(&v);
874 }
875
876
877 /**
878 * Move non-declarations from one instruction stream to another
879 *
880 * The intended usage pattern of this function is to pass the pointer to the
881 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
882 * pointer) for \c last and \c false for \c make_copies on the first
883 * call. Successive calls pass the return value of the previous call for
884 * \c last and \c true for \c make_copies.
885 *
886 * \param instructions Source instruction stream
887 * \param last Instruction after which new instructions should be
888 * inserted in the target instruction stream
889 * \param make_copies Flag selecting whether instructions in \c instructions
890 * should be copied (via \c ir_instruction::clone) into the
891 * target list or moved.
892 *
893 * \return
894 * The new "last" instruction in the target instruction stream. This pointer
895 * is suitable for use as the \c last parameter of a later call to this
896 * function.
897 */
898 exec_node *
899 move_non_declarations(exec_list *instructions, exec_node *last,
900 bool make_copies, gl_shader *target)
901 {
902 hash_table *temps = NULL;
903
904 if (make_copies)
905 temps = hash_table_ctor(0, hash_table_pointer_hash,
906 hash_table_pointer_compare);
907
908 foreach_list_safe(node, instructions) {
909 ir_instruction *inst = (ir_instruction *) node;
910
911 if (inst->as_function())
912 continue;
913
914 ir_variable *var = inst->as_variable();
915 if ((var != NULL) && (var->mode != ir_var_temporary))
916 continue;
917
918 assert(inst->as_assignment()
919 || inst->as_call()
920 || inst->as_if() /* for initializers with the ?: operator */
921 || ((var != NULL) && (var->mode == ir_var_temporary)));
922
923 if (make_copies) {
924 inst = inst->clone(target, NULL);
925
926 if (var != NULL)
927 hash_table_insert(temps, inst, var);
928 else
929 remap_variables(inst, target, temps);
930 } else {
931 inst->remove();
932 }
933
934 last->insert_after(inst);
935 last = inst;
936 }
937
938 if (make_copies)
939 hash_table_dtor(temps);
940
941 return last;
942 }
943
944 /**
945 * Get the function signature for main from a shader
946 */
947 static ir_function_signature *
948 get_main_function_signature(gl_shader *sh)
949 {
950 ir_function *const f = sh->symbols->get_function("main");
951 if (f != NULL) {
952 exec_list void_parameters;
953
954 /* Look for the 'void main()' signature and ensure that it's defined.
955 * This keeps the linker from accidentally pick a shader that just
956 * contains a prototype for main.
957 *
958 * We don't have to check for multiple definitions of main (in multiple
959 * shaders) because that would have already been caught above.
960 */
961 ir_function_signature *sig = f->matching_signature(&void_parameters);
962 if ((sig != NULL) && sig->is_defined) {
963 return sig;
964 }
965 }
966
967 return NULL;
968 }
969
970
971 /**
972 * This class is only used in link_intrastage_shaders() below but declaring
973 * it inside that function leads to compiler warnings with some versions of
974 * gcc.
975 */
976 class array_sizing_visitor : public ir_hierarchical_visitor {
977 public:
978 virtual ir_visitor_status visit(ir_variable *var)
979 {
980 if (var->type->is_array() && (var->type->length == 0)) {
981 const glsl_type *type =
982 glsl_type::get_array_instance(var->type->fields.array,
983 var->max_array_access + 1);
984 assert(type != NULL);
985 var->type = type;
986 }
987 return visit_continue;
988 }
989 };
990
991 /**
992 * Performs the cross-validation of geometry shader max_vertices and
993 * primitive type layout qualifiers for the attached geometry shaders,
994 * and propagates them to the linked GS and linked shader program.
995 */
996 static void
997 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
998 struct gl_shader *linked_shader,
999 struct gl_shader **shader_list,
1000 unsigned num_shaders)
1001 {
1002 linked_shader->Geom.VerticesOut = 0;
1003 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1004 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1005
1006 /* No in/out qualifiers defined for anything but GLSL 1.50+
1007 * geometry shaders so far.
1008 */
1009 if (linked_shader->Type != GL_GEOMETRY_SHADER || prog->Version < 150)
1010 return;
1011
1012 /* From the GLSL 1.50 spec, page 46:
1013 *
1014 * "All geometry shader output layout declarations in a program
1015 * must declare the same layout and same value for
1016 * max_vertices. There must be at least one geometry output
1017 * layout declaration somewhere in a program, but not all
1018 * geometry shaders (compilation units) are required to
1019 * declare it."
1020 */
1021
1022 for (unsigned i = 0; i < num_shaders; i++) {
1023 struct gl_shader *shader = shader_list[i];
1024
1025 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1026 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1027 linked_shader->Geom.InputType != shader->Geom.InputType) {
1028 linker_error(prog, "geometry shader defined with conflicting "
1029 "input types\n");
1030 return;
1031 }
1032 linked_shader->Geom.InputType = shader->Geom.InputType;
1033 }
1034
1035 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1036 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1037 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1038 linker_error(prog, "geometry shader defined with conflicting "
1039 "output types\n");
1040 return;
1041 }
1042 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1043 }
1044
1045 if (shader->Geom.VerticesOut != 0) {
1046 if (linked_shader->Geom.VerticesOut != 0 &&
1047 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1048 linker_error(prog, "geometry shader defined with conflicting "
1049 "output vertex count (%d and %d)\n",
1050 linked_shader->Geom.VerticesOut,
1051 shader->Geom.VerticesOut);
1052 return;
1053 }
1054 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1055 }
1056 }
1057
1058 /* Just do the intrastage -> interstage propagation right now,
1059 * since we already know we're in the right type of shader program
1060 * for doing it.
1061 */
1062 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1063 linker_error(prog,
1064 "geometry shader didn't declare primitive input type\n");
1065 return;
1066 }
1067 prog->Geom.InputType = linked_shader->Geom.InputType;
1068
1069 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1070 linker_error(prog,
1071 "geometry shader didn't declare primitive output type\n");
1072 return;
1073 }
1074 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1075
1076 if (linked_shader->Geom.VerticesOut == 0) {
1077 linker_error(prog,
1078 "geometry shader didn't declare max_vertices\n");
1079 return;
1080 }
1081 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1082 }
1083
1084 /**
1085 * Combine a group of shaders for a single stage to generate a linked shader
1086 *
1087 * \note
1088 * If this function is supplied a single shader, it is cloned, and the new
1089 * shader is returned.
1090 */
1091 static struct gl_shader *
1092 link_intrastage_shaders(void *mem_ctx,
1093 struct gl_context *ctx,
1094 struct gl_shader_program *prog,
1095 struct gl_shader **shader_list,
1096 unsigned num_shaders)
1097 {
1098 struct gl_uniform_block *uniform_blocks = NULL;
1099
1100 /* Check that global variables defined in multiple shaders are consistent.
1101 */
1102 cross_validate_globals(prog, shader_list, num_shaders, false);
1103 if (!prog->LinkStatus)
1104 return NULL;
1105
1106 /* Check that interface blocks defined in multiple shaders are consistent.
1107 */
1108 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
1109 num_shaders);
1110 if (!prog->LinkStatus)
1111 return NULL;
1112
1113 /* Link up uniform blocks defined within this stage. */
1114 const unsigned num_uniform_blocks =
1115 link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders,
1116 &uniform_blocks);
1117
1118 /* Check that there is only a single definition of each function signature
1119 * across all shaders.
1120 */
1121 for (unsigned i = 0; i < (num_shaders - 1); i++) {
1122 foreach_list(node, shader_list[i]->ir) {
1123 ir_function *const f = ((ir_instruction *) node)->as_function();
1124
1125 if (f == NULL)
1126 continue;
1127
1128 for (unsigned j = i + 1; j < num_shaders; j++) {
1129 ir_function *const other =
1130 shader_list[j]->symbols->get_function(f->name);
1131
1132 /* If the other shader has no function (and therefore no function
1133 * signatures) with the same name, skip to the next shader.
1134 */
1135 if (other == NULL)
1136 continue;
1137
1138 foreach_iter (exec_list_iterator, iter, *f) {
1139 ir_function_signature *sig =
1140 (ir_function_signature *) iter.get();
1141
1142 if (!sig->is_defined || sig->is_builtin)
1143 continue;
1144
1145 ir_function_signature *other_sig =
1146 other->exact_matching_signature(& sig->parameters);
1147
1148 if ((other_sig != NULL) && other_sig->is_defined
1149 && !other_sig->is_builtin) {
1150 linker_error(prog, "function `%s' is multiply defined",
1151 f->name);
1152 return NULL;
1153 }
1154 }
1155 }
1156 }
1157 }
1158
1159 /* Find the shader that defines main, and make a clone of it.
1160 *
1161 * Starting with the clone, search for undefined references. If one is
1162 * found, find the shader that defines it. Clone the reference and add
1163 * it to the shader. Repeat until there are no undefined references or
1164 * until a reference cannot be resolved.
1165 */
1166 gl_shader *main = NULL;
1167 for (unsigned i = 0; i < num_shaders; i++) {
1168 if (get_main_function_signature(shader_list[i]) != NULL) {
1169 main = shader_list[i];
1170 break;
1171 }
1172 }
1173
1174 if (main == NULL) {
1175 linker_error(prog, "%s shader lacks `main'\n",
1176 _mesa_glsl_shader_target_name(shader_list[0]->Type));
1177 return NULL;
1178 }
1179
1180 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1181 linked->ir = new(linked) exec_list;
1182 clone_ir_list(mem_ctx, linked->ir, main->ir);
1183
1184 linked->UniformBlocks = uniform_blocks;
1185 linked->NumUniformBlocks = num_uniform_blocks;
1186 ralloc_steal(linked, linked->UniformBlocks);
1187
1188 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
1189
1190 populate_symbol_table(linked);
1191
1192 /* The a pointer to the main function in the final linked shader (i.e., the
1193 * copy of the original shader that contained the main function).
1194 */
1195 ir_function_signature *const main_sig = get_main_function_signature(linked);
1196
1197 /* Move any instructions other than variable declarations or function
1198 * declarations into main.
1199 */
1200 exec_node *insertion_point =
1201 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1202 linked);
1203
1204 for (unsigned i = 0; i < num_shaders; i++) {
1205 if (shader_list[i] == main)
1206 continue;
1207
1208 insertion_point = move_non_declarations(shader_list[i]->ir,
1209 insertion_point, true, linked);
1210 }
1211
1212 /* Resolve initializers for global variables in the linked shader.
1213 */
1214 unsigned num_linking_shaders = num_shaders;
1215 for (unsigned i = 0; i < num_shaders; i++)
1216 num_linking_shaders += shader_list[i]->num_builtins_to_link;
1217
1218 gl_shader **linking_shaders =
1219 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
1220
1221 memcpy(linking_shaders, shader_list,
1222 sizeof(linking_shaders[0]) * num_shaders);
1223
1224 unsigned idx = num_shaders;
1225 for (unsigned i = 0; i < num_shaders; i++) {
1226 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
1227 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
1228 idx += shader_list[i]->num_builtins_to_link;
1229 }
1230
1231 assert(idx == num_linking_shaders);
1232
1233 if (!link_function_calls(prog, linked, linking_shaders,
1234 num_linking_shaders)) {
1235 ctx->Driver.DeleteShader(ctx, linked);
1236 free(linking_shaders);
1237 return NULL;
1238 }
1239
1240 free(linking_shaders);
1241
1242 /* At this point linked should contain all of the linked IR, so
1243 * validate it to make sure nothing went wrong.
1244 */
1245 validate_ir_tree(linked->ir);
1246
1247 /* Set the size of geometry shader input arrays */
1248 if (linked->Type == GL_GEOMETRY_SHADER) {
1249 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
1250 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
1251 foreach_iter(exec_list_iterator, iter, *linked->ir) {
1252 ir_instruction *ir = (ir_instruction *)iter.get();
1253 ir->accept(&input_resize_visitor);
1254 }
1255 }
1256
1257 /* Make a pass over all variable declarations to ensure that arrays with
1258 * unspecified sizes have a size specified. The size is inferred from the
1259 * max_array_access field.
1260 */
1261 array_sizing_visitor v;
1262 v.run(linked->ir);
1263
1264 return linked;
1265 }
1266
1267 /**
1268 * Update the sizes of linked shader uniform arrays to the maximum
1269 * array index used.
1270 *
1271 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1272 *
1273 * If one or more elements of an array are active,
1274 * GetActiveUniform will return the name of the array in name,
1275 * subject to the restrictions listed above. The type of the array
1276 * is returned in type. The size parameter contains the highest
1277 * array element index used, plus one. The compiler or linker
1278 * determines the highest index used. There will be only one
1279 * active uniform reported by the GL per uniform array.
1280
1281 */
1282 static void
1283 update_array_sizes(struct gl_shader_program *prog)
1284 {
1285 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1286 if (prog->_LinkedShaders[i] == NULL)
1287 continue;
1288
1289 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1290 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1291
1292 if ((var == NULL) || (var->mode != ir_var_uniform) ||
1293 !var->type->is_array())
1294 continue;
1295
1296 /* GL_ARB_uniform_buffer_object says that std140 uniforms
1297 * will not be eliminated. Since we always do std140, just
1298 * don't resize arrays in UBOs.
1299 */
1300 if (var->is_in_uniform_block())
1301 continue;
1302
1303 unsigned int size = var->max_array_access;
1304 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1305 if (prog->_LinkedShaders[j] == NULL)
1306 continue;
1307
1308 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1309 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1310 if (!other_var)
1311 continue;
1312
1313 if (strcmp(var->name, other_var->name) == 0 &&
1314 other_var->max_array_access > size) {
1315 size = other_var->max_array_access;
1316 }
1317 }
1318 }
1319
1320 if (size + 1 != var->type->length) {
1321 /* If this is a built-in uniform (i.e., it's backed by some
1322 * fixed-function state), adjust the number of state slots to
1323 * match the new array size. The number of slots per array entry
1324 * is not known. It seems safe to assume that the total number of
1325 * slots is an integer multiple of the number of array elements.
1326 * Determine the number of slots per array element by dividing by
1327 * the old (total) size.
1328 */
1329 if (var->num_state_slots > 0) {
1330 var->num_state_slots = (size + 1)
1331 * (var->num_state_slots / var->type->length);
1332 }
1333
1334 var->type = glsl_type::get_array_instance(var->type->fields.array,
1335 size + 1);
1336 /* FINISHME: We should update the types of array
1337 * dereferences of this variable now.
1338 */
1339 }
1340 }
1341 }
1342 }
1343
1344 /**
1345 * Find a contiguous set of available bits in a bitmask.
1346 *
1347 * \param used_mask Bits representing used (1) and unused (0) locations
1348 * \param needed_count Number of contiguous bits needed.
1349 *
1350 * \return
1351 * Base location of the available bits on success or -1 on failure.
1352 */
1353 int
1354 find_available_slots(unsigned used_mask, unsigned needed_count)
1355 {
1356 unsigned needed_mask = (1 << needed_count) - 1;
1357 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1358
1359 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1360 * cannot optimize possibly infinite loops" for the loop below.
1361 */
1362 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1363 return -1;
1364
1365 for (int i = 0; i <= max_bit_to_test; i++) {
1366 if ((needed_mask & ~used_mask) == needed_mask)
1367 return i;
1368
1369 needed_mask <<= 1;
1370 }
1371
1372 return -1;
1373 }
1374
1375
1376 /**
1377 * Assign locations for either VS inputs for FS outputs
1378 *
1379 * \param prog Shader program whose variables need locations assigned
1380 * \param target_index Selector for the program target to receive location
1381 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1382 * \c MESA_SHADER_FRAGMENT.
1383 * \param max_index Maximum number of generic locations. This corresponds
1384 * to either the maximum number of draw buffers or the
1385 * maximum number of generic attributes.
1386 *
1387 * \return
1388 * If locations are successfully assigned, true is returned. Otherwise an
1389 * error is emitted to the shader link log and false is returned.
1390 */
1391 bool
1392 assign_attribute_or_color_locations(gl_shader_program *prog,
1393 unsigned target_index,
1394 unsigned max_index)
1395 {
1396 /* Mark invalid locations as being used.
1397 */
1398 unsigned used_locations = (max_index >= 32)
1399 ? ~0 : ~((1 << max_index) - 1);
1400
1401 assert((target_index == MESA_SHADER_VERTEX)
1402 || (target_index == MESA_SHADER_FRAGMENT));
1403
1404 gl_shader *const sh = prog->_LinkedShaders[target_index];
1405 if (sh == NULL)
1406 return true;
1407
1408 /* Operate in a total of four passes.
1409 *
1410 * 1. Invalidate the location assignments for all vertex shader inputs.
1411 *
1412 * 2. Assign locations for inputs that have user-defined (via
1413 * glBindVertexAttribLocation) locations and outputs that have
1414 * user-defined locations (via glBindFragDataLocation).
1415 *
1416 * 3. Sort the attributes without assigned locations by number of slots
1417 * required in decreasing order. Fragmentation caused by attribute
1418 * locations assigned by the application may prevent large attributes
1419 * from having enough contiguous space.
1420 *
1421 * 4. Assign locations to any inputs without assigned locations.
1422 */
1423
1424 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1425 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1426
1427 const enum ir_variable_mode direction =
1428 (target_index == MESA_SHADER_VERTEX)
1429 ? ir_var_shader_in : ir_var_shader_out;
1430
1431
1432 /* Temporary storage for the set of attributes that need locations assigned.
1433 */
1434 struct temp_attr {
1435 unsigned slots;
1436 ir_variable *var;
1437
1438 /* Used below in the call to qsort. */
1439 static int compare(const void *a, const void *b)
1440 {
1441 const temp_attr *const l = (const temp_attr *) a;
1442 const temp_attr *const r = (const temp_attr *) b;
1443
1444 /* Reversed because we want a descending order sort below. */
1445 return r->slots - l->slots;
1446 }
1447 } to_assign[16];
1448
1449 unsigned num_attr = 0;
1450
1451 foreach_list(node, sh->ir) {
1452 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1453
1454 if ((var == NULL) || (var->mode != (unsigned) direction))
1455 continue;
1456
1457 if (var->explicit_location) {
1458 if ((var->location >= (int)(max_index + generic_base))
1459 || (var->location < 0)) {
1460 linker_error(prog,
1461 "invalid explicit location %d specified for `%s'\n",
1462 (var->location < 0)
1463 ? var->location : var->location - generic_base,
1464 var->name);
1465 return false;
1466 }
1467 } else if (target_index == MESA_SHADER_VERTEX) {
1468 unsigned binding;
1469
1470 if (prog->AttributeBindings->get(binding, var->name)) {
1471 assert(binding >= VERT_ATTRIB_GENERIC0);
1472 var->location = binding;
1473 var->is_unmatched_generic_inout = 0;
1474 }
1475 } else if (target_index == MESA_SHADER_FRAGMENT) {
1476 unsigned binding;
1477 unsigned index;
1478
1479 if (prog->FragDataBindings->get(binding, var->name)) {
1480 assert(binding >= FRAG_RESULT_DATA0);
1481 var->location = binding;
1482 var->is_unmatched_generic_inout = 0;
1483
1484 if (prog->FragDataIndexBindings->get(index, var->name)) {
1485 var->index = index;
1486 }
1487 }
1488 }
1489
1490 /* If the variable is not a built-in and has a location statically
1491 * assigned in the shader (presumably via a layout qualifier), make sure
1492 * that it doesn't collide with other assigned locations. Otherwise,
1493 * add it to the list of variables that need linker-assigned locations.
1494 */
1495 const unsigned slots = var->type->count_attribute_slots();
1496 if (var->location != -1) {
1497 if (var->location >= generic_base && var->index < 1) {
1498 /* From page 61 of the OpenGL 4.0 spec:
1499 *
1500 * "LinkProgram will fail if the attribute bindings assigned
1501 * by BindAttribLocation do not leave not enough space to
1502 * assign a location for an active matrix attribute or an
1503 * active attribute array, both of which require multiple
1504 * contiguous generic attributes."
1505 *
1506 * Previous versions of the spec contain similar language but omit
1507 * the bit about attribute arrays.
1508 *
1509 * Page 61 of the OpenGL 4.0 spec also says:
1510 *
1511 * "It is possible for an application to bind more than one
1512 * attribute name to the same location. This is referred to as
1513 * aliasing. This will only work if only one of the aliased
1514 * attributes is active in the executable program, or if no
1515 * path through the shader consumes more than one attribute of
1516 * a set of attributes aliased to the same location. A link
1517 * error can occur if the linker determines that every path
1518 * through the shader consumes multiple aliased attributes,
1519 * but implementations are not required to generate an error
1520 * in this case."
1521 *
1522 * These two paragraphs are either somewhat contradictory, or I
1523 * don't fully understand one or both of them.
1524 */
1525 /* FINISHME: The code as currently written does not support
1526 * FINISHME: attribute location aliasing (see comment above).
1527 */
1528 /* Mask representing the contiguous slots that will be used by
1529 * this attribute.
1530 */
1531 const unsigned attr = var->location - generic_base;
1532 const unsigned use_mask = (1 << slots) - 1;
1533
1534 /* Generate a link error if the set of bits requested for this
1535 * attribute overlaps any previously allocated bits.
1536 */
1537 if ((~(use_mask << attr) & used_locations) != used_locations) {
1538 const char *const string = (target_index == MESA_SHADER_VERTEX)
1539 ? "vertex shader input" : "fragment shader output";
1540 linker_error(prog,
1541 "insufficient contiguous locations "
1542 "available for %s `%s' %d %d %d", string,
1543 var->name, used_locations, use_mask, attr);
1544 return false;
1545 }
1546
1547 used_locations |= (use_mask << attr);
1548 }
1549
1550 continue;
1551 }
1552
1553 to_assign[num_attr].slots = slots;
1554 to_assign[num_attr].var = var;
1555 num_attr++;
1556 }
1557
1558 /* If all of the attributes were assigned locations by the application (or
1559 * are built-in attributes with fixed locations), return early. This should
1560 * be the common case.
1561 */
1562 if (num_attr == 0)
1563 return true;
1564
1565 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1566
1567 if (target_index == MESA_SHADER_VERTEX) {
1568 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1569 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1570 * reserved to prevent it from being automatically allocated below.
1571 */
1572 find_deref_visitor find("gl_Vertex");
1573 find.run(sh->ir);
1574 if (find.variable_found())
1575 used_locations |= (1 << 0);
1576 }
1577
1578 for (unsigned i = 0; i < num_attr; i++) {
1579 /* Mask representing the contiguous slots that will be used by this
1580 * attribute.
1581 */
1582 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1583
1584 int location = find_available_slots(used_locations, to_assign[i].slots);
1585
1586 if (location < 0) {
1587 const char *const string = (target_index == MESA_SHADER_VERTEX)
1588 ? "vertex shader input" : "fragment shader output";
1589
1590 linker_error(prog,
1591 "insufficient contiguous locations "
1592 "available for %s `%s'",
1593 string, to_assign[i].var->name);
1594 return false;
1595 }
1596
1597 to_assign[i].var->location = generic_base + location;
1598 to_assign[i].var->is_unmatched_generic_inout = 0;
1599 used_locations |= (use_mask << location);
1600 }
1601
1602 return true;
1603 }
1604
1605
1606 /**
1607 * Demote shader inputs and outputs that are not used in other stages
1608 */
1609 void
1610 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1611 {
1612 foreach_list(node, sh->ir) {
1613 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1614
1615 if ((var == NULL) || (var->mode != int(mode)))
1616 continue;
1617
1618 /* A shader 'in' or 'out' variable is only really an input or output if
1619 * its value is used by other shader stages. This will cause the variable
1620 * to have a location assigned.
1621 */
1622 if (var->is_unmatched_generic_inout) {
1623 var->mode = ir_var_auto;
1624 }
1625 }
1626 }
1627
1628
1629 /**
1630 * Store the gl_FragDepth layout in the gl_shader_program struct.
1631 */
1632 static void
1633 store_fragdepth_layout(struct gl_shader_program *prog)
1634 {
1635 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
1636 return;
1637 }
1638
1639 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
1640
1641 /* We don't look up the gl_FragDepth symbol directly because if
1642 * gl_FragDepth is not used in the shader, it's removed from the IR.
1643 * However, the symbol won't be removed from the symbol table.
1644 *
1645 * We're only interested in the cases where the variable is NOT removed
1646 * from the IR.
1647 */
1648 foreach_list(node, ir) {
1649 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1650
1651 if (var == NULL || var->mode != ir_var_shader_out) {
1652 continue;
1653 }
1654
1655 if (strcmp(var->name, "gl_FragDepth") == 0) {
1656 switch (var->depth_layout) {
1657 case ir_depth_layout_none:
1658 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1659 return;
1660 case ir_depth_layout_any:
1661 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1662 return;
1663 case ir_depth_layout_greater:
1664 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1665 return;
1666 case ir_depth_layout_less:
1667 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1668 return;
1669 case ir_depth_layout_unchanged:
1670 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1671 return;
1672 default:
1673 assert(0);
1674 return;
1675 }
1676 }
1677 }
1678 }
1679
1680 /**
1681 * Validate the resources used by a program versus the implementation limits
1682 */
1683 static void
1684 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
1685 {
1686 static const char *const shader_names[MESA_SHADER_TYPES] = {
1687 "vertex", "geometry", "fragment"
1688 };
1689
1690 const unsigned max_samplers[MESA_SHADER_TYPES] = {
1691 ctx->Const.VertexProgram.MaxTextureImageUnits,
1692 ctx->Const.GeometryProgram.MaxTextureImageUnits,
1693 ctx->Const.FragmentProgram.MaxTextureImageUnits
1694 };
1695
1696 const unsigned max_default_uniform_components[MESA_SHADER_TYPES] = {
1697 ctx->Const.VertexProgram.MaxUniformComponents,
1698 ctx->Const.GeometryProgram.MaxUniformComponents,
1699 ctx->Const.FragmentProgram.MaxUniformComponents
1700 };
1701
1702 const unsigned max_combined_uniform_components[MESA_SHADER_TYPES] = {
1703 ctx->Const.VertexProgram.MaxCombinedUniformComponents,
1704 ctx->Const.GeometryProgram.MaxCombinedUniformComponents,
1705 ctx->Const.FragmentProgram.MaxCombinedUniformComponents
1706 };
1707
1708 const unsigned max_uniform_blocks[MESA_SHADER_TYPES] = {
1709 ctx->Const.VertexProgram.MaxUniformBlocks,
1710 ctx->Const.GeometryProgram.MaxUniformBlocks,
1711 ctx->Const.FragmentProgram.MaxUniformBlocks
1712 };
1713
1714 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1715 struct gl_shader *sh = prog->_LinkedShaders[i];
1716
1717 if (sh == NULL)
1718 continue;
1719
1720 if (sh->num_samplers > max_samplers[i]) {
1721 linker_error(prog, "Too many %s shader texture samplers",
1722 shader_names[i]);
1723 }
1724
1725 if (sh->num_uniform_components > max_default_uniform_components[i]) {
1726 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1727 linker_warning(prog, "Too many %s shader default uniform block "
1728 "components, but the driver will try to optimize "
1729 "them out; this is non-portable out-of-spec "
1730 "behavior\n",
1731 shader_names[i]);
1732 } else {
1733 linker_error(prog, "Too many %s shader default uniform block "
1734 "components",
1735 shader_names[i]);
1736 }
1737 }
1738
1739 if (sh->num_combined_uniform_components >
1740 max_combined_uniform_components[i]) {
1741 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
1742 linker_warning(prog, "Too many %s shader uniform components, "
1743 "but the driver will try to optimize them out; "
1744 "this is non-portable out-of-spec behavior\n",
1745 shader_names[i]);
1746 } else {
1747 linker_error(prog, "Too many %s shader uniform components",
1748 shader_names[i]);
1749 }
1750 }
1751 }
1752
1753 unsigned blocks[MESA_SHADER_TYPES] = {0};
1754 unsigned total_uniform_blocks = 0;
1755
1756 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
1757 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1758 if (prog->UniformBlockStageIndex[j][i] != -1) {
1759 blocks[j]++;
1760 total_uniform_blocks++;
1761 }
1762 }
1763
1764 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
1765 linker_error(prog, "Too many combined uniform blocks (%d/%d)",
1766 prog->NumUniformBlocks,
1767 ctx->Const.MaxCombinedUniformBlocks);
1768 } else {
1769 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1770 if (blocks[i] > max_uniform_blocks[i]) {
1771 linker_error(prog, "Too many %s uniform blocks (%d/%d)",
1772 shader_names[i],
1773 blocks[i],
1774 max_uniform_blocks[i]);
1775 break;
1776 }
1777 }
1778 }
1779 }
1780 }
1781
1782 void
1783 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1784 {
1785 tfeedback_decl *tfeedback_decls = NULL;
1786 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
1787
1788 void *mem_ctx = ralloc_context(NULL); // temporary linker context
1789
1790 prog->LinkStatus = true; /* All error paths will set this to false */
1791 prog->Validated = false;
1792 prog->_Used = false;
1793
1794 ralloc_free(prog->InfoLog);
1795 prog->InfoLog = ralloc_strdup(NULL, "");
1796
1797 ralloc_free(prog->UniformBlocks);
1798 prog->UniformBlocks = NULL;
1799 prog->NumUniformBlocks = 0;
1800 for (int i = 0; i < MESA_SHADER_TYPES; i++) {
1801 ralloc_free(prog->UniformBlockStageIndex[i]);
1802 prog->UniformBlockStageIndex[i] = NULL;
1803 }
1804
1805 /* Separate the shaders into groups based on their type.
1806 */
1807 struct gl_shader **vert_shader_list;
1808 unsigned num_vert_shaders = 0;
1809 struct gl_shader **frag_shader_list;
1810 unsigned num_frag_shaders = 0;
1811 struct gl_shader **geom_shader_list;
1812 unsigned num_geom_shaders = 0;
1813
1814 vert_shader_list = (struct gl_shader **)
1815 calloc(prog->NumShaders, sizeof(struct gl_shader *));
1816 frag_shader_list = (struct gl_shader **)
1817 calloc(prog->NumShaders, sizeof(struct gl_shader *));
1818 geom_shader_list = (struct gl_shader **)
1819 calloc(prog->NumShaders, sizeof(struct gl_shader *));
1820
1821 unsigned min_version = UINT_MAX;
1822 unsigned max_version = 0;
1823 const bool is_es_prog =
1824 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
1825 for (unsigned i = 0; i < prog->NumShaders; i++) {
1826 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1827 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1828
1829 if (prog->Shaders[i]->IsES != is_es_prog) {
1830 linker_error(prog, "all shaders must use same shading "
1831 "language version\n");
1832 goto done;
1833 }
1834
1835 switch (prog->Shaders[i]->Type) {
1836 case GL_VERTEX_SHADER:
1837 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1838 num_vert_shaders++;
1839 break;
1840 case GL_FRAGMENT_SHADER:
1841 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1842 num_frag_shaders++;
1843 break;
1844 case GL_GEOMETRY_SHADER:
1845 geom_shader_list[num_geom_shaders] = prog->Shaders[i];
1846 num_geom_shaders++;
1847 break;
1848 }
1849 }
1850
1851 /* Previous to GLSL version 1.30, different compilation units could mix and
1852 * match shading language versions. With GLSL 1.30 and later, the versions
1853 * of all shaders must match.
1854 *
1855 * GLSL ES has never allowed mixing of shading language versions.
1856 */
1857 if ((is_es_prog || max_version >= 130)
1858 && min_version != max_version) {
1859 linker_error(prog, "all shaders must use same shading "
1860 "language version\n");
1861 goto done;
1862 }
1863
1864 prog->Version = max_version;
1865 prog->IsES = is_es_prog;
1866
1867 /* Geometry shaders have to be linked with vertex shaders.
1868 */
1869 if (num_geom_shaders > 0 && num_vert_shaders == 0) {
1870 linker_error(prog, "Geometry shader must be linked with "
1871 "vertex shader\n");
1872 goto done;
1873 }
1874
1875 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1876 if (prog->_LinkedShaders[i] != NULL)
1877 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1878
1879 prog->_LinkedShaders[i] = NULL;
1880 }
1881
1882 /* Link all shaders for a particular stage and validate the result.
1883 */
1884 if (num_vert_shaders > 0) {
1885 gl_shader *const sh =
1886 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1887 num_vert_shaders);
1888
1889 if (!prog->LinkStatus)
1890 goto done;
1891
1892 validate_vertex_shader_executable(prog, sh);
1893 if (!prog->LinkStatus)
1894 goto done;
1895
1896 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1897 sh);
1898 }
1899
1900 if (num_frag_shaders > 0) {
1901 gl_shader *const sh =
1902 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1903 num_frag_shaders);
1904
1905 if (!prog->LinkStatus)
1906 goto done;
1907
1908 validate_fragment_shader_executable(prog, sh);
1909 if (!prog->LinkStatus)
1910 goto done;
1911
1912 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1913 sh);
1914 }
1915
1916 if (num_geom_shaders > 0) {
1917 gl_shader *const sh =
1918 link_intrastage_shaders(mem_ctx, ctx, prog, geom_shader_list,
1919 num_geom_shaders);
1920
1921 if (!prog->LinkStatus)
1922 goto done;
1923
1924 validate_geometry_shader_executable(prog, sh);
1925 if (!prog->LinkStatus)
1926 goto done;
1927
1928 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_GEOMETRY],
1929 sh);
1930 }
1931
1932 /* Here begins the inter-stage linking phase. Some initial validation is
1933 * performed, then locations are assigned for uniforms, attributes, and
1934 * varyings.
1935 */
1936 cross_validate_uniforms(prog);
1937 if (!prog->LinkStatus)
1938 goto done;
1939
1940 unsigned prev;
1941
1942 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1943 if (prog->_LinkedShaders[prev] != NULL)
1944 break;
1945 }
1946
1947 /* Validate the inputs of each stage with the output of the preceding
1948 * stage.
1949 */
1950 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1951 if (prog->_LinkedShaders[i] == NULL)
1952 continue;
1953
1954 validate_interstage_interface_blocks(prog, prog->_LinkedShaders[prev],
1955 prog->_LinkedShaders[i]);
1956 if (!prog->LinkStatus)
1957 goto done;
1958
1959 cross_validate_outputs_to_inputs(prog,
1960 prog->_LinkedShaders[prev],
1961 prog->_LinkedShaders[i]);
1962 if (!prog->LinkStatus)
1963 goto done;
1964
1965 prev = i;
1966 }
1967
1968
1969 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1970 if (prog->_LinkedShaders[i] != NULL)
1971 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
1972 }
1973
1974 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
1975 * it before optimization because we want most of the checks to get
1976 * dropped thanks to constant propagation.
1977 *
1978 * This rule also applies to GLSL ES 3.00.
1979 */
1980 if (max_version >= (is_es_prog ? 300 : 130)) {
1981 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1982 if (sh) {
1983 lower_discard_flow(sh->ir);
1984 }
1985 }
1986
1987 if (!interstage_cross_validate_uniform_blocks(prog))
1988 goto done;
1989
1990 /* Do common optimization before assigning storage for attributes,
1991 * uniforms, and varyings. Later optimization could possibly make
1992 * some of that unused.
1993 */
1994 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1995 if (prog->_LinkedShaders[i] == NULL)
1996 continue;
1997
1998 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
1999 if (!prog->LinkStatus)
2000 goto done;
2001
2002 if (ctx->ShaderCompilerOptions[i].LowerClipDistance) {
2003 lower_clip_distance(prog->_LinkedShaders[i]);
2004 }
2005
2006 unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
2007
2008 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll, &ctx->ShaderCompilerOptions[i]))
2009 ;
2010 }
2011
2012 /* Mark all generic shader inputs and outputs as unpaired. */
2013 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2014 link_invalidate_variable_locations(
2015 prog->_LinkedShaders[MESA_SHADER_VERTEX],
2016 VERT_ATTRIB_GENERIC0, VARYING_SLOT_VAR0);
2017 }
2018 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2019 link_invalidate_variable_locations(
2020 prog->_LinkedShaders[MESA_SHADER_GEOMETRY],
2021 VARYING_SLOT_VAR0, VARYING_SLOT_VAR0);
2022 }
2023 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2024 link_invalidate_variable_locations(
2025 prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
2026 VARYING_SLOT_VAR0, FRAG_RESULT_DATA0);
2027 }
2028
2029 /* FINISHME: The value of the max_attribute_index parameter is
2030 * FINISHME: implementation dependent based on the value of
2031 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2032 * FINISHME: at least 16, so hardcode 16 for now.
2033 */
2034 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2035 goto done;
2036 }
2037
2038 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2039 goto done;
2040 }
2041
2042 unsigned first;
2043 for (first = 0; first < MESA_SHADER_TYPES; first++) {
2044 if (prog->_LinkedShaders[first] != NULL)
2045 break;
2046 }
2047
2048 if (num_tfeedback_decls != 0) {
2049 /* From GL_EXT_transform_feedback:
2050 * A program will fail to link if:
2051 *
2052 * * the <count> specified by TransformFeedbackVaryingsEXT is
2053 * non-zero, but the program object has no vertex or geometry
2054 * shader;
2055 */
2056 if (first == MESA_SHADER_FRAGMENT) {
2057 linker_error(prog, "Transform feedback varyings specified, but "
2058 "no vertex or geometry shader is present.");
2059 goto done;
2060 }
2061
2062 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2063 prog->TransformFeedback.NumVarying);
2064 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2065 prog->TransformFeedback.VaryingNames,
2066 tfeedback_decls))
2067 goto done;
2068 }
2069
2070 /* Linking the stages in the opposite order (from fragment to vertex)
2071 * ensures that inter-shader outputs written to in an earlier stage are
2072 * eliminated if they are (transitively) not used in a later stage.
2073 */
2074 int last, next;
2075 for (last = MESA_SHADER_TYPES-1; last >= 0; last--) {
2076 if (prog->_LinkedShaders[last] != NULL)
2077 break;
2078 }
2079
2080 if (last >= 0 && last < MESA_SHADER_FRAGMENT) {
2081 gl_shader *const sh = prog->_LinkedShaders[last];
2082
2083 if (num_tfeedback_decls != 0) {
2084 /* There was no fragment shader, but we still have to assign varying
2085 * locations for use by transform feedback.
2086 */
2087 if (!assign_varying_locations(ctx, mem_ctx, prog,
2088 sh, NULL,
2089 num_tfeedback_decls, tfeedback_decls,
2090 0))
2091 goto done;
2092 }
2093
2094 do_dead_builtin_varyings(ctx, sh, NULL,
2095 num_tfeedback_decls, tfeedback_decls);
2096
2097 demote_shader_inputs_and_outputs(sh, ir_var_shader_out);
2098
2099 /* Eliminate code that is now dead due to unused outputs being demoted.
2100 */
2101 while (do_dead_code(sh->ir, false))
2102 ;
2103 }
2104 else if (first == MESA_SHADER_FRAGMENT) {
2105 /* If the program only contains a fragment shader...
2106 */
2107 gl_shader *const sh = prog->_LinkedShaders[first];
2108
2109 do_dead_builtin_varyings(ctx, NULL, sh,
2110 num_tfeedback_decls, tfeedback_decls);
2111
2112 demote_shader_inputs_and_outputs(sh, ir_var_shader_in);
2113
2114 while (do_dead_code(sh->ir, false))
2115 ;
2116 }
2117
2118 next = last;
2119 for (int i = next - 1; i >= 0; i--) {
2120 if (prog->_LinkedShaders[i] == NULL)
2121 continue;
2122
2123 gl_shader *const sh_i = prog->_LinkedShaders[i];
2124 gl_shader *const sh_next = prog->_LinkedShaders[next];
2125 unsigned gs_input_vertices =
2126 next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0;
2127
2128 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
2129 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2130 tfeedback_decls, gs_input_vertices))
2131 goto done;
2132
2133 do_dead_builtin_varyings(ctx, sh_i, sh_next,
2134 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2135 tfeedback_decls);
2136
2137 demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out);
2138 demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in);
2139
2140 /* Eliminate code that is now dead due to unused outputs being demoted.
2141 */
2142 while (do_dead_code(sh_i->ir, false))
2143 ;
2144 while (do_dead_code(sh_next->ir, false))
2145 ;
2146
2147 /* This must be done after all dead varyings are eliminated. */
2148 if (!check_against_varying_limit(ctx, prog, sh_next))
2149 goto done;
2150
2151 next = i;
2152 }
2153
2154 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2155 goto done;
2156
2157 update_array_sizes(prog);
2158 link_assign_uniform_locations(prog);
2159 store_fragdepth_layout(prog);
2160
2161 check_resources(ctx, prog);
2162 if (!prog->LinkStatus)
2163 goto done;
2164
2165 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2166 * present in a linked program. By checking prog->IsES, we also
2167 * catch the GL_ARB_ES2_compatibility case.
2168 */
2169 if (!prog->InternalSeparateShader &&
2170 (ctx->API == API_OPENGLES2 || prog->IsES)) {
2171 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2172 linker_error(prog, "program lacks a vertex shader\n");
2173 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2174 linker_error(prog, "program lacks a fragment shader\n");
2175 }
2176 }
2177
2178 /* FINISHME: Assign fragment shader output locations. */
2179
2180 done:
2181 free(vert_shader_list);
2182 free(frag_shader_list);
2183 free(geom_shader_list);
2184
2185 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2186 if (prog->_LinkedShaders[i] == NULL)
2187 continue;
2188
2189 /* Retain any live IR, but trash the rest. */
2190 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2191
2192 /* The symbol table in the linked shaders may contain references to
2193 * variables that were removed (e.g., unused uniforms). Since it may
2194 * contain junk, there is no possible valid use. Delete it and set the
2195 * pointer to NULL.
2196 */
2197 delete prog->_LinkedShaders[i]->symbols;
2198 prog->_LinkedShaders[i]->symbols = NULL;
2199 }
2200
2201 ralloc_free(mem_ctx);
2202 }