glsl2: Use i2b and f2b IR opcodes for casting int or float to bool
[mesa.git] / src / glsl / list.h
1 /*
2 * Copyright © 2008, 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file list.h
26 * \brief Doubly-linked list abstract container type.
27 *
28 * Each doubly-linked list has a sentinal head and tail node. These nodes
29 * contain no data. The head sentinal can be identified by its \c prev
30 * pointer being \c NULL. The tail sentinal can be identified by its
31 * \c next pointer being \c NULL.
32 *
33 * A list is empty if either the head sentinal's \c next pointer points to the
34 * tail sentinal or the tail sentinal's \c prev poiner points to the head
35 * sentinal.
36 *
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinal nodes are in a single structure. Noting
39 * that each sentinal node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location. In the \c list structure
41 * contains a the following:
42 *
43 * - A \c head pointer that represents the \c next pointer of the
44 * head sentinal node.
45 * - A \c tail pointer that represents the \c prev pointer of the head
46 * sentinal node and the \c next pointer of the tail sentinal node. This
47 * pointer is \b always \c NULL.
48 * - A \c tail_prev pointer that represents the \c prev pointer of the
49 * tail sentinal node.
50 *
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52 * the list is empty.
53 *
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable. See the following link for the original Amiga
56 * operating system documentation on the subject.
57 *
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59 *
60 * \author Ian Romanick <ian.d.romanick@intel.com>
61 */
62
63 #pragma once
64 #ifndef LIST_CONTAINER_H
65 #define LIST_CONTAINER_H
66
67 #ifndef __cplusplus
68 #include <stddef.h>
69 #include <talloc.h>
70 #else
71 extern "C" {
72 #include <talloc.h>
73 }
74 #endif
75
76 #include <assert.h>
77
78 struct exec_node {
79 struct exec_node *next;
80 struct exec_node *prev;
81
82 #ifdef __cplusplus
83 /* Callers of this talloc-based new need not call delete. It's
84 * easier to just talloc_free 'ctx' (or any of its ancestors). */
85 static void* operator new(size_t size, void *ctx)
86 {
87 void *node;
88
89 node = talloc_size(ctx, size);
90 assert(node != NULL);
91
92 return node;
93 }
94
95 /* If the user *does* call delete, that's OK, we will just
96 * talloc_free in that case. */
97 static void operator delete(void *node)
98 {
99 talloc_free(node);
100 }
101
102 exec_node() : next(NULL), prev(NULL)
103 {
104 /* empty */
105 }
106
107 const exec_node *get_next() const
108 {
109 return next;
110 }
111
112 exec_node *get_next()
113 {
114 return next;
115 }
116
117 const exec_node *get_prev() const
118 {
119 return prev;
120 }
121
122 exec_node *get_prev()
123 {
124 return prev;
125 }
126
127 void remove()
128 {
129 next->prev = prev;
130 prev->next = next;
131 next = NULL;
132 prev = NULL;
133 }
134
135 /**
136 * Link a node with itself
137 *
138 * This creates a sort of degenerate list that is occasionally useful.
139 */
140 void self_link()
141 {
142 next = this;
143 prev = this;
144 }
145
146 /**
147 * Insert a node in the list after the current node
148 */
149 void insert_after(exec_node *after)
150 {
151 after->next = this->next;
152 after->prev = this;
153
154 this->next->prev = after;
155 this->next = after;
156 }
157 /**
158 * Insert a node in the list before the current node
159 */
160 void insert_before(exec_node *before)
161 {
162 before->next = this;
163 before->prev = this->prev;
164
165 this->prev->next = before;
166 this->prev = before;
167 }
168
169 /**
170 * Is this the sentinal at the tail of the list?
171 */
172 bool is_tail_sentinal() const
173 {
174 return this->next == NULL;
175 }
176
177 /**
178 * Is this the sentinal at the head of the list?
179 */
180 bool is_head_sentinal() const
181 {
182 return this->prev == NULL;
183 }
184 #endif
185 };
186
187
188 #ifdef __cplusplus
189 /* This macro will not work correctly if `t' uses virtual inheritance. If you
190 * are using virtual inheritance, you deserve a slow and painful death. Enjoy!
191 */
192 #define exec_list_offsetof(t, f, p) \
193 (((char *) &((t *) p)->f) - ((char *) p))
194 #else
195 #define exec_list_offsetof(t, f, p) offsetof(t, f)
196 #endif
197
198 /**
199 * Get a pointer to the structure containing an exec_node
200 *
201 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
202 * the containing structure.
203 *
204 * \param type Base type of the structure containing the node
205 * \param node Pointer to the \c exec_node
206 * \param field Name of the field in \c type that is the embedded \c exec_node
207 */
208 #define exec_node_data(type, node, field) \
209 ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
210
211 #ifdef __cplusplus
212 struct exec_node;
213
214 class iterator {
215 public:
216 void next()
217 {
218 }
219
220 void *get()
221 {
222 return NULL;
223 }
224
225 bool has_next() const
226 {
227 return false;
228 }
229 };
230
231 class exec_list_iterator : public iterator {
232 public:
233 exec_list_iterator(exec_node *n) : node(n), _next(n->next)
234 {
235 /* empty */
236 }
237
238 void next()
239 {
240 node = _next;
241 _next = node->next;
242 }
243
244 void remove()
245 {
246 node->remove();
247 }
248
249 exec_node *get()
250 {
251 return node;
252 }
253
254 bool has_next() const
255 {
256 return _next != NULL;
257 }
258
259 private:
260 exec_node *node;
261 exec_node *_next;
262 };
263
264 #define foreach_iter(iter_type, iter, container) \
265 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
266 #endif
267
268
269 struct exec_list {
270 struct exec_node *head;
271 struct exec_node *tail;
272 struct exec_node *tail_pred;
273
274 #ifdef __cplusplus
275 exec_list()
276 {
277 make_empty();
278 }
279
280 void make_empty()
281 {
282 head = (exec_node *) & tail;
283 tail = NULL;
284 tail_pred = (exec_node *) & head;
285 }
286
287 bool is_empty() const
288 {
289 /* There are three ways to test whether a list is empty or not.
290 *
291 * - Check to see if the \c head points to the \c tail.
292 * - Check to see if the \c tail_pred points to the \c head.
293 * - Check to see if the \c head is the sentinal node by test whether its
294 * \c next pointer is \c NULL.
295 *
296 * The first two methods tend to generate better code on modern systems
297 * because they save a pointer dereference.
298 */
299 return head == (exec_node *) &tail;
300 }
301
302 const exec_node *get_head() const
303 {
304 return !is_empty() ? head : NULL;
305 }
306
307 exec_node *get_head()
308 {
309 return !is_empty() ? head : NULL;
310 }
311
312 const exec_node *get_tail() const
313 {
314 return !is_empty() ? tail_pred : NULL;
315 }
316
317 exec_node *get_tail()
318 {
319 return !is_empty() ? tail_pred : NULL;
320 }
321
322 void push_head(exec_node *n)
323 {
324 n->next = head;
325 n->prev = (exec_node *) &head;
326
327 n->next->prev = n;
328 head = n;
329 }
330
331 void push_tail(exec_node *n)
332 {
333 n->next = (exec_node *) &tail;
334 n->prev = tail_pred;
335
336 n->prev->next = n;
337 tail_pred = n;
338 }
339
340 void push_degenerate_list_at_head(exec_node *n)
341 {
342 assert(n->prev->next == n);
343
344 n->prev->next = head;
345 head->prev = n->prev;
346 n->prev = (exec_node *) &head;
347 head = n;
348 }
349
350 /**
351 * Move all of the nodes from this list to the target list
352 */
353 void move_nodes_to(exec_list *target)
354 {
355 if (is_empty()) {
356 target->make_empty();
357 } else {
358 target->head = head;
359 target->tail = NULL;
360 target->tail_pred = tail_pred;
361
362 target->head->prev = (exec_node *) &target->head;
363 target->tail_pred->next = (exec_node *) &target->tail;
364
365 make_empty();
366 }
367 }
368
369 exec_list_iterator iterator()
370 {
371 return exec_list_iterator(head);
372 }
373
374 exec_list_iterator iterator() const
375 {
376 return exec_list_iterator((exec_node *) head);
377 }
378 #endif
379 };
380
381 #define foreach_list(__node, __list) \
382 for (exec_node * __node = (__list)->head \
383 ; (__node)->next != NULL \
384 ; (__node) = (__node)->next)
385
386 #define foreach_list_const(__node, __list) \
387 for (const exec_node * __node = (__list)->head \
388 ; (__node)->next != NULL \
389 ; (__node) = (__node)->next)
390
391 #define foreach_list_typed(__type, __node, __field, __list) \
392 for (__type * __node = \
393 exec_node_data(__type, (__list)->head, __field); \
394 (__node)->__field.next != NULL; \
395 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
396
397 #define foreach_list_typed_const(__type, __node, __field, __list) \
398 for (const __type * __node = \
399 exec_node_data(__type, (__list)->head, __field); \
400 (__node)->__field.next != NULL; \
401 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
402
403 #endif /* LIST_CONTAINER_H */