[g3dvl] remove some unneeded Makefiles
[mesa.git] / src / glsl / lower_jumps.cpp
1 /*
2 * Copyright © 2010 Luca Barbieri
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_jumps.cpp
26 *
27 * This pass lowers jumps (break, continue, and return) to if/else structures.
28 *
29 * It can be asked to:
30 * 1. Pull jumps out of ifs where possible
31 * 2. Remove all "continue"s, replacing them with an "execute flag"
32 * 3. Replace all "break" with a single conditional one at the end of the loop
33 * 4. Replace all "return"s with a single return at the end of the function,
34 * for the main function and/or other functions
35 *
36 * Applying this pass gives several benefits:
37 * 1. All functions can be inlined.
38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40 * supported
41 *
42 * Continues are lowered by adding a per-loop "execute flag", initialized to
43 * true, that when cleared inhibits all execution until the end of the loop.
44 *
45 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46 * at the end of the loop, and trigger the unique "break".
47 *
48 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49 * causes loops to break again out of their enclosing loops until all the
50 * loops are exited: then the "execute flag" logic will ignore everything
51 * until the end of the function.
52 *
53 * Note that "continue" and "return" can also be implemented by adding
54 * a dummy loop and using break.
55 * However, this is bad for hardware with limited nesting depth, and
56 * prevents further optimization, and thus is not currently performed.
57 */
58
59 #include "glsl_types.h"
60 #include <string.h>
61 #include "ir.h"
62
63 /**
64 * Enum recording the result of analyzing how control flow might exit
65 * an IR node.
66 *
67 * Each possible value of jump_strength indicates a strictly stronger
68 * guarantee on control flow than the previous value.
69 *
70 * The ordering of strengths roughly reflects the way jumps are
71 * lowered: jumps with higher strength tend to be lowered to jumps of
72 * lower strength. Accordingly, strength is used as a heuristic to
73 * determine which lowering to perform first.
74 *
75 * This enum is also used by get_jump_strength() to categorize
76 * instructions as either break, continue, return, or other. When
77 * used in this fashion, strength_always_clears_execute_flag is not
78 * used.
79 *
80 * The control flow analysis made by this optimization pass makes two
81 * simplifying assumptions:
82 *
83 * - It ignores discard instructions, since they are lowered by a
84 * separate pass (lower_discard.cpp).
85 *
86 * - It assumes it is always possible for control to flow from a loop
87 * to the instruction immediately following it. Technically, this
88 * is not true (since all execution paths through the loop might
89 * jump back to the top, or return from the function).
90 *
91 * Both of these simplifying assumtions are safe, since they can never
92 * cause reachable code to be incorrectly classified as unreachable;
93 * they can only do the opposite.
94 */
95 enum jump_strength
96 {
97 /**
98 * Analysis has produced no guarantee on how control flow might
99 * exit this IR node. It might fall out the bottom (with or
100 * without clearing the execute flag, if present), or it might
101 * continue to the top of the innermost enclosing loop, break out
102 * of it, or return from the function.
103 */
104 strength_none,
105
106 /**
107 * The only way control can fall out the bottom of this node is
108 * through a code path that clears the execute flag. It might also
109 * continue to the top of the innermost enclosing loop, break out
110 * of it, or return from the function.
111 */
112 strength_always_clears_execute_flag,
113
114 /**
115 * Control cannot fall out the bottom of this node. It might
116 * continue to the top of the innermost enclosing loop, break out
117 * of it, or return from the function.
118 */
119 strength_continue,
120
121 /**
122 * Control cannot fall out the bottom of this node, or continue the
123 * top of the innermost enclosing loop. It can only break out of
124 * it or return from the function.
125 */
126 strength_break,
127
128 /**
129 * Control cannot fall out the bottom of this node, continue to the
130 * top of the innermost enclosing loop, or break out of it. It can
131 * only return from the function.
132 */
133 strength_return
134 };
135
136 struct block_record
137 {
138 /* minimum jump strength (of lowered IR, not pre-lowering IR)
139 *
140 * If the block ends with a jump, must be the strength of the jump.
141 * Otherwise, the jump would be dead and have been deleted before)
142 *
143 * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
144 * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
145 * Note that identical jumps are usually unified though.
146 */
147 jump_strength min_strength;
148
149 /* can anything clear the execute flag? */
150 bool may_clear_execute_flag;
151
152 block_record()
153 {
154 this->min_strength = strength_none;
155 this->may_clear_execute_flag = false;
156 }
157 };
158
159 struct loop_record
160 {
161 ir_function_signature* signature;
162 ir_loop* loop;
163
164 /* used to avoid lowering the break used to represent lowered breaks */
165 unsigned nesting_depth;
166 bool in_if_at_the_end_of_the_loop;
167
168 bool may_set_return_flag;
169
170 ir_variable* break_flag;
171 ir_variable* execute_flag; /* cleared to emulate continue */
172
173 loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
174 {
175 this->signature = p_signature;
176 this->loop = p_loop;
177 this->nesting_depth = 0;
178 this->in_if_at_the_end_of_the_loop = false;
179 this->may_set_return_flag = false;
180 this->break_flag = 0;
181 this->execute_flag = 0;
182 }
183
184 ir_variable* get_execute_flag()
185 {
186 /* also supported for the "function loop" */
187 if(!this->execute_flag) {
188 exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
189 this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
190 list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true), 0));
191 list.push_head(this->execute_flag);
192 }
193 return this->execute_flag;
194 }
195
196 ir_variable* get_break_flag()
197 {
198 assert(this->loop);
199 if(!this->break_flag) {
200 this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
201 this->loop->insert_before(this->break_flag);
202 this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false), 0));
203 }
204 return this->break_flag;
205 }
206 };
207
208 struct function_record
209 {
210 ir_function_signature* signature;
211 ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
212 ir_variable* return_value;
213 bool lower_return;
214 unsigned nesting_depth;
215
216 function_record(ir_function_signature* p_signature = 0,
217 bool lower_return = false)
218 {
219 this->signature = p_signature;
220 this->return_flag = 0;
221 this->return_value = 0;
222 this->nesting_depth = 0;
223 this->lower_return = lower_return;
224 }
225
226 ir_variable* get_return_flag()
227 {
228 if(!this->return_flag) {
229 this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
230 this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false), 0));
231 this->signature->body.push_head(this->return_flag);
232 }
233 return this->return_flag;
234 }
235
236 ir_variable* get_return_value()
237 {
238 if(!this->return_value) {
239 assert(!this->signature->return_type->is_void());
240 return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
241 this->signature->body.push_head(this->return_value);
242 }
243 return this->return_value;
244 }
245 };
246
247 struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
248 /* Postconditions: on exit of any visit() function:
249 *
250 * ANALYSIS: this->block.min_strength,
251 * this->block.may_clear_execute_flag, and
252 * this->loop.may_set_return_flag are updated to reflect the
253 * characteristics of the visited statement.
254 *
255 * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
256 * strength_none, the visited node is at the end of its exec_list.
257 * In other words, any unreachable statements that follow the
258 * visited statement in its exec_list have been removed.
259 *
260 * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
261 * statements, then should_lower_jump() is false for all of the
262 * return, break, or continue statements it contains.
263 *
264 * Note that visiting a jump does not lower it. That is the
265 * responsibility of the statement (or function signature) that
266 * contains the jump.
267 */
268
269 bool progress;
270
271 struct function_record function;
272 struct loop_record loop;
273 struct block_record block;
274
275 bool pull_out_jumps;
276 bool lower_continue;
277 bool lower_break;
278 bool lower_sub_return;
279 bool lower_main_return;
280
281 ir_lower_jumps_visitor()
282 {
283 this->progress = false;
284 }
285
286 void truncate_after_instruction(exec_node *ir)
287 {
288 if (!ir)
289 return;
290
291 while (!ir->get_next()->is_tail_sentinel()) {
292 ((ir_instruction *)ir->get_next())->remove();
293 this->progress = true;
294 }
295 }
296
297 void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
298 {
299 while (!ir->get_next()->is_tail_sentinel()) {
300 ir_instruction *move_ir = (ir_instruction *)ir->get_next();
301
302 move_ir->remove();
303 inner_block->push_tail(move_ir);
304 }
305 }
306
307 /**
308 * Insert the instructions necessary to lower a return statement,
309 * before the given return instruction.
310 */
311 void insert_lowered_return(ir_return *ir)
312 {
313 ir_variable* return_flag = this->function.get_return_flag();
314 if(!this->function.signature->return_type->is_void()) {
315 ir_variable* return_value = this->function.get_return_value();
316 ir->insert_before(
317 new(ir) ir_assignment(
318 new (ir) ir_dereference_variable(return_value),
319 ir->value));
320 }
321 ir->insert_before(
322 new(ir) ir_assignment(
323 new (ir) ir_dereference_variable(return_flag),
324 new (ir) ir_constant(true)));
325 this->loop.may_set_return_flag = true;
326 }
327
328 /**
329 * If the given instruction is a return, lower it to instructions
330 * that store the return value (if there is one), set the return
331 * flag, and then break.
332 *
333 * It is safe to pass NULL to this function.
334 */
335 void lower_return_unconditionally(ir_instruction *ir)
336 {
337 if (get_jump_strength(ir) != strength_return) {
338 return;
339 }
340 insert_lowered_return((ir_return*)ir);
341 ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
342 }
343
344 /**
345 * Create the necessary instruction to replace a break instruction.
346 */
347 ir_instruction *create_lowered_break()
348 {
349 void *ctx = this->function.signature;
350 return new(ctx) ir_assignment(
351 new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
352 new(ctx) ir_constant(true),
353 0);
354 }
355
356 /**
357 * If the given instruction is a break, lower it to an instruction
358 * that sets the break flag, without consulting
359 * should_lower_jump().
360 *
361 * It is safe to pass NULL to this function.
362 */
363 void lower_break_unconditionally(ir_instruction *ir)
364 {
365 if (get_jump_strength(ir) != strength_break) {
366 return;
367 }
368 ir->replace_with(create_lowered_break());
369 }
370
371 /**
372 * If the block ends in a conditional or unconditional break, lower
373 * it, even though should_lower_jump() says it needn't be lowered.
374 */
375 void lower_final_breaks(exec_list *block)
376 {
377 ir_instruction *ir = (ir_instruction *) block->get_tail();
378 lower_break_unconditionally(ir);
379 ir_if *ir_if = ir->as_if();
380 if (ir_if) {
381 lower_break_unconditionally(
382 (ir_instruction *) ir_if->then_instructions.get_tail());
383 lower_break_unconditionally(
384 (ir_instruction *) ir_if->else_instructions.get_tail());
385 }
386 }
387
388 virtual void visit(class ir_loop_jump * ir)
389 {
390 /* Eliminate all instructions after each one, since they are
391 * unreachable. This satisfies the DEAD_CODE_ELIMINATION
392 * postcondition.
393 */
394 truncate_after_instruction(ir);
395
396 /* Set this->block.min_strength based on this instruction. This
397 * satisfies the ANALYSIS postcondition. It is not necessary to
398 * update this->block.may_clear_execute_flag or
399 * this->loop.may_set_return_flag, because an unlowered jump
400 * instruction can't change any flags.
401 */
402 this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
403
404 /* The CONTAINED_JUMPS_LOWERED postcondition is already
405 * satisfied, because jump statements can't contain other
406 * statements.
407 */
408 }
409
410 virtual void visit(class ir_return * ir)
411 {
412 /* Eliminate all instructions after each one, since they are
413 * unreachable. This satisfies the DEAD_CODE_ELIMINATION
414 * postcondition.
415 */
416 truncate_after_instruction(ir);
417
418 /* Set this->block.min_strength based on this instruction. This
419 * satisfies the ANALYSIS postcondition. It is not necessary to
420 * update this->block.may_clear_execute_flag or
421 * this->loop.may_set_return_flag, because an unlowered return
422 * instruction can't change any flags.
423 */
424 this->block.min_strength = strength_return;
425
426 /* The CONTAINED_JUMPS_LOWERED postcondition is already
427 * satisfied, because jump statements can't contain other
428 * statements.
429 */
430 }
431
432 virtual void visit(class ir_discard * ir)
433 {
434 /* Nothing needs to be done. The ANALYSIS and
435 * DEAD_CODE_ELIMINATION postconditions are already satisfied,
436 * because discard statements are ignored by this optimization
437 * pass. The CONTAINED_JUMPS_LOWERED postcondition is already
438 * satisfied, because discard statements can't contain other
439 * statements.
440 */
441 }
442
443 enum jump_strength get_jump_strength(ir_instruction* ir)
444 {
445 if(!ir)
446 return strength_none;
447 else if(ir->ir_type == ir_type_loop_jump) {
448 if(((ir_loop_jump*)ir)->is_break())
449 return strength_break;
450 else
451 return strength_continue;
452 } else if(ir->ir_type == ir_type_return)
453 return strength_return;
454 else
455 return strength_none;
456 }
457
458 bool should_lower_jump(ir_jump* ir)
459 {
460 unsigned strength = get_jump_strength(ir);
461 bool lower;
462 switch(strength)
463 {
464 case strength_none:
465 lower = false; /* don't change this, code relies on it */
466 break;
467 case strength_continue:
468 lower = lower_continue;
469 break;
470 case strength_break:
471 assert(this->loop.loop);
472 /* never lower "canonical break" */
473 if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
474 || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
475 lower = false;
476 else
477 lower = lower_break;
478 break;
479 case strength_return:
480 /* never lower return at the end of a this->function */
481 if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
482 lower = false;
483 else
484 lower = this->function.lower_return;
485 break;
486 }
487 return lower;
488 }
489
490 block_record visit_block(exec_list* list)
491 {
492 /* Note: since visiting a node may change that node's next
493 * pointer, we can't use visit_exec_list(), because
494 * visit_exec_list() caches the node's next pointer before
495 * visiting it. So we use foreach_list() instead.
496 *
497 * foreach_list() isn't safe if the node being visited gets
498 * removed, but fortunately this visitor doesn't do that.
499 */
500
501 block_record saved_block = this->block;
502 this->block = block_record();
503 foreach_list(node, list) {
504 ((ir_instruction *) node)->accept(this);
505 }
506 block_record ret = this->block;
507 this->block = saved_block;
508 return ret;
509 }
510
511 virtual void visit(ir_if *ir)
512 {
513 if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
514 this->loop.in_if_at_the_end_of_the_loop = true;
515
516 ++this->function.nesting_depth;
517 ++this->loop.nesting_depth;
518
519 block_record block_records[2];
520 ir_jump* jumps[2];
521
522 /* Recursively lower nested jumps. This satisfies the
523 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
524 * unconditional jumps at the end of ir->then_instructions and
525 * ir->else_instructions, which are handled below.
526 */
527 block_records[0] = visit_block(&ir->then_instructions);
528 block_records[1] = visit_block(&ir->else_instructions);
529
530 retry: /* we get here if we put code after the if inside a branch */
531
532 /* Determine which of ir->then_instructions and
533 * ir->else_instructions end with an unconditional jump.
534 */
535 for(unsigned i = 0; i < 2; ++i) {
536 exec_list& list = i ? ir->else_instructions : ir->then_instructions;
537 jumps[i] = 0;
538 if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
539 jumps[i] = (ir_jump*)list.get_tail();
540 }
541
542 /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
543 * postcondition by lowering jumps in both then_instructions and
544 * else_instructions.
545 */
546 for(;;) {
547 /* Determine the types of the jumps that terminate
548 * ir->then_instructions and ir->else_instructions.
549 */
550 jump_strength jump_strengths[2];
551
552 for(unsigned i = 0; i < 2; ++i) {
553 if(jumps[i]) {
554 jump_strengths[i] = block_records[i].min_strength;
555 assert(jump_strengths[i] == get_jump_strength(jumps[i]));
556 } else
557 jump_strengths[i] = strength_none;
558 }
559
560 /* If both code paths end in a jump, and the jumps are the
561 * same, and we are pulling out jumps, replace them with a
562 * single jump that comes after the if instruction. The new
563 * jump will be visited next, and it will be lowered if
564 * necessary by the loop or conditional that encloses it.
565 */
566 if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
567 bool unify = true;
568 if(jump_strengths[0] == strength_continue)
569 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
570 else if(jump_strengths[0] == strength_break)
571 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
572 /* FINISHME: unify returns with identical expressions */
573 else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
574 ir->insert_after(new(ir) ir_return(NULL));
575 else
576 unify = false;
577
578 if(unify) {
579 jumps[0]->remove();
580 jumps[1]->remove();
581 this->progress = true;
582
583 /* Update jumps[] to reflect the fact that the jumps
584 * are gone, and update block_records[] to reflect the
585 * fact that control can now flow to the next
586 * instruction.
587 */
588 jumps[0] = 0;
589 jumps[1] = 0;
590 block_records[0].min_strength = strength_none;
591 block_records[1].min_strength = strength_none;
592
593 /* The CONTAINED_JUMPS_LOWERED postcondition is now
594 * satisfied, so we can break out of the loop.
595 */
596 break;
597 }
598 }
599
600 /* lower a jump: if both need to lowered, start with the strongest one, so that
601 * we might later unify the lowered version with the other one
602 */
603 bool should_lower[2];
604 for(unsigned i = 0; i < 2; ++i)
605 should_lower[i] = should_lower_jump(jumps[i]);
606
607 int lower;
608 if(should_lower[1] && should_lower[0])
609 lower = jump_strengths[1] > jump_strengths[0];
610 else if(should_lower[0])
611 lower = 0;
612 else if(should_lower[1])
613 lower = 1;
614 else
615 /* Neither code path ends in a jump that needs to be
616 * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
617 * is satisfied and we can break out of the loop.
618 */
619 break;
620
621 if(jump_strengths[lower] == strength_return) {
622 /* To lower a return, we create a return flag (if the
623 * function doesn't have one already) and add instructions
624 * that: 1. store the return value (if this function has a
625 * non-void return) and 2. set the return flag
626 */
627 insert_lowered_return((ir_return*)jumps[lower]);
628 if(this->loop.loop) {
629 /* If we are in a loop, replace the return instruction
630 * with a break instruction, and then loop so that the
631 * break instruction can be lowered if necessary.
632 */
633 ir_loop_jump* lowered = 0;
634 lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
635 /* Note: we must update block_records and jumps to
636 * reflect the fact that the control path has been
637 * altered from a return to a break.
638 */
639 block_records[lower].min_strength = strength_break;
640 jumps[lower]->replace_with(lowered);
641 jumps[lower] = lowered;
642 } else {
643 /* If we are not in a loop, we then proceed as we would
644 * for a continue statement (set the execute flag to
645 * false to prevent the rest of the function from
646 * executing).
647 */
648 goto lower_continue;
649 }
650 this->progress = true;
651 } else if(jump_strengths[lower] == strength_break) {
652 /* To lower a break, we create a break flag (if the loop
653 * doesn't have one already) and add an instruction that
654 * sets it.
655 *
656 * Then we proceed as we would for a continue statement
657 * (set the execute flag to false to prevent the rest of
658 * the loop body from executing).
659 *
660 * The visit() function for the loop will ensure that the
661 * break flag is checked after executing the loop body.
662 */
663 jumps[lower]->insert_before(create_lowered_break());
664 goto lower_continue;
665 } else if(jump_strengths[lower] == strength_continue) {
666 lower_continue:
667 /* To lower a continue, we create an execute flag (if the
668 * loop doesn't have one already) and replace the continue
669 * with an instruction that clears it.
670 *
671 * Note that this code path gets exercised when lowering
672 * return statements that are not inside a loop, so
673 * this->loop must be initialized even outside of loops.
674 */
675 ir_variable* execute_flag = this->loop.get_execute_flag();
676 jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false), 0));
677 /* Note: we must update block_records and jumps to reflect
678 * the fact that the control path has been altered to an
679 * instruction that clears the execute flag.
680 */
681 jumps[lower] = 0;
682 block_records[lower].min_strength = strength_always_clears_execute_flag;
683 block_records[lower].may_clear_execute_flag = true;
684 this->progress = true;
685
686 /* Let the loop run again, in case the other branch of the
687 * if needs to be lowered too.
688 */
689 }
690 }
691
692 /* move out a jump out if possible */
693 if(pull_out_jumps) {
694 /* If one of the branches ends in a jump, and control cannot
695 * fall out the bottom of the other branch, then we can move
696 * the jump after the if.
697 *
698 * Set move_out to the branch we are moving a jump out of.
699 */
700 int move_out = -1;
701 if(jumps[0] && block_records[1].min_strength >= strength_continue)
702 move_out = 0;
703 else if(jumps[1] && block_records[0].min_strength >= strength_continue)
704 move_out = 1;
705
706 if(move_out >= 0)
707 {
708 jumps[move_out]->remove();
709 ir->insert_after(jumps[move_out]);
710 /* Note: we must update block_records and jumps to reflect
711 * the fact that the jump has been moved out of the if.
712 */
713 jumps[move_out] = 0;
714 block_records[move_out].min_strength = strength_none;
715 this->progress = true;
716 }
717 }
718
719 /* Now satisfy the ANALYSIS postcondition by setting
720 * this->block.min_strength and
721 * this->block.may_clear_execute_flag based on the
722 * characteristics of the two branches.
723 */
724 if(block_records[0].min_strength < block_records[1].min_strength)
725 this->block.min_strength = block_records[0].min_strength;
726 else
727 this->block.min_strength = block_records[1].min_strength;
728 this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
729
730 /* Now we need to clean up the instructions that follow the
731 * if.
732 *
733 * If those instructions are unreachable, then satisfy the
734 * DEAD_CODE_ELIMINATION postcondition by eliminating them.
735 * Otherwise that postcondition is already satisfied.
736 */
737 if(this->block.min_strength)
738 truncate_after_instruction(ir);
739 else if(this->block.may_clear_execute_flag)
740 {
741 /* If the "if" instruction might clear the execute flag, then
742 * we need to guard any instructions that follow so that they
743 * are only executed if the execute flag is set.
744 *
745 * If one of the branches of the "if" always clears the
746 * execute flag, and the other branch never clears it, then
747 * this is easy: just move all the instructions following the
748 * "if" into the branch that never clears it.
749 */
750 int move_into = -1;
751 if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
752 move_into = 1;
753 else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
754 move_into = 0;
755
756 if(move_into >= 0) {
757 assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
758
759 exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
760 exec_node* next = ir->get_next();
761 if(!next->is_tail_sentinel()) {
762 move_outer_block_inside(ir, list);
763
764 /* If any instructions moved, then we need to visit
765 * them (since they are now inside the "if"). Since
766 * block_records[move_into] is in its default state
767 * (see assertion above), we can safely replace
768 * block_records[move_into] with the result of this
769 * analysis.
770 */
771 exec_list list;
772 list.head = next;
773 block_records[move_into] = visit_block(&list);
774
775 /*
776 * Then we need to re-start our jump lowering, since one
777 * of the instructions we moved might be a jump that
778 * needs to be lowered.
779 */
780 this->progress = true;
781 goto retry;
782 }
783 } else {
784 /* If we get here, then the simple case didn't apply; we
785 * need to actually guard the instructions that follow.
786 *
787 * To avoid creating unnecessarily-deep nesting, first
788 * look through the instructions that follow and unwrap
789 * any instructions that that are already wrapped in the
790 * appropriate guard.
791 */
792 ir_instruction* ir_after;
793 for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
794 {
795 ir_if* ir_if = ir_after->as_if();
796 if(ir_if && ir_if->else_instructions.is_empty()) {
797 ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
798 if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
799 ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
800 ir_after->insert_before(&ir_if->then_instructions);
801 ir_after->remove();
802 ir_after = ir_next;
803 continue;
804 }
805 }
806 ir_after = (ir_instruction*)ir_after->get_next();
807
808 /* only set this if we find any unprotected instruction */
809 this->progress = true;
810 }
811
812 /* Then, wrap all the instructions that follow in a single
813 * guard.
814 */
815 if(!ir->get_next()->is_tail_sentinel()) {
816 assert(this->loop.execute_flag);
817 ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
818 move_outer_block_inside(ir, &if_execute->then_instructions);
819 ir->insert_after(if_execute);
820 }
821 }
822 }
823 --this->loop.nesting_depth;
824 --this->function.nesting_depth;
825 }
826
827 virtual void visit(ir_loop *ir)
828 {
829 /* Visit the body of the loop, with a fresh data structure in
830 * this->loop so that the analysis we do here won't bleed into
831 * enclosing loops.
832 *
833 * We assume that all code after a loop is reachable from the
834 * loop (see comments on enum jump_strength), so the
835 * DEAD_CODE_ELIMINATION postcondition is automatically
836 * satisfied, as is the block.min_strength portion of the
837 * ANALYSIS postcondition.
838 *
839 * The block.may_clear_execute_flag portion of the ANALYSIS
840 * postcondition is automatically satisfied because execute
841 * flags do not propagate outside of loops.
842 *
843 * The loop.may_set_return_flag portion of the ANALYSIS
844 * postcondition is handled below.
845 */
846 ++this->function.nesting_depth;
847 loop_record saved_loop = this->loop;
848 this->loop = loop_record(this->function.signature, ir);
849
850 /* Recursively lower nested jumps. This satisfies the
851 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
852 * an unconditional continue or return at the bottom of the
853 * loop, which are handled below.
854 */
855 block_record body = visit_block(&ir->body_instructions);
856
857 /* If the loop ends in an unconditional continue, eliminate it
858 * because it is redundant.
859 */
860 ir_instruction *ir_last
861 = (ir_instruction *) ir->body_instructions.get_tail();
862 if (get_jump_strength(ir_last) == strength_continue) {
863 ir_last->remove();
864 }
865
866 /* If the loop ends in an unconditional return, and we are
867 * lowering returns, lower it.
868 */
869 if (this->function.lower_return)
870 lower_return_unconditionally(ir_last);
871
872 if(body.min_strength >= strength_break) {
873 /* FINISHME: If the min_strength of the loop body is
874 * strength_break or strength_return, that means that it
875 * isn't a loop at all, since control flow always leaves the
876 * body of the loop via break or return. In principle the
877 * loop could be eliminated in this case. This optimization
878 * is not implemented yet.
879 */
880 }
881
882 if(this->loop.break_flag) {
883 /* We only get here if we are lowering breaks */
884 assert (lower_break);
885
886 /* If a break flag was generated while visiting the body of
887 * the loop, then at least one break was lowered, so we need
888 * to generate an if statement at the end of the loop that
889 * does a "break" if the break flag is set. The break we
890 * generate won't violate the CONTAINED_JUMPS_LOWERED
891 * postcondition, because should_lower_jump() always returns
892 * false for a break that happens at the end of a loop.
893 *
894 * However, if the loop already ends in a conditional or
895 * unconditional break, then we need to lower that break,
896 * because it won't be at the end of the loop anymore.
897 */
898 lower_final_breaks(&ir->body_instructions);
899
900 ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
901 break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
902 ir->body_instructions.push_tail(break_if);
903 }
904
905 /* If the body of the loop may set the return flag, then at
906 * least one return was lowered to a break, so we need to ensure
907 * that the return flag is checked after the body of the loop is
908 * executed.
909 */
910 if(this->loop.may_set_return_flag) {
911 assert(this->function.return_flag);
912 /* Generate the if statement to check the return flag */
913 ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
914 /* Note: we also need to propagate the knowledge that the
915 * return flag may get set to the outer context. This
916 * satisfies the loop.may_set_return_flag part of the
917 * ANALYSIS postcondition.
918 */
919 saved_loop.may_set_return_flag = true;
920 if(saved_loop.loop)
921 /* If this loop is nested inside another one, then the if
922 * statement that we generated should break out of that
923 * loop if the return flag is set. Caller will lower that
924 * break statement if necessary.
925 */
926 return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
927 else
928 /* Otherwise, all we need to do is ensure that the
929 * instructions that follow are only executed if the
930 * return flag is clear. We can do that by moving those
931 * instructions into the else clause of the generated if
932 * statement.
933 */
934 move_outer_block_inside(ir, &return_if->else_instructions);
935 ir->insert_after(return_if);
936 }
937
938 this->loop = saved_loop;
939 --this->function.nesting_depth;
940 }
941
942 virtual void visit(ir_function_signature *ir)
943 {
944 /* these are not strictly necessary */
945 assert(!this->function.signature);
946 assert(!this->loop.loop);
947
948 bool lower_return;
949 if (strcmp(ir->function_name(), "main") == 0)
950 lower_return = lower_main_return;
951 else
952 lower_return = lower_sub_return;
953
954 function_record saved_function = this->function;
955 loop_record saved_loop = this->loop;
956 this->function = function_record(ir, lower_return);
957 this->loop = loop_record(ir);
958
959 assert(!this->loop.loop);
960
961 /* Visit the body of the function to lower any jumps that occur
962 * in it, except possibly an unconditional return statement at
963 * the end of it.
964 */
965 visit_block(&ir->body);
966
967 /* If the body ended in an unconditional return of non-void,
968 * then we don't need to lower it because it's the one canonical
969 * return.
970 *
971 * If the body ended in a return of void, eliminate it because
972 * it is redundant.
973 */
974 if (ir->return_type->is_void() &&
975 get_jump_strength((ir_instruction *) ir->body.get_tail())) {
976 ir_jump *jump = (ir_jump *) ir->body.get_tail();
977 assert (jump->ir_type == ir_type_return);
978 jump->remove();
979 }
980
981 if(this->function.return_value)
982 ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
983
984 this->loop = saved_loop;
985 this->function = saved_function;
986 }
987
988 virtual void visit(class ir_function * ir)
989 {
990 visit_block(&ir->signatures);
991 }
992 };
993
994 bool
995 do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
996 {
997 ir_lower_jumps_visitor v;
998 v.pull_out_jumps = pull_out_jumps;
999 v.lower_continue = lower_continue;
1000 v.lower_break = lower_break;
1001 v.lower_sub_return = lower_sub_return;
1002 v.lower_main_return = lower_main_return;
1003
1004 do {
1005 v.progress = false;
1006 visit_exec_list(instructions, &v);
1007 } while (v.progress);
1008
1009 return v.progress;
1010 }