glsl: Generate compile errors for explicit blend indices < 0 or > 1.
[mesa.git] / src / glsl / lower_jumps.cpp
1 /*
2 * Copyright © 2010 Luca Barbieri
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_jumps.cpp
26 *
27 * This pass lowers jumps (break, continue, and return) to if/else structures.
28 *
29 * It can be asked to:
30 * 1. Pull jumps out of ifs where possible
31 * 2. Remove all "continue"s, replacing them with an "execute flag"
32 * 3. Replace all "break" with a single conditional one at the end of the loop
33 * 4. Replace all "return"s with a single return at the end of the function,
34 * for the main function and/or other functions
35 *
36 * Applying this pass gives several benefits:
37 * 1. All functions can be inlined.
38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40 * supported
41 *
42 * Continues are lowered by adding a per-loop "execute flag", initialized to
43 * true, that when cleared inhibits all execution until the end of the loop.
44 *
45 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46 * at the end of the loop, and trigger the unique "break".
47 *
48 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49 * causes loops to break again out of their enclosing loops until all the
50 * loops are exited: then the "execute flag" logic will ignore everything
51 * until the end of the function.
52 *
53 * Note that "continue" and "return" can also be implemented by adding
54 * a dummy loop and using break.
55 * However, this is bad for hardware with limited nesting depth, and
56 * prevents further optimization, and thus is not currently performed.
57 */
58
59 #include "glsl_types.h"
60 #include <string.h>
61 #include "ir.h"
62
63 /**
64 * Enum recording the result of analyzing how control flow might exit
65 * an IR node.
66 *
67 * Each possible value of jump_strength indicates a strictly stronger
68 * guarantee on control flow than the previous value.
69 *
70 * The ordering of strengths roughly reflects the way jumps are
71 * lowered: jumps with higher strength tend to be lowered to jumps of
72 * lower strength. Accordingly, strength is used as a heuristic to
73 * determine which lowering to perform first.
74 *
75 * This enum is also used by get_jump_strength() to categorize
76 * instructions as either break, continue, return, or other. When
77 * used in this fashion, strength_always_clears_execute_flag is not
78 * used.
79 *
80 * The control flow analysis made by this optimization pass makes two
81 * simplifying assumptions:
82 *
83 * - It ignores discard instructions, since they are lowered by a
84 * separate pass (lower_discard.cpp).
85 *
86 * - It assumes it is always possible for control to flow from a loop
87 * to the instruction immediately following it. Technically, this
88 * is not true (since all execution paths through the loop might
89 * jump back to the top, or return from the function).
90 *
91 * Both of these simplifying assumtions are safe, since they can never
92 * cause reachable code to be incorrectly classified as unreachable;
93 * they can only do the opposite.
94 */
95 enum jump_strength
96 {
97 /**
98 * Analysis has produced no guarantee on how control flow might
99 * exit this IR node. It might fall out the bottom (with or
100 * without clearing the execute flag, if present), or it might
101 * continue to the top of the innermost enclosing loop, break out
102 * of it, or return from the function.
103 */
104 strength_none,
105
106 /**
107 * The only way control can fall out the bottom of this node is
108 * through a code path that clears the execute flag. It might also
109 * continue to the top of the innermost enclosing loop, break out
110 * of it, or return from the function.
111 */
112 strength_always_clears_execute_flag,
113
114 /**
115 * Control cannot fall out the bottom of this node. It might
116 * continue to the top of the innermost enclosing loop, break out
117 * of it, or return from the function.
118 */
119 strength_continue,
120
121 /**
122 * Control cannot fall out the bottom of this node, or continue the
123 * top of the innermost enclosing loop. It can only break out of
124 * it or return from the function.
125 */
126 strength_break,
127
128 /**
129 * Control cannot fall out the bottom of this node, continue to the
130 * top of the innermost enclosing loop, or break out of it. It can
131 * only return from the function.
132 */
133 strength_return
134 };
135
136 struct block_record
137 {
138 /* minimum jump strength (of lowered IR, not pre-lowering IR)
139 *
140 * If the block ends with a jump, must be the strength of the jump.
141 * Otherwise, the jump would be dead and have been deleted before)
142 *
143 * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
144 * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
145 * Note that identical jumps are usually unified though.
146 */
147 jump_strength min_strength;
148
149 /* can anything clear the execute flag? */
150 bool may_clear_execute_flag;
151
152 block_record()
153 {
154 this->min_strength = strength_none;
155 this->may_clear_execute_flag = false;
156 }
157 };
158
159 struct loop_record
160 {
161 ir_function_signature* signature;
162 ir_loop* loop;
163
164 /* used to avoid lowering the break used to represent lowered breaks */
165 unsigned nesting_depth;
166 bool in_if_at_the_end_of_the_loop;
167
168 bool may_set_return_flag;
169
170 ir_variable* break_flag;
171 ir_variable* execute_flag; /* cleared to emulate continue */
172
173 loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
174 {
175 this->signature = p_signature;
176 this->loop = p_loop;
177 this->nesting_depth = 0;
178 this->in_if_at_the_end_of_the_loop = false;
179 this->may_set_return_flag = false;
180 this->break_flag = 0;
181 this->execute_flag = 0;
182 }
183
184 ir_variable* get_execute_flag()
185 {
186 /* also supported for the "function loop" */
187 if(!this->execute_flag) {
188 exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
189 this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
190 list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true), 0));
191 list.push_head(this->execute_flag);
192 }
193 return this->execute_flag;
194 }
195
196 ir_variable* get_break_flag()
197 {
198 assert(this->loop);
199 if(!this->break_flag) {
200 this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
201 this->loop->insert_before(this->break_flag);
202 this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false), 0));
203 }
204 return this->break_flag;
205 }
206 };
207
208 struct function_record
209 {
210 ir_function_signature* signature;
211 ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
212 ir_variable* return_value;
213 bool lower_return;
214 unsigned nesting_depth;
215
216 function_record(ir_function_signature* p_signature = 0,
217 bool lower_return = false)
218 {
219 this->signature = p_signature;
220 this->return_flag = 0;
221 this->return_value = 0;
222 this->nesting_depth = 0;
223 this->lower_return = lower_return;
224 }
225
226 ir_variable* get_return_flag()
227 {
228 if(!this->return_flag) {
229 this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
230 this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false), 0));
231 this->signature->body.push_head(this->return_flag);
232 }
233 return this->return_flag;
234 }
235
236 ir_variable* get_return_value()
237 {
238 if(!this->return_value) {
239 assert(!this->signature->return_type->is_void());
240 return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
241 this->signature->body.push_head(this->return_value);
242 }
243 return this->return_value;
244 }
245 };
246
247 struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
248 /* Postconditions: on exit of any visit() function:
249 *
250 * ANALYSIS: this->block.min_strength,
251 * this->block.may_clear_execute_flag, and
252 * this->loop.may_set_return_flag are updated to reflect the
253 * characteristics of the visited statement.
254 *
255 * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
256 * strength_none, the visited node is at the end of its exec_list.
257 * In other words, any unreachable statements that follow the
258 * visited statement in its exec_list have been removed.
259 *
260 * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
261 * statements, then should_lower_jump() is false for all of the
262 * return, break, or continue statements it contains.
263 *
264 * Note that visiting a jump does not lower it. That is the
265 * responsibility of the statement (or function signature) that
266 * contains the jump.
267 */
268
269 bool progress;
270
271 struct function_record function;
272 struct loop_record loop;
273 struct block_record block;
274
275 bool pull_out_jumps;
276 bool lower_continue;
277 bool lower_break;
278 bool lower_sub_return;
279 bool lower_main_return;
280
281 ir_lower_jumps_visitor()
282 {
283 this->progress = false;
284 }
285
286 void truncate_after_instruction(exec_node *ir)
287 {
288 if (!ir)
289 return;
290
291 while (!ir->get_next()->is_tail_sentinel()) {
292 ((ir_instruction *)ir->get_next())->remove();
293 this->progress = true;
294 }
295 }
296
297 void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
298 {
299 while (!ir->get_next()->is_tail_sentinel()) {
300 ir_instruction *move_ir = (ir_instruction *)ir->get_next();
301
302 move_ir->remove();
303 inner_block->push_tail(move_ir);
304 }
305 }
306
307 /**
308 * Insert the instructions necessary to lower a return statement,
309 * before the given return instruction.
310 */
311 void insert_lowered_return(ir_return *ir)
312 {
313 ir_variable* return_flag = this->function.get_return_flag();
314 if(!this->function.signature->return_type->is_void()) {
315 ir_variable* return_value = this->function.get_return_value();
316 ir->insert_before(
317 new(ir) ir_assignment(
318 new (ir) ir_dereference_variable(return_value),
319 ir->value));
320 }
321 ir->insert_before(
322 new(ir) ir_assignment(
323 new (ir) ir_dereference_variable(return_flag),
324 new (ir) ir_constant(true)));
325 this->loop.may_set_return_flag = true;
326 }
327
328 /**
329 * If the given instruction is a return, lower it to instructions
330 * that store the return value (if there is one), set the return
331 * flag, and then break.
332 *
333 * It is safe to pass NULL to this function.
334 */
335 void lower_return_unconditionally(ir_instruction *ir)
336 {
337 if (get_jump_strength(ir) != strength_return) {
338 return;
339 }
340 insert_lowered_return((ir_return*)ir);
341 ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
342 }
343
344 /**
345 * Create the necessary instruction to replace a break instruction.
346 */
347 ir_instruction *create_lowered_break()
348 {
349 void *ctx = this->function.signature;
350 return new(ctx) ir_assignment(
351 new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
352 new(ctx) ir_constant(true),
353 0);
354 }
355
356 /**
357 * If the given instruction is a break, lower it to an instruction
358 * that sets the break flag, without consulting
359 * should_lower_jump().
360 *
361 * It is safe to pass NULL to this function.
362 */
363 void lower_break_unconditionally(ir_instruction *ir)
364 {
365 if (get_jump_strength(ir) != strength_break) {
366 return;
367 }
368 ir->replace_with(create_lowered_break());
369 }
370
371 /**
372 * If the block ends in a conditional or unconditional break, lower
373 * it, even though should_lower_jump() says it needn't be lowered.
374 */
375 void lower_final_breaks(exec_list *block)
376 {
377 ir_instruction *ir = (ir_instruction *) block->get_tail();
378 lower_break_unconditionally(ir);
379 ir_if *ir_if = ir->as_if();
380 if (ir_if) {
381 lower_break_unconditionally(
382 (ir_instruction *) ir_if->then_instructions.get_tail());
383 lower_break_unconditionally(
384 (ir_instruction *) ir_if->else_instructions.get_tail());
385 }
386 }
387
388 virtual void visit(class ir_loop_jump * ir)
389 {
390 /* Eliminate all instructions after each one, since they are
391 * unreachable. This satisfies the DEAD_CODE_ELIMINATION
392 * postcondition.
393 */
394 truncate_after_instruction(ir);
395
396 /* Set this->block.min_strength based on this instruction. This
397 * satisfies the ANALYSIS postcondition. It is not necessary to
398 * update this->block.may_clear_execute_flag or
399 * this->loop.may_set_return_flag, because an unlowered jump
400 * instruction can't change any flags.
401 */
402 this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
403
404 /* The CONTAINED_JUMPS_LOWERED postcondition is already
405 * satisfied, because jump statements can't contain other
406 * statements.
407 */
408 }
409
410 virtual void visit(class ir_return * ir)
411 {
412 /* Eliminate all instructions after each one, since they are
413 * unreachable. This satisfies the DEAD_CODE_ELIMINATION
414 * postcondition.
415 */
416 truncate_after_instruction(ir);
417
418 /* Set this->block.min_strength based on this instruction. This
419 * satisfies the ANALYSIS postcondition. It is not necessary to
420 * update this->block.may_clear_execute_flag or
421 * this->loop.may_set_return_flag, because an unlowered return
422 * instruction can't change any flags.
423 */
424 this->block.min_strength = strength_return;
425
426 /* The CONTAINED_JUMPS_LOWERED postcondition is already
427 * satisfied, because jump statements can't contain other
428 * statements.
429 */
430 }
431
432 virtual void visit(class ir_discard * ir)
433 {
434 /* Nothing needs to be done. The ANALYSIS and
435 * DEAD_CODE_ELIMINATION postconditions are already satisfied,
436 * because discard statements are ignored by this optimization
437 * pass. The CONTAINED_JUMPS_LOWERED postcondition is already
438 * satisfied, because discard statements can't contain other
439 * statements.
440 */
441 (void) ir;
442 }
443
444 enum jump_strength get_jump_strength(ir_instruction* ir)
445 {
446 if(!ir)
447 return strength_none;
448 else if(ir->ir_type == ir_type_loop_jump) {
449 if(((ir_loop_jump*)ir)->is_break())
450 return strength_break;
451 else
452 return strength_continue;
453 } else if(ir->ir_type == ir_type_return)
454 return strength_return;
455 else
456 return strength_none;
457 }
458
459 bool should_lower_jump(ir_jump* ir)
460 {
461 unsigned strength = get_jump_strength(ir);
462 bool lower;
463 switch(strength)
464 {
465 case strength_none:
466 lower = false; /* don't change this, code relies on it */
467 break;
468 case strength_continue:
469 lower = lower_continue;
470 break;
471 case strength_break:
472 assert(this->loop.loop);
473 /* never lower "canonical break" */
474 if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
475 || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
476 lower = false;
477 else
478 lower = lower_break;
479 break;
480 case strength_return:
481 /* never lower return at the end of a this->function */
482 if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
483 lower = false;
484 else
485 lower = this->function.lower_return;
486 break;
487 }
488 return lower;
489 }
490
491 block_record visit_block(exec_list* list)
492 {
493 /* Note: since visiting a node may change that node's next
494 * pointer, we can't use visit_exec_list(), because
495 * visit_exec_list() caches the node's next pointer before
496 * visiting it. So we use foreach_list() instead.
497 *
498 * foreach_list() isn't safe if the node being visited gets
499 * removed, but fortunately this visitor doesn't do that.
500 */
501
502 block_record saved_block = this->block;
503 this->block = block_record();
504 foreach_list(node, list) {
505 ((ir_instruction *) node)->accept(this);
506 }
507 block_record ret = this->block;
508 this->block = saved_block;
509 return ret;
510 }
511
512 virtual void visit(ir_if *ir)
513 {
514 if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
515 this->loop.in_if_at_the_end_of_the_loop = true;
516
517 ++this->function.nesting_depth;
518 ++this->loop.nesting_depth;
519
520 block_record block_records[2];
521 ir_jump* jumps[2];
522
523 /* Recursively lower nested jumps. This satisfies the
524 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
525 * unconditional jumps at the end of ir->then_instructions and
526 * ir->else_instructions, which are handled below.
527 */
528 block_records[0] = visit_block(&ir->then_instructions);
529 block_records[1] = visit_block(&ir->else_instructions);
530
531 retry: /* we get here if we put code after the if inside a branch */
532
533 /* Determine which of ir->then_instructions and
534 * ir->else_instructions end with an unconditional jump.
535 */
536 for(unsigned i = 0; i < 2; ++i) {
537 exec_list& list = i ? ir->else_instructions : ir->then_instructions;
538 jumps[i] = 0;
539 if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
540 jumps[i] = (ir_jump*)list.get_tail();
541 }
542
543 /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
544 * postcondition by lowering jumps in both then_instructions and
545 * else_instructions.
546 */
547 for(;;) {
548 /* Determine the types of the jumps that terminate
549 * ir->then_instructions and ir->else_instructions.
550 */
551 jump_strength jump_strengths[2];
552
553 for(unsigned i = 0; i < 2; ++i) {
554 if(jumps[i]) {
555 jump_strengths[i] = block_records[i].min_strength;
556 assert(jump_strengths[i] == get_jump_strength(jumps[i]));
557 } else
558 jump_strengths[i] = strength_none;
559 }
560
561 /* If both code paths end in a jump, and the jumps are the
562 * same, and we are pulling out jumps, replace them with a
563 * single jump that comes after the if instruction. The new
564 * jump will be visited next, and it will be lowered if
565 * necessary by the loop or conditional that encloses it.
566 */
567 if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
568 bool unify = true;
569 if(jump_strengths[0] == strength_continue)
570 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
571 else if(jump_strengths[0] == strength_break)
572 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
573 /* FINISHME: unify returns with identical expressions */
574 else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
575 ir->insert_after(new(ir) ir_return(NULL));
576 else
577 unify = false;
578
579 if(unify) {
580 jumps[0]->remove();
581 jumps[1]->remove();
582 this->progress = true;
583
584 /* Update jumps[] to reflect the fact that the jumps
585 * are gone, and update block_records[] to reflect the
586 * fact that control can now flow to the next
587 * instruction.
588 */
589 jumps[0] = 0;
590 jumps[1] = 0;
591 block_records[0].min_strength = strength_none;
592 block_records[1].min_strength = strength_none;
593
594 /* The CONTAINED_JUMPS_LOWERED postcondition is now
595 * satisfied, so we can break out of the loop.
596 */
597 break;
598 }
599 }
600
601 /* lower a jump: if both need to lowered, start with the strongest one, so that
602 * we might later unify the lowered version with the other one
603 */
604 bool should_lower[2];
605 for(unsigned i = 0; i < 2; ++i)
606 should_lower[i] = should_lower_jump(jumps[i]);
607
608 int lower;
609 if(should_lower[1] && should_lower[0])
610 lower = jump_strengths[1] > jump_strengths[0];
611 else if(should_lower[0])
612 lower = 0;
613 else if(should_lower[1])
614 lower = 1;
615 else
616 /* Neither code path ends in a jump that needs to be
617 * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
618 * is satisfied and we can break out of the loop.
619 */
620 break;
621
622 if(jump_strengths[lower] == strength_return) {
623 /* To lower a return, we create a return flag (if the
624 * function doesn't have one already) and add instructions
625 * that: 1. store the return value (if this function has a
626 * non-void return) and 2. set the return flag
627 */
628 insert_lowered_return((ir_return*)jumps[lower]);
629 if(this->loop.loop) {
630 /* If we are in a loop, replace the return instruction
631 * with a break instruction, and then loop so that the
632 * break instruction can be lowered if necessary.
633 */
634 ir_loop_jump* lowered = 0;
635 lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
636 /* Note: we must update block_records and jumps to
637 * reflect the fact that the control path has been
638 * altered from a return to a break.
639 */
640 block_records[lower].min_strength = strength_break;
641 jumps[lower]->replace_with(lowered);
642 jumps[lower] = lowered;
643 } else {
644 /* If we are not in a loop, we then proceed as we would
645 * for a continue statement (set the execute flag to
646 * false to prevent the rest of the function from
647 * executing).
648 */
649 goto lower_continue;
650 }
651 this->progress = true;
652 } else if(jump_strengths[lower] == strength_break) {
653 /* To lower a break, we create a break flag (if the loop
654 * doesn't have one already) and add an instruction that
655 * sets it.
656 *
657 * Then we proceed as we would for a continue statement
658 * (set the execute flag to false to prevent the rest of
659 * the loop body from executing).
660 *
661 * The visit() function for the loop will ensure that the
662 * break flag is checked after executing the loop body.
663 */
664 jumps[lower]->insert_before(create_lowered_break());
665 goto lower_continue;
666 } else if(jump_strengths[lower] == strength_continue) {
667 lower_continue:
668 /* To lower a continue, we create an execute flag (if the
669 * loop doesn't have one already) and replace the continue
670 * with an instruction that clears it.
671 *
672 * Note that this code path gets exercised when lowering
673 * return statements that are not inside a loop, so
674 * this->loop must be initialized even outside of loops.
675 */
676 ir_variable* execute_flag = this->loop.get_execute_flag();
677 jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false), 0));
678 /* Note: we must update block_records and jumps to reflect
679 * the fact that the control path has been altered to an
680 * instruction that clears the execute flag.
681 */
682 jumps[lower] = 0;
683 block_records[lower].min_strength = strength_always_clears_execute_flag;
684 block_records[lower].may_clear_execute_flag = true;
685 this->progress = true;
686
687 /* Let the loop run again, in case the other branch of the
688 * if needs to be lowered too.
689 */
690 }
691 }
692
693 /* move out a jump out if possible */
694 if(pull_out_jumps) {
695 /* If one of the branches ends in a jump, and control cannot
696 * fall out the bottom of the other branch, then we can move
697 * the jump after the if.
698 *
699 * Set move_out to the branch we are moving a jump out of.
700 */
701 int move_out = -1;
702 if(jumps[0] && block_records[1].min_strength >= strength_continue)
703 move_out = 0;
704 else if(jumps[1] && block_records[0].min_strength >= strength_continue)
705 move_out = 1;
706
707 if(move_out >= 0)
708 {
709 jumps[move_out]->remove();
710 ir->insert_after(jumps[move_out]);
711 /* Note: we must update block_records and jumps to reflect
712 * the fact that the jump has been moved out of the if.
713 */
714 jumps[move_out] = 0;
715 block_records[move_out].min_strength = strength_none;
716 this->progress = true;
717 }
718 }
719
720 /* Now satisfy the ANALYSIS postcondition by setting
721 * this->block.min_strength and
722 * this->block.may_clear_execute_flag based on the
723 * characteristics of the two branches.
724 */
725 if(block_records[0].min_strength < block_records[1].min_strength)
726 this->block.min_strength = block_records[0].min_strength;
727 else
728 this->block.min_strength = block_records[1].min_strength;
729 this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
730
731 /* Now we need to clean up the instructions that follow the
732 * if.
733 *
734 * If those instructions are unreachable, then satisfy the
735 * DEAD_CODE_ELIMINATION postcondition by eliminating them.
736 * Otherwise that postcondition is already satisfied.
737 */
738 if(this->block.min_strength)
739 truncate_after_instruction(ir);
740 else if(this->block.may_clear_execute_flag)
741 {
742 /* If the "if" instruction might clear the execute flag, then
743 * we need to guard any instructions that follow so that they
744 * are only executed if the execute flag is set.
745 *
746 * If one of the branches of the "if" always clears the
747 * execute flag, and the other branch never clears it, then
748 * this is easy: just move all the instructions following the
749 * "if" into the branch that never clears it.
750 */
751 int move_into = -1;
752 if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
753 move_into = 1;
754 else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
755 move_into = 0;
756
757 if(move_into >= 0) {
758 assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
759
760 exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
761 exec_node* next = ir->get_next();
762 if(!next->is_tail_sentinel()) {
763 move_outer_block_inside(ir, list);
764
765 /* If any instructions moved, then we need to visit
766 * them (since they are now inside the "if"). Since
767 * block_records[move_into] is in its default state
768 * (see assertion above), we can safely replace
769 * block_records[move_into] with the result of this
770 * analysis.
771 */
772 exec_list list;
773 list.head = next;
774 block_records[move_into] = visit_block(&list);
775
776 /*
777 * Then we need to re-start our jump lowering, since one
778 * of the instructions we moved might be a jump that
779 * needs to be lowered.
780 */
781 this->progress = true;
782 goto retry;
783 }
784 } else {
785 /* If we get here, then the simple case didn't apply; we
786 * need to actually guard the instructions that follow.
787 *
788 * To avoid creating unnecessarily-deep nesting, first
789 * look through the instructions that follow and unwrap
790 * any instructions that that are already wrapped in the
791 * appropriate guard.
792 */
793 ir_instruction* ir_after;
794 for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
795 {
796 ir_if* ir_if = ir_after->as_if();
797 if(ir_if && ir_if->else_instructions.is_empty()) {
798 ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
799 if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
800 ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
801 ir_after->insert_before(&ir_if->then_instructions);
802 ir_after->remove();
803 ir_after = ir_next;
804 continue;
805 }
806 }
807 ir_after = (ir_instruction*)ir_after->get_next();
808
809 /* only set this if we find any unprotected instruction */
810 this->progress = true;
811 }
812
813 /* Then, wrap all the instructions that follow in a single
814 * guard.
815 */
816 if(!ir->get_next()->is_tail_sentinel()) {
817 assert(this->loop.execute_flag);
818 ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
819 move_outer_block_inside(ir, &if_execute->then_instructions);
820 ir->insert_after(if_execute);
821 }
822 }
823 }
824 --this->loop.nesting_depth;
825 --this->function.nesting_depth;
826 }
827
828 virtual void visit(ir_loop *ir)
829 {
830 /* Visit the body of the loop, with a fresh data structure in
831 * this->loop so that the analysis we do here won't bleed into
832 * enclosing loops.
833 *
834 * We assume that all code after a loop is reachable from the
835 * loop (see comments on enum jump_strength), so the
836 * DEAD_CODE_ELIMINATION postcondition is automatically
837 * satisfied, as is the block.min_strength portion of the
838 * ANALYSIS postcondition.
839 *
840 * The block.may_clear_execute_flag portion of the ANALYSIS
841 * postcondition is automatically satisfied because execute
842 * flags do not propagate outside of loops.
843 *
844 * The loop.may_set_return_flag portion of the ANALYSIS
845 * postcondition is handled below.
846 */
847 ++this->function.nesting_depth;
848 loop_record saved_loop = this->loop;
849 this->loop = loop_record(this->function.signature, ir);
850
851 /* Recursively lower nested jumps. This satisfies the
852 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
853 * an unconditional continue or return at the bottom of the
854 * loop, which are handled below.
855 */
856 block_record body = visit_block(&ir->body_instructions);
857
858 /* If the loop ends in an unconditional continue, eliminate it
859 * because it is redundant.
860 */
861 ir_instruction *ir_last
862 = (ir_instruction *) ir->body_instructions.get_tail();
863 if (get_jump_strength(ir_last) == strength_continue) {
864 ir_last->remove();
865 }
866
867 /* If the loop ends in an unconditional return, and we are
868 * lowering returns, lower it.
869 */
870 if (this->function.lower_return)
871 lower_return_unconditionally(ir_last);
872
873 if(body.min_strength >= strength_break) {
874 /* FINISHME: If the min_strength of the loop body is
875 * strength_break or strength_return, that means that it
876 * isn't a loop at all, since control flow always leaves the
877 * body of the loop via break or return. In principle the
878 * loop could be eliminated in this case. This optimization
879 * is not implemented yet.
880 */
881 }
882
883 if(this->loop.break_flag) {
884 /* We only get here if we are lowering breaks */
885 assert (lower_break);
886
887 /* If a break flag was generated while visiting the body of
888 * the loop, then at least one break was lowered, so we need
889 * to generate an if statement at the end of the loop that
890 * does a "break" if the break flag is set. The break we
891 * generate won't violate the CONTAINED_JUMPS_LOWERED
892 * postcondition, because should_lower_jump() always returns
893 * false for a break that happens at the end of a loop.
894 *
895 * However, if the loop already ends in a conditional or
896 * unconditional break, then we need to lower that break,
897 * because it won't be at the end of the loop anymore.
898 */
899 lower_final_breaks(&ir->body_instructions);
900
901 ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
902 break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
903 ir->body_instructions.push_tail(break_if);
904 }
905
906 /* If the body of the loop may set the return flag, then at
907 * least one return was lowered to a break, so we need to ensure
908 * that the return flag is checked after the body of the loop is
909 * executed.
910 */
911 if(this->loop.may_set_return_flag) {
912 assert(this->function.return_flag);
913 /* Generate the if statement to check the return flag */
914 ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
915 /* Note: we also need to propagate the knowledge that the
916 * return flag may get set to the outer context. This
917 * satisfies the loop.may_set_return_flag part of the
918 * ANALYSIS postcondition.
919 */
920 saved_loop.may_set_return_flag = true;
921 if(saved_loop.loop)
922 /* If this loop is nested inside another one, then the if
923 * statement that we generated should break out of that
924 * loop if the return flag is set. Caller will lower that
925 * break statement if necessary.
926 */
927 return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
928 else
929 /* Otherwise, all we need to do is ensure that the
930 * instructions that follow are only executed if the
931 * return flag is clear. We can do that by moving those
932 * instructions into the else clause of the generated if
933 * statement.
934 */
935 move_outer_block_inside(ir, &return_if->else_instructions);
936 ir->insert_after(return_if);
937 }
938
939 this->loop = saved_loop;
940 --this->function.nesting_depth;
941 }
942
943 virtual void visit(ir_function_signature *ir)
944 {
945 /* these are not strictly necessary */
946 assert(!this->function.signature);
947 assert(!this->loop.loop);
948
949 bool lower_return;
950 if (strcmp(ir->function_name(), "main") == 0)
951 lower_return = lower_main_return;
952 else
953 lower_return = lower_sub_return;
954
955 function_record saved_function = this->function;
956 loop_record saved_loop = this->loop;
957 this->function = function_record(ir, lower_return);
958 this->loop = loop_record(ir);
959
960 assert(!this->loop.loop);
961
962 /* Visit the body of the function to lower any jumps that occur
963 * in it, except possibly an unconditional return statement at
964 * the end of it.
965 */
966 visit_block(&ir->body);
967
968 /* If the body ended in an unconditional return of non-void,
969 * then we don't need to lower it because it's the one canonical
970 * return.
971 *
972 * If the body ended in a return of void, eliminate it because
973 * it is redundant.
974 */
975 if (ir->return_type->is_void() &&
976 get_jump_strength((ir_instruction *) ir->body.get_tail())) {
977 ir_jump *jump = (ir_jump *) ir->body.get_tail();
978 assert (jump->ir_type == ir_type_return);
979 jump->remove();
980 }
981
982 if(this->function.return_value)
983 ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
984
985 this->loop = saved_loop;
986 this->function = saved_function;
987 }
988
989 virtual void visit(class ir_function * ir)
990 {
991 visit_block(&ir->signatures);
992 }
993 };
994
995 bool
996 do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
997 {
998 ir_lower_jumps_visitor v;
999 v.pull_out_jumps = pull_out_jumps;
1000 v.lower_continue = lower_continue;
1001 v.lower_break = lower_break;
1002 v.lower_sub_return = lower_sub_return;
1003 v.lower_main_return = lower_main_return;
1004
1005 do {
1006 v.progress = false;
1007 visit_exec_list(instructions, &v);
1008 } while (v.progress);
1009
1010 return v.progress;
1011 }