32259e720d94b67fc7d808a5ee818c70fd190bc3
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* Array elements / Structure Fields */
115 struct nir_constant **elements;
116 } nir_constant;
117
118 /**
119 * \brief Layout qualifiers for gl_FragDepth.
120 *
121 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
122 * with a layout qualifier.
123 */
124 typedef enum {
125 nir_depth_layout_none, /**< No depth layout is specified. */
126 nir_depth_layout_any,
127 nir_depth_layout_greater,
128 nir_depth_layout_less,
129 nir_depth_layout_unchanged
130 } nir_depth_layout;
131
132 /**
133 * Either a uniform, global variable, shader input, or shader output. Based on
134 * ir_variable - it should be easy to translate between the two.
135 */
136
137 typedef struct {
138 struct exec_node node;
139
140 /**
141 * Declared type of the variable
142 */
143 const struct glsl_type *type;
144
145 /**
146 * Declared name of the variable
147 */
148 char *name;
149
150 /**
151 * For variables which satisfy the is_interface_instance() predicate, this
152 * points to an array of integers such that if the ith member of the
153 * interface block is an array, max_ifc_array_access[i] is the maximum
154 * array element of that member that has been accessed. If the ith member
155 * of the interface block is not an array, max_ifc_array_access[i] is
156 * unused.
157 *
158 * For variables whose type is not an interface block, this pointer is
159 * NULL.
160 */
161 unsigned *max_ifc_array_access;
162
163 struct nir_variable_data {
164
165 /**
166 * Is the variable read-only?
167 *
168 * This is set for variables declared as \c const, shader inputs,
169 * and uniforms.
170 */
171 unsigned read_only:1;
172 unsigned centroid:1;
173 unsigned sample:1;
174 unsigned invariant:1;
175
176 /**
177 * Storage class of the variable.
178 *
179 * \sa nir_variable_mode
180 */
181 nir_variable_mode mode:4;
182
183 /**
184 * Interpolation mode for shader inputs / outputs
185 *
186 * \sa glsl_interp_qualifier
187 */
188 unsigned interpolation:2;
189
190 /**
191 * \name ARB_fragment_coord_conventions
192 * @{
193 */
194 unsigned origin_upper_left:1;
195 unsigned pixel_center_integer:1;
196 /*@}*/
197
198 /**
199 * Was the location explicitly set in the shader?
200 *
201 * If the location is explicitly set in the shader, it \b cannot be changed
202 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
203 * no effect).
204 */
205 unsigned explicit_location:1;
206 unsigned explicit_index:1;
207
208 /**
209 * Was an initial binding explicitly set in the shader?
210 *
211 * If so, constant_initializer contains an integer nir_constant
212 * representing the initial binding point.
213 */
214 unsigned explicit_binding:1;
215
216 /**
217 * Does this variable have an initializer?
218 *
219 * This is used by the linker to cross-validiate initializers of global
220 * variables.
221 */
222 unsigned has_initializer:1;
223
224 /**
225 * Is this variable a generic output or input that has not yet been matched
226 * up to a variable in another stage of the pipeline?
227 *
228 * This is used by the linker as scratch storage while assigning locations
229 * to generic inputs and outputs.
230 */
231 unsigned is_unmatched_generic_inout:1;
232
233 /**
234 * If non-zero, then this variable may be packed along with other variables
235 * into a single varying slot, so this offset should be applied when
236 * accessing components. For example, an offset of 1 means that the x
237 * component of this variable is actually stored in component y of the
238 * location specified by \c location.
239 */
240 unsigned location_frac:2;
241
242 /**
243 * Non-zero if this variable was created by lowering a named interface
244 * block which was not an array.
245 *
246 * Note that this variable and \c from_named_ifc_block_array will never
247 * both be non-zero.
248 */
249 unsigned from_named_ifc_block_nonarray:1;
250
251 /**
252 * Non-zero if this variable was created by lowering a named interface
253 * block which was an array.
254 *
255 * Note that this variable and \c from_named_ifc_block_nonarray will never
256 * both be non-zero.
257 */
258 unsigned from_named_ifc_block_array:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * output index for dual source blending.
297 */
298 int index;
299
300 /**
301 * Initial binding point for a sampler or UBO.
302 *
303 * For array types, this represents the binding point for the first element.
304 */
305 int binding;
306
307 /**
308 * Location an atomic counter is stored at.
309 */
310 struct {
311 unsigned buffer_index;
312 unsigned offset;
313 } atomic;
314
315 /**
316 * ARB_shader_image_load_store qualifiers.
317 */
318 struct {
319 bool read_only; /**< "readonly" qualifier. */
320 bool write_only; /**< "writeonly" qualifier. */
321 bool coherent;
322 bool _volatile;
323 bool restrict_flag;
324
325 /** Image internal format if specified explicitly, otherwise GL_NONE. */
326 GLenum format;
327 } image;
328
329 /**
330 * Highest element accessed with a constant expression array index
331 *
332 * Not used for non-array variables.
333 */
334 unsigned max_array_access;
335
336 } data;
337
338 /**
339 * Built-in state that backs this uniform
340 *
341 * Once set at variable creation, \c state_slots must remain invariant.
342 * This is because, ideally, this array would be shared by all clones of
343 * this variable in the IR tree. In other words, we'd really like for it
344 * to be a fly-weight.
345 *
346 * If the variable is not a uniform, \c num_state_slots will be zero and
347 * \c state_slots will be \c NULL.
348 */
349 /*@{*/
350 unsigned num_state_slots; /**< Number of state slots used */
351 nir_state_slot *state_slots; /**< State descriptors. */
352 /*@}*/
353
354 /**
355 * Constant expression assigned in the initializer of the variable
356 */
357 nir_constant *constant_initializer;
358
359 /**
360 * For variables that are in an interface block or are an instance of an
361 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
362 *
363 * \sa ir_variable::location
364 */
365 const struct glsl_type *interface_type;
366 } nir_variable;
367
368 #define nir_foreach_variable(var, var_list) \
369 foreach_list_typed(nir_variable, var, node, var_list)
370
371 typedef struct {
372 struct exec_node node;
373
374 unsigned num_components; /** < number of vector components */
375 unsigned num_array_elems; /** < size of array (0 for no array) */
376
377 /** generic register index. */
378 unsigned index;
379
380 /** only for debug purposes, can be NULL */
381 const char *name;
382
383 /** whether this register is local (per-function) or global (per-shader) */
384 bool is_global;
385
386 /**
387 * If this flag is set to true, then accessing channels >= num_components
388 * is well-defined, and simply spills over to the next array element. This
389 * is useful for backends that can do per-component accessing, in
390 * particular scalar backends. By setting this flag and making
391 * num_components equal to 1, structures can be packed tightly into
392 * registers and then registers can be accessed per-component to get to
393 * each structure member, even if it crosses vec4 boundaries.
394 */
395 bool is_packed;
396
397 /** set of nir_instr's where this register is used (read from) */
398 struct list_head uses;
399
400 /** set of nir_instr's where this register is defined (written to) */
401 struct list_head defs;
402
403 /** set of nir_if's where this register is used as a condition */
404 struct list_head if_uses;
405 } nir_register;
406
407 typedef enum {
408 nir_instr_type_alu,
409 nir_instr_type_call,
410 nir_instr_type_tex,
411 nir_instr_type_intrinsic,
412 nir_instr_type_load_const,
413 nir_instr_type_jump,
414 nir_instr_type_ssa_undef,
415 nir_instr_type_phi,
416 nir_instr_type_parallel_copy,
417 } nir_instr_type;
418
419 typedef struct nir_instr {
420 struct exec_node node;
421 nir_instr_type type;
422 struct nir_block *block;
423
424 /** generic instruction index. */
425 unsigned index;
426
427 /* A temporary for optimization and analysis passes to use for storing
428 * flags. For instance, DCE uses this to store the "dead/live" info.
429 */
430 uint8_t pass_flags;
431 } nir_instr;
432
433 static inline nir_instr *
434 nir_instr_next(nir_instr *instr)
435 {
436 struct exec_node *next = exec_node_get_next(&instr->node);
437 if (exec_node_is_tail_sentinel(next))
438 return NULL;
439 else
440 return exec_node_data(nir_instr, next, node);
441 }
442
443 static inline nir_instr *
444 nir_instr_prev(nir_instr *instr)
445 {
446 struct exec_node *prev = exec_node_get_prev(&instr->node);
447 if (exec_node_is_head_sentinel(prev))
448 return NULL;
449 else
450 return exec_node_data(nir_instr, prev, node);
451 }
452
453 static inline bool
454 nir_instr_is_first(nir_instr *instr)
455 {
456 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
457 }
458
459 static inline bool
460 nir_instr_is_last(nir_instr *instr)
461 {
462 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
463 }
464
465 typedef struct {
466 /** for debugging only, can be NULL */
467 const char* name;
468
469 /** generic SSA definition index. */
470 unsigned index;
471
472 /** Index into the live_in and live_out bitfields */
473 unsigned live_index;
474
475 nir_instr *parent_instr;
476
477 /** set of nir_instr's where this register is used (read from) */
478 struct list_head uses;
479
480 /** set of nir_if's where this register is used as a condition */
481 struct list_head if_uses;
482
483 uint8_t num_components;
484 } nir_ssa_def;
485
486 struct nir_src;
487
488 typedef struct {
489 nir_register *reg;
490 struct nir_src *indirect; /** < NULL for no indirect offset */
491 unsigned base_offset;
492
493 /* TODO use-def chain goes here */
494 } nir_reg_src;
495
496 typedef struct {
497 nir_instr *parent_instr;
498 struct list_head def_link;
499
500 nir_register *reg;
501 struct nir_src *indirect; /** < NULL for no indirect offset */
502 unsigned base_offset;
503
504 /* TODO def-use chain goes here */
505 } nir_reg_dest;
506
507 struct nir_if;
508
509 typedef struct nir_src {
510 union {
511 nir_instr *parent_instr;
512 struct nir_if *parent_if;
513 };
514
515 struct list_head use_link;
516
517 union {
518 nir_reg_src reg;
519 nir_ssa_def *ssa;
520 };
521
522 bool is_ssa;
523 } nir_src;
524
525 #define NIR_SRC_INIT (nir_src) { { NULL } }
526
527 #define nir_foreach_use(reg_or_ssa_def, src) \
528 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
529
530 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
531 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
532
533 #define nir_foreach_if_use(reg_or_ssa_def, src) \
534 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
535
536 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
537 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
538
539 typedef struct {
540 union {
541 nir_reg_dest reg;
542 nir_ssa_def ssa;
543 };
544
545 bool is_ssa;
546 } nir_dest;
547
548 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
549
550 #define nir_foreach_def(reg, dest) \
551 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
552
553 #define nir_foreach_def_safe(reg, dest) \
554 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
555
556 static inline nir_src
557 nir_src_for_ssa(nir_ssa_def *def)
558 {
559 nir_src src = NIR_SRC_INIT;
560
561 src.is_ssa = true;
562 src.ssa = def;
563
564 return src;
565 }
566
567 static inline nir_src
568 nir_src_for_reg(nir_register *reg)
569 {
570 nir_src src = NIR_SRC_INIT;
571
572 src.is_ssa = false;
573 src.reg.reg = reg;
574 src.reg.indirect = NULL;
575 src.reg.base_offset = 0;
576
577 return src;
578 }
579
580 static inline nir_dest
581 nir_dest_for_reg(nir_register *reg)
582 {
583 nir_dest dest = NIR_DEST_INIT;
584
585 dest.reg.reg = reg;
586
587 return dest;
588 }
589
590 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
591 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
592
593 typedef struct {
594 nir_src src;
595
596 /**
597 * \name input modifiers
598 */
599 /*@{*/
600 /**
601 * For inputs interpreted as floating point, flips the sign bit. For
602 * inputs interpreted as integers, performs the two's complement negation.
603 */
604 bool negate;
605
606 /**
607 * Clears the sign bit for floating point values, and computes the integer
608 * absolute value for integers. Note that the negate modifier acts after
609 * the absolute value modifier, therefore if both are set then all inputs
610 * will become negative.
611 */
612 bool abs;
613 /*@}*/
614
615 /**
616 * For each input component, says which component of the register it is
617 * chosen from. Note that which elements of the swizzle are used and which
618 * are ignored are based on the write mask for most opcodes - for example,
619 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
620 * a swizzle of {2, x, 1, 0} where x means "don't care."
621 */
622 uint8_t swizzle[4];
623 } nir_alu_src;
624
625 typedef struct {
626 nir_dest dest;
627
628 /**
629 * \name saturate output modifier
630 *
631 * Only valid for opcodes that output floating-point numbers. Clamps the
632 * output to between 0.0 and 1.0 inclusive.
633 */
634
635 bool saturate;
636
637 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
638 } nir_alu_dest;
639
640 typedef enum {
641 nir_type_invalid = 0, /* Not a valid type */
642 nir_type_float,
643 nir_type_int,
644 nir_type_unsigned,
645 nir_type_bool
646 } nir_alu_type;
647
648 typedef enum {
649 NIR_OP_IS_COMMUTATIVE = (1 << 0),
650 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
651 } nir_op_algebraic_property;
652
653 typedef struct {
654 const char *name;
655
656 unsigned num_inputs;
657
658 /**
659 * The number of components in the output
660 *
661 * If non-zero, this is the size of the output and input sizes are
662 * explicitly given; swizzle and writemask are still in effect, but if
663 * the output component is masked out, then the input component may
664 * still be in use.
665 *
666 * If zero, the opcode acts in the standard, per-component manner; the
667 * operation is performed on each component (except the ones that are
668 * masked out) with the input being taken from the input swizzle for
669 * that component.
670 *
671 * The size of some of the inputs may be given (i.e. non-zero) even
672 * though output_size is zero; in that case, the inputs with a zero
673 * size act per-component, while the inputs with non-zero size don't.
674 */
675 unsigned output_size;
676
677 /**
678 * The type of vector that the instruction outputs. Note that the
679 * staurate modifier is only allowed on outputs with the float type.
680 */
681
682 nir_alu_type output_type;
683
684 /**
685 * The number of components in each input
686 */
687 unsigned input_sizes[4];
688
689 /**
690 * The type of vector that each input takes. Note that negate and
691 * absolute value are only allowed on inputs with int or float type and
692 * behave differently on the two.
693 */
694 nir_alu_type input_types[4];
695
696 nir_op_algebraic_property algebraic_properties;
697 } nir_op_info;
698
699 extern const nir_op_info nir_op_infos[nir_num_opcodes];
700
701 typedef struct nir_alu_instr {
702 nir_instr instr;
703 nir_op op;
704 nir_alu_dest dest;
705 nir_alu_src src[];
706 } nir_alu_instr;
707
708 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
709 nir_alu_instr *instr);
710 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
711 nir_alu_instr *instr);
712
713 /* is this source channel used? */
714 static inline bool
715 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
716 {
717 if (nir_op_infos[instr->op].input_sizes[src] > 0)
718 return channel < nir_op_infos[instr->op].input_sizes[src];
719
720 return (instr->dest.write_mask >> channel) & 1;
721 }
722
723 /*
724 * For instructions whose destinations are SSA, get the number of channels
725 * used for a source
726 */
727 static inline unsigned
728 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
729 {
730 assert(instr->dest.dest.is_ssa);
731
732 if (nir_op_infos[instr->op].input_sizes[src] > 0)
733 return nir_op_infos[instr->op].input_sizes[src];
734
735 return instr->dest.dest.ssa.num_components;
736 }
737
738 typedef enum {
739 nir_deref_type_var,
740 nir_deref_type_array,
741 nir_deref_type_struct
742 } nir_deref_type;
743
744 typedef struct nir_deref {
745 nir_deref_type deref_type;
746 struct nir_deref *child;
747 const struct glsl_type *type;
748 } nir_deref;
749
750 typedef struct {
751 nir_deref deref;
752
753 nir_variable *var;
754 } nir_deref_var;
755
756 /* This enum describes how the array is referenced. If the deref is
757 * direct then the base_offset is used. If the deref is indirect then then
758 * offset is given by base_offset + indirect. If the deref is a wildcard
759 * then the deref refers to all of the elements of the array at the same
760 * time. Wildcard dereferences are only ever allowed in copy_var
761 * intrinsics and the source and destination derefs must have matching
762 * wildcards.
763 */
764 typedef enum {
765 nir_deref_array_type_direct,
766 nir_deref_array_type_indirect,
767 nir_deref_array_type_wildcard,
768 } nir_deref_array_type;
769
770 typedef struct {
771 nir_deref deref;
772
773 nir_deref_array_type deref_array_type;
774 unsigned base_offset;
775 nir_src indirect;
776 } nir_deref_array;
777
778 typedef struct {
779 nir_deref deref;
780
781 unsigned index;
782 } nir_deref_struct;
783
784 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
785 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
786 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
787
788 typedef struct {
789 nir_instr instr;
790
791 unsigned num_params;
792 nir_deref_var **params;
793 nir_deref_var *return_deref;
794
795 struct nir_function_overload *callee;
796 } nir_call_instr;
797
798 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
799 num_variables, num_indices, flags) \
800 nir_intrinsic_##name,
801
802 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
803
804 typedef enum {
805 #include "nir_intrinsics.h"
806 nir_num_intrinsics = nir_last_intrinsic + 1
807 } nir_intrinsic_op;
808
809 #undef INTRINSIC
810 #undef LAST_INTRINSIC
811
812 /** Represents an intrinsic
813 *
814 * An intrinsic is an instruction type for handling things that are
815 * more-or-less regular operations but don't just consume and produce SSA
816 * values like ALU operations do. Intrinsics are not for things that have
817 * special semantic meaning such as phi nodes and parallel copies.
818 * Examples of intrinsics include variable load/store operations, system
819 * value loads, and the like. Even though texturing more-or-less falls
820 * under this category, texturing is its own instruction type because
821 * trying to represent texturing with intrinsics would lead to a
822 * combinatorial explosion of intrinsic opcodes.
823 *
824 * By having a single instruction type for handling a lot of different
825 * cases, optimization passes can look for intrinsics and, for the most
826 * part, completely ignore them. Each intrinsic type also has a few
827 * possible flags that govern whether or not they can be reordered or
828 * eliminated. That way passes like dead code elimination can still work
829 * on intrisics without understanding the meaning of each.
830 *
831 * Each intrinsic has some number of constant indices, some number of
832 * variables, and some number of sources. What these sources, variables,
833 * and indices mean depends on the intrinsic and is documented with the
834 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
835 * instructions are the only types of instruction that can operate on
836 * variables.
837 */
838 typedef struct {
839 nir_instr instr;
840
841 nir_intrinsic_op intrinsic;
842
843 nir_dest dest;
844
845 /** number of components if this is a vectorized intrinsic
846 *
847 * Similarly to ALU operations, some intrinsics are vectorized.
848 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
849 * For vectorized intrinsics, the num_components field specifies the
850 * number of destination components and the number of source components
851 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
852 */
853 uint8_t num_components;
854
855 int const_index[3];
856
857 nir_deref_var *variables[2];
858
859 nir_src src[];
860 } nir_intrinsic_instr;
861
862 /**
863 * \name NIR intrinsics semantic flags
864 *
865 * information about what the compiler can do with the intrinsics.
866 *
867 * \sa nir_intrinsic_info::flags
868 */
869 typedef enum {
870 /**
871 * whether the intrinsic can be safely eliminated if none of its output
872 * value is not being used.
873 */
874 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
875
876 /**
877 * Whether the intrinsic can be reordered with respect to any other
878 * intrinsic, i.e. whether the only reordering dependencies of the
879 * intrinsic are due to the register reads/writes.
880 */
881 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
882 } nir_intrinsic_semantic_flag;
883
884 #define NIR_INTRINSIC_MAX_INPUTS 4
885
886 typedef struct {
887 const char *name;
888
889 unsigned num_srcs; /** < number of register/SSA inputs */
890
891 /** number of components of each input register
892 *
893 * If this value is 0, the number of components is given by the
894 * num_components field of nir_intrinsic_instr.
895 */
896 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
897
898 bool has_dest;
899
900 /** number of components of the output register
901 *
902 * If this value is 0, the number of components is given by the
903 * num_components field of nir_intrinsic_instr.
904 */
905 unsigned dest_components;
906
907 /** the number of inputs/outputs that are variables */
908 unsigned num_variables;
909
910 /** the number of constant indices used by the intrinsic */
911 unsigned num_indices;
912
913 /** semantic flags for calls to this intrinsic */
914 nir_intrinsic_semantic_flag flags;
915 } nir_intrinsic_info;
916
917 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
918
919 /**
920 * \group texture information
921 *
922 * This gives semantic information about textures which is useful to the
923 * frontend, the backend, and lowering passes, but not the optimizer.
924 */
925
926 typedef enum {
927 nir_tex_src_coord,
928 nir_tex_src_projector,
929 nir_tex_src_comparitor, /* shadow comparitor */
930 nir_tex_src_offset,
931 nir_tex_src_bias,
932 nir_tex_src_lod,
933 nir_tex_src_ms_index, /* MSAA sample index */
934 nir_tex_src_ddx,
935 nir_tex_src_ddy,
936 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
937 nir_num_tex_src_types
938 } nir_tex_src_type;
939
940 typedef struct {
941 nir_src src;
942 nir_tex_src_type src_type;
943 } nir_tex_src;
944
945 typedef enum {
946 nir_texop_tex, /**< Regular texture look-up */
947 nir_texop_txb, /**< Texture look-up with LOD bias */
948 nir_texop_txl, /**< Texture look-up with explicit LOD */
949 nir_texop_txd, /**< Texture look-up with partial derivatvies */
950 nir_texop_txf, /**< Texel fetch with explicit LOD */
951 nir_texop_txf_ms, /**< Multisample texture fetch */
952 nir_texop_txs, /**< Texture size */
953 nir_texop_lod, /**< Texture lod query */
954 nir_texop_tg4, /**< Texture gather */
955 nir_texop_query_levels, /**< Texture levels query */
956 nir_texop_texture_samples, /**< Texture samples query */
957 } nir_texop;
958
959 typedef struct {
960 nir_instr instr;
961
962 enum glsl_sampler_dim sampler_dim;
963 nir_alu_type dest_type;
964
965 nir_texop op;
966 nir_dest dest;
967 nir_tex_src *src;
968 unsigned num_srcs, coord_components;
969 bool is_array, is_shadow;
970
971 /**
972 * If is_shadow is true, whether this is the old-style shadow that outputs 4
973 * components or the new-style shadow that outputs 1 component.
974 */
975 bool is_new_style_shadow;
976
977 /* constant offset - must be 0 if the offset source is used */
978 int const_offset[4];
979
980 /* gather component selector */
981 unsigned component : 2;
982
983 /** The sampler index
984 *
985 * If this texture instruction has a nir_tex_src_sampler_offset source,
986 * then the sampler index is given by sampler_index + sampler_offset.
987 */
988 unsigned sampler_index;
989
990 /** The size of the sampler array or 0 if it's not an array */
991 unsigned sampler_array_size;
992
993 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
994 } nir_tex_instr;
995
996 static inline unsigned
997 nir_tex_instr_dest_size(nir_tex_instr *instr)
998 {
999 switch (instr->op) {
1000 case nir_texop_txs: {
1001 unsigned ret;
1002 switch (instr->sampler_dim) {
1003 case GLSL_SAMPLER_DIM_1D:
1004 case GLSL_SAMPLER_DIM_BUF:
1005 ret = 1;
1006 break;
1007 case GLSL_SAMPLER_DIM_2D:
1008 case GLSL_SAMPLER_DIM_CUBE:
1009 case GLSL_SAMPLER_DIM_MS:
1010 case GLSL_SAMPLER_DIM_RECT:
1011 case GLSL_SAMPLER_DIM_EXTERNAL:
1012 ret = 2;
1013 break;
1014 case GLSL_SAMPLER_DIM_3D:
1015 ret = 3;
1016 break;
1017 default:
1018 unreachable("not reached");
1019 }
1020 if (instr->is_array)
1021 ret++;
1022 return ret;
1023 }
1024
1025 case nir_texop_lod:
1026 return 2;
1027
1028 case nir_texop_texture_samples:
1029 case nir_texop_query_levels:
1030 return 1;
1031
1032 default:
1033 if (instr->is_shadow && instr->is_new_style_shadow)
1034 return 1;
1035
1036 return 4;
1037 }
1038 }
1039
1040 static inline unsigned
1041 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1042 {
1043 if (instr->src[src].src_type == nir_tex_src_coord)
1044 return instr->coord_components;
1045
1046
1047 if (instr->src[src].src_type == nir_tex_src_offset ||
1048 instr->src[src].src_type == nir_tex_src_ddx ||
1049 instr->src[src].src_type == nir_tex_src_ddy) {
1050 if (instr->is_array)
1051 return instr->coord_components - 1;
1052 else
1053 return instr->coord_components;
1054 }
1055
1056 return 1;
1057 }
1058
1059 static inline int
1060 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1061 {
1062 for (unsigned i = 0; i < instr->num_srcs; i++)
1063 if (instr->src[i].src_type == type)
1064 return (int) i;
1065
1066 return -1;
1067 }
1068
1069 typedef struct {
1070 union {
1071 float f[4];
1072 int32_t i[4];
1073 uint32_t u[4];
1074 };
1075 } nir_const_value;
1076
1077 typedef struct {
1078 nir_instr instr;
1079
1080 nir_const_value value;
1081
1082 nir_ssa_def def;
1083 } nir_load_const_instr;
1084
1085 typedef enum {
1086 nir_jump_return,
1087 nir_jump_break,
1088 nir_jump_continue,
1089 } nir_jump_type;
1090
1091 typedef struct {
1092 nir_instr instr;
1093 nir_jump_type type;
1094 } nir_jump_instr;
1095
1096 /* creates a new SSA variable in an undefined state */
1097
1098 typedef struct {
1099 nir_instr instr;
1100 nir_ssa_def def;
1101 } nir_ssa_undef_instr;
1102
1103 typedef struct {
1104 struct exec_node node;
1105
1106 /* The predecessor block corresponding to this source */
1107 struct nir_block *pred;
1108
1109 nir_src src;
1110 } nir_phi_src;
1111
1112 #define nir_foreach_phi_src(phi, entry) \
1113 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1114 #define nir_foreach_phi_src_safe(phi, entry) \
1115 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1116
1117 typedef struct {
1118 nir_instr instr;
1119
1120 struct exec_list srcs; /** < list of nir_phi_src */
1121
1122 nir_dest dest;
1123 } nir_phi_instr;
1124
1125 typedef struct {
1126 struct exec_node node;
1127 nir_src src;
1128 nir_dest dest;
1129 } nir_parallel_copy_entry;
1130
1131 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1132 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1133
1134 typedef struct {
1135 nir_instr instr;
1136
1137 /* A list of nir_parallel_copy_entry's. The sources of all of the
1138 * entries are copied to the corresponding destinations "in parallel".
1139 * In other words, if we have two entries: a -> b and b -> a, the values
1140 * get swapped.
1141 */
1142 struct exec_list entries;
1143 } nir_parallel_copy_instr;
1144
1145 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1146 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1147 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1148 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1149 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1150 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1151 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1152 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1153 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1154 nir_parallel_copy_instr, instr)
1155
1156 /*
1157 * Control flow
1158 *
1159 * Control flow consists of a tree of control flow nodes, which include
1160 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1161 * instructions that always run start-to-finish. Each basic block also keeps
1162 * track of its successors (blocks which may run immediately after the current
1163 * block) and predecessors (blocks which could have run immediately before the
1164 * current block). Each function also has a start block and an end block which
1165 * all return statements point to (which is always empty). Together, all the
1166 * blocks with their predecessors and successors make up the control flow
1167 * graph (CFG) of the function. There are helpers that modify the tree of
1168 * control flow nodes while modifying the CFG appropriately; these should be
1169 * used instead of modifying the tree directly.
1170 */
1171
1172 typedef enum {
1173 nir_cf_node_block,
1174 nir_cf_node_if,
1175 nir_cf_node_loop,
1176 nir_cf_node_function
1177 } nir_cf_node_type;
1178
1179 typedef struct nir_cf_node {
1180 struct exec_node node;
1181 nir_cf_node_type type;
1182 struct nir_cf_node *parent;
1183 } nir_cf_node;
1184
1185 typedef struct nir_block {
1186 nir_cf_node cf_node;
1187
1188 struct exec_list instr_list; /** < list of nir_instr */
1189
1190 /** generic block index; generated by nir_index_blocks */
1191 unsigned index;
1192
1193 /*
1194 * Each block can only have up to 2 successors, so we put them in a simple
1195 * array - no need for anything more complicated.
1196 */
1197 struct nir_block *successors[2];
1198
1199 /* Set of nir_block predecessors in the CFG */
1200 struct set *predecessors;
1201
1202 /*
1203 * this node's immediate dominator in the dominance tree - set to NULL for
1204 * the start block.
1205 */
1206 struct nir_block *imm_dom;
1207
1208 /* This node's children in the dominance tree */
1209 unsigned num_dom_children;
1210 struct nir_block **dom_children;
1211
1212 /* Set of nir_block's on the dominance frontier of this block */
1213 struct set *dom_frontier;
1214
1215 /*
1216 * These two indices have the property that dom_{pre,post}_index for each
1217 * child of this block in the dominance tree will always be between
1218 * dom_pre_index and dom_post_index for this block, which makes testing if
1219 * a given block is dominated by another block an O(1) operation.
1220 */
1221 unsigned dom_pre_index, dom_post_index;
1222
1223 /* live in and out for this block; used for liveness analysis */
1224 BITSET_WORD *live_in;
1225 BITSET_WORD *live_out;
1226 } nir_block;
1227
1228 static inline nir_instr *
1229 nir_block_first_instr(nir_block *block)
1230 {
1231 struct exec_node *head = exec_list_get_head(&block->instr_list);
1232 return exec_node_data(nir_instr, head, node);
1233 }
1234
1235 static inline nir_instr *
1236 nir_block_last_instr(nir_block *block)
1237 {
1238 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1239 return exec_node_data(nir_instr, tail, node);
1240 }
1241
1242 #define nir_foreach_instr(block, instr) \
1243 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1244 #define nir_foreach_instr_reverse(block, instr) \
1245 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1246 #define nir_foreach_instr_safe(block, instr) \
1247 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1248 #define nir_foreach_instr_safe_reverse(block, instr) \
1249 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1250
1251 typedef struct nir_if {
1252 nir_cf_node cf_node;
1253 nir_src condition;
1254
1255 struct exec_list then_list; /** < list of nir_cf_node */
1256 struct exec_list else_list; /** < list of nir_cf_node */
1257 } nir_if;
1258
1259 static inline nir_cf_node *
1260 nir_if_first_then_node(nir_if *if_stmt)
1261 {
1262 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1263 return exec_node_data(nir_cf_node, head, node);
1264 }
1265
1266 static inline nir_cf_node *
1267 nir_if_last_then_node(nir_if *if_stmt)
1268 {
1269 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1270 return exec_node_data(nir_cf_node, tail, node);
1271 }
1272
1273 static inline nir_cf_node *
1274 nir_if_first_else_node(nir_if *if_stmt)
1275 {
1276 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1277 return exec_node_data(nir_cf_node, head, node);
1278 }
1279
1280 static inline nir_cf_node *
1281 nir_if_last_else_node(nir_if *if_stmt)
1282 {
1283 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1284 return exec_node_data(nir_cf_node, tail, node);
1285 }
1286
1287 typedef struct {
1288 nir_cf_node cf_node;
1289
1290 struct exec_list body; /** < list of nir_cf_node */
1291 } nir_loop;
1292
1293 static inline nir_cf_node *
1294 nir_loop_first_cf_node(nir_loop *loop)
1295 {
1296 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1297 }
1298
1299 static inline nir_cf_node *
1300 nir_loop_last_cf_node(nir_loop *loop)
1301 {
1302 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1303 }
1304
1305 /**
1306 * Various bits of metadata that can may be created or required by
1307 * optimization and analysis passes
1308 */
1309 typedef enum {
1310 nir_metadata_none = 0x0,
1311 nir_metadata_block_index = 0x1,
1312 nir_metadata_dominance = 0x2,
1313 nir_metadata_live_variables = 0x4,
1314 } nir_metadata;
1315
1316 typedef struct {
1317 nir_cf_node cf_node;
1318
1319 /** pointer to the overload of which this is an implementation */
1320 struct nir_function_overload *overload;
1321
1322 struct exec_list body; /** < list of nir_cf_node */
1323
1324 nir_block *end_block;
1325
1326 /** list for all local variables in the function */
1327 struct exec_list locals;
1328
1329 /** array of variables used as parameters */
1330 unsigned num_params;
1331 nir_variable **params;
1332
1333 /** variable used to hold the result of the function */
1334 nir_variable *return_var;
1335
1336 /** list of local registers in the function */
1337 struct exec_list registers;
1338
1339 /** next available local register index */
1340 unsigned reg_alloc;
1341
1342 /** next available SSA value index */
1343 unsigned ssa_alloc;
1344
1345 /* total number of basic blocks, only valid when block_index_dirty = false */
1346 unsigned num_blocks;
1347
1348 nir_metadata valid_metadata;
1349 } nir_function_impl;
1350
1351 static inline nir_block *
1352 nir_start_block(nir_function_impl *impl)
1353 {
1354 return (nir_block *) exec_list_get_head(&impl->body);
1355 }
1356
1357 static inline nir_cf_node *
1358 nir_cf_node_next(nir_cf_node *node)
1359 {
1360 struct exec_node *next = exec_node_get_next(&node->node);
1361 if (exec_node_is_tail_sentinel(next))
1362 return NULL;
1363 else
1364 return exec_node_data(nir_cf_node, next, node);
1365 }
1366
1367 static inline nir_cf_node *
1368 nir_cf_node_prev(nir_cf_node *node)
1369 {
1370 struct exec_node *prev = exec_node_get_prev(&node->node);
1371 if (exec_node_is_head_sentinel(prev))
1372 return NULL;
1373 else
1374 return exec_node_data(nir_cf_node, prev, node);
1375 }
1376
1377 static inline bool
1378 nir_cf_node_is_first(const nir_cf_node *node)
1379 {
1380 return exec_node_is_head_sentinel(node->node.prev);
1381 }
1382
1383 static inline bool
1384 nir_cf_node_is_last(const nir_cf_node *node)
1385 {
1386 return exec_node_is_tail_sentinel(node->node.next);
1387 }
1388
1389 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1390 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1391 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1392 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1393
1394 typedef enum {
1395 nir_parameter_in,
1396 nir_parameter_out,
1397 nir_parameter_inout,
1398 } nir_parameter_type;
1399
1400 typedef struct {
1401 nir_parameter_type param_type;
1402 const struct glsl_type *type;
1403 } nir_parameter;
1404
1405 typedef struct nir_function_overload {
1406 struct exec_node node;
1407
1408 unsigned num_params;
1409 nir_parameter *params;
1410 const struct glsl_type *return_type;
1411
1412 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1413
1414 /** pointer to the function of which this is an overload */
1415 struct nir_function *function;
1416 } nir_function_overload;
1417
1418 typedef struct nir_function {
1419 struct exec_node node;
1420
1421 struct exec_list overload_list; /** < list of nir_function_overload */
1422 const char *name;
1423 struct nir_shader *shader;
1424 } nir_function;
1425
1426 #define nir_function_first_overload(func) \
1427 exec_node_data(nir_function_overload, \
1428 exec_list_get_head(&(func)->overload_list), node)
1429
1430 typedef struct nir_shader_compiler_options {
1431 bool lower_ffma;
1432 bool lower_flrp;
1433 bool lower_fpow;
1434 bool lower_fsat;
1435 bool lower_fsqrt;
1436 /** lowers fneg and ineg to fsub and isub. */
1437 bool lower_negate;
1438 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1439 bool lower_sub;
1440
1441 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1442 bool lower_scmp;
1443
1444 /* Does the native fdot instruction replicate its result for four
1445 * components? If so, then opt_algebraic_late will turn all fdotN
1446 * instructions into fdot_replicatedN instructions.
1447 */
1448 bool fdot_replicates;
1449
1450 /** lowers ffract to fsub+ffloor: */
1451 bool lower_ffract;
1452
1453 /**
1454 * Does the driver support real 32-bit integers? (Otherwise, integers
1455 * are simulated by floats.)
1456 */
1457 bool native_integers;
1458 } nir_shader_compiler_options;
1459
1460 typedef struct nir_shader_info {
1461 const char *name;
1462
1463 /* Descriptive name provided by the client; may be NULL */
1464 const char *label;
1465
1466 /* Number of textures used by this shader */
1467 unsigned num_textures;
1468 /* Number of uniform buffers used by this shader */
1469 unsigned num_ubos;
1470 /* Number of atomic buffers used by this shader */
1471 unsigned num_abos;
1472 /* Number of shader storage buffers used by this shader */
1473 unsigned num_ssbos;
1474 /* Number of images used by this shader */
1475 unsigned num_images;
1476
1477 /* Which inputs are actually read */
1478 uint64_t inputs_read;
1479 /* Which outputs are actually written */
1480 uint64_t outputs_written;
1481 /* Which system values are actually read */
1482 uint64_t system_values_read;
1483
1484 /* Whether or not this shader ever uses textureGather() */
1485 bool uses_texture_gather;
1486
1487 /* Whether or not this shader uses the gl_ClipDistance output */
1488 bool uses_clip_distance_out;
1489
1490 /* Whether or not separate shader objects were used */
1491 bool separate_shader;
1492
1493 /** Was this shader linked with any transform feedback varyings? */
1494 bool has_transform_feedback_varyings;
1495
1496 union {
1497 struct {
1498 /** The maximum number of vertices the geometry shader might write. */
1499 unsigned vertices_out;
1500
1501 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1502 unsigned invocations;
1503 } gs;
1504
1505 struct {
1506 unsigned local_size[3];
1507 } cs;
1508 };
1509 } nir_shader_info;
1510
1511 typedef struct nir_shader {
1512 /** list of uniforms (nir_variable) */
1513 struct exec_list uniforms;
1514
1515 /** list of inputs (nir_variable) */
1516 struct exec_list inputs;
1517
1518 /** list of outputs (nir_variable) */
1519 struct exec_list outputs;
1520
1521 /** Set of driver-specific options for the shader.
1522 *
1523 * The memory for the options is expected to be kept in a single static
1524 * copy by the driver.
1525 */
1526 const struct nir_shader_compiler_options *options;
1527
1528 /** Various bits of compile-time information about a given shader */
1529 struct nir_shader_info info;
1530
1531 /** list of global variables in the shader (nir_variable) */
1532 struct exec_list globals;
1533
1534 /** list of system value variables in the shader (nir_variable) */
1535 struct exec_list system_values;
1536
1537 struct exec_list functions; /** < list of nir_function */
1538
1539 /** list of global register in the shader */
1540 struct exec_list registers;
1541
1542 /** next available global register index */
1543 unsigned reg_alloc;
1544
1545 /**
1546 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1547 * access plus one
1548 */
1549 unsigned num_inputs, num_uniforms, num_outputs;
1550
1551 /** The shader stage, such as MESA_SHADER_VERTEX. */
1552 gl_shader_stage stage;
1553 } nir_shader;
1554
1555 #define nir_foreach_overload(shader, overload) \
1556 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1557 foreach_list_typed(nir_function_overload, overload, node, \
1558 &(func)->overload_list)
1559
1560 nir_shader *nir_shader_create(void *mem_ctx,
1561 gl_shader_stage stage,
1562 const nir_shader_compiler_options *options);
1563
1564 /** creates a register, including assigning it an index and adding it to the list */
1565 nir_register *nir_global_reg_create(nir_shader *shader);
1566
1567 nir_register *nir_local_reg_create(nir_function_impl *impl);
1568
1569 void nir_reg_remove(nir_register *reg);
1570
1571 /** Adds a variable to the appropreate list in nir_shader */
1572 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1573
1574 static inline void
1575 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1576 {
1577 assert(var->data.mode == nir_var_local);
1578 exec_list_push_tail(&impl->locals, &var->node);
1579 }
1580
1581 /** creates a variable, sets a few defaults, and adds it to the list */
1582 nir_variable *nir_variable_create(nir_shader *shader,
1583 nir_variable_mode mode,
1584 const struct glsl_type *type,
1585 const char *name);
1586 /** creates a local variable and adds it to the list */
1587 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1588 const struct glsl_type *type,
1589 const char *name);
1590
1591 /** creates a function and adds it to the shader's list of functions */
1592 nir_function *nir_function_create(nir_shader *shader, const char *name);
1593
1594 /** creates a null function returning null */
1595 nir_function_overload *nir_function_overload_create(nir_function *func);
1596
1597 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1598
1599 nir_block *nir_block_create(void *mem_ctx);
1600 nir_if *nir_if_create(void *mem_ctx);
1601 nir_loop *nir_loop_create(void *mem_ctx);
1602
1603 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1604
1605 /** requests that the given pieces of metadata be generated */
1606 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1607 /** dirties all but the preserved metadata */
1608 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1609
1610 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1611 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1612
1613 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1614
1615 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1616 unsigned num_components);
1617
1618 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1619 nir_intrinsic_op op);
1620
1621 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1622 nir_function_overload *callee);
1623
1624 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1625
1626 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1627
1628 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1629
1630 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1631 unsigned num_components);
1632
1633 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1634 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1635 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1636
1637 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1638
1639 nir_load_const_instr *
1640 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1641
1642 /**
1643 * NIR Cursors and Instruction Insertion API
1644 * @{
1645 *
1646 * A tiny struct representing a point to insert/extract instructions or
1647 * control flow nodes. Helps reduce the combinatorial explosion of possible
1648 * points to insert/extract.
1649 *
1650 * \sa nir_control_flow.h
1651 */
1652 typedef enum {
1653 nir_cursor_before_block,
1654 nir_cursor_after_block,
1655 nir_cursor_before_instr,
1656 nir_cursor_after_instr,
1657 } nir_cursor_option;
1658
1659 typedef struct {
1660 nir_cursor_option option;
1661 union {
1662 nir_block *block;
1663 nir_instr *instr;
1664 };
1665 } nir_cursor;
1666
1667 static inline nir_cursor
1668 nir_before_block(nir_block *block)
1669 {
1670 nir_cursor cursor;
1671 cursor.option = nir_cursor_before_block;
1672 cursor.block = block;
1673 return cursor;
1674 }
1675
1676 static inline nir_cursor
1677 nir_after_block(nir_block *block)
1678 {
1679 nir_cursor cursor;
1680 cursor.option = nir_cursor_after_block;
1681 cursor.block = block;
1682 return cursor;
1683 }
1684
1685 static inline nir_cursor
1686 nir_before_instr(nir_instr *instr)
1687 {
1688 nir_cursor cursor;
1689 cursor.option = nir_cursor_before_instr;
1690 cursor.instr = instr;
1691 return cursor;
1692 }
1693
1694 static inline nir_cursor
1695 nir_after_instr(nir_instr *instr)
1696 {
1697 nir_cursor cursor;
1698 cursor.option = nir_cursor_after_instr;
1699 cursor.instr = instr;
1700 return cursor;
1701 }
1702
1703 static inline nir_cursor
1704 nir_after_block_before_jump(nir_block *block)
1705 {
1706 nir_instr *last_instr = nir_block_last_instr(block);
1707 if (last_instr && last_instr->type == nir_instr_type_jump) {
1708 return nir_before_instr(last_instr);
1709 } else {
1710 return nir_after_block(block);
1711 }
1712 }
1713
1714 static inline nir_cursor
1715 nir_before_cf_node(nir_cf_node *node)
1716 {
1717 if (node->type == nir_cf_node_block)
1718 return nir_before_block(nir_cf_node_as_block(node));
1719
1720 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1721 }
1722
1723 static inline nir_cursor
1724 nir_after_cf_node(nir_cf_node *node)
1725 {
1726 if (node->type == nir_cf_node_block)
1727 return nir_after_block(nir_cf_node_as_block(node));
1728
1729 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1730 }
1731
1732 static inline nir_cursor
1733 nir_before_cf_list(struct exec_list *cf_list)
1734 {
1735 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1736 exec_list_get_head(cf_list), node);
1737 return nir_before_cf_node(first_node);
1738 }
1739
1740 static inline nir_cursor
1741 nir_after_cf_list(struct exec_list *cf_list)
1742 {
1743 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1744 exec_list_get_tail(cf_list), node);
1745 return nir_after_cf_node(last_node);
1746 }
1747
1748 /**
1749 * Insert a NIR instruction at the given cursor.
1750 *
1751 * Note: This does not update the cursor.
1752 */
1753 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1754
1755 static inline void
1756 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1757 {
1758 nir_instr_insert(nir_before_instr(instr), before);
1759 }
1760
1761 static inline void
1762 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1763 {
1764 nir_instr_insert(nir_after_instr(instr), after);
1765 }
1766
1767 static inline void
1768 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1769 {
1770 nir_instr_insert(nir_before_block(block), before);
1771 }
1772
1773 static inline void
1774 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1775 {
1776 nir_instr_insert(nir_after_block(block), after);
1777 }
1778
1779 static inline void
1780 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1781 {
1782 nir_instr_insert(nir_before_cf_node(node), before);
1783 }
1784
1785 static inline void
1786 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1787 {
1788 nir_instr_insert(nir_after_cf_node(node), after);
1789 }
1790
1791 static inline void
1792 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1793 {
1794 nir_instr_insert(nir_before_cf_list(list), before);
1795 }
1796
1797 static inline void
1798 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1799 {
1800 nir_instr_insert(nir_after_cf_list(list), after);
1801 }
1802
1803 void nir_instr_remove(nir_instr *instr);
1804
1805 /** @} */
1806
1807 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1808 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1809 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1810 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1811 void *state);
1812 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1813 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1814
1815 nir_const_value *nir_src_as_const_value(nir_src src);
1816 bool nir_src_is_dynamically_uniform(nir_src src);
1817 bool nir_srcs_equal(nir_src src1, nir_src src2);
1818 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1819 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1820 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1821 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1822 nir_dest new_dest);
1823
1824 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1825 unsigned num_components, const char *name);
1826 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1827 unsigned num_components, const char *name);
1828 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1829
1830 /* visits basic blocks in source-code order */
1831 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1832 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1833 void *state);
1834 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1835 void *state);
1836 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1837 void *state);
1838
1839 /* If the following CF node is an if, this function returns that if.
1840 * Otherwise, it returns NULL.
1841 */
1842 nir_if *nir_block_get_following_if(nir_block *block);
1843
1844 nir_loop *nir_block_get_following_loop(nir_block *block);
1845
1846 void nir_index_local_regs(nir_function_impl *impl);
1847 void nir_index_global_regs(nir_shader *shader);
1848 void nir_index_ssa_defs(nir_function_impl *impl);
1849 unsigned nir_index_instrs(nir_function_impl *impl);
1850
1851 void nir_index_blocks(nir_function_impl *impl);
1852
1853 void nir_print_shader(nir_shader *shader, FILE *fp);
1854 void nir_print_instr(const nir_instr *instr, FILE *fp);
1855
1856 #ifdef DEBUG
1857 void nir_validate_shader(nir_shader *shader);
1858 #else
1859 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1860 #endif /* DEBUG */
1861
1862 void nir_calc_dominance_impl(nir_function_impl *impl);
1863 void nir_calc_dominance(nir_shader *shader);
1864
1865 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1866 bool nir_block_dominates(nir_block *parent, nir_block *child);
1867
1868 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1869 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1870
1871 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1872 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1873
1874 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1875 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1876
1877 int nir_gs_count_vertices(nir_shader *shader);
1878
1879 bool nir_split_var_copies(nir_shader *shader);
1880
1881 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1882 void nir_lower_var_copies(nir_shader *shader);
1883
1884 bool nir_lower_global_vars_to_local(nir_shader *shader);
1885
1886 bool nir_lower_locals_to_regs(nir_shader *shader);
1887
1888 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1889
1890 void nir_assign_var_locations(struct exec_list *var_list,
1891 unsigned *size,
1892 int (*type_size)(const struct glsl_type *));
1893
1894 void nir_lower_io(nir_shader *shader,
1895 nir_variable_mode mode,
1896 int (*type_size)(const struct glsl_type *));
1897 void nir_lower_vars_to_ssa(nir_shader *shader);
1898
1899 bool nir_remove_dead_variables(nir_shader *shader);
1900
1901 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
1902 bool nir_lower_vec_to_movs(nir_shader *shader);
1903 void nir_lower_alu_to_scalar(nir_shader *shader);
1904 void nir_lower_load_const_to_scalar(nir_shader *shader);
1905
1906 void nir_lower_phis_to_scalar(nir_shader *shader);
1907
1908 void nir_lower_samplers(nir_shader *shader,
1909 const struct gl_shader_program *shader_program);
1910
1911 bool nir_lower_system_values(nir_shader *shader);
1912
1913 typedef struct nir_lower_tex_options {
1914 /**
1915 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
1916 * sampler types a texture projector is lowered.
1917 */
1918 unsigned lower_txp;
1919
1920 /**
1921 * If true, lower rect textures to 2D, using txs to fetch the
1922 * texture dimensions and dividing the texture coords by the
1923 * texture dims to normalize.
1924 */
1925 bool lower_rect;
1926
1927 /**
1928 * To emulate certain texture wrap modes, this can be used
1929 * to saturate the specified tex coord to [0.0, 1.0]. The
1930 * bits are according to sampler #, ie. if, for example:
1931 *
1932 * (conf->saturate_s & (1 << n))
1933 *
1934 * is true, then the s coord for sampler n is saturated.
1935 *
1936 * Note that clamping must happen *after* projector lowering
1937 * so any projected texture sample instruction with a clamped
1938 * coordinate gets automatically lowered, regardless of the
1939 * 'lower_txp' setting.
1940 */
1941 unsigned saturate_s;
1942 unsigned saturate_t;
1943 unsigned saturate_r;
1944 } nir_lower_tex_options;
1945
1946 void nir_lower_tex(nir_shader *shader,
1947 const nir_lower_tex_options *options);
1948
1949 void nir_lower_idiv(nir_shader *shader);
1950
1951 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
1952 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
1953
1954 void nir_lower_two_sided_color(nir_shader *shader);
1955
1956 void nir_lower_atomics(nir_shader *shader);
1957 void nir_lower_to_source_mods(nir_shader *shader);
1958
1959 bool nir_lower_gs_intrinsics(nir_shader *shader);
1960
1961 bool nir_normalize_cubemap_coords(nir_shader *shader);
1962
1963 void nir_live_variables_impl(nir_function_impl *impl);
1964 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1965
1966 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1967 void nir_convert_to_ssa(nir_shader *shader);
1968
1969 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
1970 * registers. If false, convert all values (even those not involved in a phi
1971 * node) to registers.
1972 */
1973 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
1974
1975 bool nir_opt_algebraic(nir_shader *shader);
1976 bool nir_opt_algebraic_late(nir_shader *shader);
1977 bool nir_opt_constant_folding(nir_shader *shader);
1978
1979 bool nir_opt_global_to_local(nir_shader *shader);
1980
1981 bool nir_copy_prop_impl(nir_function_impl *impl);
1982 bool nir_copy_prop(nir_shader *shader);
1983
1984 bool nir_opt_cse(nir_shader *shader);
1985
1986 bool nir_opt_dce_impl(nir_function_impl *impl);
1987 bool nir_opt_dce(nir_shader *shader);
1988
1989 bool nir_opt_dead_cf(nir_shader *shader);
1990
1991 void nir_opt_gcm(nir_shader *shader);
1992
1993 bool nir_opt_peephole_select(nir_shader *shader);
1994 bool nir_opt_peephole_ffma(nir_shader *shader);
1995
1996 bool nir_opt_remove_phis(nir_shader *shader);
1997
1998 bool nir_opt_undef(nir_shader *shader);
1999
2000 void nir_sweep(nir_shader *shader);
2001
2002 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2003 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2004
2005 #ifdef __cplusplus
2006 } /* extern "C" */
2007 #endif