nir/lower_tex: Report progress
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_all = -1,
86 nir_var_shader_in,
87 nir_var_shader_out,
88 nir_var_global,
89 nir_var_local,
90 nir_var_uniform,
91 nir_var_shader_storage,
92 nir_var_system_value
93 } nir_variable_mode;
94
95 /**
96 * Data stored in an nir_constant
97 */
98 union nir_constant_data {
99 unsigned u[16];
100 int i[16];
101 float f[16];
102 bool b[16];
103 };
104
105 typedef struct nir_constant {
106 /**
107 * Value of the constant.
108 *
109 * The field used to back the values supplied by the constant is determined
110 * by the type associated with the \c nir_variable. Constants may be
111 * scalars, vectors, or matrices.
112 */
113 union nir_constant_data value;
114
115 /* we could get this from the var->type but makes clone *much* easier to
116 * not have to care about the type.
117 */
118 unsigned num_elements;
119
120 /* Array elements / Structure Fields */
121 struct nir_constant **elements;
122 } nir_constant;
123
124 /**
125 * \brief Layout qualifiers for gl_FragDepth.
126 *
127 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
128 * with a layout qualifier.
129 */
130 typedef enum {
131 nir_depth_layout_none, /**< No depth layout is specified. */
132 nir_depth_layout_any,
133 nir_depth_layout_greater,
134 nir_depth_layout_less,
135 nir_depth_layout_unchanged
136 } nir_depth_layout;
137
138 /**
139 * Either a uniform, global variable, shader input, or shader output. Based on
140 * ir_variable - it should be easy to translate between the two.
141 */
142
143 typedef struct {
144 struct exec_node node;
145
146 /**
147 * Declared type of the variable
148 */
149 const struct glsl_type *type;
150
151 /**
152 * Declared name of the variable
153 */
154 char *name;
155
156 struct nir_variable_data {
157
158 /**
159 * Is the variable read-only?
160 *
161 * This is set for variables declared as \c const, shader inputs,
162 * and uniforms.
163 */
164 unsigned read_only:1;
165 unsigned centroid:1;
166 unsigned sample:1;
167 unsigned patch:1;
168 unsigned invariant:1;
169
170 /**
171 * Storage class of the variable.
172 *
173 * \sa nir_variable_mode
174 */
175 nir_variable_mode mode:4;
176
177 /**
178 * Interpolation mode for shader inputs / outputs
179 *
180 * \sa glsl_interp_qualifier
181 */
182 unsigned interpolation:2;
183
184 /**
185 * \name ARB_fragment_coord_conventions
186 * @{
187 */
188 unsigned origin_upper_left:1;
189 unsigned pixel_center_integer:1;
190 /*@}*/
191
192 /**
193 * Was the location explicitly set in the shader?
194 *
195 * If the location is explicitly set in the shader, it \b cannot be changed
196 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
197 * no effect).
198 */
199 unsigned explicit_location:1;
200 unsigned explicit_index:1;
201
202 /**
203 * Was an initial binding explicitly set in the shader?
204 *
205 * If so, constant_initializer contains an integer nir_constant
206 * representing the initial binding point.
207 */
208 unsigned explicit_binding:1;
209
210 /**
211 * Does this variable have an initializer?
212 *
213 * This is used by the linker to cross-validiate initializers of global
214 * variables.
215 */
216 unsigned has_initializer:1;
217
218 /**
219 * Is this variable a generic output or input that has not yet been matched
220 * up to a variable in another stage of the pipeline?
221 *
222 * This is used by the linker as scratch storage while assigning locations
223 * to generic inputs and outputs.
224 */
225 unsigned is_unmatched_generic_inout:1;
226
227 /**
228 * If non-zero, then this variable may be packed along with other variables
229 * into a single varying slot, so this offset should be applied when
230 * accessing components. For example, an offset of 1 means that the x
231 * component of this variable is actually stored in component y of the
232 * location specified by \c location.
233 */
234 unsigned location_frac:2;
235
236 /**
237 * Non-zero if this variable was created by lowering a named interface
238 * block which was not an array.
239 *
240 * Note that this variable and \c from_named_ifc_block_array will never
241 * both be non-zero.
242 */
243 unsigned from_named_ifc_block_nonarray:1;
244
245 /**
246 * Non-zero if this variable was created by lowering a named interface
247 * block which was an array.
248 *
249 * Note that this variable and \c from_named_ifc_block_nonarray will never
250 * both be non-zero.
251 */
252 unsigned from_named_ifc_block_array:1;
253
254 /**
255 * \brief Layout qualifier for gl_FragDepth.
256 *
257 * This is not equal to \c ir_depth_layout_none if and only if this
258 * variable is \c gl_FragDepth and a layout qualifier is specified.
259 */
260 nir_depth_layout depth_layout;
261
262 /**
263 * Storage location of the base of this variable
264 *
265 * The precise meaning of this field depends on the nature of the variable.
266 *
267 * - Vertex shader input: one of the values from \c gl_vert_attrib.
268 * - Vertex shader output: one of the values from \c gl_varying_slot.
269 * - Geometry shader input: one of the values from \c gl_varying_slot.
270 * - Geometry shader output: one of the values from \c gl_varying_slot.
271 * - Fragment shader input: one of the values from \c gl_varying_slot.
272 * - Fragment shader output: one of the values from \c gl_frag_result.
273 * - Uniforms: Per-stage uniform slot number for default uniform block.
274 * - Uniforms: Index within the uniform block definition for UBO members.
275 * - Non-UBO Uniforms: uniform slot number.
276 * - Other: This field is not currently used.
277 *
278 * If the variable is a uniform, shader input, or shader output, and the
279 * slot has not been assigned, the value will be -1.
280 */
281 int location;
282
283 /**
284 * The actual location of the variable in the IR. Only valid for inputs
285 * and outputs.
286 */
287 unsigned int driver_location;
288
289 /**
290 * output index for dual source blending.
291 */
292 int index;
293
294 /**
295 * Initial binding point for a sampler or UBO.
296 *
297 * For array types, this represents the binding point for the first element.
298 */
299 int binding;
300
301 /**
302 * Location an atomic counter is stored at.
303 */
304 struct {
305 unsigned offset;
306 } atomic;
307
308 /**
309 * ARB_shader_image_load_store qualifiers.
310 */
311 struct {
312 bool read_only; /**< "readonly" qualifier. */
313 bool write_only; /**< "writeonly" qualifier. */
314 bool coherent;
315 bool _volatile;
316 bool restrict_flag;
317
318 /** Image internal format if specified explicitly, otherwise GL_NONE. */
319 GLenum format;
320 } image;
321
322 /**
323 * Highest element accessed with a constant expression array index
324 *
325 * Not used for non-array variables.
326 */
327 unsigned max_array_access;
328
329 } data;
330
331 /**
332 * Built-in state that backs this uniform
333 *
334 * Once set at variable creation, \c state_slots must remain invariant.
335 * This is because, ideally, this array would be shared by all clones of
336 * this variable in the IR tree. In other words, we'd really like for it
337 * to be a fly-weight.
338 *
339 * If the variable is not a uniform, \c num_state_slots will be zero and
340 * \c state_slots will be \c NULL.
341 */
342 /*@{*/
343 unsigned num_state_slots; /**< Number of state slots used */
344 nir_state_slot *state_slots; /**< State descriptors. */
345 /*@}*/
346
347 /**
348 * Constant expression assigned in the initializer of the variable
349 */
350 nir_constant *constant_initializer;
351
352 /**
353 * For variables that are in an interface block or are an instance of an
354 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
355 *
356 * \sa ir_variable::location
357 */
358 const struct glsl_type *interface_type;
359 } nir_variable;
360
361 #define nir_foreach_variable(var, var_list) \
362 foreach_list_typed(nir_variable, var, node, var_list)
363
364 typedef struct {
365 struct exec_node node;
366
367 unsigned num_components; /** < number of vector components */
368 unsigned num_array_elems; /** < size of array (0 for no array) */
369
370 /** generic register index. */
371 unsigned index;
372
373 /** only for debug purposes, can be NULL */
374 const char *name;
375
376 /** whether this register is local (per-function) or global (per-shader) */
377 bool is_global;
378
379 /**
380 * If this flag is set to true, then accessing channels >= num_components
381 * is well-defined, and simply spills over to the next array element. This
382 * is useful for backends that can do per-component accessing, in
383 * particular scalar backends. By setting this flag and making
384 * num_components equal to 1, structures can be packed tightly into
385 * registers and then registers can be accessed per-component to get to
386 * each structure member, even if it crosses vec4 boundaries.
387 */
388 bool is_packed;
389
390 /** set of nir_src's where this register is used (read from) */
391 struct list_head uses;
392
393 /** set of nir_dest's where this register is defined (written to) */
394 struct list_head defs;
395
396 /** set of nir_if's where this register is used as a condition */
397 struct list_head if_uses;
398 } nir_register;
399
400 typedef enum {
401 nir_instr_type_alu,
402 nir_instr_type_call,
403 nir_instr_type_tex,
404 nir_instr_type_intrinsic,
405 nir_instr_type_load_const,
406 nir_instr_type_jump,
407 nir_instr_type_ssa_undef,
408 nir_instr_type_phi,
409 nir_instr_type_parallel_copy,
410 } nir_instr_type;
411
412 typedef struct nir_instr {
413 struct exec_node node;
414 nir_instr_type type;
415 struct nir_block *block;
416
417 /** generic instruction index. */
418 unsigned index;
419
420 /* A temporary for optimization and analysis passes to use for storing
421 * flags. For instance, DCE uses this to store the "dead/live" info.
422 */
423 uint8_t pass_flags;
424 } nir_instr;
425
426 static inline nir_instr *
427 nir_instr_next(nir_instr *instr)
428 {
429 struct exec_node *next = exec_node_get_next(&instr->node);
430 if (exec_node_is_tail_sentinel(next))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, next, node);
434 }
435
436 static inline nir_instr *
437 nir_instr_prev(nir_instr *instr)
438 {
439 struct exec_node *prev = exec_node_get_prev(&instr->node);
440 if (exec_node_is_head_sentinel(prev))
441 return NULL;
442 else
443 return exec_node_data(nir_instr, prev, node);
444 }
445
446 static inline bool
447 nir_instr_is_first(nir_instr *instr)
448 {
449 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
450 }
451
452 static inline bool
453 nir_instr_is_last(nir_instr *instr)
454 {
455 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
456 }
457
458 typedef struct {
459 /** for debugging only, can be NULL */
460 const char* name;
461
462 /** generic SSA definition index. */
463 unsigned index;
464
465 /** Index into the live_in and live_out bitfields */
466 unsigned live_index;
467
468 nir_instr *parent_instr;
469
470 /** set of nir_instr's where this register is used (read from) */
471 struct list_head uses;
472
473 /** set of nir_if's where this register is used as a condition */
474 struct list_head if_uses;
475
476 uint8_t num_components;
477 } nir_ssa_def;
478
479 struct nir_src;
480
481 typedef struct {
482 nir_register *reg;
483 struct nir_src *indirect; /** < NULL for no indirect offset */
484 unsigned base_offset;
485
486 /* TODO use-def chain goes here */
487 } nir_reg_src;
488
489 typedef struct {
490 nir_instr *parent_instr;
491 struct list_head def_link;
492
493 nir_register *reg;
494 struct nir_src *indirect; /** < NULL for no indirect offset */
495 unsigned base_offset;
496
497 /* TODO def-use chain goes here */
498 } nir_reg_dest;
499
500 struct nir_if;
501
502 typedef struct nir_src {
503 union {
504 nir_instr *parent_instr;
505 struct nir_if *parent_if;
506 };
507
508 struct list_head use_link;
509
510 union {
511 nir_reg_src reg;
512 nir_ssa_def *ssa;
513 };
514
515 bool is_ssa;
516 } nir_src;
517
518 #define NIR_SRC_INIT (nir_src) { { NULL } }
519
520 #define nir_foreach_use(reg_or_ssa_def, src) \
521 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
522
523 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
524 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
525
526 #define nir_foreach_if_use(reg_or_ssa_def, src) \
527 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
528
529 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
530 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
531
532 typedef struct {
533 union {
534 nir_reg_dest reg;
535 nir_ssa_def ssa;
536 };
537
538 bool is_ssa;
539 } nir_dest;
540
541 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
542
543 #define nir_foreach_def(reg, dest) \
544 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
545
546 #define nir_foreach_def_safe(reg, dest) \
547 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
548
549 static inline nir_src
550 nir_src_for_ssa(nir_ssa_def *def)
551 {
552 nir_src src = NIR_SRC_INIT;
553
554 src.is_ssa = true;
555 src.ssa = def;
556
557 return src;
558 }
559
560 static inline nir_src
561 nir_src_for_reg(nir_register *reg)
562 {
563 nir_src src = NIR_SRC_INIT;
564
565 src.is_ssa = false;
566 src.reg.reg = reg;
567 src.reg.indirect = NULL;
568 src.reg.base_offset = 0;
569
570 return src;
571 }
572
573 static inline nir_dest
574 nir_dest_for_reg(nir_register *reg)
575 {
576 nir_dest dest = NIR_DEST_INIT;
577
578 dest.reg.reg = reg;
579
580 return dest;
581 }
582
583 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
584 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
585
586 typedef struct {
587 nir_src src;
588
589 /**
590 * \name input modifiers
591 */
592 /*@{*/
593 /**
594 * For inputs interpreted as floating point, flips the sign bit. For
595 * inputs interpreted as integers, performs the two's complement negation.
596 */
597 bool negate;
598
599 /**
600 * Clears the sign bit for floating point values, and computes the integer
601 * absolute value for integers. Note that the negate modifier acts after
602 * the absolute value modifier, therefore if both are set then all inputs
603 * will become negative.
604 */
605 bool abs;
606 /*@}*/
607
608 /**
609 * For each input component, says which component of the register it is
610 * chosen from. Note that which elements of the swizzle are used and which
611 * are ignored are based on the write mask for most opcodes - for example,
612 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
613 * a swizzle of {2, x, 1, 0} where x means "don't care."
614 */
615 uint8_t swizzle[4];
616 } nir_alu_src;
617
618 typedef struct {
619 nir_dest dest;
620
621 /**
622 * \name saturate output modifier
623 *
624 * Only valid for opcodes that output floating-point numbers. Clamps the
625 * output to between 0.0 and 1.0 inclusive.
626 */
627
628 bool saturate;
629
630 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
631 } nir_alu_dest;
632
633 typedef enum {
634 nir_type_invalid = 0, /* Not a valid type */
635 nir_type_float,
636 nir_type_int,
637 nir_type_uint,
638 nir_type_bool
639 } nir_alu_type;
640
641 typedef enum {
642 NIR_OP_IS_COMMUTATIVE = (1 << 0),
643 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
644 } nir_op_algebraic_property;
645
646 typedef struct {
647 const char *name;
648
649 unsigned num_inputs;
650
651 /**
652 * The number of components in the output
653 *
654 * If non-zero, this is the size of the output and input sizes are
655 * explicitly given; swizzle and writemask are still in effect, but if
656 * the output component is masked out, then the input component may
657 * still be in use.
658 *
659 * If zero, the opcode acts in the standard, per-component manner; the
660 * operation is performed on each component (except the ones that are
661 * masked out) with the input being taken from the input swizzle for
662 * that component.
663 *
664 * The size of some of the inputs may be given (i.e. non-zero) even
665 * though output_size is zero; in that case, the inputs with a zero
666 * size act per-component, while the inputs with non-zero size don't.
667 */
668 unsigned output_size;
669
670 /**
671 * The type of vector that the instruction outputs. Note that the
672 * staurate modifier is only allowed on outputs with the float type.
673 */
674
675 nir_alu_type output_type;
676
677 /**
678 * The number of components in each input
679 */
680 unsigned input_sizes[4];
681
682 /**
683 * The type of vector that each input takes. Note that negate and
684 * absolute value are only allowed on inputs with int or float type and
685 * behave differently on the two.
686 */
687 nir_alu_type input_types[4];
688
689 nir_op_algebraic_property algebraic_properties;
690 } nir_op_info;
691
692 extern const nir_op_info nir_op_infos[nir_num_opcodes];
693
694 typedef struct nir_alu_instr {
695 nir_instr instr;
696 nir_op op;
697 nir_alu_dest dest;
698 nir_alu_src src[];
699 } nir_alu_instr;
700
701 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
702 nir_alu_instr *instr);
703 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
704 nir_alu_instr *instr);
705
706 /* is this source channel used? */
707 static inline bool
708 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
709 {
710 if (nir_op_infos[instr->op].input_sizes[src] > 0)
711 return channel < nir_op_infos[instr->op].input_sizes[src];
712
713 return (instr->dest.write_mask >> channel) & 1;
714 }
715
716 /*
717 * For instructions whose destinations are SSA, get the number of channels
718 * used for a source
719 */
720 static inline unsigned
721 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
722 {
723 assert(instr->dest.dest.is_ssa);
724
725 if (nir_op_infos[instr->op].input_sizes[src] > 0)
726 return nir_op_infos[instr->op].input_sizes[src];
727
728 return instr->dest.dest.ssa.num_components;
729 }
730
731 typedef enum {
732 nir_deref_type_var,
733 nir_deref_type_array,
734 nir_deref_type_struct
735 } nir_deref_type;
736
737 typedef struct nir_deref {
738 nir_deref_type deref_type;
739 struct nir_deref *child;
740 const struct glsl_type *type;
741 } nir_deref;
742
743 typedef struct {
744 nir_deref deref;
745
746 nir_variable *var;
747 } nir_deref_var;
748
749 /* This enum describes how the array is referenced. If the deref is
750 * direct then the base_offset is used. If the deref is indirect then then
751 * offset is given by base_offset + indirect. If the deref is a wildcard
752 * then the deref refers to all of the elements of the array at the same
753 * time. Wildcard dereferences are only ever allowed in copy_var
754 * intrinsics and the source and destination derefs must have matching
755 * wildcards.
756 */
757 typedef enum {
758 nir_deref_array_type_direct,
759 nir_deref_array_type_indirect,
760 nir_deref_array_type_wildcard,
761 } nir_deref_array_type;
762
763 typedef struct {
764 nir_deref deref;
765
766 nir_deref_array_type deref_array_type;
767 unsigned base_offset;
768 nir_src indirect;
769 } nir_deref_array;
770
771 typedef struct {
772 nir_deref deref;
773
774 unsigned index;
775 } nir_deref_struct;
776
777 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
778 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
779 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
780
781 /* Returns the last deref in the chain. */
782 static inline nir_deref *
783 nir_deref_tail(nir_deref *deref)
784 {
785 while (deref->child)
786 deref = deref->child;
787 return deref;
788 }
789
790 typedef struct {
791 nir_instr instr;
792
793 unsigned num_params;
794 nir_deref_var **params;
795 nir_deref_var *return_deref;
796
797 struct nir_function_overload *callee;
798 } nir_call_instr;
799
800 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
801 num_variables, num_indices, flags) \
802 nir_intrinsic_##name,
803
804 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
805
806 typedef enum {
807 #include "nir_intrinsics.h"
808 nir_num_intrinsics = nir_last_intrinsic + 1
809 } nir_intrinsic_op;
810
811 #undef INTRINSIC
812 #undef LAST_INTRINSIC
813
814 /** Represents an intrinsic
815 *
816 * An intrinsic is an instruction type for handling things that are
817 * more-or-less regular operations but don't just consume and produce SSA
818 * values like ALU operations do. Intrinsics are not for things that have
819 * special semantic meaning such as phi nodes and parallel copies.
820 * Examples of intrinsics include variable load/store operations, system
821 * value loads, and the like. Even though texturing more-or-less falls
822 * under this category, texturing is its own instruction type because
823 * trying to represent texturing with intrinsics would lead to a
824 * combinatorial explosion of intrinsic opcodes.
825 *
826 * By having a single instruction type for handling a lot of different
827 * cases, optimization passes can look for intrinsics and, for the most
828 * part, completely ignore them. Each intrinsic type also has a few
829 * possible flags that govern whether or not they can be reordered or
830 * eliminated. That way passes like dead code elimination can still work
831 * on intrisics without understanding the meaning of each.
832 *
833 * Each intrinsic has some number of constant indices, some number of
834 * variables, and some number of sources. What these sources, variables,
835 * and indices mean depends on the intrinsic and is documented with the
836 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
837 * instructions are the only types of instruction that can operate on
838 * variables.
839 */
840 typedef struct {
841 nir_instr instr;
842
843 nir_intrinsic_op intrinsic;
844
845 nir_dest dest;
846
847 /** number of components if this is a vectorized intrinsic
848 *
849 * Similarly to ALU operations, some intrinsics are vectorized.
850 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
851 * For vectorized intrinsics, the num_components field specifies the
852 * number of destination components and the number of source components
853 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
854 */
855 uint8_t num_components;
856
857 int const_index[3];
858
859 nir_deref_var *variables[2];
860
861 nir_src src[];
862 } nir_intrinsic_instr;
863
864 /**
865 * \name NIR intrinsics semantic flags
866 *
867 * information about what the compiler can do with the intrinsics.
868 *
869 * \sa nir_intrinsic_info::flags
870 */
871 typedef enum {
872 /**
873 * whether the intrinsic can be safely eliminated if none of its output
874 * value is not being used.
875 */
876 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
877
878 /**
879 * Whether the intrinsic can be reordered with respect to any other
880 * intrinsic, i.e. whether the only reordering dependencies of the
881 * intrinsic are due to the register reads/writes.
882 */
883 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
884 } nir_intrinsic_semantic_flag;
885
886 #define NIR_INTRINSIC_MAX_INPUTS 4
887
888 typedef struct {
889 const char *name;
890
891 unsigned num_srcs; /** < number of register/SSA inputs */
892
893 /** number of components of each input register
894 *
895 * If this value is 0, the number of components is given by the
896 * num_components field of nir_intrinsic_instr.
897 */
898 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
899
900 bool has_dest;
901
902 /** number of components of the output register
903 *
904 * If this value is 0, the number of components is given by the
905 * num_components field of nir_intrinsic_instr.
906 */
907 unsigned dest_components;
908
909 /** the number of inputs/outputs that are variables */
910 unsigned num_variables;
911
912 /** the number of constant indices used by the intrinsic */
913 unsigned num_indices;
914
915 /** semantic flags for calls to this intrinsic */
916 nir_intrinsic_semantic_flag flags;
917 } nir_intrinsic_info;
918
919 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
920
921 /**
922 * \group texture information
923 *
924 * This gives semantic information about textures which is useful to the
925 * frontend, the backend, and lowering passes, but not the optimizer.
926 */
927
928 typedef enum {
929 nir_tex_src_coord,
930 nir_tex_src_projector,
931 nir_tex_src_comparitor, /* shadow comparitor */
932 nir_tex_src_offset,
933 nir_tex_src_bias,
934 nir_tex_src_lod,
935 nir_tex_src_ms_index, /* MSAA sample index */
936 nir_tex_src_ddx,
937 nir_tex_src_ddy,
938 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
939 nir_num_tex_src_types
940 } nir_tex_src_type;
941
942 typedef struct {
943 nir_src src;
944 nir_tex_src_type src_type;
945 } nir_tex_src;
946
947 typedef enum {
948 nir_texop_tex, /**< Regular texture look-up */
949 nir_texop_txb, /**< Texture look-up with LOD bias */
950 nir_texop_txl, /**< Texture look-up with explicit LOD */
951 nir_texop_txd, /**< Texture look-up with partial derivatvies */
952 nir_texop_txf, /**< Texel fetch with explicit LOD */
953 nir_texop_txf_ms, /**< Multisample texture fetch */
954 nir_texop_txs, /**< Texture size */
955 nir_texop_lod, /**< Texture lod query */
956 nir_texop_tg4, /**< Texture gather */
957 nir_texop_query_levels, /**< Texture levels query */
958 nir_texop_texture_samples, /**< Texture samples query */
959 nir_texop_samples_identical, /**< Query whether all samples are definitely
960 * identical.
961 */
962 } nir_texop;
963
964 typedef struct {
965 nir_instr instr;
966
967 enum glsl_sampler_dim sampler_dim;
968 nir_alu_type dest_type;
969
970 nir_texop op;
971 nir_dest dest;
972 nir_tex_src *src;
973 unsigned num_srcs, coord_components;
974 bool is_array, is_shadow;
975
976 /**
977 * If is_shadow is true, whether this is the old-style shadow that outputs 4
978 * components or the new-style shadow that outputs 1 component.
979 */
980 bool is_new_style_shadow;
981
982 /* constant offset - must be 0 if the offset source is used */
983 int const_offset[4];
984
985 /* gather component selector */
986 unsigned component : 2;
987
988 /** The sampler index
989 *
990 * If this texture instruction has a nir_tex_src_sampler_offset source,
991 * then the sampler index is given by sampler_index + sampler_offset.
992 */
993 unsigned sampler_index;
994
995 /** The size of the sampler array or 0 if it's not an array */
996 unsigned sampler_array_size;
997
998 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
999 } nir_tex_instr;
1000
1001 static inline unsigned
1002 nir_tex_instr_dest_size(nir_tex_instr *instr)
1003 {
1004 switch (instr->op) {
1005 case nir_texop_txs: {
1006 unsigned ret;
1007 switch (instr->sampler_dim) {
1008 case GLSL_SAMPLER_DIM_1D:
1009 case GLSL_SAMPLER_DIM_BUF:
1010 ret = 1;
1011 break;
1012 case GLSL_SAMPLER_DIM_2D:
1013 case GLSL_SAMPLER_DIM_CUBE:
1014 case GLSL_SAMPLER_DIM_MS:
1015 case GLSL_SAMPLER_DIM_RECT:
1016 case GLSL_SAMPLER_DIM_EXTERNAL:
1017 ret = 2;
1018 break;
1019 case GLSL_SAMPLER_DIM_3D:
1020 ret = 3;
1021 break;
1022 default:
1023 unreachable("not reached");
1024 }
1025 if (instr->is_array)
1026 ret++;
1027 return ret;
1028 }
1029
1030 case nir_texop_lod:
1031 return 2;
1032
1033 case nir_texop_texture_samples:
1034 case nir_texop_query_levels:
1035 case nir_texop_samples_identical:
1036 return 1;
1037
1038 default:
1039 if (instr->is_shadow && instr->is_new_style_shadow)
1040 return 1;
1041
1042 return 4;
1043 }
1044 }
1045
1046 static inline unsigned
1047 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1048 {
1049 if (instr->src[src].src_type == nir_tex_src_coord)
1050 return instr->coord_components;
1051
1052
1053 if (instr->src[src].src_type == nir_tex_src_offset ||
1054 instr->src[src].src_type == nir_tex_src_ddx ||
1055 instr->src[src].src_type == nir_tex_src_ddy) {
1056 if (instr->is_array)
1057 return instr->coord_components - 1;
1058 else
1059 return instr->coord_components;
1060 }
1061
1062 return 1;
1063 }
1064
1065 static inline int
1066 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1067 {
1068 for (unsigned i = 0; i < instr->num_srcs; i++)
1069 if (instr->src[i].src_type == type)
1070 return (int) i;
1071
1072 return -1;
1073 }
1074
1075 typedef struct {
1076 union {
1077 float f[4];
1078 int32_t i[4];
1079 uint32_t u[4];
1080 };
1081 } nir_const_value;
1082
1083 typedef struct {
1084 nir_instr instr;
1085
1086 nir_const_value value;
1087
1088 nir_ssa_def def;
1089 } nir_load_const_instr;
1090
1091 typedef enum {
1092 nir_jump_return,
1093 nir_jump_break,
1094 nir_jump_continue,
1095 } nir_jump_type;
1096
1097 typedef struct {
1098 nir_instr instr;
1099 nir_jump_type type;
1100 } nir_jump_instr;
1101
1102 /* creates a new SSA variable in an undefined state */
1103
1104 typedef struct {
1105 nir_instr instr;
1106 nir_ssa_def def;
1107 } nir_ssa_undef_instr;
1108
1109 typedef struct {
1110 struct exec_node node;
1111
1112 /* The predecessor block corresponding to this source */
1113 struct nir_block *pred;
1114
1115 nir_src src;
1116 } nir_phi_src;
1117
1118 #define nir_foreach_phi_src(phi, entry) \
1119 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1120 #define nir_foreach_phi_src_safe(phi, entry) \
1121 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1122
1123 typedef struct {
1124 nir_instr instr;
1125
1126 struct exec_list srcs; /** < list of nir_phi_src */
1127
1128 nir_dest dest;
1129 } nir_phi_instr;
1130
1131 typedef struct {
1132 struct exec_node node;
1133 nir_src src;
1134 nir_dest dest;
1135 } nir_parallel_copy_entry;
1136
1137 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1138 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1139
1140 typedef struct {
1141 nir_instr instr;
1142
1143 /* A list of nir_parallel_copy_entry's. The sources of all of the
1144 * entries are copied to the corresponding destinations "in parallel".
1145 * In other words, if we have two entries: a -> b and b -> a, the values
1146 * get swapped.
1147 */
1148 struct exec_list entries;
1149 } nir_parallel_copy_instr;
1150
1151 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1152 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1153 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1154 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1155 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1156 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1157 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1158 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1159 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1160 nir_parallel_copy_instr, instr)
1161
1162 /*
1163 * Control flow
1164 *
1165 * Control flow consists of a tree of control flow nodes, which include
1166 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1167 * instructions that always run start-to-finish. Each basic block also keeps
1168 * track of its successors (blocks which may run immediately after the current
1169 * block) and predecessors (blocks which could have run immediately before the
1170 * current block). Each function also has a start block and an end block which
1171 * all return statements point to (which is always empty). Together, all the
1172 * blocks with their predecessors and successors make up the control flow
1173 * graph (CFG) of the function. There are helpers that modify the tree of
1174 * control flow nodes while modifying the CFG appropriately; these should be
1175 * used instead of modifying the tree directly.
1176 */
1177
1178 typedef enum {
1179 nir_cf_node_block,
1180 nir_cf_node_if,
1181 nir_cf_node_loop,
1182 nir_cf_node_function
1183 } nir_cf_node_type;
1184
1185 typedef struct nir_cf_node {
1186 struct exec_node node;
1187 nir_cf_node_type type;
1188 struct nir_cf_node *parent;
1189 } nir_cf_node;
1190
1191 typedef struct nir_block {
1192 nir_cf_node cf_node;
1193
1194 struct exec_list instr_list; /** < list of nir_instr */
1195
1196 /** generic block index; generated by nir_index_blocks */
1197 unsigned index;
1198
1199 /*
1200 * Each block can only have up to 2 successors, so we put them in a simple
1201 * array - no need for anything more complicated.
1202 */
1203 struct nir_block *successors[2];
1204
1205 /* Set of nir_block predecessors in the CFG */
1206 struct set *predecessors;
1207
1208 /*
1209 * this node's immediate dominator in the dominance tree - set to NULL for
1210 * the start block.
1211 */
1212 struct nir_block *imm_dom;
1213
1214 /* This node's children in the dominance tree */
1215 unsigned num_dom_children;
1216 struct nir_block **dom_children;
1217
1218 /* Set of nir_block's on the dominance frontier of this block */
1219 struct set *dom_frontier;
1220
1221 /*
1222 * These two indices have the property that dom_{pre,post}_index for each
1223 * child of this block in the dominance tree will always be between
1224 * dom_pre_index and dom_post_index for this block, which makes testing if
1225 * a given block is dominated by another block an O(1) operation.
1226 */
1227 unsigned dom_pre_index, dom_post_index;
1228
1229 /* live in and out for this block; used for liveness analysis */
1230 BITSET_WORD *live_in;
1231 BITSET_WORD *live_out;
1232 } nir_block;
1233
1234 static inline nir_instr *
1235 nir_block_first_instr(nir_block *block)
1236 {
1237 struct exec_node *head = exec_list_get_head(&block->instr_list);
1238 return exec_node_data(nir_instr, head, node);
1239 }
1240
1241 static inline nir_instr *
1242 nir_block_last_instr(nir_block *block)
1243 {
1244 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1245 return exec_node_data(nir_instr, tail, node);
1246 }
1247
1248 #define nir_foreach_instr(block, instr) \
1249 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1250 #define nir_foreach_instr_reverse(block, instr) \
1251 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1252 #define nir_foreach_instr_safe(block, instr) \
1253 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1254 #define nir_foreach_instr_safe_reverse(block, instr) \
1255 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1256
1257 typedef struct nir_if {
1258 nir_cf_node cf_node;
1259 nir_src condition;
1260
1261 struct exec_list then_list; /** < list of nir_cf_node */
1262 struct exec_list else_list; /** < list of nir_cf_node */
1263 } nir_if;
1264
1265 static inline nir_cf_node *
1266 nir_if_first_then_node(nir_if *if_stmt)
1267 {
1268 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1269 return exec_node_data(nir_cf_node, head, node);
1270 }
1271
1272 static inline nir_cf_node *
1273 nir_if_last_then_node(nir_if *if_stmt)
1274 {
1275 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1276 return exec_node_data(nir_cf_node, tail, node);
1277 }
1278
1279 static inline nir_cf_node *
1280 nir_if_first_else_node(nir_if *if_stmt)
1281 {
1282 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1283 return exec_node_data(nir_cf_node, head, node);
1284 }
1285
1286 static inline nir_cf_node *
1287 nir_if_last_else_node(nir_if *if_stmt)
1288 {
1289 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1290 return exec_node_data(nir_cf_node, tail, node);
1291 }
1292
1293 typedef struct {
1294 nir_cf_node cf_node;
1295
1296 struct exec_list body; /** < list of nir_cf_node */
1297 } nir_loop;
1298
1299 static inline nir_cf_node *
1300 nir_loop_first_cf_node(nir_loop *loop)
1301 {
1302 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1303 }
1304
1305 static inline nir_cf_node *
1306 nir_loop_last_cf_node(nir_loop *loop)
1307 {
1308 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1309 }
1310
1311 /**
1312 * Various bits of metadata that can may be created or required by
1313 * optimization and analysis passes
1314 */
1315 typedef enum {
1316 nir_metadata_none = 0x0,
1317 nir_metadata_block_index = 0x1,
1318 nir_metadata_dominance = 0x2,
1319 nir_metadata_live_ssa_defs = 0x4,
1320 nir_metadata_not_properly_reset = 0x8,
1321 } nir_metadata;
1322
1323 typedef struct {
1324 nir_cf_node cf_node;
1325
1326 /** pointer to the overload of which this is an implementation */
1327 struct nir_function_overload *overload;
1328
1329 struct exec_list body; /** < list of nir_cf_node */
1330
1331 nir_block *end_block;
1332
1333 /** list for all local variables in the function */
1334 struct exec_list locals;
1335
1336 /** array of variables used as parameters */
1337 unsigned num_params;
1338 nir_variable **params;
1339
1340 /** variable used to hold the result of the function */
1341 nir_variable *return_var;
1342
1343 /** list of local registers in the function */
1344 struct exec_list registers;
1345
1346 /** next available local register index */
1347 unsigned reg_alloc;
1348
1349 /** next available SSA value index */
1350 unsigned ssa_alloc;
1351
1352 /* total number of basic blocks, only valid when block_index_dirty = false */
1353 unsigned num_blocks;
1354
1355 nir_metadata valid_metadata;
1356 } nir_function_impl;
1357
1358 static inline nir_block *
1359 nir_start_block(nir_function_impl *impl)
1360 {
1361 return (nir_block *) exec_list_get_head(&impl->body);
1362 }
1363
1364 static inline nir_cf_node *
1365 nir_cf_node_next(nir_cf_node *node)
1366 {
1367 struct exec_node *next = exec_node_get_next(&node->node);
1368 if (exec_node_is_tail_sentinel(next))
1369 return NULL;
1370 else
1371 return exec_node_data(nir_cf_node, next, node);
1372 }
1373
1374 static inline nir_cf_node *
1375 nir_cf_node_prev(nir_cf_node *node)
1376 {
1377 struct exec_node *prev = exec_node_get_prev(&node->node);
1378 if (exec_node_is_head_sentinel(prev))
1379 return NULL;
1380 else
1381 return exec_node_data(nir_cf_node, prev, node);
1382 }
1383
1384 static inline bool
1385 nir_cf_node_is_first(const nir_cf_node *node)
1386 {
1387 return exec_node_is_head_sentinel(node->node.prev);
1388 }
1389
1390 static inline bool
1391 nir_cf_node_is_last(const nir_cf_node *node)
1392 {
1393 return exec_node_is_tail_sentinel(node->node.next);
1394 }
1395
1396 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1397 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1398 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1399 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1400
1401 typedef enum {
1402 nir_parameter_in,
1403 nir_parameter_out,
1404 nir_parameter_inout,
1405 } nir_parameter_type;
1406
1407 typedef struct {
1408 nir_parameter_type param_type;
1409 const struct glsl_type *type;
1410 } nir_parameter;
1411
1412 typedef struct nir_function_overload {
1413 struct exec_node node;
1414
1415 unsigned num_params;
1416 nir_parameter *params;
1417 const struct glsl_type *return_type;
1418
1419 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1420
1421 /** pointer to the function of which this is an overload */
1422 struct nir_function *function;
1423 } nir_function_overload;
1424
1425 typedef struct nir_function {
1426 struct exec_node node;
1427
1428 struct exec_list overload_list; /** < list of nir_function_overload */
1429 const char *name;
1430 struct nir_shader *shader;
1431 } nir_function;
1432
1433 #define nir_function_first_overload(func) \
1434 exec_node_data(nir_function_overload, \
1435 exec_list_get_head(&(func)->overload_list), node)
1436
1437 typedef struct nir_shader_compiler_options {
1438 bool lower_ffma;
1439 bool lower_flrp;
1440 bool lower_fpow;
1441 bool lower_fsat;
1442 bool lower_fsqrt;
1443 /** lowers fneg and ineg to fsub and isub. */
1444 bool lower_negate;
1445 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1446 bool lower_sub;
1447
1448 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1449 bool lower_scmp;
1450
1451 /* Does the native fdot instruction replicate its result for four
1452 * components? If so, then opt_algebraic_late will turn all fdotN
1453 * instructions into fdot_replicatedN instructions.
1454 */
1455 bool fdot_replicates;
1456
1457 /** lowers ffract to fsub+ffloor: */
1458 bool lower_ffract;
1459
1460 /**
1461 * Does the driver support real 32-bit integers? (Otherwise, integers
1462 * are simulated by floats.)
1463 */
1464 bool native_integers;
1465 } nir_shader_compiler_options;
1466
1467 typedef struct nir_shader_info {
1468 const char *name;
1469
1470 /* Descriptive name provided by the client; may be NULL */
1471 const char *label;
1472
1473 /* Number of textures used by this shader */
1474 unsigned num_textures;
1475 /* Number of uniform buffers used by this shader */
1476 unsigned num_ubos;
1477 /* Number of atomic buffers used by this shader */
1478 unsigned num_abos;
1479 /* Number of shader storage buffers used by this shader */
1480 unsigned num_ssbos;
1481 /* Number of images used by this shader */
1482 unsigned num_images;
1483
1484 /* Which inputs are actually read */
1485 uint64_t inputs_read;
1486 /* Which outputs are actually written */
1487 uint64_t outputs_written;
1488 /* Which system values are actually read */
1489 uint64_t system_values_read;
1490
1491 /* Which patch inputs are actually read */
1492 uint32_t patch_inputs_read;
1493 /* Which patch outputs are actually written */
1494 uint32_t patch_outputs_written;
1495
1496 /* Whether or not this shader ever uses textureGather() */
1497 bool uses_texture_gather;
1498
1499 /* Whether or not this shader uses the gl_ClipDistance output */
1500 bool uses_clip_distance_out;
1501
1502 /* Whether or not separate shader objects were used */
1503 bool separate_shader;
1504
1505 /** Was this shader linked with any transform feedback varyings? */
1506 bool has_transform_feedback_varyings;
1507
1508 union {
1509 struct {
1510 /** The number of vertices recieves per input primitive */
1511 unsigned vertices_in;
1512
1513 /** The output primitive type (GL enum value) */
1514 unsigned output_primitive;
1515
1516 /** The maximum number of vertices the geometry shader might write. */
1517 unsigned vertices_out;
1518
1519 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1520 unsigned invocations;
1521
1522 /** Whether or not this shader uses EndPrimitive */
1523 bool uses_end_primitive;
1524
1525 /** Whether or not this shader uses non-zero streams */
1526 bool uses_streams;
1527 } gs;
1528
1529 struct {
1530 bool uses_discard;
1531
1532 /**
1533 * Whether early fragment tests are enabled as defined by
1534 * ARB_shader_image_load_store.
1535 */
1536 bool early_fragment_tests;
1537
1538 /** gl_FragDepth layout for ARB_conservative_depth. */
1539 enum gl_frag_depth_layout depth_layout;
1540 } fs;
1541
1542 struct {
1543 unsigned local_size[3];
1544 } cs;
1545
1546 struct {
1547 /** The number of vertices in the TCS output patch. */
1548 unsigned vertices_out;
1549 } tcs;
1550 };
1551 } nir_shader_info;
1552
1553 typedef struct nir_shader {
1554 /** list of uniforms (nir_variable) */
1555 struct exec_list uniforms;
1556
1557 /** list of inputs (nir_variable) */
1558 struct exec_list inputs;
1559
1560 /** list of outputs (nir_variable) */
1561 struct exec_list outputs;
1562
1563 /** Set of driver-specific options for the shader.
1564 *
1565 * The memory for the options is expected to be kept in a single static
1566 * copy by the driver.
1567 */
1568 const struct nir_shader_compiler_options *options;
1569
1570 /** Various bits of compile-time information about a given shader */
1571 struct nir_shader_info info;
1572
1573 /** list of global variables in the shader (nir_variable) */
1574 struct exec_list globals;
1575
1576 /** list of system value variables in the shader (nir_variable) */
1577 struct exec_list system_values;
1578
1579 struct exec_list functions; /** < list of nir_function */
1580
1581 /** list of global register in the shader */
1582 struct exec_list registers;
1583
1584 /** next available global register index */
1585 unsigned reg_alloc;
1586
1587 /**
1588 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1589 * access plus one
1590 */
1591 unsigned num_inputs, num_uniforms, num_outputs;
1592
1593 /** The shader stage, such as MESA_SHADER_VERTEX. */
1594 gl_shader_stage stage;
1595 } nir_shader;
1596
1597 #define nir_foreach_overload(shader, overload) \
1598 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1599 foreach_list_typed(nir_function_overload, overload, node, \
1600 &(func)->overload_list)
1601
1602 nir_shader *nir_shader_create(void *mem_ctx,
1603 gl_shader_stage stage,
1604 const nir_shader_compiler_options *options);
1605
1606 /** creates a register, including assigning it an index and adding it to the list */
1607 nir_register *nir_global_reg_create(nir_shader *shader);
1608
1609 nir_register *nir_local_reg_create(nir_function_impl *impl);
1610
1611 void nir_reg_remove(nir_register *reg);
1612
1613 /** Adds a variable to the appropreate list in nir_shader */
1614 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1615
1616 static inline void
1617 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1618 {
1619 assert(var->data.mode == nir_var_local);
1620 exec_list_push_tail(&impl->locals, &var->node);
1621 }
1622
1623 /** creates a variable, sets a few defaults, and adds it to the list */
1624 nir_variable *nir_variable_create(nir_shader *shader,
1625 nir_variable_mode mode,
1626 const struct glsl_type *type,
1627 const char *name);
1628 /** creates a local variable and adds it to the list */
1629 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1630 const struct glsl_type *type,
1631 const char *name);
1632
1633 /** creates a function and adds it to the shader's list of functions */
1634 nir_function *nir_function_create(nir_shader *shader, const char *name);
1635
1636 /** creates a null function returning null */
1637 nir_function_overload *nir_function_overload_create(nir_function *func);
1638
1639 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1640
1641 nir_block *nir_block_create(nir_shader *shader);
1642 nir_if *nir_if_create(nir_shader *shader);
1643 nir_loop *nir_loop_create(nir_shader *shader);
1644
1645 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1646
1647 /** requests that the given pieces of metadata be generated */
1648 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1649 /** dirties all but the preserved metadata */
1650 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1651
1652 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1653 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1654
1655 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1656
1657 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1658 unsigned num_components);
1659
1660 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1661 nir_intrinsic_op op);
1662
1663 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1664 nir_function_overload *callee);
1665
1666 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1667
1668 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1669
1670 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1671
1672 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1673 unsigned num_components);
1674
1675 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1676 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1677 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1678
1679 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1680
1681 nir_load_const_instr *
1682 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1683
1684 /**
1685 * NIR Cursors and Instruction Insertion API
1686 * @{
1687 *
1688 * A tiny struct representing a point to insert/extract instructions or
1689 * control flow nodes. Helps reduce the combinatorial explosion of possible
1690 * points to insert/extract.
1691 *
1692 * \sa nir_control_flow.h
1693 */
1694 typedef enum {
1695 nir_cursor_before_block,
1696 nir_cursor_after_block,
1697 nir_cursor_before_instr,
1698 nir_cursor_after_instr,
1699 } nir_cursor_option;
1700
1701 typedef struct {
1702 nir_cursor_option option;
1703 union {
1704 nir_block *block;
1705 nir_instr *instr;
1706 };
1707 } nir_cursor;
1708
1709 static inline nir_cursor
1710 nir_before_block(nir_block *block)
1711 {
1712 nir_cursor cursor;
1713 cursor.option = nir_cursor_before_block;
1714 cursor.block = block;
1715 return cursor;
1716 }
1717
1718 static inline nir_cursor
1719 nir_after_block(nir_block *block)
1720 {
1721 nir_cursor cursor;
1722 cursor.option = nir_cursor_after_block;
1723 cursor.block = block;
1724 return cursor;
1725 }
1726
1727 static inline nir_cursor
1728 nir_before_instr(nir_instr *instr)
1729 {
1730 nir_cursor cursor;
1731 cursor.option = nir_cursor_before_instr;
1732 cursor.instr = instr;
1733 return cursor;
1734 }
1735
1736 static inline nir_cursor
1737 nir_after_instr(nir_instr *instr)
1738 {
1739 nir_cursor cursor;
1740 cursor.option = nir_cursor_after_instr;
1741 cursor.instr = instr;
1742 return cursor;
1743 }
1744
1745 static inline nir_cursor
1746 nir_after_block_before_jump(nir_block *block)
1747 {
1748 nir_instr *last_instr = nir_block_last_instr(block);
1749 if (last_instr && last_instr->type == nir_instr_type_jump) {
1750 return nir_before_instr(last_instr);
1751 } else {
1752 return nir_after_block(block);
1753 }
1754 }
1755
1756 static inline nir_cursor
1757 nir_before_cf_node(nir_cf_node *node)
1758 {
1759 if (node->type == nir_cf_node_block)
1760 return nir_before_block(nir_cf_node_as_block(node));
1761
1762 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1763 }
1764
1765 static inline nir_cursor
1766 nir_after_cf_node(nir_cf_node *node)
1767 {
1768 if (node->type == nir_cf_node_block)
1769 return nir_after_block(nir_cf_node_as_block(node));
1770
1771 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1772 }
1773
1774 static inline nir_cursor
1775 nir_before_cf_list(struct exec_list *cf_list)
1776 {
1777 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1778 exec_list_get_head(cf_list), node);
1779 return nir_before_cf_node(first_node);
1780 }
1781
1782 static inline nir_cursor
1783 nir_after_cf_list(struct exec_list *cf_list)
1784 {
1785 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1786 exec_list_get_tail(cf_list), node);
1787 return nir_after_cf_node(last_node);
1788 }
1789
1790 /**
1791 * Insert a NIR instruction at the given cursor.
1792 *
1793 * Note: This does not update the cursor.
1794 */
1795 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1796
1797 static inline void
1798 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1799 {
1800 nir_instr_insert(nir_before_instr(instr), before);
1801 }
1802
1803 static inline void
1804 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1805 {
1806 nir_instr_insert(nir_after_instr(instr), after);
1807 }
1808
1809 static inline void
1810 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1811 {
1812 nir_instr_insert(nir_before_block(block), before);
1813 }
1814
1815 static inline void
1816 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1817 {
1818 nir_instr_insert(nir_after_block(block), after);
1819 }
1820
1821 static inline void
1822 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1823 {
1824 nir_instr_insert(nir_before_cf_node(node), before);
1825 }
1826
1827 static inline void
1828 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1829 {
1830 nir_instr_insert(nir_after_cf_node(node), after);
1831 }
1832
1833 static inline void
1834 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1835 {
1836 nir_instr_insert(nir_before_cf_list(list), before);
1837 }
1838
1839 static inline void
1840 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1841 {
1842 nir_instr_insert(nir_after_cf_list(list), after);
1843 }
1844
1845 void nir_instr_remove(nir_instr *instr);
1846
1847 /** @} */
1848
1849 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1850 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1851 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1852 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1853 void *state);
1854 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1855 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1856
1857 nir_const_value *nir_src_as_const_value(nir_src src);
1858 bool nir_src_is_dynamically_uniform(nir_src src);
1859 bool nir_srcs_equal(nir_src src1, nir_src src2);
1860 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1861 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1862 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1863 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1864 nir_dest new_dest);
1865
1866 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1867 unsigned num_components, const char *name);
1868 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1869 unsigned num_components, const char *name);
1870 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1871
1872 /* visits basic blocks in source-code order */
1873 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1874 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1875 void *state);
1876 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1877 void *state);
1878 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1879 void *state);
1880
1881 /* If the following CF node is an if, this function returns that if.
1882 * Otherwise, it returns NULL.
1883 */
1884 nir_if *nir_block_get_following_if(nir_block *block);
1885
1886 nir_loop *nir_block_get_following_loop(nir_block *block);
1887
1888 void nir_index_local_regs(nir_function_impl *impl);
1889 void nir_index_global_regs(nir_shader *shader);
1890 void nir_index_ssa_defs(nir_function_impl *impl);
1891 unsigned nir_index_instrs(nir_function_impl *impl);
1892
1893 void nir_index_blocks(nir_function_impl *impl);
1894
1895 void nir_print_shader(nir_shader *shader, FILE *fp);
1896 void nir_print_instr(const nir_instr *instr, FILE *fp);
1897
1898 nir_shader * nir_shader_clone(void *mem_ctx, const nir_shader *s);
1899
1900 #ifdef DEBUG
1901 void nir_validate_shader(nir_shader *shader);
1902 void nir_metadata_set_validation_flag(nir_shader *shader);
1903 void nir_metadata_check_validation_flag(nir_shader *shader);
1904 #else
1905 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1906 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
1907 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
1908 #endif /* DEBUG */
1909
1910 void nir_calc_dominance_impl(nir_function_impl *impl);
1911 void nir_calc_dominance(nir_shader *shader);
1912
1913 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1914 bool nir_block_dominates(nir_block *parent, nir_block *child);
1915
1916 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1917 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1918
1919 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1920 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1921
1922 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1923 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1924
1925 int nir_gs_count_vertices(const nir_shader *shader);
1926
1927 bool nir_split_var_copies(nir_shader *shader);
1928
1929 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1930 void nir_lower_var_copies(nir_shader *shader);
1931
1932 bool nir_lower_global_vars_to_local(nir_shader *shader);
1933
1934 bool nir_lower_locals_to_regs(nir_shader *shader);
1935
1936 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1937
1938 void nir_assign_var_locations(struct exec_list *var_list,
1939 unsigned *size,
1940 int (*type_size)(const struct glsl_type *));
1941
1942 void nir_lower_io(nir_shader *shader,
1943 nir_variable_mode mode,
1944 int (*type_size)(const struct glsl_type *));
1945 nir_src *nir_get_io_indirect_src(nir_intrinsic_instr *instr);
1946 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
1947
1948 void nir_lower_vars_to_ssa(nir_shader *shader);
1949
1950 bool nir_remove_dead_variables(nir_shader *shader);
1951
1952 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
1953 bool nir_lower_vec_to_movs(nir_shader *shader);
1954 void nir_lower_alu_to_scalar(nir_shader *shader);
1955 void nir_lower_load_const_to_scalar(nir_shader *shader);
1956
1957 void nir_lower_phis_to_scalar(nir_shader *shader);
1958
1959 void nir_lower_samplers(nir_shader *shader,
1960 const struct gl_shader_program *shader_program);
1961
1962 bool nir_lower_system_values(nir_shader *shader);
1963
1964 typedef struct nir_lower_tex_options {
1965 /**
1966 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
1967 * sampler types a texture projector is lowered.
1968 */
1969 unsigned lower_txp;
1970
1971 /**
1972 * If true, lower rect textures to 2D, using txs to fetch the
1973 * texture dimensions and dividing the texture coords by the
1974 * texture dims to normalize.
1975 */
1976 bool lower_rect;
1977
1978 /**
1979 * To emulate certain texture wrap modes, this can be used
1980 * to saturate the specified tex coord to [0.0, 1.0]. The
1981 * bits are according to sampler #, ie. if, for example:
1982 *
1983 * (conf->saturate_s & (1 << n))
1984 *
1985 * is true, then the s coord for sampler n is saturated.
1986 *
1987 * Note that clamping must happen *after* projector lowering
1988 * so any projected texture sample instruction with a clamped
1989 * coordinate gets automatically lowered, regardless of the
1990 * 'lower_txp' setting.
1991 */
1992 unsigned saturate_s;
1993 unsigned saturate_t;
1994 unsigned saturate_r;
1995 } nir_lower_tex_options;
1996
1997 bool nir_lower_tex(nir_shader *shader,
1998 const nir_lower_tex_options *options);
1999
2000 void nir_lower_idiv(nir_shader *shader);
2001
2002 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2003 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2004
2005 void nir_lower_two_sided_color(nir_shader *shader);
2006
2007 void nir_lower_atomics(nir_shader *shader,
2008 const struct gl_shader_program *shader_program);
2009 void nir_lower_to_source_mods(nir_shader *shader);
2010
2011 bool nir_lower_gs_intrinsics(nir_shader *shader);
2012
2013 bool nir_normalize_cubemap_coords(nir_shader *shader);
2014
2015 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2016 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2017
2018 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2019 void nir_convert_to_ssa(nir_shader *shader);
2020
2021 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2022 * registers. If false, convert all values (even those not involved in a phi
2023 * node) to registers.
2024 */
2025 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2026
2027 bool nir_opt_algebraic(nir_shader *shader);
2028 bool nir_opt_algebraic_late(nir_shader *shader);
2029 bool nir_opt_constant_folding(nir_shader *shader);
2030
2031 bool nir_opt_global_to_local(nir_shader *shader);
2032
2033 bool nir_copy_prop(nir_shader *shader);
2034
2035 bool nir_opt_cse(nir_shader *shader);
2036
2037 bool nir_opt_dce(nir_shader *shader);
2038
2039 bool nir_opt_dead_cf(nir_shader *shader);
2040
2041 void nir_opt_gcm(nir_shader *shader);
2042
2043 bool nir_opt_peephole_select(nir_shader *shader);
2044
2045 bool nir_opt_remove_phis(nir_shader *shader);
2046
2047 bool nir_opt_undef(nir_shader *shader);
2048
2049 void nir_sweep(nir_shader *shader);
2050
2051 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2052 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2053
2054 #ifdef __cplusplus
2055 } /* extern "C" */
2056 #endif