glsl, i965: Remove unnecessary talloc includes.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66 #include <cstdlib>
67 #include <cstdio>
68 #include <cstdarg>
69 #include <climits>
70
71 #include "main/core.h"
72 #include "glsl_symbol_table.h"
73 #include "ir.h"
74 #include "program.h"
75 #include "program/hash_table.h"
76 #include "linker.h"
77 #include "ir_optimization.h"
78
79 extern "C" {
80 #include "main/shaderobj.h"
81 }
82
83 /**
84 * Visitor that determines whether or not a variable is ever written.
85 */
86 class find_assignment_visitor : public ir_hierarchical_visitor {
87 public:
88 find_assignment_visitor(const char *name)
89 : name(name), found(false)
90 {
91 /* empty */
92 }
93
94 virtual ir_visitor_status visit_enter(ir_assignment *ir)
95 {
96 ir_variable *const var = ir->lhs->variable_referenced();
97
98 if (strcmp(name, var->name) == 0) {
99 found = true;
100 return visit_stop;
101 }
102
103 return visit_continue_with_parent;
104 }
105
106 virtual ir_visitor_status visit_enter(ir_call *ir)
107 {
108 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
109 foreach_iter(exec_list_iterator, iter, *ir) {
110 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
111 ir_variable *sig_param = (ir_variable *)sig_iter.get();
112
113 if (sig_param->mode == ir_var_out ||
114 sig_param->mode == ir_var_inout) {
115 ir_variable *var = param_rval->variable_referenced();
116 if (var && strcmp(name, var->name) == 0) {
117 found = true;
118 return visit_stop;
119 }
120 }
121 sig_iter.next();
122 }
123
124 return visit_continue_with_parent;
125 }
126
127 bool variable_found()
128 {
129 return found;
130 }
131
132 private:
133 const char *name; /**< Find writes to a variable with this name. */
134 bool found; /**< Was a write to the variable found? */
135 };
136
137
138 /**
139 * Visitor that determines whether or not a variable is ever read.
140 */
141 class find_deref_visitor : public ir_hierarchical_visitor {
142 public:
143 find_deref_visitor(const char *name)
144 : name(name), found(false)
145 {
146 /* empty */
147 }
148
149 virtual ir_visitor_status visit(ir_dereference_variable *ir)
150 {
151 if (strcmp(this->name, ir->var->name) == 0) {
152 this->found = true;
153 return visit_stop;
154 }
155
156 return visit_continue;
157 }
158
159 bool variable_found() const
160 {
161 return this->found;
162 }
163
164 private:
165 const char *name; /**< Find writes to a variable with this name. */
166 bool found; /**< Was a write to the variable found? */
167 };
168
169
170 void
171 linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
172 {
173 va_list ap;
174
175 prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: ");
176 va_start(ap, fmt);
177 prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap);
178 va_end(ap);
179 }
180
181
182 void
183 invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
184 int generic_base)
185 {
186 foreach_list(node, sh->ir) {
187 ir_variable *const var = ((ir_instruction *) node)->as_variable();
188
189 if ((var == NULL) || (var->mode != (unsigned) mode))
190 continue;
191
192 /* Only assign locations for generic attributes / varyings / etc.
193 */
194 if ((var->location >= generic_base) && !var->explicit_location)
195 var->location = -1;
196 }
197 }
198
199
200 /**
201 * Determine the number of attribute slots required for a particular type
202 *
203 * This code is here because it implements the language rules of a specific
204 * GLSL version. Since it's a property of the language and not a property of
205 * types in general, it doesn't really belong in glsl_type.
206 */
207 unsigned
208 count_attribute_slots(const glsl_type *t)
209 {
210 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
211 *
212 * "A scalar input counts the same amount against this limit as a vec4,
213 * so applications may want to consider packing groups of four
214 * unrelated float inputs together into a vector to better utilize the
215 * capabilities of the underlying hardware. A matrix input will use up
216 * multiple locations. The number of locations used will equal the
217 * number of columns in the matrix."
218 *
219 * The spec does not explicitly say how arrays are counted. However, it
220 * should be safe to assume the total number of slots consumed by an array
221 * is the number of entries in the array multiplied by the number of slots
222 * consumed by a single element of the array.
223 */
224
225 if (t->is_array())
226 return t->array_size() * count_attribute_slots(t->element_type());
227
228 if (t->is_matrix())
229 return t->matrix_columns;
230
231 return 1;
232 }
233
234
235 /**
236 * Verify that a vertex shader executable meets all semantic requirements
237 *
238 * \param shader Vertex shader executable to be verified
239 */
240 bool
241 validate_vertex_shader_executable(struct gl_shader_program *prog,
242 struct gl_shader *shader)
243 {
244 if (shader == NULL)
245 return true;
246
247 find_assignment_visitor find("gl_Position");
248 find.run(shader->ir);
249 if (!find.variable_found()) {
250 linker_error_printf(prog,
251 "vertex shader does not write to `gl_Position'\n");
252 return false;
253 }
254
255 return true;
256 }
257
258
259 /**
260 * Verify that a fragment shader executable meets all semantic requirements
261 *
262 * \param shader Fragment shader executable to be verified
263 */
264 bool
265 validate_fragment_shader_executable(struct gl_shader_program *prog,
266 struct gl_shader *shader)
267 {
268 if (shader == NULL)
269 return true;
270
271 find_assignment_visitor frag_color("gl_FragColor");
272 find_assignment_visitor frag_data("gl_FragData");
273
274 frag_color.run(shader->ir);
275 frag_data.run(shader->ir);
276
277 if (frag_color.variable_found() && frag_data.variable_found()) {
278 linker_error_printf(prog, "fragment shader writes to both "
279 "`gl_FragColor' and `gl_FragData'\n");
280 return false;
281 }
282
283 return true;
284 }
285
286
287 /**
288 * Generate a string describing the mode of a variable
289 */
290 static const char *
291 mode_string(const ir_variable *var)
292 {
293 switch (var->mode) {
294 case ir_var_auto:
295 return (var->read_only) ? "global constant" : "global variable";
296
297 case ir_var_uniform: return "uniform";
298 case ir_var_in: return "shader input";
299 case ir_var_out: return "shader output";
300 case ir_var_inout: return "shader inout";
301
302 case ir_var_temporary:
303 default:
304 assert(!"Should not get here.");
305 return "invalid variable";
306 }
307 }
308
309
310 /**
311 * Perform validation of global variables used across multiple shaders
312 */
313 bool
314 cross_validate_globals(struct gl_shader_program *prog,
315 struct gl_shader **shader_list,
316 unsigned num_shaders,
317 bool uniforms_only)
318 {
319 /* Examine all of the uniforms in all of the shaders and cross validate
320 * them.
321 */
322 glsl_symbol_table variables;
323 for (unsigned i = 0; i < num_shaders; i++) {
324 if (shader_list[i] == NULL)
325 continue;
326
327 foreach_list(node, shader_list[i]->ir) {
328 ir_variable *const var = ((ir_instruction *) node)->as_variable();
329
330 if (var == NULL)
331 continue;
332
333 if (uniforms_only && (var->mode != ir_var_uniform))
334 continue;
335
336 /* Don't cross validate temporaries that are at global scope. These
337 * will eventually get pulled into the shaders 'main'.
338 */
339 if (var->mode == ir_var_temporary)
340 continue;
341
342 /* If a global with this name has already been seen, verify that the
343 * new instance has the same type. In addition, if the globals have
344 * initializers, the values of the initializers must be the same.
345 */
346 ir_variable *const existing = variables.get_variable(var->name);
347 if (existing != NULL) {
348 if (var->type != existing->type) {
349 /* Consider the types to be "the same" if both types are arrays
350 * of the same type and one of the arrays is implicitly sized.
351 * In addition, set the type of the linked variable to the
352 * explicitly sized array.
353 */
354 if (var->type->is_array()
355 && existing->type->is_array()
356 && (var->type->fields.array == existing->type->fields.array)
357 && ((var->type->length == 0)
358 || (existing->type->length == 0))) {
359 if (existing->type->length == 0) {
360 existing->type = var->type;
361 existing->max_array_access =
362 MAX2(existing->max_array_access,
363 var->max_array_access);
364 }
365 } else {
366 linker_error_printf(prog, "%s `%s' declared as type "
367 "`%s' and type `%s'\n",
368 mode_string(var),
369 var->name, var->type->name,
370 existing->type->name);
371 return false;
372 }
373 }
374
375 if (var->explicit_location) {
376 if (existing->explicit_location
377 && (var->location != existing->location)) {
378 linker_error_printf(prog, "explicit locations for %s "
379 "`%s' have differing values\n",
380 mode_string(var), var->name);
381 return false;
382 }
383
384 existing->location = var->location;
385 existing->explicit_location = true;
386 }
387
388 /* FINISHME: Handle non-constant initializers.
389 */
390 if (var->constant_value != NULL) {
391 if (existing->constant_value != NULL) {
392 if (!var->constant_value->has_value(existing->constant_value)) {
393 linker_error_printf(prog, "initializers for %s "
394 "`%s' have differing values\n",
395 mode_string(var), var->name);
396 return false;
397 }
398 } else
399 /* If the first-seen instance of a particular uniform did not
400 * have an initializer but a later instance does, copy the
401 * initializer to the version stored in the symbol table.
402 */
403 /* FINISHME: This is wrong. The constant_value field should
404 * FINISHME: not be modified! Imagine a case where a shader
405 * FINISHME: without an initializer is linked in two different
406 * FINISHME: programs with shaders that have differing
407 * FINISHME: initializers. Linking with the first will
408 * FINISHME: modify the shader, and linking with the second
409 * FINISHME: will fail.
410 */
411 existing->constant_value =
412 var->constant_value->clone(talloc_parent(existing), NULL);
413 }
414
415 if (existing->invariant != var->invariant) {
416 linker_error_printf(prog, "declarations for %s `%s' have "
417 "mismatching invariant qualifiers\n",
418 mode_string(var), var->name);
419 return false;
420 }
421 if (existing->centroid != var->centroid) {
422 linker_error_printf(prog, "declarations for %s `%s' have "
423 "mismatching centroid qualifiers\n",
424 mode_string(var), var->name);
425 return false;
426 }
427 } else
428 variables.add_variable(var);
429 }
430 }
431
432 return true;
433 }
434
435
436 /**
437 * Perform validation of uniforms used across multiple shader stages
438 */
439 bool
440 cross_validate_uniforms(struct gl_shader_program *prog)
441 {
442 return cross_validate_globals(prog, prog->_LinkedShaders,
443 MESA_SHADER_TYPES, true);
444 }
445
446
447 /**
448 * Validate that outputs from one stage match inputs of another
449 */
450 bool
451 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
452 gl_shader *producer, gl_shader *consumer)
453 {
454 glsl_symbol_table parameters;
455 /* FINISHME: Figure these out dynamically. */
456 const char *const producer_stage = "vertex";
457 const char *const consumer_stage = "fragment";
458
459 /* Find all shader outputs in the "producer" stage.
460 */
461 foreach_list(node, producer->ir) {
462 ir_variable *const var = ((ir_instruction *) node)->as_variable();
463
464 /* FINISHME: For geometry shaders, this should also look for inout
465 * FINISHME: variables.
466 */
467 if ((var == NULL) || (var->mode != ir_var_out))
468 continue;
469
470 parameters.add_variable(var);
471 }
472
473
474 /* Find all shader inputs in the "consumer" stage. Any variables that have
475 * matching outputs already in the symbol table must have the same type and
476 * qualifiers.
477 */
478 foreach_list(node, consumer->ir) {
479 ir_variable *const input = ((ir_instruction *) node)->as_variable();
480
481 /* FINISHME: For geometry shaders, this should also look for inout
482 * FINISHME: variables.
483 */
484 if ((input == NULL) || (input->mode != ir_var_in))
485 continue;
486
487 ir_variable *const output = parameters.get_variable(input->name);
488 if (output != NULL) {
489 /* Check that the types match between stages.
490 */
491 if (input->type != output->type) {
492 /* There is a bit of a special case for gl_TexCoord. This
493 * built-in is unsized by default. Appliations that variable
494 * access it must redeclare it with a size. There is some
495 * language in the GLSL spec that implies the fragment shader
496 * and vertex shader do not have to agree on this size. Other
497 * driver behave this way, and one or two applications seem to
498 * rely on it.
499 *
500 * Neither declaration needs to be modified here because the array
501 * sizes are fixed later when update_array_sizes is called.
502 *
503 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
504 *
505 * "Unlike user-defined varying variables, the built-in
506 * varying variables don't have a strict one-to-one
507 * correspondence between the vertex language and the
508 * fragment language."
509 */
510 if (!output->type->is_array()
511 || (strncmp("gl_", output->name, 3) != 0)) {
512 linker_error_printf(prog,
513 "%s shader output `%s' declared as "
514 "type `%s', but %s shader input declared "
515 "as type `%s'\n",
516 producer_stage, output->name,
517 output->type->name,
518 consumer_stage, input->type->name);
519 return false;
520 }
521 }
522
523 /* Check that all of the qualifiers match between stages.
524 */
525 if (input->centroid != output->centroid) {
526 linker_error_printf(prog,
527 "%s shader output `%s' %s centroid qualifier, "
528 "but %s shader input %s centroid qualifier\n",
529 producer_stage,
530 output->name,
531 (output->centroid) ? "has" : "lacks",
532 consumer_stage,
533 (input->centroid) ? "has" : "lacks");
534 return false;
535 }
536
537 if (input->invariant != output->invariant) {
538 linker_error_printf(prog,
539 "%s shader output `%s' %s invariant qualifier, "
540 "but %s shader input %s invariant qualifier\n",
541 producer_stage,
542 output->name,
543 (output->invariant) ? "has" : "lacks",
544 consumer_stage,
545 (input->invariant) ? "has" : "lacks");
546 return false;
547 }
548
549 if (input->interpolation != output->interpolation) {
550 linker_error_printf(prog,
551 "%s shader output `%s' specifies %s "
552 "interpolation qualifier, "
553 "but %s shader input specifies %s "
554 "interpolation qualifier\n",
555 producer_stage,
556 output->name,
557 output->interpolation_string(),
558 consumer_stage,
559 input->interpolation_string());
560 return false;
561 }
562 }
563 }
564
565 return true;
566 }
567
568
569 /**
570 * Populates a shaders symbol table with all global declarations
571 */
572 static void
573 populate_symbol_table(gl_shader *sh)
574 {
575 sh->symbols = new(sh) glsl_symbol_table;
576
577 foreach_list(node, sh->ir) {
578 ir_instruction *const inst = (ir_instruction *) node;
579 ir_variable *var;
580 ir_function *func;
581
582 if ((func = inst->as_function()) != NULL) {
583 sh->symbols->add_function(func);
584 } else if ((var = inst->as_variable()) != NULL) {
585 sh->symbols->add_variable(var);
586 }
587 }
588 }
589
590
591 /**
592 * Remap variables referenced in an instruction tree
593 *
594 * This is used when instruction trees are cloned from one shader and placed in
595 * another. These trees will contain references to \c ir_variable nodes that
596 * do not exist in the target shader. This function finds these \c ir_variable
597 * references and replaces the references with matching variables in the target
598 * shader.
599 *
600 * If there is no matching variable in the target shader, a clone of the
601 * \c ir_variable is made and added to the target shader. The new variable is
602 * added to \b both the instruction stream and the symbol table.
603 *
604 * \param inst IR tree that is to be processed.
605 * \param symbols Symbol table containing global scope symbols in the
606 * linked shader.
607 * \param instructions Instruction stream where new variable declarations
608 * should be added.
609 */
610 void
611 remap_variables(ir_instruction *inst, struct gl_shader *target,
612 hash_table *temps)
613 {
614 class remap_visitor : public ir_hierarchical_visitor {
615 public:
616 remap_visitor(struct gl_shader *target,
617 hash_table *temps)
618 {
619 this->target = target;
620 this->symbols = target->symbols;
621 this->instructions = target->ir;
622 this->temps = temps;
623 }
624
625 virtual ir_visitor_status visit(ir_dereference_variable *ir)
626 {
627 if (ir->var->mode == ir_var_temporary) {
628 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
629
630 assert(var != NULL);
631 ir->var = var;
632 return visit_continue;
633 }
634
635 ir_variable *const existing =
636 this->symbols->get_variable(ir->var->name);
637 if (existing != NULL)
638 ir->var = existing;
639 else {
640 ir_variable *copy = ir->var->clone(this->target, NULL);
641
642 this->symbols->add_variable(copy);
643 this->instructions->push_head(copy);
644 ir->var = copy;
645 }
646
647 return visit_continue;
648 }
649
650 private:
651 struct gl_shader *target;
652 glsl_symbol_table *symbols;
653 exec_list *instructions;
654 hash_table *temps;
655 };
656
657 remap_visitor v(target, temps);
658
659 inst->accept(&v);
660 }
661
662
663 /**
664 * Move non-declarations from one instruction stream to another
665 *
666 * The intended usage pattern of this function is to pass the pointer to the
667 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
668 * pointer) for \c last and \c false for \c make_copies on the first
669 * call. Successive calls pass the return value of the previous call for
670 * \c last and \c true for \c make_copies.
671 *
672 * \param instructions Source instruction stream
673 * \param last Instruction after which new instructions should be
674 * inserted in the target instruction stream
675 * \param make_copies Flag selecting whether instructions in \c instructions
676 * should be copied (via \c ir_instruction::clone) into the
677 * target list or moved.
678 *
679 * \return
680 * The new "last" instruction in the target instruction stream. This pointer
681 * is suitable for use as the \c last parameter of a later call to this
682 * function.
683 */
684 exec_node *
685 move_non_declarations(exec_list *instructions, exec_node *last,
686 bool make_copies, gl_shader *target)
687 {
688 hash_table *temps = NULL;
689
690 if (make_copies)
691 temps = hash_table_ctor(0, hash_table_pointer_hash,
692 hash_table_pointer_compare);
693
694 foreach_list_safe(node, instructions) {
695 ir_instruction *inst = (ir_instruction *) node;
696
697 if (inst->as_function())
698 continue;
699
700 ir_variable *var = inst->as_variable();
701 if ((var != NULL) && (var->mode != ir_var_temporary))
702 continue;
703
704 assert(inst->as_assignment()
705 || ((var != NULL) && (var->mode == ir_var_temporary)));
706
707 if (make_copies) {
708 inst = inst->clone(target, NULL);
709
710 if (var != NULL)
711 hash_table_insert(temps, inst, var);
712 else
713 remap_variables(inst, target, temps);
714 } else {
715 inst->remove();
716 }
717
718 last->insert_after(inst);
719 last = inst;
720 }
721
722 if (make_copies)
723 hash_table_dtor(temps);
724
725 return last;
726 }
727
728 /**
729 * Get the function signature for main from a shader
730 */
731 static ir_function_signature *
732 get_main_function_signature(gl_shader *sh)
733 {
734 ir_function *const f = sh->symbols->get_function("main");
735 if (f != NULL) {
736 exec_list void_parameters;
737
738 /* Look for the 'void main()' signature and ensure that it's defined.
739 * This keeps the linker from accidentally pick a shader that just
740 * contains a prototype for main.
741 *
742 * We don't have to check for multiple definitions of main (in multiple
743 * shaders) because that would have already been caught above.
744 */
745 ir_function_signature *sig = f->matching_signature(&void_parameters);
746 if ((sig != NULL) && sig->is_defined) {
747 return sig;
748 }
749 }
750
751 return NULL;
752 }
753
754
755 /**
756 * Combine a group of shaders for a single stage to generate a linked shader
757 *
758 * \note
759 * If this function is supplied a single shader, it is cloned, and the new
760 * shader is returned.
761 */
762 static struct gl_shader *
763 link_intrastage_shaders(void *mem_ctx,
764 struct gl_context *ctx,
765 struct gl_shader_program *prog,
766 struct gl_shader **shader_list,
767 unsigned num_shaders)
768 {
769 /* Check that global variables defined in multiple shaders are consistent.
770 */
771 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
772 return NULL;
773
774 /* Check that there is only a single definition of each function signature
775 * across all shaders.
776 */
777 for (unsigned i = 0; i < (num_shaders - 1); i++) {
778 foreach_list(node, shader_list[i]->ir) {
779 ir_function *const f = ((ir_instruction *) node)->as_function();
780
781 if (f == NULL)
782 continue;
783
784 for (unsigned j = i + 1; j < num_shaders; j++) {
785 ir_function *const other =
786 shader_list[j]->symbols->get_function(f->name);
787
788 /* If the other shader has no function (and therefore no function
789 * signatures) with the same name, skip to the next shader.
790 */
791 if (other == NULL)
792 continue;
793
794 foreach_iter (exec_list_iterator, iter, *f) {
795 ir_function_signature *sig =
796 (ir_function_signature *) iter.get();
797
798 if (!sig->is_defined || sig->is_builtin)
799 continue;
800
801 ir_function_signature *other_sig =
802 other->exact_matching_signature(& sig->parameters);
803
804 if ((other_sig != NULL) && other_sig->is_defined
805 && !other_sig->is_builtin) {
806 linker_error_printf(prog,
807 "function `%s' is multiply defined",
808 f->name);
809 return NULL;
810 }
811 }
812 }
813 }
814 }
815
816 /* Find the shader that defines main, and make a clone of it.
817 *
818 * Starting with the clone, search for undefined references. If one is
819 * found, find the shader that defines it. Clone the reference and add
820 * it to the shader. Repeat until there are no undefined references or
821 * until a reference cannot be resolved.
822 */
823 gl_shader *main = NULL;
824 for (unsigned i = 0; i < num_shaders; i++) {
825 if (get_main_function_signature(shader_list[i]) != NULL) {
826 main = shader_list[i];
827 break;
828 }
829 }
830
831 if (main == NULL) {
832 linker_error_printf(prog, "%s shader lacks `main'\n",
833 (shader_list[0]->Type == GL_VERTEX_SHADER)
834 ? "vertex" : "fragment");
835 return NULL;
836 }
837
838 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
839 linked->ir = new(linked) exec_list;
840 clone_ir_list(mem_ctx, linked->ir, main->ir);
841
842 populate_symbol_table(linked);
843
844 /* The a pointer to the main function in the final linked shader (i.e., the
845 * copy of the original shader that contained the main function).
846 */
847 ir_function_signature *const main_sig = get_main_function_signature(linked);
848
849 /* Move any instructions other than variable declarations or function
850 * declarations into main.
851 */
852 exec_node *insertion_point =
853 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
854 linked);
855
856 for (unsigned i = 0; i < num_shaders; i++) {
857 if (shader_list[i] == main)
858 continue;
859
860 insertion_point = move_non_declarations(shader_list[i]->ir,
861 insertion_point, true, linked);
862 }
863
864 /* Resolve initializers for global variables in the linked shader.
865 */
866 unsigned num_linking_shaders = num_shaders;
867 for (unsigned i = 0; i < num_shaders; i++)
868 num_linking_shaders += shader_list[i]->num_builtins_to_link;
869
870 gl_shader **linking_shaders =
871 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
872
873 memcpy(linking_shaders, shader_list,
874 sizeof(linking_shaders[0]) * num_shaders);
875
876 unsigned idx = num_shaders;
877 for (unsigned i = 0; i < num_shaders; i++) {
878 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
879 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
880 idx += shader_list[i]->num_builtins_to_link;
881 }
882
883 assert(idx == num_linking_shaders);
884
885 if (!link_function_calls(prog, linked, linking_shaders,
886 num_linking_shaders)) {
887 ctx->Driver.DeleteShader(ctx, linked);
888 linked = NULL;
889 }
890
891 free(linking_shaders);
892
893 /* Make a pass over all global variables to ensure that arrays with
894 * unspecified sizes have a size specified. The size is inferred from the
895 * max_array_access field.
896 */
897 if (linked != NULL) {
898 foreach_list(node, linked->ir) {
899 ir_variable *const var = ((ir_instruction *) node)->as_variable();
900
901 if (var == NULL)
902 continue;
903
904 if ((var->mode != ir_var_auto) && (var->mode != ir_var_temporary))
905 continue;
906
907 if (!var->type->is_array() || (var->type->length != 0))
908 continue;
909
910 const glsl_type *type =
911 glsl_type::get_array_instance(var->type->fields.array,
912 var->max_array_access);
913
914 assert(type != NULL);
915 var->type = type;
916 }
917 }
918
919 return linked;
920 }
921
922
923 struct uniform_node {
924 exec_node link;
925 struct gl_uniform *u;
926 unsigned slots;
927 };
928
929 /**
930 * Update the sizes of linked shader uniform arrays to the maximum
931 * array index used.
932 *
933 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
934 *
935 * If one or more elements of an array are active,
936 * GetActiveUniform will return the name of the array in name,
937 * subject to the restrictions listed above. The type of the array
938 * is returned in type. The size parameter contains the highest
939 * array element index used, plus one. The compiler or linker
940 * determines the highest index used. There will be only one
941 * active uniform reported by the GL per uniform array.
942
943 */
944 static void
945 update_array_sizes(struct gl_shader_program *prog)
946 {
947 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
948 if (prog->_LinkedShaders[i] == NULL)
949 continue;
950
951 foreach_list(node, prog->_LinkedShaders[i]->ir) {
952 ir_variable *const var = ((ir_instruction *) node)->as_variable();
953
954 if ((var == NULL) || (var->mode != ir_var_uniform &&
955 var->mode != ir_var_in &&
956 var->mode != ir_var_out) ||
957 !var->type->is_array())
958 continue;
959
960 unsigned int size = var->max_array_access;
961 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
962 if (prog->_LinkedShaders[j] == NULL)
963 continue;
964
965 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
966 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
967 if (!other_var)
968 continue;
969
970 if (strcmp(var->name, other_var->name) == 0 &&
971 other_var->max_array_access > size) {
972 size = other_var->max_array_access;
973 }
974 }
975 }
976
977 if (size + 1 != var->type->fields.array->length) {
978 var->type = glsl_type::get_array_instance(var->type->fields.array,
979 size + 1);
980 /* FINISHME: We should update the types of array
981 * dereferences of this variable now.
982 */
983 }
984 }
985 }
986 }
987
988 static void
989 add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
990 const char *name, const glsl_type *type, GLenum shader_type,
991 unsigned *next_shader_pos, unsigned *total_uniforms)
992 {
993 if (type->is_record()) {
994 for (unsigned int i = 0; i < type->length; i++) {
995 const glsl_type *field_type = type->fields.structure[i].type;
996 char *field_name = talloc_asprintf(mem_ctx, "%s.%s", name,
997 type->fields.structure[i].name);
998
999 add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
1000 shader_type, next_shader_pos, total_uniforms);
1001 }
1002 } else {
1003 uniform_node *n = (uniform_node *) hash_table_find(ht, name);
1004 unsigned int vec4_slots;
1005 const glsl_type *array_elem_type = NULL;
1006
1007 if (type->is_array()) {
1008 array_elem_type = type->fields.array;
1009 /* Array of structures. */
1010 if (array_elem_type->is_record()) {
1011 for (unsigned int i = 0; i < type->length; i++) {
1012 char *elem_name = talloc_asprintf(mem_ctx, "%s[%d]", name, i);
1013 add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
1014 shader_type, next_shader_pos, total_uniforms);
1015 }
1016 return;
1017 }
1018 }
1019
1020 /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
1021 * vectors to vec4 slots.
1022 */
1023 if (type->is_array()) {
1024 if (array_elem_type->is_sampler())
1025 vec4_slots = type->length;
1026 else
1027 vec4_slots = type->length * array_elem_type->matrix_columns;
1028 } else if (type->is_sampler()) {
1029 vec4_slots = 1;
1030 } else {
1031 vec4_slots = type->matrix_columns;
1032 }
1033
1034 if (n == NULL) {
1035 n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
1036 n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
1037 n->slots = vec4_slots;
1038
1039 n->u->Name = strdup(name);
1040 n->u->Type = type;
1041 n->u->VertPos = -1;
1042 n->u->FragPos = -1;
1043 n->u->GeomPos = -1;
1044 (*total_uniforms)++;
1045
1046 hash_table_insert(ht, n, name);
1047 uniforms->push_tail(& n->link);
1048 }
1049
1050 switch (shader_type) {
1051 case GL_VERTEX_SHADER:
1052 n->u->VertPos = *next_shader_pos;
1053 break;
1054 case GL_FRAGMENT_SHADER:
1055 n->u->FragPos = *next_shader_pos;
1056 break;
1057 case GL_GEOMETRY_SHADER:
1058 n->u->GeomPos = *next_shader_pos;
1059 break;
1060 }
1061
1062 (*next_shader_pos) += vec4_slots;
1063 }
1064 }
1065
1066 void
1067 assign_uniform_locations(struct gl_shader_program *prog)
1068 {
1069 /* */
1070 exec_list uniforms;
1071 unsigned total_uniforms = 0;
1072 hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
1073 hash_table_string_compare);
1074 void *mem_ctx = talloc_new(NULL);
1075
1076 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1077 if (prog->_LinkedShaders[i] == NULL)
1078 continue;
1079
1080 unsigned next_position = 0;
1081
1082 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1083 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1084
1085 if ((var == NULL) || (var->mode != ir_var_uniform))
1086 continue;
1087
1088 if (strncmp(var->name, "gl_", 3) == 0) {
1089 /* At the moment, we don't allocate uniform locations for
1090 * builtin uniforms. It's permitted by spec, and we'll
1091 * likely switch to doing that at some point, but not yet.
1092 */
1093 continue;
1094 }
1095
1096 var->location = next_position;
1097 add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
1098 prog->_LinkedShaders[i]->Type,
1099 &next_position, &total_uniforms);
1100 }
1101 }
1102
1103 talloc_free(mem_ctx);
1104
1105 gl_uniform_list *ul = (gl_uniform_list *)
1106 calloc(1, sizeof(gl_uniform_list));
1107
1108 ul->Size = total_uniforms;
1109 ul->NumUniforms = total_uniforms;
1110 ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
1111
1112 unsigned idx = 0;
1113 uniform_node *next;
1114 for (uniform_node *node = (uniform_node *) uniforms.head
1115 ; node->link.next != NULL
1116 ; node = next) {
1117 next = (uniform_node *) node->link.next;
1118
1119 node->link.remove();
1120 memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
1121 idx++;
1122
1123 free(node->u);
1124 free(node);
1125 }
1126
1127 hash_table_dtor(ht);
1128
1129 prog->Uniforms = ul;
1130 }
1131
1132
1133 /**
1134 * Find a contiguous set of available bits in a bitmask
1135 *
1136 * \param used_mask Bits representing used (1) and unused (0) locations
1137 * \param needed_count Number of contiguous bits needed.
1138 *
1139 * \return
1140 * Base location of the available bits on success or -1 on failure.
1141 */
1142 int
1143 find_available_slots(unsigned used_mask, unsigned needed_count)
1144 {
1145 unsigned needed_mask = (1 << needed_count) - 1;
1146 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1147
1148 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1149 * cannot optimize possibly infinite loops" for the loop below.
1150 */
1151 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1152 return -1;
1153
1154 for (int i = 0; i <= max_bit_to_test; i++) {
1155 if ((needed_mask & ~used_mask) == needed_mask)
1156 return i;
1157
1158 needed_mask <<= 1;
1159 }
1160
1161 return -1;
1162 }
1163
1164
1165 bool
1166 assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
1167 {
1168 /* Mark invalid attribute locations as being used.
1169 */
1170 unsigned used_locations = (max_attribute_index >= 32)
1171 ? ~0 : ~((1 << max_attribute_index) - 1);
1172
1173 gl_shader *const sh = prog->_LinkedShaders[0];
1174 assert(sh->Type == GL_VERTEX_SHADER);
1175
1176 /* Operate in a total of four passes.
1177 *
1178 * 1. Invalidate the location assignments for all vertex shader inputs.
1179 *
1180 * 2. Assign locations for inputs that have user-defined (via
1181 * glBindVertexAttribLocation) locatoins.
1182 *
1183 * 3. Sort the attributes without assigned locations by number of slots
1184 * required in decreasing order. Fragmentation caused by attribute
1185 * locations assigned by the application may prevent large attributes
1186 * from having enough contiguous space.
1187 *
1188 * 4. Assign locations to any inputs without assigned locations.
1189 */
1190
1191 invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
1192
1193 if (prog->Attributes != NULL) {
1194 for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
1195 ir_variable *const var =
1196 sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
1197
1198 /* Note: attributes that occupy multiple slots, such as arrays or
1199 * matrices, may appear in the attrib array multiple times.
1200 */
1201 if ((var == NULL) || (var->location != -1))
1202 continue;
1203
1204 /* From page 61 of the OpenGL 4.0 spec:
1205 *
1206 * "LinkProgram will fail if the attribute bindings assigned by
1207 * BindAttribLocation do not leave not enough space to assign a
1208 * location for an active matrix attribute or an active attribute
1209 * array, both of which require multiple contiguous generic
1210 * attributes."
1211 *
1212 * Previous versions of the spec contain similar language but omit the
1213 * bit about attribute arrays.
1214 *
1215 * Page 61 of the OpenGL 4.0 spec also says:
1216 *
1217 * "It is possible for an application to bind more than one
1218 * attribute name to the same location. This is referred to as
1219 * aliasing. This will only work if only one of the aliased
1220 * attributes is active in the executable program, or if no path
1221 * through the shader consumes more than one attribute of a set
1222 * of attributes aliased to the same location. A link error can
1223 * occur if the linker determines that every path through the
1224 * shader consumes multiple aliased attributes, but
1225 * implementations are not required to generate an error in this
1226 * case."
1227 *
1228 * These two paragraphs are either somewhat contradictory, or I don't
1229 * fully understand one or both of them.
1230 */
1231 /* FINISHME: The code as currently written does not support attribute
1232 * FINISHME: location aliasing (see comment above).
1233 */
1234 const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
1235 const unsigned slots = count_attribute_slots(var->type);
1236
1237 /* Mask representing the contiguous slots that will be used by this
1238 * attribute.
1239 */
1240 const unsigned use_mask = (1 << slots) - 1;
1241
1242 /* Generate a link error if the set of bits requested for this
1243 * attribute overlaps any previously allocated bits.
1244 */
1245 if ((~(use_mask << attr) & used_locations) != used_locations) {
1246 linker_error_printf(prog,
1247 "insufficient contiguous attribute locations "
1248 "available for vertex shader input `%s'",
1249 var->name);
1250 return false;
1251 }
1252
1253 var->location = VERT_ATTRIB_GENERIC0 + attr;
1254 used_locations |= (use_mask << attr);
1255 }
1256 }
1257
1258 /* Temporary storage for the set of attributes that need locations assigned.
1259 */
1260 struct temp_attr {
1261 unsigned slots;
1262 ir_variable *var;
1263
1264 /* Used below in the call to qsort. */
1265 static int compare(const void *a, const void *b)
1266 {
1267 const temp_attr *const l = (const temp_attr *) a;
1268 const temp_attr *const r = (const temp_attr *) b;
1269
1270 /* Reversed because we want a descending order sort below. */
1271 return r->slots - l->slots;
1272 }
1273 } to_assign[16];
1274
1275 unsigned num_attr = 0;
1276
1277 foreach_list(node, sh->ir) {
1278 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1279
1280 if ((var == NULL) || (var->mode != ir_var_in))
1281 continue;
1282
1283 if (var->explicit_location) {
1284 const unsigned slots = count_attribute_slots(var->type);
1285 const unsigned use_mask = (1 << slots) - 1;
1286 const int attr = var->location - VERT_ATTRIB_GENERIC0;
1287
1288 if ((var->location >= (int)(max_attribute_index + VERT_ATTRIB_GENERIC0))
1289 || (var->location < 0)) {
1290 linker_error_printf(prog,
1291 "invalid explicit location %d specified for "
1292 "`%s'\n",
1293 (var->location < 0) ? var->location : attr,
1294 var->name);
1295 return false;
1296 } else if (var->location >= VERT_ATTRIB_GENERIC0) {
1297 used_locations |= (use_mask << attr);
1298 }
1299 }
1300
1301 /* The location was explicitly assigned, nothing to do here.
1302 */
1303 if (var->location != -1)
1304 continue;
1305
1306 to_assign[num_attr].slots = count_attribute_slots(var->type);
1307 to_assign[num_attr].var = var;
1308 num_attr++;
1309 }
1310
1311 /* If all of the attributes were assigned locations by the application (or
1312 * are built-in attributes with fixed locations), return early. This should
1313 * be the common case.
1314 */
1315 if (num_attr == 0)
1316 return true;
1317
1318 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1319
1320 /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only
1321 * be explicitly assigned by via glBindAttribLocation. Mark it as reserved
1322 * to prevent it from being automatically allocated below.
1323 */
1324 find_deref_visitor find("gl_Vertex");
1325 find.run(sh->ir);
1326 if (find.variable_found())
1327 used_locations |= (1 << 0);
1328
1329 for (unsigned i = 0; i < num_attr; i++) {
1330 /* Mask representing the contiguous slots that will be used by this
1331 * attribute.
1332 */
1333 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1334
1335 int location = find_available_slots(used_locations, to_assign[i].slots);
1336
1337 if (location < 0) {
1338 linker_error_printf(prog,
1339 "insufficient contiguous attribute locations "
1340 "available for vertex shader input `%s'",
1341 to_assign[i].var->name);
1342 return false;
1343 }
1344
1345 to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location;
1346 used_locations |= (use_mask << location);
1347 }
1348
1349 return true;
1350 }
1351
1352
1353 /**
1354 * Demote shader inputs and outputs that are not used in other stages
1355 */
1356 void
1357 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1358 {
1359 foreach_list(node, sh->ir) {
1360 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1361
1362 if ((var == NULL) || (var->mode != int(mode)))
1363 continue;
1364
1365 /* A shader 'in' or 'out' variable is only really an input or output if
1366 * its value is used by other shader stages. This will cause the variable
1367 * to have a location assigned.
1368 */
1369 if (var->location == -1) {
1370 var->mode = ir_var_auto;
1371 }
1372 }
1373 }
1374
1375
1376 void
1377 assign_varying_locations(struct gl_shader_program *prog,
1378 gl_shader *producer, gl_shader *consumer)
1379 {
1380 /* FINISHME: Set dynamically when geometry shader support is added. */
1381 unsigned output_index = VERT_RESULT_VAR0;
1382 unsigned input_index = FRAG_ATTRIB_VAR0;
1383
1384 /* Operate in a total of three passes.
1385 *
1386 * 1. Assign locations for any matching inputs and outputs.
1387 *
1388 * 2. Mark output variables in the producer that do not have locations as
1389 * not being outputs. This lets the optimizer eliminate them.
1390 *
1391 * 3. Mark input variables in the consumer that do not have locations as
1392 * not being inputs. This lets the optimizer eliminate them.
1393 */
1394
1395 invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1396 invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1397
1398 foreach_list(node, producer->ir) {
1399 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1400
1401 if ((output_var == NULL) || (output_var->mode != ir_var_out)
1402 || (output_var->location != -1))
1403 continue;
1404
1405 ir_variable *const input_var =
1406 consumer->symbols->get_variable(output_var->name);
1407
1408 if ((input_var == NULL) || (input_var->mode != ir_var_in))
1409 continue;
1410
1411 assert(input_var->location == -1);
1412
1413 output_var->location = output_index;
1414 input_var->location = input_index;
1415
1416 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1417 assert(!output_var->type->is_record());
1418
1419 if (output_var->type->is_array()) {
1420 const unsigned slots = output_var->type->length
1421 * output_var->type->fields.array->matrix_columns;
1422
1423 output_index += slots;
1424 input_index += slots;
1425 } else {
1426 const unsigned slots = output_var->type->matrix_columns;
1427
1428 output_index += slots;
1429 input_index += slots;
1430 }
1431 }
1432
1433 foreach_list(node, consumer->ir) {
1434 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1435
1436 if ((var == NULL) || (var->mode != ir_var_in))
1437 continue;
1438
1439 if (var->location == -1) {
1440 if (prog->Version <= 120) {
1441 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1442 *
1443 * Only those varying variables used (i.e. read) in
1444 * the fragment shader executable must be written to
1445 * by the vertex shader executable; declaring
1446 * superfluous varying variables in a vertex shader is
1447 * permissible.
1448 *
1449 * We interpret this text as meaning that the VS must
1450 * write the variable for the FS to read it. See
1451 * "glsl1-varying read but not written" in piglit.
1452 */
1453
1454 linker_error_printf(prog, "fragment shader varying %s not written "
1455 "by vertex shader\n.", var->name);
1456 prog->LinkStatus = false;
1457 }
1458
1459 /* An 'in' variable is only really a shader input if its
1460 * value is written by the previous stage.
1461 */
1462 var->mode = ir_var_auto;
1463 }
1464 }
1465 }
1466
1467
1468 void
1469 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
1470 {
1471 void *mem_ctx = talloc_init("temporary linker context");
1472
1473 prog->LinkStatus = false;
1474 prog->Validated = false;
1475 prog->_Used = false;
1476
1477 if (prog->InfoLog != NULL)
1478 talloc_free(prog->InfoLog);
1479
1480 prog->InfoLog = talloc_strdup(NULL, "");
1481
1482 /* Separate the shaders into groups based on their type.
1483 */
1484 struct gl_shader **vert_shader_list;
1485 unsigned num_vert_shaders = 0;
1486 struct gl_shader **frag_shader_list;
1487 unsigned num_frag_shaders = 0;
1488
1489 vert_shader_list = (struct gl_shader **)
1490 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1491 frag_shader_list = &vert_shader_list[prog->NumShaders];
1492
1493 unsigned min_version = UINT_MAX;
1494 unsigned max_version = 0;
1495 for (unsigned i = 0; i < prog->NumShaders; i++) {
1496 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1497 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1498
1499 switch (prog->Shaders[i]->Type) {
1500 case GL_VERTEX_SHADER:
1501 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1502 num_vert_shaders++;
1503 break;
1504 case GL_FRAGMENT_SHADER:
1505 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1506 num_frag_shaders++;
1507 break;
1508 case GL_GEOMETRY_SHADER:
1509 /* FINISHME: Support geometry shaders. */
1510 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1511 break;
1512 }
1513 }
1514
1515 /* Previous to GLSL version 1.30, different compilation units could mix and
1516 * match shading language versions. With GLSL 1.30 and later, the versions
1517 * of all shaders must match.
1518 */
1519 assert(min_version >= 100);
1520 assert(max_version <= 130);
1521 if ((max_version >= 130 || min_version == 100)
1522 && min_version != max_version) {
1523 linker_error_printf(prog, "all shaders must use same shading "
1524 "language version\n");
1525 goto done;
1526 }
1527
1528 prog->Version = max_version;
1529
1530 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1531 if (prog->_LinkedShaders[i] != NULL)
1532 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1533
1534 prog->_LinkedShaders[i] = NULL;
1535 }
1536
1537 /* Link all shaders for a particular stage and validate the result.
1538 */
1539 if (num_vert_shaders > 0) {
1540 gl_shader *const sh =
1541 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1542 num_vert_shaders);
1543
1544 if (sh == NULL)
1545 goto done;
1546
1547 if (!validate_vertex_shader_executable(prog, sh))
1548 goto done;
1549
1550 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1551 sh);
1552 }
1553
1554 if (num_frag_shaders > 0) {
1555 gl_shader *const sh =
1556 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1557 num_frag_shaders);
1558
1559 if (sh == NULL)
1560 goto done;
1561
1562 if (!validate_fragment_shader_executable(prog, sh))
1563 goto done;
1564
1565 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1566 sh);
1567 }
1568
1569 /* Here begins the inter-stage linking phase. Some initial validation is
1570 * performed, then locations are assigned for uniforms, attributes, and
1571 * varyings.
1572 */
1573 if (cross_validate_uniforms(prog)) {
1574 unsigned prev;
1575
1576 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1577 if (prog->_LinkedShaders[prev] != NULL)
1578 break;
1579 }
1580
1581 /* Validate the inputs of each stage with the output of the preceeding
1582 * stage.
1583 */
1584 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1585 if (prog->_LinkedShaders[i] == NULL)
1586 continue;
1587
1588 if (!cross_validate_outputs_to_inputs(prog,
1589 prog->_LinkedShaders[prev],
1590 prog->_LinkedShaders[i]))
1591 goto done;
1592
1593 prev = i;
1594 }
1595
1596 prog->LinkStatus = true;
1597 }
1598
1599 /* Do common optimization before assigning storage for attributes,
1600 * uniforms, and varyings. Later optimization could possibly make
1601 * some of that unused.
1602 */
1603 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1604 if (prog->_LinkedShaders[i] == NULL)
1605 continue;
1606
1607 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
1608 ;
1609 }
1610
1611 update_array_sizes(prog);
1612
1613 assign_uniform_locations(prog);
1614
1615 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1616 /* FINISHME: The value of the max_attribute_index parameter is
1617 * FINISHME: implementation dependent based on the value of
1618 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1619 * FINISHME: at least 16, so hardcode 16 for now.
1620 */
1621 if (!assign_attribute_locations(prog, 16)) {
1622 prog->LinkStatus = false;
1623 goto done;
1624 }
1625 }
1626
1627 unsigned prev;
1628 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1629 if (prog->_LinkedShaders[prev] != NULL)
1630 break;
1631 }
1632
1633 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1634 if (prog->_LinkedShaders[i] == NULL)
1635 continue;
1636
1637 assign_varying_locations(prog,
1638 prog->_LinkedShaders[prev],
1639 prog->_LinkedShaders[i]);
1640 prev = i;
1641 }
1642
1643 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1644 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1645 ir_var_out);
1646 }
1647
1648 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1649 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1650
1651 demote_shader_inputs_and_outputs(sh, ir_var_in);
1652 demote_shader_inputs_and_outputs(sh, ir_var_inout);
1653 demote_shader_inputs_and_outputs(sh, ir_var_out);
1654 }
1655
1656 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1657 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1658
1659 demote_shader_inputs_and_outputs(sh, ir_var_in);
1660 }
1661
1662 /* FINISHME: Assign fragment shader output locations. */
1663
1664 done:
1665 free(vert_shader_list);
1666
1667 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1668 if (prog->_LinkedShaders[i] == NULL)
1669 continue;
1670
1671 /* Retain any live IR, but trash the rest. */
1672 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1673 }
1674
1675 talloc_free(mem_ctx);
1676 }