glsl: Merge the lists of uniform blocks into the linked shader program.
[mesa.git] / src / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include "main/core.h"
68 #include "glsl_symbol_table.h"
69 #include "ir.h"
70 #include "program.h"
71 #include "program/hash_table.h"
72 #include "linker.h"
73 #include "ir_optimization.h"
74
75 extern "C" {
76 #include "main/shaderobj.h"
77 }
78
79 /**
80 * Visitor that determines whether or not a variable is ever written.
81 */
82 class find_assignment_visitor : public ir_hierarchical_visitor {
83 public:
84 find_assignment_visitor(const char *name)
85 : name(name), found(false)
86 {
87 /* empty */
88 }
89
90 virtual ir_visitor_status visit_enter(ir_assignment *ir)
91 {
92 ir_variable *const var = ir->lhs->variable_referenced();
93
94 if (strcmp(name, var->name) == 0) {
95 found = true;
96 return visit_stop;
97 }
98
99 return visit_continue_with_parent;
100 }
101
102 virtual ir_visitor_status visit_enter(ir_call *ir)
103 {
104 exec_list_iterator sig_iter = ir->callee->parameters.iterator();
105 foreach_iter(exec_list_iterator, iter, *ir) {
106 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
107 ir_variable *sig_param = (ir_variable *)sig_iter.get();
108
109 if (sig_param->mode == ir_var_out ||
110 sig_param->mode == ir_var_inout) {
111 ir_variable *var = param_rval->variable_referenced();
112 if (var && strcmp(name, var->name) == 0) {
113 found = true;
114 return visit_stop;
115 }
116 }
117 sig_iter.next();
118 }
119
120 if (ir->return_deref != NULL) {
121 ir_variable *const var = ir->return_deref->variable_referenced();
122
123 if (strcmp(name, var->name) == 0) {
124 found = true;
125 return visit_stop;
126 }
127 }
128
129 return visit_continue_with_parent;
130 }
131
132 bool variable_found()
133 {
134 return found;
135 }
136
137 private:
138 const char *name; /**< Find writes to a variable with this name. */
139 bool found; /**< Was a write to the variable found? */
140 };
141
142
143 /**
144 * Visitor that determines whether or not a variable is ever read.
145 */
146 class find_deref_visitor : public ir_hierarchical_visitor {
147 public:
148 find_deref_visitor(const char *name)
149 : name(name), found(false)
150 {
151 /* empty */
152 }
153
154 virtual ir_visitor_status visit(ir_dereference_variable *ir)
155 {
156 if (strcmp(this->name, ir->var->name) == 0) {
157 this->found = true;
158 return visit_stop;
159 }
160
161 return visit_continue;
162 }
163
164 bool variable_found() const
165 {
166 return this->found;
167 }
168
169 private:
170 const char *name; /**< Find writes to a variable with this name. */
171 bool found; /**< Was a write to the variable found? */
172 };
173
174
175 void
176 linker_error(gl_shader_program *prog, const char *fmt, ...)
177 {
178 va_list ap;
179
180 ralloc_strcat(&prog->InfoLog, "error: ");
181 va_start(ap, fmt);
182 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
183 va_end(ap);
184
185 prog->LinkStatus = false;
186 }
187
188
189 void
190 linker_warning(gl_shader_program *prog, const char *fmt, ...)
191 {
192 va_list ap;
193
194 ralloc_strcat(&prog->InfoLog, "error: ");
195 va_start(ap, fmt);
196 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
197 va_end(ap);
198
199 }
200
201
202 void
203 link_invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
204 int generic_base)
205 {
206 foreach_list(node, sh->ir) {
207 ir_variable *const var = ((ir_instruction *) node)->as_variable();
208
209 if ((var == NULL) || (var->mode != (unsigned) mode))
210 continue;
211
212 /* Only assign locations for generic attributes / varyings / etc.
213 */
214 if ((var->location >= generic_base) && !var->explicit_location)
215 var->location = -1;
216 }
217 }
218
219
220 /**
221 * Determine the number of attribute slots required for a particular type
222 *
223 * This code is here because it implements the language rules of a specific
224 * GLSL version. Since it's a property of the language and not a property of
225 * types in general, it doesn't really belong in glsl_type.
226 */
227 unsigned
228 count_attribute_slots(const glsl_type *t)
229 {
230 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
231 *
232 * "A scalar input counts the same amount against this limit as a vec4,
233 * so applications may want to consider packing groups of four
234 * unrelated float inputs together into a vector to better utilize the
235 * capabilities of the underlying hardware. A matrix input will use up
236 * multiple locations. The number of locations used will equal the
237 * number of columns in the matrix."
238 *
239 * The spec does not explicitly say how arrays are counted. However, it
240 * should be safe to assume the total number of slots consumed by an array
241 * is the number of entries in the array multiplied by the number of slots
242 * consumed by a single element of the array.
243 */
244
245 if (t->is_array())
246 return t->array_size() * count_attribute_slots(t->element_type());
247
248 if (t->is_matrix())
249 return t->matrix_columns;
250
251 return 1;
252 }
253
254
255 /**
256 * Verify that a vertex shader executable meets all semantic requirements.
257 *
258 * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize
259 * as a side effect.
260 *
261 * \param shader Vertex shader executable to be verified
262 */
263 bool
264 validate_vertex_shader_executable(struct gl_shader_program *prog,
265 struct gl_shader *shader)
266 {
267 if (shader == NULL)
268 return true;
269
270 /* From the GLSL 1.10 spec, page 48:
271 *
272 * "The variable gl_Position is available only in the vertex
273 * language and is intended for writing the homogeneous vertex
274 * position. All executions of a well-formed vertex shader
275 * executable must write a value into this variable. [...] The
276 * variable gl_Position is available only in the vertex
277 * language and is intended for writing the homogeneous vertex
278 * position. All executions of a well-formed vertex shader
279 * executable must write a value into this variable."
280 *
281 * while in GLSL 1.40 this text is changed to:
282 *
283 * "The variable gl_Position is available only in the vertex
284 * language and is intended for writing the homogeneous vertex
285 * position. It can be written at any time during shader
286 * execution. It may also be read back by a vertex shader
287 * after being written. This value will be used by primitive
288 * assembly, clipping, culling, and other fixed functionality
289 * operations, if present, that operate on primitives after
290 * vertex processing has occurred. Its value is undefined if
291 * the vertex shader executable does not write gl_Position."
292 */
293 if (prog->Version < 140) {
294 find_assignment_visitor find("gl_Position");
295 find.run(shader->ir);
296 if (!find.variable_found()) {
297 linker_error(prog, "vertex shader does not write to `gl_Position'\n");
298 return false;
299 }
300 }
301
302 prog->Vert.ClipDistanceArraySize = 0;
303
304 if (prog->Version >= 130) {
305 /* From section 7.1 (Vertex Shader Special Variables) of the
306 * GLSL 1.30 spec:
307 *
308 * "It is an error for a shader to statically write both
309 * gl_ClipVertex and gl_ClipDistance."
310 */
311 find_assignment_visitor clip_vertex("gl_ClipVertex");
312 find_assignment_visitor clip_distance("gl_ClipDistance");
313
314 clip_vertex.run(shader->ir);
315 clip_distance.run(shader->ir);
316 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
317 linker_error(prog, "vertex shader writes to both `gl_ClipVertex' "
318 "and `gl_ClipDistance'\n");
319 return false;
320 }
321 prog->Vert.UsesClipDistance = clip_distance.variable_found();
322 ir_variable *clip_distance_var =
323 shader->symbols->get_variable("gl_ClipDistance");
324 if (clip_distance_var)
325 prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length;
326 }
327
328 return true;
329 }
330
331
332 /**
333 * Verify that a fragment shader executable meets all semantic requirements
334 *
335 * \param shader Fragment shader executable to be verified
336 */
337 bool
338 validate_fragment_shader_executable(struct gl_shader_program *prog,
339 struct gl_shader *shader)
340 {
341 if (shader == NULL)
342 return true;
343
344 find_assignment_visitor frag_color("gl_FragColor");
345 find_assignment_visitor frag_data("gl_FragData");
346
347 frag_color.run(shader->ir);
348 frag_data.run(shader->ir);
349
350 if (frag_color.variable_found() && frag_data.variable_found()) {
351 linker_error(prog, "fragment shader writes to both "
352 "`gl_FragColor' and `gl_FragData'\n");
353 return false;
354 }
355
356 return true;
357 }
358
359
360 /**
361 * Generate a string describing the mode of a variable
362 */
363 static const char *
364 mode_string(const ir_variable *var)
365 {
366 switch (var->mode) {
367 case ir_var_auto:
368 return (var->read_only) ? "global constant" : "global variable";
369
370 case ir_var_uniform: return "uniform";
371 case ir_var_in: return "shader input";
372 case ir_var_out: return "shader output";
373 case ir_var_inout: return "shader inout";
374
375 case ir_var_const_in:
376 case ir_var_temporary:
377 default:
378 assert(!"Should not get here.");
379 return "invalid variable";
380 }
381 }
382
383
384 /**
385 * Perform validation of global variables used across multiple shaders
386 */
387 bool
388 cross_validate_globals(struct gl_shader_program *prog,
389 struct gl_shader **shader_list,
390 unsigned num_shaders,
391 bool uniforms_only)
392 {
393 /* Examine all of the uniforms in all of the shaders and cross validate
394 * them.
395 */
396 glsl_symbol_table variables;
397 for (unsigned i = 0; i < num_shaders; i++) {
398 if (shader_list[i] == NULL)
399 continue;
400
401 foreach_list(node, shader_list[i]->ir) {
402 ir_variable *const var = ((ir_instruction *) node)->as_variable();
403
404 if (var == NULL)
405 continue;
406
407 if (uniforms_only && (var->mode != ir_var_uniform))
408 continue;
409
410 /* Don't cross validate temporaries that are at global scope. These
411 * will eventually get pulled into the shaders 'main'.
412 */
413 if (var->mode == ir_var_temporary)
414 continue;
415
416 /* If a global with this name has already been seen, verify that the
417 * new instance has the same type. In addition, if the globals have
418 * initializers, the values of the initializers must be the same.
419 */
420 ir_variable *const existing = variables.get_variable(var->name);
421 if (existing != NULL) {
422 if (var->type != existing->type) {
423 /* Consider the types to be "the same" if both types are arrays
424 * of the same type and one of the arrays is implicitly sized.
425 * In addition, set the type of the linked variable to the
426 * explicitly sized array.
427 */
428 if (var->type->is_array()
429 && existing->type->is_array()
430 && (var->type->fields.array == existing->type->fields.array)
431 && ((var->type->length == 0)
432 || (existing->type->length == 0))) {
433 if (var->type->length != 0) {
434 existing->type = var->type;
435 }
436 } else {
437 linker_error(prog, "%s `%s' declared as type "
438 "`%s' and type `%s'\n",
439 mode_string(var),
440 var->name, var->type->name,
441 existing->type->name);
442 return false;
443 }
444 }
445
446 if (var->explicit_location) {
447 if (existing->explicit_location
448 && (var->location != existing->location)) {
449 linker_error(prog, "explicit locations for %s "
450 "`%s' have differing values\n",
451 mode_string(var), var->name);
452 return false;
453 }
454
455 existing->location = var->location;
456 existing->explicit_location = true;
457 }
458
459 /* Validate layout qualifiers for gl_FragDepth.
460 *
461 * From the AMD/ARB_conservative_depth specs:
462 *
463 * "If gl_FragDepth is redeclared in any fragment shader in a
464 * program, it must be redeclared in all fragment shaders in
465 * that program that have static assignments to
466 * gl_FragDepth. All redeclarations of gl_FragDepth in all
467 * fragment shaders in a single program must have the same set
468 * of qualifiers."
469 */
470 if (strcmp(var->name, "gl_FragDepth") == 0) {
471 bool layout_declared = var->depth_layout != ir_depth_layout_none;
472 bool layout_differs =
473 var->depth_layout != existing->depth_layout;
474
475 if (layout_declared && layout_differs) {
476 linker_error(prog,
477 "All redeclarations of gl_FragDepth in all "
478 "fragment shaders in a single program must have "
479 "the same set of qualifiers.");
480 }
481
482 if (var->used && layout_differs) {
483 linker_error(prog,
484 "If gl_FragDepth is redeclared with a layout "
485 "qualifier in any fragment shader, it must be "
486 "redeclared with the same layout qualifier in "
487 "all fragment shaders that have assignments to "
488 "gl_FragDepth");
489 }
490 }
491
492 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
493 *
494 * "If a shared global has multiple initializers, the
495 * initializers must all be constant expressions, and they
496 * must all have the same value. Otherwise, a link error will
497 * result. (A shared global having only one initializer does
498 * not require that initializer to be a constant expression.)"
499 *
500 * Previous to 4.20 the GLSL spec simply said that initializers
501 * must have the same value. In this case of non-constant
502 * initializers, this was impossible to determine. As a result,
503 * no vendor actually implemented that behavior. The 4.20
504 * behavior matches the implemented behavior of at least one other
505 * vendor, so we'll implement that for all GLSL versions.
506 */
507 if (var->constant_initializer != NULL) {
508 if (existing->constant_initializer != NULL) {
509 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
510 linker_error(prog, "initializers for %s "
511 "`%s' have differing values\n",
512 mode_string(var), var->name);
513 return false;
514 }
515 } else {
516 /* If the first-seen instance of a particular uniform did not
517 * have an initializer but a later instance does, copy the
518 * initializer to the version stored in the symbol table.
519 */
520 /* FINISHME: This is wrong. The constant_value field should
521 * FINISHME: not be modified! Imagine a case where a shader
522 * FINISHME: without an initializer is linked in two different
523 * FINISHME: programs with shaders that have differing
524 * FINISHME: initializers. Linking with the first will
525 * FINISHME: modify the shader, and linking with the second
526 * FINISHME: will fail.
527 */
528 existing->constant_initializer =
529 var->constant_initializer->clone(ralloc_parent(existing),
530 NULL);
531 }
532 }
533
534 if (var->has_initializer) {
535 if (existing->has_initializer
536 && (var->constant_initializer == NULL
537 || existing->constant_initializer == NULL)) {
538 linker_error(prog,
539 "shared global variable `%s' has multiple "
540 "non-constant initializers.\n",
541 var->name);
542 return false;
543 }
544
545 /* Some instance had an initializer, so keep track of that. In
546 * this location, all sorts of initializers (constant or
547 * otherwise) will propagate the existence to the variable
548 * stored in the symbol table.
549 */
550 existing->has_initializer = true;
551 }
552
553 if (existing->invariant != var->invariant) {
554 linker_error(prog, "declarations for %s `%s' have "
555 "mismatching invariant qualifiers\n",
556 mode_string(var), var->name);
557 return false;
558 }
559 if (existing->centroid != var->centroid) {
560 linker_error(prog, "declarations for %s `%s' have "
561 "mismatching centroid qualifiers\n",
562 mode_string(var), var->name);
563 return false;
564 }
565 } else
566 variables.add_variable(var);
567 }
568 }
569
570 return true;
571 }
572
573
574 /**
575 * Perform validation of uniforms used across multiple shader stages
576 */
577 bool
578 cross_validate_uniforms(struct gl_shader_program *prog)
579 {
580 return cross_validate_globals(prog, prog->_LinkedShaders,
581 MESA_SHADER_TYPES, true);
582 }
583
584 /**
585 * Accumulates the array of prog->UniformBlocks and checks that all
586 * definitons of blocks agree on their contents.
587 */
588 static bool
589 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
590 {
591 unsigned max_num_uniform_blocks = 0;
592 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
593 if (prog->_LinkedShaders[i])
594 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks;
595 }
596
597 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
598 struct gl_shader *sh = prog->_LinkedShaders[i];
599
600 prog->UniformBlockStageIndex[i] = ralloc_array(prog, int,
601 max_num_uniform_blocks);
602 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
603 prog->UniformBlockStageIndex[i][j] = -1;
604
605 if (sh == NULL)
606 continue;
607
608 for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) {
609 int index = link_cross_validate_uniform_block(prog,
610 &prog->UniformBlocks,
611 &prog->NumUniformBlocks,
612 &sh->UniformBlocks[j]);
613
614 if (index == -1) {
615 linker_error(prog, "uniform block `%s' has mismatching definitions",
616 sh->UniformBlocks[j].Name);
617 return false;
618 }
619
620 prog->UniformBlockStageIndex[i][index] = j;
621 }
622 }
623
624 return true;
625 }
626
627 /**
628 * Validate that outputs from one stage match inputs of another
629 */
630 bool
631 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
632 gl_shader *producer, gl_shader *consumer)
633 {
634 glsl_symbol_table parameters;
635 /* FINISHME: Figure these out dynamically. */
636 const char *const producer_stage = "vertex";
637 const char *const consumer_stage = "fragment";
638
639 /* Find all shader outputs in the "producer" stage.
640 */
641 foreach_list(node, producer->ir) {
642 ir_variable *const var = ((ir_instruction *) node)->as_variable();
643
644 /* FINISHME: For geometry shaders, this should also look for inout
645 * FINISHME: variables.
646 */
647 if ((var == NULL) || (var->mode != ir_var_out))
648 continue;
649
650 parameters.add_variable(var);
651 }
652
653
654 /* Find all shader inputs in the "consumer" stage. Any variables that have
655 * matching outputs already in the symbol table must have the same type and
656 * qualifiers.
657 */
658 foreach_list(node, consumer->ir) {
659 ir_variable *const input = ((ir_instruction *) node)->as_variable();
660
661 /* FINISHME: For geometry shaders, this should also look for inout
662 * FINISHME: variables.
663 */
664 if ((input == NULL) || (input->mode != ir_var_in))
665 continue;
666
667 ir_variable *const output = parameters.get_variable(input->name);
668 if (output != NULL) {
669 /* Check that the types match between stages.
670 */
671 if (input->type != output->type) {
672 /* There is a bit of a special case for gl_TexCoord. This
673 * built-in is unsized by default. Applications that variable
674 * access it must redeclare it with a size. There is some
675 * language in the GLSL spec that implies the fragment shader
676 * and vertex shader do not have to agree on this size. Other
677 * driver behave this way, and one or two applications seem to
678 * rely on it.
679 *
680 * Neither declaration needs to be modified here because the array
681 * sizes are fixed later when update_array_sizes is called.
682 *
683 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
684 *
685 * "Unlike user-defined varying variables, the built-in
686 * varying variables don't have a strict one-to-one
687 * correspondence between the vertex language and the
688 * fragment language."
689 */
690 if (!output->type->is_array()
691 || (strncmp("gl_", output->name, 3) != 0)) {
692 linker_error(prog,
693 "%s shader output `%s' declared as type `%s', "
694 "but %s shader input declared as type `%s'\n",
695 producer_stage, output->name,
696 output->type->name,
697 consumer_stage, input->type->name);
698 return false;
699 }
700 }
701
702 /* Check that all of the qualifiers match between stages.
703 */
704 if (input->centroid != output->centroid) {
705 linker_error(prog,
706 "%s shader output `%s' %s centroid qualifier, "
707 "but %s shader input %s centroid qualifier\n",
708 producer_stage,
709 output->name,
710 (output->centroid) ? "has" : "lacks",
711 consumer_stage,
712 (input->centroid) ? "has" : "lacks");
713 return false;
714 }
715
716 if (input->invariant != output->invariant) {
717 linker_error(prog,
718 "%s shader output `%s' %s invariant qualifier, "
719 "but %s shader input %s invariant qualifier\n",
720 producer_stage,
721 output->name,
722 (output->invariant) ? "has" : "lacks",
723 consumer_stage,
724 (input->invariant) ? "has" : "lacks");
725 return false;
726 }
727
728 if (input->interpolation != output->interpolation) {
729 linker_error(prog,
730 "%s shader output `%s' specifies %s "
731 "interpolation qualifier, "
732 "but %s shader input specifies %s "
733 "interpolation qualifier\n",
734 producer_stage,
735 output->name,
736 output->interpolation_string(),
737 consumer_stage,
738 input->interpolation_string());
739 return false;
740 }
741 }
742 }
743
744 return true;
745 }
746
747
748 /**
749 * Populates a shaders symbol table with all global declarations
750 */
751 static void
752 populate_symbol_table(gl_shader *sh)
753 {
754 sh->symbols = new(sh) glsl_symbol_table;
755
756 foreach_list(node, sh->ir) {
757 ir_instruction *const inst = (ir_instruction *) node;
758 ir_variable *var;
759 ir_function *func;
760
761 if ((func = inst->as_function()) != NULL) {
762 sh->symbols->add_function(func);
763 } else if ((var = inst->as_variable()) != NULL) {
764 sh->symbols->add_variable(var);
765 }
766 }
767 }
768
769
770 /**
771 * Remap variables referenced in an instruction tree
772 *
773 * This is used when instruction trees are cloned from one shader and placed in
774 * another. These trees will contain references to \c ir_variable nodes that
775 * do not exist in the target shader. This function finds these \c ir_variable
776 * references and replaces the references with matching variables in the target
777 * shader.
778 *
779 * If there is no matching variable in the target shader, a clone of the
780 * \c ir_variable is made and added to the target shader. The new variable is
781 * added to \b both the instruction stream and the symbol table.
782 *
783 * \param inst IR tree that is to be processed.
784 * \param symbols Symbol table containing global scope symbols in the
785 * linked shader.
786 * \param instructions Instruction stream where new variable declarations
787 * should be added.
788 */
789 void
790 remap_variables(ir_instruction *inst, struct gl_shader *target,
791 hash_table *temps)
792 {
793 class remap_visitor : public ir_hierarchical_visitor {
794 public:
795 remap_visitor(struct gl_shader *target,
796 hash_table *temps)
797 {
798 this->target = target;
799 this->symbols = target->symbols;
800 this->instructions = target->ir;
801 this->temps = temps;
802 }
803
804 virtual ir_visitor_status visit(ir_dereference_variable *ir)
805 {
806 if (ir->var->mode == ir_var_temporary) {
807 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
808
809 assert(var != NULL);
810 ir->var = var;
811 return visit_continue;
812 }
813
814 ir_variable *const existing =
815 this->symbols->get_variable(ir->var->name);
816 if (existing != NULL)
817 ir->var = existing;
818 else {
819 ir_variable *copy = ir->var->clone(this->target, NULL);
820
821 this->symbols->add_variable(copy);
822 this->instructions->push_head(copy);
823 ir->var = copy;
824 }
825
826 return visit_continue;
827 }
828
829 private:
830 struct gl_shader *target;
831 glsl_symbol_table *symbols;
832 exec_list *instructions;
833 hash_table *temps;
834 };
835
836 remap_visitor v(target, temps);
837
838 inst->accept(&v);
839 }
840
841
842 /**
843 * Move non-declarations from one instruction stream to another
844 *
845 * The intended usage pattern of this function is to pass the pointer to the
846 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
847 * pointer) for \c last and \c false for \c make_copies on the first
848 * call. Successive calls pass the return value of the previous call for
849 * \c last and \c true for \c make_copies.
850 *
851 * \param instructions Source instruction stream
852 * \param last Instruction after which new instructions should be
853 * inserted in the target instruction stream
854 * \param make_copies Flag selecting whether instructions in \c instructions
855 * should be copied (via \c ir_instruction::clone) into the
856 * target list or moved.
857 *
858 * \return
859 * The new "last" instruction in the target instruction stream. This pointer
860 * is suitable for use as the \c last parameter of a later call to this
861 * function.
862 */
863 exec_node *
864 move_non_declarations(exec_list *instructions, exec_node *last,
865 bool make_copies, gl_shader *target)
866 {
867 hash_table *temps = NULL;
868
869 if (make_copies)
870 temps = hash_table_ctor(0, hash_table_pointer_hash,
871 hash_table_pointer_compare);
872
873 foreach_list_safe(node, instructions) {
874 ir_instruction *inst = (ir_instruction *) node;
875
876 if (inst->as_function())
877 continue;
878
879 ir_variable *var = inst->as_variable();
880 if ((var != NULL) && (var->mode != ir_var_temporary))
881 continue;
882
883 assert(inst->as_assignment()
884 || inst->as_call()
885 || ((var != NULL) && (var->mode == ir_var_temporary)));
886
887 if (make_copies) {
888 inst = inst->clone(target, NULL);
889
890 if (var != NULL)
891 hash_table_insert(temps, inst, var);
892 else
893 remap_variables(inst, target, temps);
894 } else {
895 inst->remove();
896 }
897
898 last->insert_after(inst);
899 last = inst;
900 }
901
902 if (make_copies)
903 hash_table_dtor(temps);
904
905 return last;
906 }
907
908 /**
909 * Get the function signature for main from a shader
910 */
911 static ir_function_signature *
912 get_main_function_signature(gl_shader *sh)
913 {
914 ir_function *const f = sh->symbols->get_function("main");
915 if (f != NULL) {
916 exec_list void_parameters;
917
918 /* Look for the 'void main()' signature and ensure that it's defined.
919 * This keeps the linker from accidentally pick a shader that just
920 * contains a prototype for main.
921 *
922 * We don't have to check for multiple definitions of main (in multiple
923 * shaders) because that would have already been caught above.
924 */
925 ir_function_signature *sig = f->matching_signature(&void_parameters);
926 if ((sig != NULL) && sig->is_defined) {
927 return sig;
928 }
929 }
930
931 return NULL;
932 }
933
934
935 /**
936 * This class is only used in link_intrastage_shaders() below but declaring
937 * it inside that function leads to compiler warnings with some versions of
938 * gcc.
939 */
940 class array_sizing_visitor : public ir_hierarchical_visitor {
941 public:
942 virtual ir_visitor_status visit(ir_variable *var)
943 {
944 if (var->type->is_array() && (var->type->length == 0)) {
945 const glsl_type *type =
946 glsl_type::get_array_instance(var->type->fields.array,
947 var->max_array_access + 1);
948 assert(type != NULL);
949 var->type = type;
950 }
951 return visit_continue;
952 }
953 };
954
955 /**
956 * Combine a group of shaders for a single stage to generate a linked shader
957 *
958 * \note
959 * If this function is supplied a single shader, it is cloned, and the new
960 * shader is returned.
961 */
962 static struct gl_shader *
963 link_intrastage_shaders(void *mem_ctx,
964 struct gl_context *ctx,
965 struct gl_shader_program *prog,
966 struct gl_shader **shader_list,
967 unsigned num_shaders)
968 {
969 struct gl_uniform_block *uniform_blocks = NULL;
970 unsigned num_uniform_blocks = 0;
971
972 /* Check that global variables defined in multiple shaders are consistent.
973 */
974 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
975 return NULL;
976
977 /* Check that uniform blocks between shaders for a stage agree. */
978 for (unsigned i = 0; i < num_shaders; i++) {
979 struct gl_shader *sh = shader_list[i];
980
981 for (unsigned j = 0; j < shader_list[i]->NumUniformBlocks; j++) {
982 int index = link_cross_validate_uniform_block(mem_ctx,
983 &uniform_blocks,
984 &num_uniform_blocks,
985 &sh->UniformBlocks[j]);
986 if (index == -1) {
987 linker_error(prog, "uniform block `%s' has mismatching definitions",
988 sh->UniformBlocks[j].Name);
989 return NULL;
990 }
991 }
992 }
993
994 /* Check that there is only a single definition of each function signature
995 * across all shaders.
996 */
997 for (unsigned i = 0; i < (num_shaders - 1); i++) {
998 foreach_list(node, shader_list[i]->ir) {
999 ir_function *const f = ((ir_instruction *) node)->as_function();
1000
1001 if (f == NULL)
1002 continue;
1003
1004 for (unsigned j = i + 1; j < num_shaders; j++) {
1005 ir_function *const other =
1006 shader_list[j]->symbols->get_function(f->name);
1007
1008 /* If the other shader has no function (and therefore no function
1009 * signatures) with the same name, skip to the next shader.
1010 */
1011 if (other == NULL)
1012 continue;
1013
1014 foreach_iter (exec_list_iterator, iter, *f) {
1015 ir_function_signature *sig =
1016 (ir_function_signature *) iter.get();
1017
1018 if (!sig->is_defined || sig->is_builtin)
1019 continue;
1020
1021 ir_function_signature *other_sig =
1022 other->exact_matching_signature(& sig->parameters);
1023
1024 if ((other_sig != NULL) && other_sig->is_defined
1025 && !other_sig->is_builtin) {
1026 linker_error(prog, "function `%s' is multiply defined",
1027 f->name);
1028 return NULL;
1029 }
1030 }
1031 }
1032 }
1033 }
1034
1035 /* Find the shader that defines main, and make a clone of it.
1036 *
1037 * Starting with the clone, search for undefined references. If one is
1038 * found, find the shader that defines it. Clone the reference and add
1039 * it to the shader. Repeat until there are no undefined references or
1040 * until a reference cannot be resolved.
1041 */
1042 gl_shader *main = NULL;
1043 for (unsigned i = 0; i < num_shaders; i++) {
1044 if (get_main_function_signature(shader_list[i]) != NULL) {
1045 main = shader_list[i];
1046 break;
1047 }
1048 }
1049
1050 if (main == NULL) {
1051 linker_error(prog, "%s shader lacks `main'\n",
1052 (shader_list[0]->Type == GL_VERTEX_SHADER)
1053 ? "vertex" : "fragment");
1054 return NULL;
1055 }
1056
1057 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
1058 linked->ir = new(linked) exec_list;
1059 clone_ir_list(mem_ctx, linked->ir, main->ir);
1060
1061 linked->UniformBlocks = uniform_blocks;
1062 linked->NumUniformBlocks = num_uniform_blocks;
1063 ralloc_steal(linked, linked->UniformBlocks);
1064
1065 populate_symbol_table(linked);
1066
1067 /* The a pointer to the main function in the final linked shader (i.e., the
1068 * copy of the original shader that contained the main function).
1069 */
1070 ir_function_signature *const main_sig = get_main_function_signature(linked);
1071
1072 /* Move any instructions other than variable declarations or function
1073 * declarations into main.
1074 */
1075 exec_node *insertion_point =
1076 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
1077 linked);
1078
1079 for (unsigned i = 0; i < num_shaders; i++) {
1080 if (shader_list[i] == main)
1081 continue;
1082
1083 insertion_point = move_non_declarations(shader_list[i]->ir,
1084 insertion_point, true, linked);
1085 }
1086
1087 /* Resolve initializers for global variables in the linked shader.
1088 */
1089 unsigned num_linking_shaders = num_shaders;
1090 for (unsigned i = 0; i < num_shaders; i++)
1091 num_linking_shaders += shader_list[i]->num_builtins_to_link;
1092
1093 gl_shader **linking_shaders =
1094 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
1095
1096 memcpy(linking_shaders, shader_list,
1097 sizeof(linking_shaders[0]) * num_shaders);
1098
1099 unsigned idx = num_shaders;
1100 for (unsigned i = 0; i < num_shaders; i++) {
1101 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
1102 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
1103 idx += shader_list[i]->num_builtins_to_link;
1104 }
1105
1106 assert(idx == num_linking_shaders);
1107
1108 if (!link_function_calls(prog, linked, linking_shaders,
1109 num_linking_shaders)) {
1110 ctx->Driver.DeleteShader(ctx, linked);
1111 linked = NULL;
1112 }
1113
1114 free(linking_shaders);
1115
1116 #ifdef DEBUG
1117 /* At this point linked should contain all of the linked IR, so
1118 * validate it to make sure nothing went wrong.
1119 */
1120 if (linked)
1121 validate_ir_tree(linked->ir);
1122 #endif
1123
1124 /* Make a pass over all variable declarations to ensure that arrays with
1125 * unspecified sizes have a size specified. The size is inferred from the
1126 * max_array_access field.
1127 */
1128 if (linked != NULL) {
1129 array_sizing_visitor v;
1130
1131 v.run(linked->ir);
1132 }
1133
1134 return linked;
1135 }
1136
1137 /**
1138 * Update the sizes of linked shader uniform arrays to the maximum
1139 * array index used.
1140 *
1141 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
1142 *
1143 * If one or more elements of an array are active,
1144 * GetActiveUniform will return the name of the array in name,
1145 * subject to the restrictions listed above. The type of the array
1146 * is returned in type. The size parameter contains the highest
1147 * array element index used, plus one. The compiler or linker
1148 * determines the highest index used. There will be only one
1149 * active uniform reported by the GL per uniform array.
1150
1151 */
1152 static void
1153 update_array_sizes(struct gl_shader_program *prog)
1154 {
1155 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1156 if (prog->_LinkedShaders[i] == NULL)
1157 continue;
1158
1159 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1160 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1161
1162 if ((var == NULL) || (var->mode != ir_var_uniform &&
1163 var->mode != ir_var_in &&
1164 var->mode != ir_var_out) ||
1165 !var->type->is_array())
1166 continue;
1167
1168 unsigned int size = var->max_array_access;
1169 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
1170 if (prog->_LinkedShaders[j] == NULL)
1171 continue;
1172
1173 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
1174 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
1175 if (!other_var)
1176 continue;
1177
1178 if (strcmp(var->name, other_var->name) == 0 &&
1179 other_var->max_array_access > size) {
1180 size = other_var->max_array_access;
1181 }
1182 }
1183 }
1184
1185 if (size + 1 != var->type->fields.array->length) {
1186 /* If this is a built-in uniform (i.e., it's backed by some
1187 * fixed-function state), adjust the number of state slots to
1188 * match the new array size. The number of slots per array entry
1189 * is not known. It seems safe to assume that the total number of
1190 * slots is an integer multiple of the number of array elements.
1191 * Determine the number of slots per array element by dividing by
1192 * the old (total) size.
1193 */
1194 if (var->num_state_slots > 0) {
1195 var->num_state_slots = (size + 1)
1196 * (var->num_state_slots / var->type->length);
1197 }
1198
1199 var->type = glsl_type::get_array_instance(var->type->fields.array,
1200 size + 1);
1201 /* FINISHME: We should update the types of array
1202 * dereferences of this variable now.
1203 */
1204 }
1205 }
1206 }
1207 }
1208
1209 /**
1210 * Find a contiguous set of available bits in a bitmask.
1211 *
1212 * \param used_mask Bits representing used (1) and unused (0) locations
1213 * \param needed_count Number of contiguous bits needed.
1214 *
1215 * \return
1216 * Base location of the available bits on success or -1 on failure.
1217 */
1218 int
1219 find_available_slots(unsigned used_mask, unsigned needed_count)
1220 {
1221 unsigned needed_mask = (1 << needed_count) - 1;
1222 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1223
1224 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1225 * cannot optimize possibly infinite loops" for the loop below.
1226 */
1227 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1228 return -1;
1229
1230 for (int i = 0; i <= max_bit_to_test; i++) {
1231 if ((needed_mask & ~used_mask) == needed_mask)
1232 return i;
1233
1234 needed_mask <<= 1;
1235 }
1236
1237 return -1;
1238 }
1239
1240
1241 /**
1242 * Assign locations for either VS inputs for FS outputs
1243 *
1244 * \param prog Shader program whose variables need locations assigned
1245 * \param target_index Selector for the program target to receive location
1246 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
1247 * \c MESA_SHADER_FRAGMENT.
1248 * \param max_index Maximum number of generic locations. This corresponds
1249 * to either the maximum number of draw buffers or the
1250 * maximum number of generic attributes.
1251 *
1252 * \return
1253 * If locations are successfully assigned, true is returned. Otherwise an
1254 * error is emitted to the shader link log and false is returned.
1255 */
1256 bool
1257 assign_attribute_or_color_locations(gl_shader_program *prog,
1258 unsigned target_index,
1259 unsigned max_index)
1260 {
1261 /* Mark invalid locations as being used.
1262 */
1263 unsigned used_locations = (max_index >= 32)
1264 ? ~0 : ~((1 << max_index) - 1);
1265
1266 assert((target_index == MESA_SHADER_VERTEX)
1267 || (target_index == MESA_SHADER_FRAGMENT));
1268
1269 gl_shader *const sh = prog->_LinkedShaders[target_index];
1270 if (sh == NULL)
1271 return true;
1272
1273 /* Operate in a total of four passes.
1274 *
1275 * 1. Invalidate the location assignments for all vertex shader inputs.
1276 *
1277 * 2. Assign locations for inputs that have user-defined (via
1278 * glBindVertexAttribLocation) locations and outputs that have
1279 * user-defined locations (via glBindFragDataLocation).
1280 *
1281 * 3. Sort the attributes without assigned locations by number of slots
1282 * required in decreasing order. Fragmentation caused by attribute
1283 * locations assigned by the application may prevent large attributes
1284 * from having enough contiguous space.
1285 *
1286 * 4. Assign locations to any inputs without assigned locations.
1287 */
1288
1289 const int generic_base = (target_index == MESA_SHADER_VERTEX)
1290 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
1291
1292 const enum ir_variable_mode direction =
1293 (target_index == MESA_SHADER_VERTEX) ? ir_var_in : ir_var_out;
1294
1295
1296 link_invalidate_variable_locations(sh, direction, generic_base);
1297
1298 /* Temporary storage for the set of attributes that need locations assigned.
1299 */
1300 struct temp_attr {
1301 unsigned slots;
1302 ir_variable *var;
1303
1304 /* Used below in the call to qsort. */
1305 static int compare(const void *a, const void *b)
1306 {
1307 const temp_attr *const l = (const temp_attr *) a;
1308 const temp_attr *const r = (const temp_attr *) b;
1309
1310 /* Reversed because we want a descending order sort below. */
1311 return r->slots - l->slots;
1312 }
1313 } to_assign[16];
1314
1315 unsigned num_attr = 0;
1316
1317 foreach_list(node, sh->ir) {
1318 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1319
1320 if ((var == NULL) || (var->mode != (unsigned) direction))
1321 continue;
1322
1323 if (var->explicit_location) {
1324 if ((var->location >= (int)(max_index + generic_base))
1325 || (var->location < 0)) {
1326 linker_error(prog,
1327 "invalid explicit location %d specified for `%s'\n",
1328 (var->location < 0)
1329 ? var->location : var->location - generic_base,
1330 var->name);
1331 return false;
1332 }
1333 } else if (target_index == MESA_SHADER_VERTEX) {
1334 unsigned binding;
1335
1336 if (prog->AttributeBindings->get(binding, var->name)) {
1337 assert(binding >= VERT_ATTRIB_GENERIC0);
1338 var->location = binding;
1339 }
1340 } else if (target_index == MESA_SHADER_FRAGMENT) {
1341 unsigned binding;
1342 unsigned index;
1343
1344 if (prog->FragDataBindings->get(binding, var->name)) {
1345 assert(binding >= FRAG_RESULT_DATA0);
1346 var->location = binding;
1347
1348 if (prog->FragDataIndexBindings->get(index, var->name)) {
1349 var->index = index;
1350 }
1351 }
1352 }
1353
1354 /* If the variable is not a built-in and has a location statically
1355 * assigned in the shader (presumably via a layout qualifier), make sure
1356 * that it doesn't collide with other assigned locations. Otherwise,
1357 * add it to the list of variables that need linker-assigned locations.
1358 */
1359 const unsigned slots = count_attribute_slots(var->type);
1360 if (var->location != -1) {
1361 if (var->location >= generic_base && var->index < 1) {
1362 /* From page 61 of the OpenGL 4.0 spec:
1363 *
1364 * "LinkProgram will fail if the attribute bindings assigned
1365 * by BindAttribLocation do not leave not enough space to
1366 * assign a location for an active matrix attribute or an
1367 * active attribute array, both of which require multiple
1368 * contiguous generic attributes."
1369 *
1370 * Previous versions of the spec contain similar language but omit
1371 * the bit about attribute arrays.
1372 *
1373 * Page 61 of the OpenGL 4.0 spec also says:
1374 *
1375 * "It is possible for an application to bind more than one
1376 * attribute name to the same location. This is referred to as
1377 * aliasing. This will only work if only one of the aliased
1378 * attributes is active in the executable program, or if no
1379 * path through the shader consumes more than one attribute of
1380 * a set of attributes aliased to the same location. A link
1381 * error can occur if the linker determines that every path
1382 * through the shader consumes multiple aliased attributes,
1383 * but implementations are not required to generate an error
1384 * in this case."
1385 *
1386 * These two paragraphs are either somewhat contradictory, or I
1387 * don't fully understand one or both of them.
1388 */
1389 /* FINISHME: The code as currently written does not support
1390 * FINISHME: attribute location aliasing (see comment above).
1391 */
1392 /* Mask representing the contiguous slots that will be used by
1393 * this attribute.
1394 */
1395 const unsigned attr = var->location - generic_base;
1396 const unsigned use_mask = (1 << slots) - 1;
1397
1398 /* Generate a link error if the set of bits requested for this
1399 * attribute overlaps any previously allocated bits.
1400 */
1401 if ((~(use_mask << attr) & used_locations) != used_locations) {
1402 const char *const string = (target_index == MESA_SHADER_VERTEX)
1403 ? "vertex shader input" : "fragment shader output";
1404 linker_error(prog,
1405 "insufficient contiguous locations "
1406 "available for %s `%s' %d %d %d", string,
1407 var->name, used_locations, use_mask, attr);
1408 return false;
1409 }
1410
1411 used_locations |= (use_mask << attr);
1412 }
1413
1414 continue;
1415 }
1416
1417 to_assign[num_attr].slots = slots;
1418 to_assign[num_attr].var = var;
1419 num_attr++;
1420 }
1421
1422 /* If all of the attributes were assigned locations by the application (or
1423 * are built-in attributes with fixed locations), return early. This should
1424 * be the common case.
1425 */
1426 if (num_attr == 0)
1427 return true;
1428
1429 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1430
1431 if (target_index == MESA_SHADER_VERTEX) {
1432 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
1433 * only be explicitly assigned by via glBindAttribLocation. Mark it as
1434 * reserved to prevent it from being automatically allocated below.
1435 */
1436 find_deref_visitor find("gl_Vertex");
1437 find.run(sh->ir);
1438 if (find.variable_found())
1439 used_locations |= (1 << 0);
1440 }
1441
1442 for (unsigned i = 0; i < num_attr; i++) {
1443 /* Mask representing the contiguous slots that will be used by this
1444 * attribute.
1445 */
1446 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1447
1448 int location = find_available_slots(used_locations, to_assign[i].slots);
1449
1450 if (location < 0) {
1451 const char *const string = (target_index == MESA_SHADER_VERTEX)
1452 ? "vertex shader input" : "fragment shader output";
1453
1454 linker_error(prog,
1455 "insufficient contiguous locations "
1456 "available for %s `%s'",
1457 string, to_assign[i].var->name);
1458 return false;
1459 }
1460
1461 to_assign[i].var->location = generic_base + location;
1462 used_locations |= (use_mask << location);
1463 }
1464
1465 return true;
1466 }
1467
1468
1469 /**
1470 * Demote shader inputs and outputs that are not used in other stages
1471 */
1472 void
1473 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1474 {
1475 foreach_list(node, sh->ir) {
1476 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1477
1478 if ((var == NULL) || (var->mode != int(mode)))
1479 continue;
1480
1481 /* A shader 'in' or 'out' variable is only really an input or output if
1482 * its value is used by other shader stages. This will cause the variable
1483 * to have a location assigned.
1484 */
1485 if (var->location == -1) {
1486 var->mode = ir_var_auto;
1487 }
1488 }
1489 }
1490
1491
1492 /**
1493 * Data structure tracking information about a transform feedback declaration
1494 * during linking.
1495 */
1496 class tfeedback_decl
1497 {
1498 public:
1499 bool init(struct gl_context *ctx, struct gl_shader_program *prog,
1500 const void *mem_ctx, const char *input);
1501 static bool is_same(const tfeedback_decl &x, const tfeedback_decl &y);
1502 bool assign_location(struct gl_context *ctx, struct gl_shader_program *prog,
1503 ir_variable *output_var);
1504 bool accumulate_num_outputs(struct gl_shader_program *prog, unsigned *count);
1505 bool store(struct gl_context *ctx, struct gl_shader_program *prog,
1506 struct gl_transform_feedback_info *info, unsigned buffer,
1507 const unsigned max_outputs) const;
1508
1509 /**
1510 * True if assign_location() has been called for this object.
1511 */
1512 bool is_assigned() const
1513 {
1514 return this->location != -1;
1515 }
1516
1517 bool is_next_buffer_separator() const
1518 {
1519 return this->next_buffer_separator;
1520 }
1521
1522 bool is_varying() const
1523 {
1524 return !this->next_buffer_separator && !this->skip_components;
1525 }
1526
1527 /**
1528 * Determine whether this object refers to the variable var.
1529 */
1530 bool matches_var(ir_variable *var) const
1531 {
1532 if (this->is_clip_distance_mesa)
1533 return strcmp(var->name, "gl_ClipDistanceMESA") == 0;
1534 else
1535 return strcmp(var->name, this->var_name) == 0;
1536 }
1537
1538 /**
1539 * The total number of varying components taken up by this variable. Only
1540 * valid if is_assigned() is true.
1541 */
1542 unsigned num_components() const
1543 {
1544 if (this->is_clip_distance_mesa)
1545 return this->size;
1546 else
1547 return this->vector_elements * this->matrix_columns * this->size;
1548 }
1549
1550 private:
1551 /**
1552 * The name that was supplied to glTransformFeedbackVaryings. Used for
1553 * error reporting and glGetTransformFeedbackVarying().
1554 */
1555 const char *orig_name;
1556
1557 /**
1558 * The name of the variable, parsed from orig_name.
1559 */
1560 const char *var_name;
1561
1562 /**
1563 * True if the declaration in orig_name represents an array.
1564 */
1565 bool is_subscripted;
1566
1567 /**
1568 * If is_subscripted is true, the subscript that was specified in orig_name.
1569 */
1570 unsigned array_subscript;
1571
1572 /**
1573 * True if the variable is gl_ClipDistance and the driver lowers
1574 * gl_ClipDistance to gl_ClipDistanceMESA.
1575 */
1576 bool is_clip_distance_mesa;
1577
1578 /**
1579 * The vertex shader output location that the linker assigned for this
1580 * variable. -1 if a location hasn't been assigned yet.
1581 */
1582 int location;
1583
1584 /**
1585 * If location != -1, the number of vector elements in this variable, or 1
1586 * if this variable is a scalar.
1587 */
1588 unsigned vector_elements;
1589
1590 /**
1591 * If location != -1, the number of matrix columns in this variable, or 1
1592 * if this variable is not a matrix.
1593 */
1594 unsigned matrix_columns;
1595
1596 /** Type of the varying returned by glGetTransformFeedbackVarying() */
1597 GLenum type;
1598
1599 /**
1600 * If location != -1, the size that should be returned by
1601 * glGetTransformFeedbackVarying().
1602 */
1603 unsigned size;
1604
1605 /**
1606 * How many components to skip. If non-zero, this is
1607 * gl_SkipComponents{1,2,3,4} from ARB_transform_feedback3.
1608 */
1609 unsigned skip_components;
1610
1611 /**
1612 * Whether this is gl_NextBuffer from ARB_transform_feedback3.
1613 */
1614 bool next_buffer_separator;
1615 };
1616
1617
1618 /**
1619 * Initialize this object based on a string that was passed to
1620 * glTransformFeedbackVaryings. If there is a parse error, the error is
1621 * reported using linker_error(), and false is returned.
1622 */
1623 bool
1624 tfeedback_decl::init(struct gl_context *ctx, struct gl_shader_program *prog,
1625 const void *mem_ctx, const char *input)
1626 {
1627 /* We don't have to be pedantic about what is a valid GLSL variable name,
1628 * because any variable with an invalid name can't exist in the IR anyway.
1629 */
1630
1631 this->location = -1;
1632 this->orig_name = input;
1633 this->is_clip_distance_mesa = false;
1634 this->skip_components = 0;
1635 this->next_buffer_separator = false;
1636
1637 if (ctx->Extensions.ARB_transform_feedback3) {
1638 /* Parse gl_NextBuffer. */
1639 if (strcmp(input, "gl_NextBuffer") == 0) {
1640 this->next_buffer_separator = true;
1641 return true;
1642 }
1643
1644 /* Parse gl_SkipComponents. */
1645 if (strcmp(input, "gl_SkipComponents1") == 0)
1646 this->skip_components = 1;
1647 else if (strcmp(input, "gl_SkipComponents2") == 0)
1648 this->skip_components = 2;
1649 else if (strcmp(input, "gl_SkipComponents3") == 0)
1650 this->skip_components = 3;
1651 else if (strcmp(input, "gl_SkipComponents4") == 0)
1652 this->skip_components = 4;
1653
1654 if (this->skip_components)
1655 return true;
1656 }
1657
1658 /* Parse a declaration. */
1659 const char *bracket = strrchr(input, '[');
1660
1661 if (bracket) {
1662 this->var_name = ralloc_strndup(mem_ctx, input, bracket - input);
1663 if (sscanf(bracket, "[%u]", &this->array_subscript) != 1) {
1664 linker_error(prog, "Cannot parse transform feedback varying %s", input);
1665 return false;
1666 }
1667 this->is_subscripted = true;
1668 } else {
1669 this->var_name = ralloc_strdup(mem_ctx, input);
1670 this->is_subscripted = false;
1671 }
1672
1673 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
1674 * class must behave specially to account for the fact that gl_ClipDistance
1675 * is converted from a float[8] to a vec4[2].
1676 */
1677 if (ctx->ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerClipDistance &&
1678 strcmp(this->var_name, "gl_ClipDistance") == 0) {
1679 this->is_clip_distance_mesa = true;
1680 }
1681
1682 return true;
1683 }
1684
1685
1686 /**
1687 * Determine whether two tfeedback_decl objects refer to the same variable and
1688 * array index (if applicable).
1689 */
1690 bool
1691 tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y)
1692 {
1693 assert(x.is_varying() && y.is_varying());
1694
1695 if (strcmp(x.var_name, y.var_name) != 0)
1696 return false;
1697 if (x.is_subscripted != y.is_subscripted)
1698 return false;
1699 if (x.is_subscripted && x.array_subscript != y.array_subscript)
1700 return false;
1701 return true;
1702 }
1703
1704
1705 /**
1706 * Assign a location for this tfeedback_decl object based on the location
1707 * assignment in output_var.
1708 *
1709 * If an error occurs, the error is reported through linker_error() and false
1710 * is returned.
1711 */
1712 bool
1713 tfeedback_decl::assign_location(struct gl_context *ctx,
1714 struct gl_shader_program *prog,
1715 ir_variable *output_var)
1716 {
1717 assert(this->is_varying());
1718
1719 if (output_var->type->is_array()) {
1720 /* Array variable */
1721 const unsigned matrix_cols =
1722 output_var->type->fields.array->matrix_columns;
1723 unsigned actual_array_size = this->is_clip_distance_mesa ?
1724 prog->Vert.ClipDistanceArraySize : output_var->type->array_size();
1725
1726 if (this->is_subscripted) {
1727 /* Check array bounds. */
1728 if (this->array_subscript >= actual_array_size) {
1729 linker_error(prog, "Transform feedback varying %s has index "
1730 "%i, but the array size is %u.",
1731 this->orig_name, this->array_subscript,
1732 actual_array_size);
1733 return false;
1734 }
1735 if (this->is_clip_distance_mesa) {
1736 this->location =
1737 output_var->location + this->array_subscript / 4;
1738 } else {
1739 this->location =
1740 output_var->location + this->array_subscript * matrix_cols;
1741 }
1742 this->size = 1;
1743 } else {
1744 this->location = output_var->location;
1745 this->size = actual_array_size;
1746 }
1747 this->vector_elements = output_var->type->fields.array->vector_elements;
1748 this->matrix_columns = matrix_cols;
1749 if (this->is_clip_distance_mesa)
1750 this->type = GL_FLOAT;
1751 else
1752 this->type = output_var->type->fields.array->gl_type;
1753 } else {
1754 /* Regular variable (scalar, vector, or matrix) */
1755 if (this->is_subscripted) {
1756 linker_error(prog, "Transform feedback varying %s requested, "
1757 "but %s is not an array.",
1758 this->orig_name, this->var_name);
1759 return false;
1760 }
1761 this->location = output_var->location;
1762 this->size = 1;
1763 this->vector_elements = output_var->type->vector_elements;
1764 this->matrix_columns = output_var->type->matrix_columns;
1765 this->type = output_var->type->gl_type;
1766 }
1767
1768 /* From GL_EXT_transform_feedback:
1769 * A program will fail to link if:
1770 *
1771 * * the total number of components to capture in any varying
1772 * variable in <varyings> is greater than the constant
1773 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
1774 * buffer mode is SEPARATE_ATTRIBS_EXT;
1775 */
1776 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
1777 this->num_components() >
1778 ctx->Const.MaxTransformFeedbackSeparateComponents) {
1779 linker_error(prog, "Transform feedback varying %s exceeds "
1780 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
1781 this->orig_name);
1782 return false;
1783 }
1784
1785 return true;
1786 }
1787
1788
1789 bool
1790 tfeedback_decl::accumulate_num_outputs(struct gl_shader_program *prog,
1791 unsigned *count)
1792 {
1793 if (!this->is_varying()) {
1794 return true;
1795 }
1796
1797 if (!this->is_assigned()) {
1798 /* From GL_EXT_transform_feedback:
1799 * A program will fail to link if:
1800 *
1801 * * any variable name specified in the <varyings> array is not
1802 * declared as an output in the geometry shader (if present) or
1803 * the vertex shader (if no geometry shader is present);
1804 */
1805 linker_error(prog, "Transform feedback varying %s undeclared.",
1806 this->orig_name);
1807 return false;
1808 }
1809
1810 unsigned translated_size = this->size;
1811 if (this->is_clip_distance_mesa)
1812 translated_size = (translated_size + 3) / 4;
1813
1814 *count += translated_size * this->matrix_columns;
1815
1816 return true;
1817 }
1818
1819
1820 /**
1821 * Update gl_transform_feedback_info to reflect this tfeedback_decl.
1822 *
1823 * If an error occurs, the error is reported through linker_error() and false
1824 * is returned.
1825 */
1826 bool
1827 tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog,
1828 struct gl_transform_feedback_info *info,
1829 unsigned buffer, const unsigned max_outputs) const
1830 {
1831 assert(!this->next_buffer_separator);
1832
1833 /* Handle gl_SkipComponents. */
1834 if (this->skip_components) {
1835 info->BufferStride[buffer] += this->skip_components;
1836 return true;
1837 }
1838
1839 /* From GL_EXT_transform_feedback:
1840 * A program will fail to link if:
1841 *
1842 * * the total number of components to capture is greater than
1843 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
1844 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT.
1845 */
1846 if (prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS &&
1847 info->BufferStride[buffer] + this->num_components() >
1848 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1849 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1850 "limit has been exceeded.");
1851 return false;
1852 }
1853
1854 unsigned translated_size = this->size;
1855 if (this->is_clip_distance_mesa)
1856 translated_size = (translated_size + 3) / 4;
1857 unsigned components_so_far = 0;
1858 for (unsigned index = 0; index < translated_size; ++index) {
1859 for (unsigned v = 0; v < this->matrix_columns; ++v) {
1860 unsigned num_components = this->vector_elements;
1861 assert(info->NumOutputs < max_outputs);
1862 info->Outputs[info->NumOutputs].ComponentOffset = 0;
1863 if (this->is_clip_distance_mesa) {
1864 if (this->is_subscripted) {
1865 num_components = 1;
1866 info->Outputs[info->NumOutputs].ComponentOffset =
1867 this->array_subscript % 4;
1868 } else {
1869 num_components = MIN2(4, this->size - components_so_far);
1870 }
1871 }
1872 info->Outputs[info->NumOutputs].OutputRegister =
1873 this->location + v + index * this->matrix_columns;
1874 info->Outputs[info->NumOutputs].NumComponents = num_components;
1875 info->Outputs[info->NumOutputs].OutputBuffer = buffer;
1876 info->Outputs[info->NumOutputs].DstOffset = info->BufferStride[buffer];
1877 ++info->NumOutputs;
1878 info->BufferStride[buffer] += num_components;
1879 components_so_far += num_components;
1880 }
1881 }
1882 assert(components_so_far == this->num_components());
1883
1884 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog, this->orig_name);
1885 info->Varyings[info->NumVarying].Type = this->type;
1886 info->Varyings[info->NumVarying].Size = this->size;
1887 info->NumVarying++;
1888
1889 return true;
1890 }
1891
1892
1893 /**
1894 * Parse all the transform feedback declarations that were passed to
1895 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects.
1896 *
1897 * If an error occurs, the error is reported through linker_error() and false
1898 * is returned.
1899 */
1900 static bool
1901 parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog,
1902 const void *mem_ctx, unsigned num_names,
1903 char **varying_names, tfeedback_decl *decls)
1904 {
1905 for (unsigned i = 0; i < num_names; ++i) {
1906 if (!decls[i].init(ctx, prog, mem_ctx, varying_names[i]))
1907 return false;
1908
1909 if (!decls[i].is_varying())
1910 continue;
1911
1912 /* From GL_EXT_transform_feedback:
1913 * A program will fail to link if:
1914 *
1915 * * any two entries in the <varyings> array specify the same varying
1916 * variable;
1917 *
1918 * We interpret this to mean "any two entries in the <varyings> array
1919 * specify the same varying variable and array index", since transform
1920 * feedback of arrays would be useless otherwise.
1921 */
1922 for (unsigned j = 0; j < i; ++j) {
1923 if (!decls[j].is_varying())
1924 continue;
1925
1926 if (tfeedback_decl::is_same(decls[i], decls[j])) {
1927 linker_error(prog, "Transform feedback varying %s specified "
1928 "more than once.", varying_names[i]);
1929 return false;
1930 }
1931 }
1932 }
1933 return true;
1934 }
1935
1936
1937 /**
1938 * Assign a location for a variable that is produced in one pipeline stage
1939 * (the "producer") and consumed in the next stage (the "consumer").
1940 *
1941 * \param input_var is the input variable declaration in the consumer.
1942 *
1943 * \param output_var is the output variable declaration in the producer.
1944 *
1945 * \param input_index is the counter that keeps track of assigned input
1946 * locations in the consumer.
1947 *
1948 * \param output_index is the counter that keeps track of assigned output
1949 * locations in the producer.
1950 *
1951 * It is permissible for \c input_var to be NULL (this happens if a variable
1952 * is output by the producer and consumed by transform feedback, but not
1953 * consumed by the consumer).
1954 *
1955 * If the variable has already been assigned a location, this function has no
1956 * effect.
1957 */
1958 void
1959 assign_varying_location(ir_variable *input_var, ir_variable *output_var,
1960 unsigned *input_index, unsigned *output_index)
1961 {
1962 if (output_var->location != -1) {
1963 /* Location already assigned. */
1964 return;
1965 }
1966
1967 if (input_var) {
1968 assert(input_var->location == -1);
1969 input_var->location = *input_index;
1970 }
1971
1972 output_var->location = *output_index;
1973
1974 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1975 assert(!output_var->type->is_record());
1976
1977 if (output_var->type->is_array()) {
1978 const unsigned slots = output_var->type->length
1979 * output_var->type->fields.array->matrix_columns;
1980
1981 *output_index += slots;
1982 *input_index += slots;
1983 } else {
1984 const unsigned slots = output_var->type->matrix_columns;
1985
1986 *output_index += slots;
1987 *input_index += slots;
1988 }
1989 }
1990
1991
1992 /**
1993 * Is the given variable a varying variable to be counted against the
1994 * limit in ctx->Const.MaxVarying?
1995 * This includes variables such as texcoords, colors and generic
1996 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
1997 */
1998 static bool
1999 is_varying_var(GLenum shaderType, const ir_variable *var)
2000 {
2001 /* Only fragment shaders will take a varying variable as an input */
2002 if (shaderType == GL_FRAGMENT_SHADER &&
2003 var->mode == ir_var_in &&
2004 var->explicit_location) {
2005 switch (var->location) {
2006 case FRAG_ATTRIB_WPOS:
2007 case FRAG_ATTRIB_FACE:
2008 case FRAG_ATTRIB_PNTC:
2009 return false;
2010 default:
2011 return true;
2012 }
2013 }
2014 return false;
2015 }
2016
2017
2018 /**
2019 * Assign locations for all variables that are produced in one pipeline stage
2020 * (the "producer") and consumed in the next stage (the "consumer").
2021 *
2022 * Variables produced by the producer may also be consumed by transform
2023 * feedback.
2024 *
2025 * \param num_tfeedback_decls is the number of declarations indicating
2026 * variables that may be consumed by transform feedback.
2027 *
2028 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects
2029 * representing the result of parsing the strings passed to
2030 * glTransformFeedbackVaryings(). assign_location() will be called for
2031 * each of these objects that matches one of the outputs of the
2032 * producer.
2033 *
2034 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to
2035 * be NULL. In this case, varying locations are assigned solely based on the
2036 * requirements of transform feedback.
2037 */
2038 bool
2039 assign_varying_locations(struct gl_context *ctx,
2040 struct gl_shader_program *prog,
2041 gl_shader *producer, gl_shader *consumer,
2042 unsigned num_tfeedback_decls,
2043 tfeedback_decl *tfeedback_decls)
2044 {
2045 /* FINISHME: Set dynamically when geometry shader support is added. */
2046 unsigned output_index = VERT_RESULT_VAR0;
2047 unsigned input_index = FRAG_ATTRIB_VAR0;
2048
2049 /* Operate in a total of three passes.
2050 *
2051 * 1. Assign locations for any matching inputs and outputs.
2052 *
2053 * 2. Mark output variables in the producer that do not have locations as
2054 * not being outputs. This lets the optimizer eliminate them.
2055 *
2056 * 3. Mark input variables in the consumer that do not have locations as
2057 * not being inputs. This lets the optimizer eliminate them.
2058 */
2059
2060 link_invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
2061 if (consumer)
2062 link_invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
2063
2064 foreach_list(node, producer->ir) {
2065 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
2066
2067 if ((output_var == NULL) || (output_var->mode != ir_var_out))
2068 continue;
2069
2070 ir_variable *input_var =
2071 consumer ? consumer->symbols->get_variable(output_var->name) : NULL;
2072
2073 if (input_var && input_var->mode != ir_var_in)
2074 input_var = NULL;
2075
2076 if (input_var) {
2077 assign_varying_location(input_var, output_var, &input_index,
2078 &output_index);
2079 }
2080
2081 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2082 if (!tfeedback_decls[i].is_varying())
2083 continue;
2084
2085 if (!tfeedback_decls[i].is_assigned() &&
2086 tfeedback_decls[i].matches_var(output_var)) {
2087 if (output_var->location == -1) {
2088 assign_varying_location(input_var, output_var, &input_index,
2089 &output_index);
2090 }
2091 if (!tfeedback_decls[i].assign_location(ctx, prog, output_var))
2092 return false;
2093 }
2094 }
2095 }
2096
2097 unsigned varying_vectors = 0;
2098
2099 if (consumer) {
2100 foreach_list(node, consumer->ir) {
2101 ir_variable *const var = ((ir_instruction *) node)->as_variable();
2102
2103 if ((var == NULL) || (var->mode != ir_var_in))
2104 continue;
2105
2106 if (var->location == -1) {
2107 if (prog->Version <= 120) {
2108 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
2109 *
2110 * Only those varying variables used (i.e. read) in
2111 * the fragment shader executable must be written to
2112 * by the vertex shader executable; declaring
2113 * superfluous varying variables in a vertex shader is
2114 * permissible.
2115 *
2116 * We interpret this text as meaning that the VS must
2117 * write the variable for the FS to read it. See
2118 * "glsl1-varying read but not written" in piglit.
2119 */
2120
2121 linker_error(prog, "fragment shader varying %s not written "
2122 "by vertex shader\n.", var->name);
2123 }
2124
2125 /* An 'in' variable is only really a shader input if its
2126 * value is written by the previous stage.
2127 */
2128 var->mode = ir_var_auto;
2129 } else if (is_varying_var(consumer->Type, var)) {
2130 /* The packing rules are used for vertex shader inputs are also
2131 * used for fragment shader inputs.
2132 */
2133 varying_vectors += count_attribute_slots(var->type);
2134 }
2135 }
2136 }
2137
2138 if (ctx->API == API_OPENGLES2 || prog->Version == 100) {
2139 if (varying_vectors > ctx->Const.MaxVarying) {
2140 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
2141 linker_warning(prog, "shader uses too many varying vectors "
2142 "(%u > %u), but the driver will try to optimize "
2143 "them out; this is non-portable out-of-spec "
2144 "behavior\n",
2145 varying_vectors, ctx->Const.MaxVarying);
2146 } else {
2147 linker_error(prog, "shader uses too many varying vectors "
2148 "(%u > %u)\n",
2149 varying_vectors, ctx->Const.MaxVarying);
2150 return false;
2151 }
2152 }
2153 } else {
2154 const unsigned float_components = varying_vectors * 4;
2155 if (float_components > ctx->Const.MaxVarying * 4) {
2156 if (ctx->Const.GLSLSkipStrictMaxVaryingLimitCheck) {
2157 linker_warning(prog, "shader uses too many varying components "
2158 "(%u > %u), but the driver will try to optimize "
2159 "them out; this is non-portable out-of-spec "
2160 "behavior\n",
2161 float_components, ctx->Const.MaxVarying * 4);
2162 } else {
2163 linker_error(prog, "shader uses too many varying components "
2164 "(%u > %u)\n",
2165 float_components, ctx->Const.MaxVarying * 4);
2166 return false;
2167 }
2168 }
2169 }
2170
2171 return true;
2172 }
2173
2174
2175 /**
2176 * Store transform feedback location assignments into
2177 * prog->LinkedTransformFeedback based on the data stored in tfeedback_decls.
2178 *
2179 * If an error occurs, the error is reported through linker_error() and false
2180 * is returned.
2181 */
2182 static bool
2183 store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog,
2184 unsigned num_tfeedback_decls,
2185 tfeedback_decl *tfeedback_decls)
2186 {
2187 bool separate_attribs_mode =
2188 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
2189
2190 ralloc_free(prog->LinkedTransformFeedback.Varyings);
2191 ralloc_free(prog->LinkedTransformFeedback.Outputs);
2192
2193 memset(&prog->LinkedTransformFeedback, 0,
2194 sizeof(prog->LinkedTransformFeedback));
2195
2196 prog->LinkedTransformFeedback.Varyings =
2197 rzalloc_array(prog,
2198 struct gl_transform_feedback_varying_info,
2199 num_tfeedback_decls);
2200
2201 unsigned num_outputs = 0;
2202 for (unsigned i = 0; i < num_tfeedback_decls; ++i)
2203 if (!tfeedback_decls[i].accumulate_num_outputs(prog, &num_outputs))
2204 return false;
2205
2206 prog->LinkedTransformFeedback.Outputs =
2207 rzalloc_array(prog,
2208 struct gl_transform_feedback_output,
2209 num_outputs);
2210
2211 unsigned num_buffers = 0;
2212
2213 if (separate_attribs_mode) {
2214 /* GL_SEPARATE_ATTRIBS */
2215 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2216 if (!tfeedback_decls[i].store(ctx, prog, &prog->LinkedTransformFeedback,
2217 num_buffers, num_outputs))
2218 return false;
2219
2220 num_buffers++;
2221 }
2222 }
2223 else {
2224 /* GL_INVERLEAVED_ATTRIBS */
2225 for (unsigned i = 0; i < num_tfeedback_decls; ++i) {
2226 if (tfeedback_decls[i].is_next_buffer_separator()) {
2227 num_buffers++;
2228 continue;
2229 }
2230
2231 if (!tfeedback_decls[i].store(ctx, prog,
2232 &prog->LinkedTransformFeedback,
2233 num_buffers, num_outputs))
2234 return false;
2235 }
2236 num_buffers++;
2237 }
2238
2239 assert(prog->LinkedTransformFeedback.NumOutputs == num_outputs);
2240
2241 prog->LinkedTransformFeedback.NumBuffers = num_buffers;
2242 return true;
2243 }
2244
2245 /**
2246 * Store the gl_FragDepth layout in the gl_shader_program struct.
2247 */
2248 static void
2249 store_fragdepth_layout(struct gl_shader_program *prog)
2250 {
2251 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2252 return;
2253 }
2254
2255 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2256
2257 /* We don't look up the gl_FragDepth symbol directly because if
2258 * gl_FragDepth is not used in the shader, it's removed from the IR.
2259 * However, the symbol won't be removed from the symbol table.
2260 *
2261 * We're only interested in the cases where the variable is NOT removed
2262 * from the IR.
2263 */
2264 foreach_list(node, ir) {
2265 ir_variable *const var = ((ir_instruction *) node)->as_variable();
2266
2267 if (var == NULL || var->mode != ir_var_out) {
2268 continue;
2269 }
2270
2271 if (strcmp(var->name, "gl_FragDepth") == 0) {
2272 switch (var->depth_layout) {
2273 case ir_depth_layout_none:
2274 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2275 return;
2276 case ir_depth_layout_any:
2277 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2278 return;
2279 case ir_depth_layout_greater:
2280 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2281 return;
2282 case ir_depth_layout_less:
2283 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2284 return;
2285 case ir_depth_layout_unchanged:
2286 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2287 return;
2288 default:
2289 assert(0);
2290 return;
2291 }
2292 }
2293 }
2294 }
2295
2296 /**
2297 * Validate the resources used by a program versus the implementation limits
2298 */
2299 static bool
2300 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2301 {
2302 static const char *const shader_names[MESA_SHADER_TYPES] = {
2303 "vertex", "fragment", "geometry"
2304 };
2305
2306 const unsigned max_samplers[MESA_SHADER_TYPES] = {
2307 ctx->Const.MaxVertexTextureImageUnits,
2308 ctx->Const.MaxTextureImageUnits,
2309 ctx->Const.MaxGeometryTextureImageUnits
2310 };
2311
2312 const unsigned max_uniform_components[MESA_SHADER_TYPES] = {
2313 ctx->Const.VertexProgram.MaxUniformComponents,
2314 ctx->Const.FragmentProgram.MaxUniformComponents,
2315 0 /* FINISHME: Geometry shaders. */
2316 };
2317
2318 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2319 struct gl_shader *sh = prog->_LinkedShaders[i];
2320
2321 if (sh == NULL)
2322 continue;
2323
2324 if (sh->num_samplers > max_samplers[i]) {
2325 linker_error(prog, "Too many %s shader texture samplers",
2326 shader_names[i]);
2327 }
2328
2329 if (sh->num_uniform_components > max_uniform_components[i]) {
2330 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2331 linker_warning(prog, "Too many %s shader uniform components, "
2332 "but the driver will try to optimize them out; "
2333 "this is non-portable out-of-spec behavior\n",
2334 shader_names[i]);
2335 } else {
2336 linker_error(prog, "Too many %s shader uniform components",
2337 shader_names[i]);
2338 }
2339 }
2340 }
2341
2342 return prog->LinkStatus;
2343 }
2344
2345 void
2346 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
2347 {
2348 tfeedback_decl *tfeedback_decls = NULL;
2349 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
2350
2351 void *mem_ctx = ralloc_context(NULL); // temporary linker context
2352
2353 prog->LinkStatus = false;
2354 prog->Validated = false;
2355 prog->_Used = false;
2356
2357 ralloc_free(prog->InfoLog);
2358 prog->InfoLog = ralloc_strdup(NULL, "");
2359
2360 ralloc_free(prog->UniformBlocks);
2361 prog->UniformBlocks = NULL;
2362 prog->NumUniformBlocks = 0;
2363 for (int i = 0; i < MESA_SHADER_TYPES; i++) {
2364 ralloc_free(prog->UniformBlockStageIndex[i]);
2365 prog->UniformBlockStageIndex[i] = NULL;
2366 }
2367
2368 /* Separate the shaders into groups based on their type.
2369 */
2370 struct gl_shader **vert_shader_list;
2371 unsigned num_vert_shaders = 0;
2372 struct gl_shader **frag_shader_list;
2373 unsigned num_frag_shaders = 0;
2374
2375 vert_shader_list = (struct gl_shader **)
2376 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
2377 frag_shader_list = &vert_shader_list[prog->NumShaders];
2378
2379 unsigned min_version = UINT_MAX;
2380 unsigned max_version = 0;
2381 for (unsigned i = 0; i < prog->NumShaders; i++) {
2382 min_version = MIN2(min_version, prog->Shaders[i]->Version);
2383 max_version = MAX2(max_version, prog->Shaders[i]->Version);
2384
2385 switch (prog->Shaders[i]->Type) {
2386 case GL_VERTEX_SHADER:
2387 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
2388 num_vert_shaders++;
2389 break;
2390 case GL_FRAGMENT_SHADER:
2391 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
2392 num_frag_shaders++;
2393 break;
2394 case GL_GEOMETRY_SHADER:
2395 /* FINISHME: Support geometry shaders. */
2396 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
2397 break;
2398 }
2399 }
2400
2401 /* Previous to GLSL version 1.30, different compilation units could mix and
2402 * match shading language versions. With GLSL 1.30 and later, the versions
2403 * of all shaders must match.
2404 */
2405 assert(min_version >= 100);
2406 assert(max_version <= 140);
2407 if ((max_version >= 130 || min_version == 100)
2408 && min_version != max_version) {
2409 linker_error(prog, "all shaders must use same shading "
2410 "language version\n");
2411 goto done;
2412 }
2413
2414 prog->Version = max_version;
2415
2416 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2417 if (prog->_LinkedShaders[i] != NULL)
2418 ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
2419
2420 prog->_LinkedShaders[i] = NULL;
2421 }
2422
2423 /* Link all shaders for a particular stage and validate the result.
2424 */
2425 if (num_vert_shaders > 0) {
2426 gl_shader *const sh =
2427 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
2428 num_vert_shaders);
2429
2430 if (sh == NULL)
2431 goto done;
2432
2433 if (!validate_vertex_shader_executable(prog, sh))
2434 goto done;
2435
2436 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
2437 sh);
2438 }
2439
2440 if (num_frag_shaders > 0) {
2441 gl_shader *const sh =
2442 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
2443 num_frag_shaders);
2444
2445 if (sh == NULL)
2446 goto done;
2447
2448 if (!validate_fragment_shader_executable(prog, sh))
2449 goto done;
2450
2451 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
2452 sh);
2453 }
2454
2455 /* Here begins the inter-stage linking phase. Some initial validation is
2456 * performed, then locations are assigned for uniforms, attributes, and
2457 * varyings.
2458 */
2459 if (cross_validate_uniforms(prog)) {
2460 unsigned prev;
2461
2462 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2463 if (prog->_LinkedShaders[prev] != NULL)
2464 break;
2465 }
2466
2467 /* Validate the inputs of each stage with the output of the preceding
2468 * stage.
2469 */
2470 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2471 if (prog->_LinkedShaders[i] == NULL)
2472 continue;
2473
2474 if (!cross_validate_outputs_to_inputs(prog,
2475 prog->_LinkedShaders[prev],
2476 prog->_LinkedShaders[i]))
2477 goto done;
2478
2479 prev = i;
2480 }
2481
2482 prog->LinkStatus = true;
2483 }
2484
2485 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
2486 * it before optimization because we want most of the checks to get
2487 * dropped thanks to constant propagation.
2488 */
2489 if (max_version >= 130) {
2490 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2491 if (sh) {
2492 lower_discard_flow(sh->ir);
2493 }
2494 }
2495
2496 if (!interstage_cross_validate_uniform_blocks(prog))
2497 goto done;
2498
2499 /* Do common optimization before assigning storage for attributes,
2500 * uniforms, and varyings. Later optimization could possibly make
2501 * some of that unused.
2502 */
2503 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2504 if (prog->_LinkedShaders[i] == NULL)
2505 continue;
2506
2507 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
2508 if (!prog->LinkStatus)
2509 goto done;
2510
2511 if (ctx->ShaderCompilerOptions[i].LowerClipDistance)
2512 lower_clip_distance(prog->_LinkedShaders[i]->ir);
2513
2514 unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations;
2515
2516 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll))
2517 ;
2518 }
2519
2520 /* FINISHME: The value of the max_attribute_index parameter is
2521 * FINISHME: implementation dependent based on the value of
2522 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
2523 * FINISHME: at least 16, so hardcode 16 for now.
2524 */
2525 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) {
2526 goto done;
2527 }
2528
2529 if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) {
2530 goto done;
2531 }
2532
2533 unsigned prev;
2534 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
2535 if (prog->_LinkedShaders[prev] != NULL)
2536 break;
2537 }
2538
2539 if (num_tfeedback_decls != 0) {
2540 /* From GL_EXT_transform_feedback:
2541 * A program will fail to link if:
2542 *
2543 * * the <count> specified by TransformFeedbackVaryingsEXT is
2544 * non-zero, but the program object has no vertex or geometry
2545 * shader;
2546 */
2547 if (prev >= MESA_SHADER_FRAGMENT) {
2548 linker_error(prog, "Transform feedback varyings specified, but "
2549 "no vertex or geometry shader is present.");
2550 goto done;
2551 }
2552
2553 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
2554 prog->TransformFeedback.NumVarying);
2555 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
2556 prog->TransformFeedback.VaryingNames,
2557 tfeedback_decls))
2558 goto done;
2559 }
2560
2561 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
2562 if (prog->_LinkedShaders[i] == NULL)
2563 continue;
2564
2565 if (!assign_varying_locations(
2566 ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i],
2567 i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
2568 tfeedback_decls))
2569 goto done;
2570
2571 prev = i;
2572 }
2573
2574 if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) {
2575 /* There was no fragment shader, but we still have to assign varying
2576 * locations for use by transform feedback.
2577 */
2578 if (!assign_varying_locations(
2579 ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls,
2580 tfeedback_decls))
2581 goto done;
2582 }
2583
2584 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
2585 goto done;
2586
2587 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
2588 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
2589 ir_var_out);
2590
2591 /* Eliminate code that is now dead due to unused vertex outputs being
2592 * demoted.
2593 */
2594 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false))
2595 ;
2596 }
2597
2598 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
2599 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
2600
2601 demote_shader_inputs_and_outputs(sh, ir_var_in);
2602 demote_shader_inputs_and_outputs(sh, ir_var_inout);
2603 demote_shader_inputs_and_outputs(sh, ir_var_out);
2604
2605 /* Eliminate code that is now dead due to unused geometry outputs being
2606 * demoted.
2607 */
2608 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false))
2609 ;
2610 }
2611
2612 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
2613 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
2614
2615 demote_shader_inputs_and_outputs(sh, ir_var_in);
2616
2617 /* Eliminate code that is now dead due to unused fragment inputs being
2618 * demoted. This shouldn't actually do anything other than remove
2619 * declarations of the (now unused) global variables.
2620 */
2621 while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false))
2622 ;
2623 }
2624
2625 update_array_sizes(prog);
2626 link_assign_uniform_locations(prog);
2627 store_fragdepth_layout(prog);
2628
2629 if (!check_resources(ctx, prog))
2630 goto done;
2631
2632 /* OpenGL ES requires that a vertex shader and a fragment shader both be
2633 * present in a linked program. By checking for use of shading language
2634 * version 1.00, we also catch the GL_ARB_ES2_compatibility case.
2635 */
2636 if (!prog->InternalSeparateShader &&
2637 (ctx->API == API_OPENGLES2 || prog->Version == 100)) {
2638 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
2639 linker_error(prog, "program lacks a vertex shader\n");
2640 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2641 linker_error(prog, "program lacks a fragment shader\n");
2642 }
2643 }
2644
2645 /* FINISHME: Assign fragment shader output locations. */
2646
2647 done:
2648 free(vert_shader_list);
2649
2650 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
2651 if (prog->_LinkedShaders[i] == NULL)
2652 continue;
2653
2654 /* Retain any live IR, but trash the rest. */
2655 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
2656
2657 /* The symbol table in the linked shaders may contain references to
2658 * variables that were removed (e.g., unused uniforms). Since it may
2659 * contain junk, there is no possible valid use. Delete it and set the
2660 * pointer to NULL.
2661 */
2662 delete prog->_LinkedShaders[i]->symbols;
2663 prog->_LinkedShaders[i]->symbols = NULL;
2664 }
2665
2666 ralloc_free(mem_ctx);
2667 }