nir: Report progress from nir_lower_globals_vars_to_local().
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "glsl/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* Array elements / Structure Fields */
115 struct nir_constant **elements;
116 } nir_constant;
117
118 /**
119 * \brief Layout qualifiers for gl_FragDepth.
120 *
121 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
122 * with a layout qualifier.
123 */
124 typedef enum {
125 nir_depth_layout_none, /**< No depth layout is specified. */
126 nir_depth_layout_any,
127 nir_depth_layout_greater,
128 nir_depth_layout_less,
129 nir_depth_layout_unchanged
130 } nir_depth_layout;
131
132 /**
133 * Either a uniform, global variable, shader input, or shader output. Based on
134 * ir_variable - it should be easy to translate between the two.
135 */
136
137 typedef struct {
138 struct exec_node node;
139
140 /**
141 * Declared type of the variable
142 */
143 const struct glsl_type *type;
144
145 /**
146 * Declared name of the variable
147 */
148 char *name;
149
150 /**
151 * For variables which satisfy the is_interface_instance() predicate, this
152 * points to an array of integers such that if the ith member of the
153 * interface block is an array, max_ifc_array_access[i] is the maximum
154 * array element of that member that has been accessed. If the ith member
155 * of the interface block is not an array, max_ifc_array_access[i] is
156 * unused.
157 *
158 * For variables whose type is not an interface block, this pointer is
159 * NULL.
160 */
161 unsigned *max_ifc_array_access;
162
163 struct nir_variable_data {
164
165 /**
166 * Is the variable read-only?
167 *
168 * This is set for variables declared as \c const, shader inputs,
169 * and uniforms.
170 */
171 unsigned read_only:1;
172 unsigned centroid:1;
173 unsigned sample:1;
174 unsigned invariant:1;
175
176 /**
177 * Storage class of the variable.
178 *
179 * \sa nir_variable_mode
180 */
181 nir_variable_mode mode:4;
182
183 /**
184 * Interpolation mode for shader inputs / outputs
185 *
186 * \sa glsl_interp_qualifier
187 */
188 unsigned interpolation:2;
189
190 /**
191 * \name ARB_fragment_coord_conventions
192 * @{
193 */
194 unsigned origin_upper_left:1;
195 unsigned pixel_center_integer:1;
196 /*@}*/
197
198 /**
199 * Was the location explicitly set in the shader?
200 *
201 * If the location is explicitly set in the shader, it \b cannot be changed
202 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
203 * no effect).
204 */
205 unsigned explicit_location:1;
206 unsigned explicit_index:1;
207
208 /**
209 * Was an initial binding explicitly set in the shader?
210 *
211 * If so, constant_initializer contains an integer nir_constant
212 * representing the initial binding point.
213 */
214 unsigned explicit_binding:1;
215
216 /**
217 * Does this variable have an initializer?
218 *
219 * This is used by the linker to cross-validiate initializers of global
220 * variables.
221 */
222 unsigned has_initializer:1;
223
224 /**
225 * Is this variable a generic output or input that has not yet been matched
226 * up to a variable in another stage of the pipeline?
227 *
228 * This is used by the linker as scratch storage while assigning locations
229 * to generic inputs and outputs.
230 */
231 unsigned is_unmatched_generic_inout:1;
232
233 /**
234 * If non-zero, then this variable may be packed along with other variables
235 * into a single varying slot, so this offset should be applied when
236 * accessing components. For example, an offset of 1 means that the x
237 * component of this variable is actually stored in component y of the
238 * location specified by \c location.
239 */
240 unsigned location_frac:2;
241
242 /**
243 * Non-zero if this variable was created by lowering a named interface
244 * block which was not an array.
245 *
246 * Note that this variable and \c from_named_ifc_block_array will never
247 * both be non-zero.
248 */
249 unsigned from_named_ifc_block_nonarray:1;
250
251 /**
252 * Non-zero if this variable was created by lowering a named interface
253 * block which was an array.
254 *
255 * Note that this variable and \c from_named_ifc_block_nonarray will never
256 * both be non-zero.
257 */
258 unsigned from_named_ifc_block_array:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * output index for dual source blending.
297 */
298 int index;
299
300 /**
301 * Initial binding point for a sampler or UBO.
302 *
303 * For array types, this represents the binding point for the first element.
304 */
305 int binding;
306
307 /**
308 * Location an atomic counter is stored at.
309 */
310 struct {
311 unsigned buffer_index;
312 unsigned offset;
313 } atomic;
314
315 /**
316 * ARB_shader_image_load_store qualifiers.
317 */
318 struct {
319 bool read_only; /**< "readonly" qualifier. */
320 bool write_only; /**< "writeonly" qualifier. */
321 bool coherent;
322 bool _volatile;
323 bool restrict_flag;
324
325 /** Image internal format if specified explicitly, otherwise GL_NONE. */
326 GLenum format;
327 } image;
328
329 /**
330 * Highest element accessed with a constant expression array index
331 *
332 * Not used for non-array variables.
333 */
334 unsigned max_array_access;
335
336 } data;
337
338 /**
339 * Built-in state that backs this uniform
340 *
341 * Once set at variable creation, \c state_slots must remain invariant.
342 * This is because, ideally, this array would be shared by all clones of
343 * this variable in the IR tree. In other words, we'd really like for it
344 * to be a fly-weight.
345 *
346 * If the variable is not a uniform, \c num_state_slots will be zero and
347 * \c state_slots will be \c NULL.
348 */
349 /*@{*/
350 unsigned num_state_slots; /**< Number of state slots used */
351 nir_state_slot *state_slots; /**< State descriptors. */
352 /*@}*/
353
354 /**
355 * Constant expression assigned in the initializer of the variable
356 */
357 nir_constant *constant_initializer;
358
359 /**
360 * For variables that are in an interface block or are an instance of an
361 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
362 *
363 * \sa ir_variable::location
364 */
365 const struct glsl_type *interface_type;
366 } nir_variable;
367
368 typedef struct {
369 struct exec_node node;
370
371 unsigned num_components; /** < number of vector components */
372 unsigned num_array_elems; /** < size of array (0 for no array) */
373
374 /** generic register index. */
375 unsigned index;
376
377 /** only for debug purposes, can be NULL */
378 const char *name;
379
380 /** whether this register is local (per-function) or global (per-shader) */
381 bool is_global;
382
383 /**
384 * If this flag is set to true, then accessing channels >= num_components
385 * is well-defined, and simply spills over to the next array element. This
386 * is useful for backends that can do per-component accessing, in
387 * particular scalar backends. By setting this flag and making
388 * num_components equal to 1, structures can be packed tightly into
389 * registers and then registers can be accessed per-component to get to
390 * each structure member, even if it crosses vec4 boundaries.
391 */
392 bool is_packed;
393
394 /** set of nir_instr's where this register is used (read from) */
395 struct list_head uses;
396
397 /** set of nir_instr's where this register is defined (written to) */
398 struct list_head defs;
399
400 /** set of nir_if's where this register is used as a condition */
401 struct list_head if_uses;
402 } nir_register;
403
404 typedef enum {
405 nir_instr_type_alu,
406 nir_instr_type_call,
407 nir_instr_type_tex,
408 nir_instr_type_intrinsic,
409 nir_instr_type_load_const,
410 nir_instr_type_jump,
411 nir_instr_type_ssa_undef,
412 nir_instr_type_phi,
413 nir_instr_type_parallel_copy,
414 } nir_instr_type;
415
416 typedef struct nir_instr {
417 struct exec_node node;
418 nir_instr_type type;
419 struct nir_block *block;
420
421 /** generic instruction index. */
422 unsigned index;
423
424 /* A temporary for optimization and analysis passes to use for storing
425 * flags. For instance, DCE uses this to store the "dead/live" info.
426 */
427 uint8_t pass_flags;
428 } nir_instr;
429
430 static inline nir_instr *
431 nir_instr_next(nir_instr *instr)
432 {
433 struct exec_node *next = exec_node_get_next(&instr->node);
434 if (exec_node_is_tail_sentinel(next))
435 return NULL;
436 else
437 return exec_node_data(nir_instr, next, node);
438 }
439
440 static inline nir_instr *
441 nir_instr_prev(nir_instr *instr)
442 {
443 struct exec_node *prev = exec_node_get_prev(&instr->node);
444 if (exec_node_is_head_sentinel(prev))
445 return NULL;
446 else
447 return exec_node_data(nir_instr, prev, node);
448 }
449
450 static inline bool
451 nir_instr_is_first(nir_instr *instr)
452 {
453 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
454 }
455
456 static inline bool
457 nir_instr_is_last(nir_instr *instr)
458 {
459 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
460 }
461
462 typedef struct {
463 /** for debugging only, can be NULL */
464 const char* name;
465
466 /** generic SSA definition index. */
467 unsigned index;
468
469 /** Index into the live_in and live_out bitfields */
470 unsigned live_index;
471
472 nir_instr *parent_instr;
473
474 /** set of nir_instr's where this register is used (read from) */
475 struct list_head uses;
476
477 /** set of nir_if's where this register is used as a condition */
478 struct list_head if_uses;
479
480 uint8_t num_components;
481 } nir_ssa_def;
482
483 struct nir_src;
484
485 typedef struct {
486 nir_register *reg;
487 struct nir_src *indirect; /** < NULL for no indirect offset */
488 unsigned base_offset;
489
490 /* TODO use-def chain goes here */
491 } nir_reg_src;
492
493 typedef struct {
494 nir_instr *parent_instr;
495 struct list_head def_link;
496
497 nir_register *reg;
498 struct nir_src *indirect; /** < NULL for no indirect offset */
499 unsigned base_offset;
500
501 /* TODO def-use chain goes here */
502 } nir_reg_dest;
503
504 struct nir_if;
505
506 typedef struct nir_src {
507 union {
508 nir_instr *parent_instr;
509 struct nir_if *parent_if;
510 };
511
512 struct list_head use_link;
513
514 union {
515 nir_reg_src reg;
516 nir_ssa_def *ssa;
517 };
518
519 bool is_ssa;
520 } nir_src;
521
522 #define NIR_SRC_INIT (nir_src) { { NULL } }
523
524 #define nir_foreach_use(reg_or_ssa_def, src) \
525 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
526
527 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
528 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
529
530 #define nir_foreach_if_use(reg_or_ssa_def, src) \
531 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
532
533 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
534 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
535
536 typedef struct {
537 union {
538 nir_reg_dest reg;
539 nir_ssa_def ssa;
540 };
541
542 bool is_ssa;
543 } nir_dest;
544
545 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
546
547 #define nir_foreach_def(reg, dest) \
548 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
549
550 #define nir_foreach_def_safe(reg, dest) \
551 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
552
553 static inline nir_src
554 nir_src_for_ssa(nir_ssa_def *def)
555 {
556 nir_src src = NIR_SRC_INIT;
557
558 src.is_ssa = true;
559 src.ssa = def;
560
561 return src;
562 }
563
564 static inline nir_src
565 nir_src_for_reg(nir_register *reg)
566 {
567 nir_src src = NIR_SRC_INIT;
568
569 src.is_ssa = false;
570 src.reg.reg = reg;
571 src.reg.indirect = NULL;
572 src.reg.base_offset = 0;
573
574 return src;
575 }
576
577 static inline nir_dest
578 nir_dest_for_reg(nir_register *reg)
579 {
580 nir_dest dest = NIR_DEST_INIT;
581
582 dest.reg.reg = reg;
583
584 return dest;
585 }
586
587 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
588 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
589
590 typedef struct {
591 nir_src src;
592
593 /**
594 * \name input modifiers
595 */
596 /*@{*/
597 /**
598 * For inputs interpreted as floating point, flips the sign bit. For
599 * inputs interpreted as integers, performs the two's complement negation.
600 */
601 bool negate;
602
603 /**
604 * Clears the sign bit for floating point values, and computes the integer
605 * absolute value for integers. Note that the negate modifier acts after
606 * the absolute value modifier, therefore if both are set then all inputs
607 * will become negative.
608 */
609 bool abs;
610 /*@}*/
611
612 /**
613 * For each input component, says which component of the register it is
614 * chosen from. Note that which elements of the swizzle are used and which
615 * are ignored are based on the write mask for most opcodes - for example,
616 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
617 * a swizzle of {2, x, 1, 0} where x means "don't care."
618 */
619 uint8_t swizzle[4];
620 } nir_alu_src;
621
622 typedef struct {
623 nir_dest dest;
624
625 /**
626 * \name saturate output modifier
627 *
628 * Only valid for opcodes that output floating-point numbers. Clamps the
629 * output to between 0.0 and 1.0 inclusive.
630 */
631
632 bool saturate;
633
634 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
635 } nir_alu_dest;
636
637 typedef enum {
638 nir_type_invalid = 0, /* Not a valid type */
639 nir_type_float,
640 nir_type_int,
641 nir_type_unsigned,
642 nir_type_bool
643 } nir_alu_type;
644
645 typedef enum {
646 NIR_OP_IS_COMMUTATIVE = (1 << 0),
647 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
648 } nir_op_algebraic_property;
649
650 typedef struct {
651 const char *name;
652
653 unsigned num_inputs;
654
655 /**
656 * The number of components in the output
657 *
658 * If non-zero, this is the size of the output and input sizes are
659 * explicitly given; swizzle and writemask are still in effect, but if
660 * the output component is masked out, then the input component may
661 * still be in use.
662 *
663 * If zero, the opcode acts in the standard, per-component manner; the
664 * operation is performed on each component (except the ones that are
665 * masked out) with the input being taken from the input swizzle for
666 * that component.
667 *
668 * The size of some of the inputs may be given (i.e. non-zero) even
669 * though output_size is zero; in that case, the inputs with a zero
670 * size act per-component, while the inputs with non-zero size don't.
671 */
672 unsigned output_size;
673
674 /**
675 * The type of vector that the instruction outputs. Note that the
676 * staurate modifier is only allowed on outputs with the float type.
677 */
678
679 nir_alu_type output_type;
680
681 /**
682 * The number of components in each input
683 */
684 unsigned input_sizes[4];
685
686 /**
687 * The type of vector that each input takes. Note that negate and
688 * absolute value are only allowed on inputs with int or float type and
689 * behave differently on the two.
690 */
691 nir_alu_type input_types[4];
692
693 nir_op_algebraic_property algebraic_properties;
694 } nir_op_info;
695
696 extern const nir_op_info nir_op_infos[nir_num_opcodes];
697
698 typedef struct nir_alu_instr {
699 nir_instr instr;
700 nir_op op;
701 nir_alu_dest dest;
702 nir_alu_src src[];
703 } nir_alu_instr;
704
705 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
706 nir_alu_instr *instr);
707 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
708 nir_alu_instr *instr);
709
710 /* is this source channel used? */
711 static inline bool
712 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
713 {
714 if (nir_op_infos[instr->op].input_sizes[src] > 0)
715 return channel < nir_op_infos[instr->op].input_sizes[src];
716
717 return (instr->dest.write_mask >> channel) & 1;
718 }
719
720 /*
721 * For instructions whose destinations are SSA, get the number of channels
722 * used for a source
723 */
724 static inline unsigned
725 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
726 {
727 assert(instr->dest.dest.is_ssa);
728
729 if (nir_op_infos[instr->op].input_sizes[src] > 0)
730 return nir_op_infos[instr->op].input_sizes[src];
731
732 return instr->dest.dest.ssa.num_components;
733 }
734
735 typedef enum {
736 nir_deref_type_var,
737 nir_deref_type_array,
738 nir_deref_type_struct
739 } nir_deref_type;
740
741 typedef struct nir_deref {
742 nir_deref_type deref_type;
743 struct nir_deref *child;
744 const struct glsl_type *type;
745 } nir_deref;
746
747 typedef struct {
748 nir_deref deref;
749
750 nir_variable *var;
751 } nir_deref_var;
752
753 /* This enum describes how the array is referenced. If the deref is
754 * direct then the base_offset is used. If the deref is indirect then then
755 * offset is given by base_offset + indirect. If the deref is a wildcard
756 * then the deref refers to all of the elements of the array at the same
757 * time. Wildcard dereferences are only ever allowed in copy_var
758 * intrinsics and the source and destination derefs must have matching
759 * wildcards.
760 */
761 typedef enum {
762 nir_deref_array_type_direct,
763 nir_deref_array_type_indirect,
764 nir_deref_array_type_wildcard,
765 } nir_deref_array_type;
766
767 typedef struct {
768 nir_deref deref;
769
770 nir_deref_array_type deref_array_type;
771 unsigned base_offset;
772 nir_src indirect;
773 } nir_deref_array;
774
775 typedef struct {
776 nir_deref deref;
777
778 unsigned index;
779 } nir_deref_struct;
780
781 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
782 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
783 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
784
785 typedef struct {
786 nir_instr instr;
787
788 unsigned num_params;
789 nir_deref_var **params;
790 nir_deref_var *return_deref;
791
792 struct nir_function_overload *callee;
793 } nir_call_instr;
794
795 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
796 num_variables, num_indices, flags) \
797 nir_intrinsic_##name,
798
799 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
800
801 typedef enum {
802 #include "nir_intrinsics.h"
803 nir_num_intrinsics = nir_last_intrinsic + 1
804 } nir_intrinsic_op;
805
806 #undef INTRINSIC
807 #undef LAST_INTRINSIC
808
809 /** Represents an intrinsic
810 *
811 * An intrinsic is an instruction type for handling things that are
812 * more-or-less regular operations but don't just consume and produce SSA
813 * values like ALU operations do. Intrinsics are not for things that have
814 * special semantic meaning such as phi nodes and parallel copies.
815 * Examples of intrinsics include variable load/store operations, system
816 * value loads, and the like. Even though texturing more-or-less falls
817 * under this category, texturing is its own instruction type because
818 * trying to represent texturing with intrinsics would lead to a
819 * combinatorial explosion of intrinsic opcodes.
820 *
821 * By having a single instruction type for handling a lot of different
822 * cases, optimization passes can look for intrinsics and, for the most
823 * part, completely ignore them. Each intrinsic type also has a few
824 * possible flags that govern whether or not they can be reordered or
825 * eliminated. That way passes like dead code elimination can still work
826 * on intrisics without understanding the meaning of each.
827 *
828 * Each intrinsic has some number of constant indices, some number of
829 * variables, and some number of sources. What these sources, variables,
830 * and indices mean depends on the intrinsic and is documented with the
831 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
832 * instructions are the only types of instruction that can operate on
833 * variables.
834 */
835 typedef struct {
836 nir_instr instr;
837
838 nir_intrinsic_op intrinsic;
839
840 nir_dest dest;
841
842 /** number of components if this is a vectorized intrinsic
843 *
844 * Similarly to ALU operations, some intrinsics are vectorized.
845 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
846 * For vectorized intrinsics, the num_components field specifies the
847 * number of destination components and the number of source components
848 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
849 */
850 uint8_t num_components;
851
852 int const_index[3];
853
854 nir_deref_var *variables[2];
855
856 nir_src src[];
857 } nir_intrinsic_instr;
858
859 /**
860 * \name NIR intrinsics semantic flags
861 *
862 * information about what the compiler can do with the intrinsics.
863 *
864 * \sa nir_intrinsic_info::flags
865 */
866 typedef enum {
867 /**
868 * whether the intrinsic can be safely eliminated if none of its output
869 * value is not being used.
870 */
871 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
872
873 /**
874 * Whether the intrinsic can be reordered with respect to any other
875 * intrinsic, i.e. whether the only reordering dependencies of the
876 * intrinsic are due to the register reads/writes.
877 */
878 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
879 } nir_intrinsic_semantic_flag;
880
881 #define NIR_INTRINSIC_MAX_INPUTS 4
882
883 typedef struct {
884 const char *name;
885
886 unsigned num_srcs; /** < number of register/SSA inputs */
887
888 /** number of components of each input register
889 *
890 * If this value is 0, the number of components is given by the
891 * num_components field of nir_intrinsic_instr.
892 */
893 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
894
895 bool has_dest;
896
897 /** number of components of the output register
898 *
899 * If this value is 0, the number of components is given by the
900 * num_components field of nir_intrinsic_instr.
901 */
902 unsigned dest_components;
903
904 /** the number of inputs/outputs that are variables */
905 unsigned num_variables;
906
907 /** the number of constant indices used by the intrinsic */
908 unsigned num_indices;
909
910 /** semantic flags for calls to this intrinsic */
911 nir_intrinsic_semantic_flag flags;
912 } nir_intrinsic_info;
913
914 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
915
916 /**
917 * \group texture information
918 *
919 * This gives semantic information about textures which is useful to the
920 * frontend, the backend, and lowering passes, but not the optimizer.
921 */
922
923 typedef enum {
924 nir_tex_src_coord,
925 nir_tex_src_projector,
926 nir_tex_src_comparitor, /* shadow comparitor */
927 nir_tex_src_offset,
928 nir_tex_src_bias,
929 nir_tex_src_lod,
930 nir_tex_src_ms_index, /* MSAA sample index */
931 nir_tex_src_ddx,
932 nir_tex_src_ddy,
933 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
934 nir_num_tex_src_types
935 } nir_tex_src_type;
936
937 typedef struct {
938 nir_src src;
939 nir_tex_src_type src_type;
940 } nir_tex_src;
941
942 typedef enum {
943 nir_texop_tex, /**< Regular texture look-up */
944 nir_texop_txb, /**< Texture look-up with LOD bias */
945 nir_texop_txl, /**< Texture look-up with explicit LOD */
946 nir_texop_txd, /**< Texture look-up with partial derivatvies */
947 nir_texop_txf, /**< Texel fetch with explicit LOD */
948 nir_texop_txf_ms, /**< Multisample texture fetch */
949 nir_texop_txs, /**< Texture size */
950 nir_texop_lod, /**< Texture lod query */
951 nir_texop_tg4, /**< Texture gather */
952 nir_texop_query_levels, /**< Texture levels query */
953 nir_texop_texture_samples, /**< Texture samples query */
954 } nir_texop;
955
956 typedef struct {
957 nir_instr instr;
958
959 enum glsl_sampler_dim sampler_dim;
960 nir_alu_type dest_type;
961
962 nir_texop op;
963 nir_dest dest;
964 nir_tex_src *src;
965 unsigned num_srcs, coord_components;
966 bool is_array, is_shadow;
967
968 /**
969 * If is_shadow is true, whether this is the old-style shadow that outputs 4
970 * components or the new-style shadow that outputs 1 component.
971 */
972 bool is_new_style_shadow;
973
974 /* constant offset - must be 0 if the offset source is used */
975 int const_offset[4];
976
977 /* gather component selector */
978 unsigned component : 2;
979
980 /** The sampler index
981 *
982 * If this texture instruction has a nir_tex_src_sampler_offset source,
983 * then the sampler index is given by sampler_index + sampler_offset.
984 */
985 unsigned sampler_index;
986
987 /** The size of the sampler array or 0 if it's not an array */
988 unsigned sampler_array_size;
989
990 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
991 } nir_tex_instr;
992
993 static inline unsigned
994 nir_tex_instr_dest_size(nir_tex_instr *instr)
995 {
996 switch (instr->op) {
997 case nir_texop_txs: {
998 unsigned ret;
999 switch (instr->sampler_dim) {
1000 case GLSL_SAMPLER_DIM_1D:
1001 case GLSL_SAMPLER_DIM_BUF:
1002 ret = 1;
1003 break;
1004 case GLSL_SAMPLER_DIM_2D:
1005 case GLSL_SAMPLER_DIM_CUBE:
1006 case GLSL_SAMPLER_DIM_MS:
1007 case GLSL_SAMPLER_DIM_RECT:
1008 case GLSL_SAMPLER_DIM_EXTERNAL:
1009 ret = 2;
1010 break;
1011 case GLSL_SAMPLER_DIM_3D:
1012 ret = 3;
1013 break;
1014 default:
1015 unreachable("not reached");
1016 }
1017 if (instr->is_array)
1018 ret++;
1019 return ret;
1020 }
1021
1022 case nir_texop_lod:
1023 return 2;
1024
1025 case nir_texop_texture_samples:
1026 case nir_texop_query_levels:
1027 return 1;
1028
1029 default:
1030 if (instr->is_shadow && instr->is_new_style_shadow)
1031 return 1;
1032
1033 return 4;
1034 }
1035 }
1036
1037 static inline unsigned
1038 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1039 {
1040 if (instr->src[src].src_type == nir_tex_src_coord)
1041 return instr->coord_components;
1042
1043
1044 if (instr->src[src].src_type == nir_tex_src_offset ||
1045 instr->src[src].src_type == nir_tex_src_ddx ||
1046 instr->src[src].src_type == nir_tex_src_ddy) {
1047 if (instr->is_array)
1048 return instr->coord_components - 1;
1049 else
1050 return instr->coord_components;
1051 }
1052
1053 return 1;
1054 }
1055
1056 static inline int
1057 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1058 {
1059 for (unsigned i = 0; i < instr->num_srcs; i++)
1060 if (instr->src[i].src_type == type)
1061 return (int) i;
1062
1063 return -1;
1064 }
1065
1066 typedef struct {
1067 union {
1068 float f[4];
1069 int32_t i[4];
1070 uint32_t u[4];
1071 };
1072 } nir_const_value;
1073
1074 typedef struct {
1075 nir_instr instr;
1076
1077 nir_const_value value;
1078
1079 nir_ssa_def def;
1080 } nir_load_const_instr;
1081
1082 typedef enum {
1083 nir_jump_return,
1084 nir_jump_break,
1085 nir_jump_continue,
1086 } nir_jump_type;
1087
1088 typedef struct {
1089 nir_instr instr;
1090 nir_jump_type type;
1091 } nir_jump_instr;
1092
1093 /* creates a new SSA variable in an undefined state */
1094
1095 typedef struct {
1096 nir_instr instr;
1097 nir_ssa_def def;
1098 } nir_ssa_undef_instr;
1099
1100 typedef struct {
1101 struct exec_node node;
1102
1103 /* The predecessor block corresponding to this source */
1104 struct nir_block *pred;
1105
1106 nir_src src;
1107 } nir_phi_src;
1108
1109 #define nir_foreach_phi_src(phi, entry) \
1110 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1111 #define nir_foreach_phi_src_safe(phi, entry) \
1112 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1113
1114 typedef struct {
1115 nir_instr instr;
1116
1117 struct exec_list srcs; /** < list of nir_phi_src */
1118
1119 nir_dest dest;
1120 } nir_phi_instr;
1121
1122 typedef struct {
1123 struct exec_node node;
1124 nir_src src;
1125 nir_dest dest;
1126 } nir_parallel_copy_entry;
1127
1128 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1129 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1130
1131 typedef struct {
1132 nir_instr instr;
1133
1134 /* A list of nir_parallel_copy_entry's. The sources of all of the
1135 * entries are copied to the corresponding destinations "in parallel".
1136 * In other words, if we have two entries: a -> b and b -> a, the values
1137 * get swapped.
1138 */
1139 struct exec_list entries;
1140 } nir_parallel_copy_instr;
1141
1142 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1143 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1144 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1145 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1146 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1147 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1148 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1149 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1150 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1151 nir_parallel_copy_instr, instr)
1152
1153 /*
1154 * Control flow
1155 *
1156 * Control flow consists of a tree of control flow nodes, which include
1157 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1158 * instructions that always run start-to-finish. Each basic block also keeps
1159 * track of its successors (blocks which may run immediately after the current
1160 * block) and predecessors (blocks which could have run immediately before the
1161 * current block). Each function also has a start block and an end block which
1162 * all return statements point to (which is always empty). Together, all the
1163 * blocks with their predecessors and successors make up the control flow
1164 * graph (CFG) of the function. There are helpers that modify the tree of
1165 * control flow nodes while modifying the CFG appropriately; these should be
1166 * used instead of modifying the tree directly.
1167 */
1168
1169 typedef enum {
1170 nir_cf_node_block,
1171 nir_cf_node_if,
1172 nir_cf_node_loop,
1173 nir_cf_node_function
1174 } nir_cf_node_type;
1175
1176 typedef struct nir_cf_node {
1177 struct exec_node node;
1178 nir_cf_node_type type;
1179 struct nir_cf_node *parent;
1180 } nir_cf_node;
1181
1182 typedef struct nir_block {
1183 nir_cf_node cf_node;
1184
1185 struct exec_list instr_list; /** < list of nir_instr */
1186
1187 /** generic block index; generated by nir_index_blocks */
1188 unsigned index;
1189
1190 /*
1191 * Each block can only have up to 2 successors, so we put them in a simple
1192 * array - no need for anything more complicated.
1193 */
1194 struct nir_block *successors[2];
1195
1196 /* Set of nir_block predecessors in the CFG */
1197 struct set *predecessors;
1198
1199 /*
1200 * this node's immediate dominator in the dominance tree - set to NULL for
1201 * the start block.
1202 */
1203 struct nir_block *imm_dom;
1204
1205 /* This node's children in the dominance tree */
1206 unsigned num_dom_children;
1207 struct nir_block **dom_children;
1208
1209 /* Set of nir_block's on the dominance frontier of this block */
1210 struct set *dom_frontier;
1211
1212 /*
1213 * These two indices have the property that dom_{pre,post}_index for each
1214 * child of this block in the dominance tree will always be between
1215 * dom_pre_index and dom_post_index for this block, which makes testing if
1216 * a given block is dominated by another block an O(1) operation.
1217 */
1218 unsigned dom_pre_index, dom_post_index;
1219
1220 /* live in and out for this block; used for liveness analysis */
1221 BITSET_WORD *live_in;
1222 BITSET_WORD *live_out;
1223 } nir_block;
1224
1225 static inline nir_instr *
1226 nir_block_first_instr(nir_block *block)
1227 {
1228 struct exec_node *head = exec_list_get_head(&block->instr_list);
1229 return exec_node_data(nir_instr, head, node);
1230 }
1231
1232 static inline nir_instr *
1233 nir_block_last_instr(nir_block *block)
1234 {
1235 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1236 return exec_node_data(nir_instr, tail, node);
1237 }
1238
1239 #define nir_foreach_instr(block, instr) \
1240 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1241 #define nir_foreach_instr_reverse(block, instr) \
1242 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1243 #define nir_foreach_instr_safe(block, instr) \
1244 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1245 #define nir_foreach_instr_safe_reverse(block, instr) \
1246 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1247
1248 typedef struct nir_if {
1249 nir_cf_node cf_node;
1250 nir_src condition;
1251
1252 struct exec_list then_list; /** < list of nir_cf_node */
1253 struct exec_list else_list; /** < list of nir_cf_node */
1254 } nir_if;
1255
1256 static inline nir_cf_node *
1257 nir_if_first_then_node(nir_if *if_stmt)
1258 {
1259 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1260 return exec_node_data(nir_cf_node, head, node);
1261 }
1262
1263 static inline nir_cf_node *
1264 nir_if_last_then_node(nir_if *if_stmt)
1265 {
1266 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1267 return exec_node_data(nir_cf_node, tail, node);
1268 }
1269
1270 static inline nir_cf_node *
1271 nir_if_first_else_node(nir_if *if_stmt)
1272 {
1273 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1274 return exec_node_data(nir_cf_node, head, node);
1275 }
1276
1277 static inline nir_cf_node *
1278 nir_if_last_else_node(nir_if *if_stmt)
1279 {
1280 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1281 return exec_node_data(nir_cf_node, tail, node);
1282 }
1283
1284 typedef struct {
1285 nir_cf_node cf_node;
1286
1287 struct exec_list body; /** < list of nir_cf_node */
1288 } nir_loop;
1289
1290 static inline nir_cf_node *
1291 nir_loop_first_cf_node(nir_loop *loop)
1292 {
1293 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1294 }
1295
1296 static inline nir_cf_node *
1297 nir_loop_last_cf_node(nir_loop *loop)
1298 {
1299 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1300 }
1301
1302 /**
1303 * Various bits of metadata that can may be created or required by
1304 * optimization and analysis passes
1305 */
1306 typedef enum {
1307 nir_metadata_none = 0x0,
1308 nir_metadata_block_index = 0x1,
1309 nir_metadata_dominance = 0x2,
1310 nir_metadata_live_variables = 0x4,
1311 } nir_metadata;
1312
1313 typedef struct {
1314 nir_cf_node cf_node;
1315
1316 /** pointer to the overload of which this is an implementation */
1317 struct nir_function_overload *overload;
1318
1319 struct exec_list body; /** < list of nir_cf_node */
1320
1321 nir_block *end_block;
1322
1323 /** list for all local variables in the function */
1324 struct exec_list locals;
1325
1326 /** array of variables used as parameters */
1327 unsigned num_params;
1328 nir_variable **params;
1329
1330 /** variable used to hold the result of the function */
1331 nir_variable *return_var;
1332
1333 /** list of local registers in the function */
1334 struct exec_list registers;
1335
1336 /** next available local register index */
1337 unsigned reg_alloc;
1338
1339 /** next available SSA value index */
1340 unsigned ssa_alloc;
1341
1342 /* total number of basic blocks, only valid when block_index_dirty = false */
1343 unsigned num_blocks;
1344
1345 nir_metadata valid_metadata;
1346 } nir_function_impl;
1347
1348 static inline nir_block *
1349 nir_start_block(nir_function_impl *impl)
1350 {
1351 return (nir_block *) exec_list_get_head(&impl->body);
1352 }
1353
1354 static inline nir_cf_node *
1355 nir_cf_node_next(nir_cf_node *node)
1356 {
1357 struct exec_node *next = exec_node_get_next(&node->node);
1358 if (exec_node_is_tail_sentinel(next))
1359 return NULL;
1360 else
1361 return exec_node_data(nir_cf_node, next, node);
1362 }
1363
1364 static inline nir_cf_node *
1365 nir_cf_node_prev(nir_cf_node *node)
1366 {
1367 struct exec_node *prev = exec_node_get_prev(&node->node);
1368 if (exec_node_is_head_sentinel(prev))
1369 return NULL;
1370 else
1371 return exec_node_data(nir_cf_node, prev, node);
1372 }
1373
1374 static inline bool
1375 nir_cf_node_is_first(const nir_cf_node *node)
1376 {
1377 return exec_node_is_head_sentinel(node->node.prev);
1378 }
1379
1380 static inline bool
1381 nir_cf_node_is_last(const nir_cf_node *node)
1382 {
1383 return exec_node_is_tail_sentinel(node->node.next);
1384 }
1385
1386 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1387 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1388 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1389 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1390
1391 typedef enum {
1392 nir_parameter_in,
1393 nir_parameter_out,
1394 nir_parameter_inout,
1395 } nir_parameter_type;
1396
1397 typedef struct {
1398 nir_parameter_type param_type;
1399 const struct glsl_type *type;
1400 } nir_parameter;
1401
1402 typedef struct nir_function_overload {
1403 struct exec_node node;
1404
1405 unsigned num_params;
1406 nir_parameter *params;
1407 const struct glsl_type *return_type;
1408
1409 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1410
1411 /** pointer to the function of which this is an overload */
1412 struct nir_function *function;
1413 } nir_function_overload;
1414
1415 typedef struct nir_function {
1416 struct exec_node node;
1417
1418 struct exec_list overload_list; /** < list of nir_function_overload */
1419 const char *name;
1420 struct nir_shader *shader;
1421 } nir_function;
1422
1423 #define nir_function_first_overload(func) \
1424 exec_node_data(nir_function_overload, \
1425 exec_list_get_head(&(func)->overload_list), node)
1426
1427 typedef struct nir_shader_compiler_options {
1428 bool lower_ffma;
1429 bool lower_flrp;
1430 bool lower_fpow;
1431 bool lower_fsat;
1432 bool lower_fsqrt;
1433 /** lowers fneg and ineg to fsub and isub. */
1434 bool lower_negate;
1435 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1436 bool lower_sub;
1437
1438 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1439 bool lower_scmp;
1440
1441 /* Does the native fdot instruction replicate its result for four
1442 * components? If so, then opt_algebraic_late will turn all fdotN
1443 * instructions into fdot_replicatedN instructions.
1444 */
1445 bool fdot_replicates;
1446
1447 /** lowers ffract to fsub+ffloor: */
1448 bool lower_ffract;
1449
1450 /**
1451 * Does the driver support real 32-bit integers? (Otherwise, integers
1452 * are simulated by floats.)
1453 */
1454 bool native_integers;
1455 } nir_shader_compiler_options;
1456
1457 typedef struct nir_shader {
1458 /** list of uniforms (nir_variable) */
1459 struct exec_list uniforms;
1460
1461 /** list of inputs (nir_variable) */
1462 struct exec_list inputs;
1463
1464 /** list of outputs (nir_variable) */
1465 struct exec_list outputs;
1466
1467 /** Set of driver-specific options for the shader.
1468 *
1469 * The memory for the options is expected to be kept in a single static
1470 * copy by the driver.
1471 */
1472 const struct nir_shader_compiler_options *options;
1473
1474 /** list of global variables in the shader (nir_variable) */
1475 struct exec_list globals;
1476
1477 /** list of system value variables in the shader (nir_variable) */
1478 struct exec_list system_values;
1479
1480 struct exec_list functions; /** < list of nir_function */
1481
1482 /** list of global register in the shader */
1483 struct exec_list registers;
1484
1485 /** next available global register index */
1486 unsigned reg_alloc;
1487
1488 /**
1489 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1490 * access plus one
1491 */
1492 unsigned num_inputs, num_uniforms, num_outputs;
1493
1494 /** The shader stage, such as MESA_SHADER_VERTEX. */
1495 gl_shader_stage stage;
1496
1497 struct {
1498 /** The maximum number of vertices the geometry shader might write. */
1499 unsigned vertices_out;
1500
1501 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1502 unsigned invocations;
1503 } gs;
1504 } nir_shader;
1505
1506 #define nir_foreach_overload(shader, overload) \
1507 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1508 foreach_list_typed(nir_function_overload, overload, node, \
1509 &(func)->overload_list)
1510
1511 nir_shader *nir_shader_create(void *mem_ctx,
1512 gl_shader_stage stage,
1513 const nir_shader_compiler_options *options);
1514
1515 /** creates a register, including assigning it an index and adding it to the list */
1516 nir_register *nir_global_reg_create(nir_shader *shader);
1517
1518 nir_register *nir_local_reg_create(nir_function_impl *impl);
1519
1520 void nir_reg_remove(nir_register *reg);
1521
1522 /** creates a function and adds it to the shader's list of functions */
1523 nir_function *nir_function_create(nir_shader *shader, const char *name);
1524
1525 /** creates a null function returning null */
1526 nir_function_overload *nir_function_overload_create(nir_function *func);
1527
1528 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1529
1530 nir_block *nir_block_create(void *mem_ctx);
1531 nir_if *nir_if_create(void *mem_ctx);
1532 nir_loop *nir_loop_create(void *mem_ctx);
1533
1534 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1535
1536 /** requests that the given pieces of metadata be generated */
1537 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1538 /** dirties all but the preserved metadata */
1539 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1540
1541 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1542 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1543
1544 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1545
1546 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1547 unsigned num_components);
1548
1549 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1550 nir_intrinsic_op op);
1551
1552 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1553 nir_function_overload *callee);
1554
1555 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1556
1557 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1558
1559 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1560
1561 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1562 unsigned num_components);
1563
1564 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1565 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1566 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1567
1568 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1569
1570 nir_load_const_instr *
1571 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1572
1573 /**
1574 * NIR Cursors and Instruction Insertion API
1575 * @{
1576 *
1577 * A tiny struct representing a point to insert/extract instructions or
1578 * control flow nodes. Helps reduce the combinatorial explosion of possible
1579 * points to insert/extract.
1580 *
1581 * \sa nir_control_flow.h
1582 */
1583 typedef enum {
1584 nir_cursor_before_block,
1585 nir_cursor_after_block,
1586 nir_cursor_before_instr,
1587 nir_cursor_after_instr,
1588 } nir_cursor_option;
1589
1590 typedef struct {
1591 nir_cursor_option option;
1592 union {
1593 nir_block *block;
1594 nir_instr *instr;
1595 };
1596 } nir_cursor;
1597
1598 static inline nir_cursor
1599 nir_before_block(nir_block *block)
1600 {
1601 nir_cursor cursor;
1602 cursor.option = nir_cursor_before_block;
1603 cursor.block = block;
1604 return cursor;
1605 }
1606
1607 static inline nir_cursor
1608 nir_after_block(nir_block *block)
1609 {
1610 nir_cursor cursor;
1611 cursor.option = nir_cursor_after_block;
1612 cursor.block = block;
1613 return cursor;
1614 }
1615
1616 static inline nir_cursor
1617 nir_before_instr(nir_instr *instr)
1618 {
1619 nir_cursor cursor;
1620 cursor.option = nir_cursor_before_instr;
1621 cursor.instr = instr;
1622 return cursor;
1623 }
1624
1625 static inline nir_cursor
1626 nir_after_instr(nir_instr *instr)
1627 {
1628 nir_cursor cursor;
1629 cursor.option = nir_cursor_after_instr;
1630 cursor.instr = instr;
1631 return cursor;
1632 }
1633
1634 static inline nir_cursor
1635 nir_after_block_before_jump(nir_block *block)
1636 {
1637 nir_instr *last_instr = nir_block_last_instr(block);
1638 if (last_instr && last_instr->type == nir_instr_type_jump) {
1639 return nir_before_instr(last_instr);
1640 } else {
1641 return nir_after_block(block);
1642 }
1643 }
1644
1645 static inline nir_cursor
1646 nir_before_cf_node(nir_cf_node *node)
1647 {
1648 if (node->type == nir_cf_node_block)
1649 return nir_before_block(nir_cf_node_as_block(node));
1650
1651 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1652 }
1653
1654 static inline nir_cursor
1655 nir_after_cf_node(nir_cf_node *node)
1656 {
1657 if (node->type == nir_cf_node_block)
1658 return nir_after_block(nir_cf_node_as_block(node));
1659
1660 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1661 }
1662
1663 static inline nir_cursor
1664 nir_before_cf_list(struct exec_list *cf_list)
1665 {
1666 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1667 exec_list_get_head(cf_list), node);
1668 return nir_before_cf_node(first_node);
1669 }
1670
1671 static inline nir_cursor
1672 nir_after_cf_list(struct exec_list *cf_list)
1673 {
1674 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1675 exec_list_get_tail(cf_list), node);
1676 return nir_after_cf_node(last_node);
1677 }
1678
1679 /**
1680 * Insert a NIR instruction at the given cursor.
1681 *
1682 * Note: This does not update the cursor.
1683 */
1684 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1685
1686 static inline void
1687 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1688 {
1689 nir_instr_insert(nir_before_instr(instr), before);
1690 }
1691
1692 static inline void
1693 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1694 {
1695 nir_instr_insert(nir_after_instr(instr), after);
1696 }
1697
1698 static inline void
1699 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1700 {
1701 nir_instr_insert(nir_before_block(block), before);
1702 }
1703
1704 static inline void
1705 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1706 {
1707 nir_instr_insert(nir_after_block(block), after);
1708 }
1709
1710 static inline void
1711 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1712 {
1713 nir_instr_insert(nir_before_cf_node(node), before);
1714 }
1715
1716 static inline void
1717 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1718 {
1719 nir_instr_insert(nir_after_cf_node(node), after);
1720 }
1721
1722 static inline void
1723 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1724 {
1725 nir_instr_insert(nir_before_cf_list(list), before);
1726 }
1727
1728 static inline void
1729 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1730 {
1731 nir_instr_insert(nir_after_cf_list(list), after);
1732 }
1733
1734 void nir_instr_remove(nir_instr *instr);
1735
1736 /** @} */
1737
1738 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1739 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1740 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1741 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1742 void *state);
1743 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1744 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1745
1746 nir_const_value *nir_src_as_const_value(nir_src src);
1747 bool nir_srcs_equal(nir_src src1, nir_src src2);
1748 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1749 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1750 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1751 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1752 nir_dest new_dest);
1753
1754 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1755 unsigned num_components, const char *name);
1756 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1757 unsigned num_components, const char *name);
1758 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1759
1760 /* visits basic blocks in source-code order */
1761 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1762 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1763 void *state);
1764 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1765 void *state);
1766 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1767 void *state);
1768
1769 /* If the following CF node is an if, this function returns that if.
1770 * Otherwise, it returns NULL.
1771 */
1772 nir_if *nir_block_get_following_if(nir_block *block);
1773
1774 nir_loop *nir_block_get_following_loop(nir_block *block);
1775
1776 void nir_index_local_regs(nir_function_impl *impl);
1777 void nir_index_global_regs(nir_shader *shader);
1778 void nir_index_ssa_defs(nir_function_impl *impl);
1779 unsigned nir_index_instrs(nir_function_impl *impl);
1780
1781 void nir_index_blocks(nir_function_impl *impl);
1782
1783 void nir_print_shader(nir_shader *shader, FILE *fp);
1784 void nir_print_instr(const nir_instr *instr, FILE *fp);
1785
1786 #ifdef DEBUG
1787 void nir_validate_shader(nir_shader *shader);
1788 #else
1789 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1790 #endif /* DEBUG */
1791
1792 void nir_calc_dominance_impl(nir_function_impl *impl);
1793 void nir_calc_dominance(nir_shader *shader);
1794
1795 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1796 bool nir_block_dominates(nir_block *parent, nir_block *child);
1797
1798 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1799 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1800
1801 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1802 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1803
1804 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1805 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1806
1807 void nir_split_var_copies(nir_shader *shader);
1808
1809 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1810 void nir_lower_var_copies(nir_shader *shader);
1811
1812 bool nir_lower_global_vars_to_local(nir_shader *shader);
1813
1814 void nir_lower_locals_to_regs(nir_shader *shader);
1815
1816 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1817
1818 void nir_assign_var_locations(struct exec_list *var_list,
1819 unsigned *size,
1820 int (*type_size)(const struct glsl_type *));
1821
1822 void nir_lower_io(nir_shader *shader,
1823 int (*type_size)(const struct glsl_type *));
1824 void nir_lower_vars_to_ssa(nir_shader *shader);
1825
1826 void nir_remove_dead_variables(nir_shader *shader);
1827
1828 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
1829 void nir_lower_vec_to_movs(nir_shader *shader);
1830 void nir_lower_alu_to_scalar(nir_shader *shader);
1831 void nir_lower_load_const_to_scalar(nir_shader *shader);
1832
1833 void nir_lower_phis_to_scalar(nir_shader *shader);
1834
1835 void nir_lower_samplers(nir_shader *shader,
1836 const struct gl_shader_program *shader_program);
1837
1838 void nir_lower_system_values(nir_shader *shader);
1839
1840 typedef struct nir_lower_tex_options {
1841 /**
1842 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
1843 * sampler types a texture projector is lowered.
1844 */
1845 unsigned lower_txp;
1846
1847 /**
1848 * If true, lower rect textures to 2D, using txs to fetch the
1849 * texture dimensions and dividing the texture coords by the
1850 * texture dims to normalize.
1851 */
1852 bool lower_rect;
1853
1854 /**
1855 * To emulate certain texture wrap modes, this can be used
1856 * to saturate the specified tex coord to [0.0, 1.0]. The
1857 * bits are according to sampler #, ie. if, for example:
1858 *
1859 * (conf->saturate_s & (1 << n))
1860 *
1861 * is true, then the s coord for sampler n is saturated.
1862 *
1863 * Note that clamping must happen *after* projector lowering
1864 * so any projected texture sample instruction with a clamped
1865 * coordinate gets automatically lowered, regardless of the
1866 * 'lower_txp' setting.
1867 */
1868 unsigned saturate_s;
1869 unsigned saturate_t;
1870 unsigned saturate_r;
1871 } nir_lower_tex_options;
1872
1873 void nir_lower_tex(nir_shader *shader,
1874 const nir_lower_tex_options *options);
1875
1876 void nir_lower_idiv(nir_shader *shader);
1877
1878 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
1879 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
1880
1881 void nir_lower_two_sided_color(nir_shader *shader);
1882
1883 void nir_lower_atomics(nir_shader *shader);
1884 void nir_lower_to_source_mods(nir_shader *shader);
1885
1886 void nir_normalize_cubemap_coords(nir_shader *shader);
1887
1888 void nir_live_variables_impl(nir_function_impl *impl);
1889 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1890
1891 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1892 void nir_convert_to_ssa(nir_shader *shader);
1893
1894 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
1895 * registers. If false, convert all values (even those not involved in a phi
1896 * node) to registers.
1897 */
1898 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
1899
1900 bool nir_opt_algebraic(nir_shader *shader);
1901 bool nir_opt_algebraic_late(nir_shader *shader);
1902 bool nir_opt_constant_folding(nir_shader *shader);
1903
1904 bool nir_opt_global_to_local(nir_shader *shader);
1905
1906 bool nir_copy_prop_impl(nir_function_impl *impl);
1907 bool nir_copy_prop(nir_shader *shader);
1908
1909 bool nir_opt_cse(nir_shader *shader);
1910
1911 bool nir_opt_dce_impl(nir_function_impl *impl);
1912 bool nir_opt_dce(nir_shader *shader);
1913
1914 bool nir_opt_dead_cf(nir_shader *shader);
1915
1916 void nir_opt_gcm(nir_shader *shader);
1917
1918 bool nir_opt_peephole_select(nir_shader *shader);
1919 bool nir_opt_peephole_ffma(nir_shader *shader);
1920
1921 bool nir_opt_remove_phis(nir_shader *shader);
1922
1923 bool nir_opt_undef(nir_shader *shader);
1924
1925 void nir_sweep(nir_shader *shader);
1926
1927 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
1928 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
1929
1930 #ifdef __cplusplus
1931 } /* extern "C" */
1932 #endif