nir: Fix indexing of atomic counter arrays with a constant value.
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "glsl/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_system_value
91 } nir_variable_mode;
92
93 /**
94 * Data stored in an nir_constant
95 */
96 union nir_constant_data {
97 unsigned u[16];
98 int i[16];
99 float f[16];
100 bool b[16];
101 };
102
103 typedef struct nir_constant {
104 /**
105 * Value of the constant.
106 *
107 * The field used to back the values supplied by the constant is determined
108 * by the type associated with the \c nir_variable. Constants may be
109 * scalars, vectors, or matrices.
110 */
111 union nir_constant_data value;
112
113 /* Array elements / Structure Fields */
114 struct nir_constant **elements;
115 } nir_constant;
116
117 /**
118 * \brief Layout qualifiers for gl_FragDepth.
119 *
120 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
121 * with a layout qualifier.
122 */
123 typedef enum {
124 nir_depth_layout_none, /**< No depth layout is specified. */
125 nir_depth_layout_any,
126 nir_depth_layout_greater,
127 nir_depth_layout_less,
128 nir_depth_layout_unchanged
129 } nir_depth_layout;
130
131 /**
132 * Either a uniform, global variable, shader input, or shader output. Based on
133 * ir_variable - it should be easy to translate between the two.
134 */
135
136 typedef struct {
137 struct exec_node node;
138
139 /**
140 * Declared type of the variable
141 */
142 const struct glsl_type *type;
143
144 /**
145 * Declared name of the variable
146 */
147 char *name;
148
149 /**
150 * For variables which satisfy the is_interface_instance() predicate, this
151 * points to an array of integers such that if the ith member of the
152 * interface block is an array, max_ifc_array_access[i] is the maximum
153 * array element of that member that has been accessed. If the ith member
154 * of the interface block is not an array, max_ifc_array_access[i] is
155 * unused.
156 *
157 * For variables whose type is not an interface block, this pointer is
158 * NULL.
159 */
160 unsigned *max_ifc_array_access;
161
162 struct nir_variable_data {
163
164 /**
165 * Is the variable read-only?
166 *
167 * This is set for variables declared as \c const, shader inputs,
168 * and uniforms.
169 */
170 unsigned read_only:1;
171 unsigned centroid:1;
172 unsigned sample:1;
173 unsigned invariant:1;
174
175 /**
176 * Storage class of the variable.
177 *
178 * \sa nir_variable_mode
179 */
180 nir_variable_mode mode:4;
181
182 /**
183 * Interpolation mode for shader inputs / outputs
184 *
185 * \sa glsl_interp_qualifier
186 */
187 unsigned interpolation:2;
188
189 /**
190 * \name ARB_fragment_coord_conventions
191 * @{
192 */
193 unsigned origin_upper_left:1;
194 unsigned pixel_center_integer:1;
195 /*@}*/
196
197 /**
198 * Was the location explicitly set in the shader?
199 *
200 * If the location is explicitly set in the shader, it \b cannot be changed
201 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
202 * no effect).
203 */
204 unsigned explicit_location:1;
205 unsigned explicit_index:1;
206
207 /**
208 * Was an initial binding explicitly set in the shader?
209 *
210 * If so, constant_initializer contains an integer nir_constant
211 * representing the initial binding point.
212 */
213 unsigned explicit_binding:1;
214
215 /**
216 * Does this variable have an initializer?
217 *
218 * This is used by the linker to cross-validiate initializers of global
219 * variables.
220 */
221 unsigned has_initializer:1;
222
223 /**
224 * Is this variable a generic output or input that has not yet been matched
225 * up to a variable in another stage of the pipeline?
226 *
227 * This is used by the linker as scratch storage while assigning locations
228 * to generic inputs and outputs.
229 */
230 unsigned is_unmatched_generic_inout:1;
231
232 /**
233 * If non-zero, then this variable may be packed along with other variables
234 * into a single varying slot, so this offset should be applied when
235 * accessing components. For example, an offset of 1 means that the x
236 * component of this variable is actually stored in component y of the
237 * location specified by \c location.
238 */
239 unsigned location_frac:2;
240
241 /**
242 * Non-zero if this variable was created by lowering a named interface
243 * block which was not an array.
244 *
245 * Note that this variable and \c from_named_ifc_block_array will never
246 * both be non-zero.
247 */
248 unsigned from_named_ifc_block_nonarray:1;
249
250 /**
251 * Non-zero if this variable was created by lowering a named interface
252 * block which was an array.
253 *
254 * Note that this variable and \c from_named_ifc_block_nonarray will never
255 * both be non-zero.
256 */
257 unsigned from_named_ifc_block_array:1;
258
259 /**
260 * \brief Layout qualifier for gl_FragDepth.
261 *
262 * This is not equal to \c ir_depth_layout_none if and only if this
263 * variable is \c gl_FragDepth and a layout qualifier is specified.
264 */
265 nir_depth_layout depth_layout;
266
267 /**
268 * Storage location of the base of this variable
269 *
270 * The precise meaning of this field depends on the nature of the variable.
271 *
272 * - Vertex shader input: one of the values from \c gl_vert_attrib.
273 * - Vertex shader output: one of the values from \c gl_varying_slot.
274 * - Geometry shader input: one of the values from \c gl_varying_slot.
275 * - Geometry shader output: one of the values from \c gl_varying_slot.
276 * - Fragment shader input: one of the values from \c gl_varying_slot.
277 * - Fragment shader output: one of the values from \c gl_frag_result.
278 * - Uniforms: Per-stage uniform slot number for default uniform block.
279 * - Uniforms: Index within the uniform block definition for UBO members.
280 * - Other: This field is not currently used.
281 *
282 * If the variable is a uniform, shader input, or shader output, and the
283 * slot has not been assigned, the value will be -1.
284 */
285 int location;
286
287 /**
288 * The actual location of the variable in the IR. Only valid for inputs
289 * and outputs.
290 */
291 unsigned int driver_location;
292
293 /**
294 * output index for dual source blending.
295 */
296 int index;
297
298 /**
299 * Initial binding point for a sampler or UBO.
300 *
301 * For array types, this represents the binding point for the first element.
302 */
303 int binding;
304
305 /**
306 * Location an atomic counter is stored at.
307 */
308 struct {
309 unsigned buffer_index;
310 unsigned offset;
311 } atomic;
312
313 /**
314 * ARB_shader_image_load_store qualifiers.
315 */
316 struct {
317 bool read_only; /**< "readonly" qualifier. */
318 bool write_only; /**< "writeonly" qualifier. */
319 bool coherent;
320 bool _volatile;
321 bool restrict_flag;
322
323 /** Image internal format if specified explicitly, otherwise GL_NONE. */
324 GLenum format;
325 } image;
326
327 /**
328 * Highest element accessed with a constant expression array index
329 *
330 * Not used for non-array variables.
331 */
332 unsigned max_array_access;
333
334 } data;
335
336 /**
337 * Built-in state that backs this uniform
338 *
339 * Once set at variable creation, \c state_slots must remain invariant.
340 * This is because, ideally, this array would be shared by all clones of
341 * this variable in the IR tree. In other words, we'd really like for it
342 * to be a fly-weight.
343 *
344 * If the variable is not a uniform, \c num_state_slots will be zero and
345 * \c state_slots will be \c NULL.
346 */
347 /*@{*/
348 unsigned num_state_slots; /**< Number of state slots used */
349 nir_state_slot *state_slots; /**< State descriptors. */
350 /*@}*/
351
352 /**
353 * Constant expression assigned in the initializer of the variable
354 */
355 nir_constant *constant_initializer;
356
357 /**
358 * For variables that are in an interface block or are an instance of an
359 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
360 *
361 * \sa ir_variable::location
362 */
363 const struct glsl_type *interface_type;
364 } nir_variable;
365
366 typedef struct {
367 struct exec_node node;
368
369 unsigned num_components; /** < number of vector components */
370 unsigned num_array_elems; /** < size of array (0 for no array) */
371
372 /** generic register index. */
373 unsigned index;
374
375 /** only for debug purposes, can be NULL */
376 const char *name;
377
378 /** whether this register is local (per-function) or global (per-shader) */
379 bool is_global;
380
381 /**
382 * If this flag is set to true, then accessing channels >= num_components
383 * is well-defined, and simply spills over to the next array element. This
384 * is useful for backends that can do per-component accessing, in
385 * particular scalar backends. By setting this flag and making
386 * num_components equal to 1, structures can be packed tightly into
387 * registers and then registers can be accessed per-component to get to
388 * each structure member, even if it crosses vec4 boundaries.
389 */
390 bool is_packed;
391
392 /**
393 * If this pointer is non-NULL then this register has exactly one
394 * definition and that definition dominates all of its uses. This is
395 * set by the out-of-SSA pass so that backends can get SSA-like
396 * information even once they have gone out of SSA.
397 */
398 struct nir_instr *parent_instr;
399
400 /** set of nir_instr's where this register is used (read from) */
401 struct list_head uses;
402
403 /** set of nir_instr's where this register is defined (written to) */
404 struct list_head defs;
405
406 /** set of nir_if's where this register is used as a condition */
407 struct list_head if_uses;
408 } nir_register;
409
410 typedef enum {
411 nir_instr_type_alu,
412 nir_instr_type_call,
413 nir_instr_type_tex,
414 nir_instr_type_intrinsic,
415 nir_instr_type_load_const,
416 nir_instr_type_jump,
417 nir_instr_type_ssa_undef,
418 nir_instr_type_phi,
419 nir_instr_type_parallel_copy,
420 } nir_instr_type;
421
422 typedef struct nir_instr {
423 struct exec_node node;
424 nir_instr_type type;
425 struct nir_block *block;
426
427 /* A temporary for optimization and analysis passes to use for storing
428 * flags. For instance, DCE uses this to store the "dead/live" info.
429 */
430 uint8_t pass_flags;
431 } nir_instr;
432
433 static inline nir_instr *
434 nir_instr_next(nir_instr *instr)
435 {
436 struct exec_node *next = exec_node_get_next(&instr->node);
437 if (exec_node_is_tail_sentinel(next))
438 return NULL;
439 else
440 return exec_node_data(nir_instr, next, node);
441 }
442
443 static inline nir_instr *
444 nir_instr_prev(nir_instr *instr)
445 {
446 struct exec_node *prev = exec_node_get_prev(&instr->node);
447 if (exec_node_is_head_sentinel(prev))
448 return NULL;
449 else
450 return exec_node_data(nir_instr, prev, node);
451 }
452
453 typedef struct {
454 /** for debugging only, can be NULL */
455 const char* name;
456
457 /** generic SSA definition index. */
458 unsigned index;
459
460 /** Index into the live_in and live_out bitfields */
461 unsigned live_index;
462
463 nir_instr *parent_instr;
464
465 /** set of nir_instr's where this register is used (read from) */
466 struct list_head uses;
467
468 /** set of nir_if's where this register is used as a condition */
469 struct list_head if_uses;
470
471 uint8_t num_components;
472 } nir_ssa_def;
473
474 struct nir_src;
475
476 typedef struct {
477 nir_register *reg;
478 struct nir_src *indirect; /** < NULL for no indirect offset */
479 unsigned base_offset;
480
481 /* TODO use-def chain goes here */
482 } nir_reg_src;
483
484 typedef struct {
485 nir_instr *parent_instr;
486 struct list_head def_link;
487
488 nir_register *reg;
489 struct nir_src *indirect; /** < NULL for no indirect offset */
490 unsigned base_offset;
491
492 /* TODO def-use chain goes here */
493 } nir_reg_dest;
494
495 struct nir_if;
496
497 typedef struct nir_src {
498 union {
499 nir_instr *parent_instr;
500 struct nir_if *parent_if;
501 };
502
503 struct list_head use_link;
504
505 union {
506 nir_reg_src reg;
507 nir_ssa_def *ssa;
508 };
509
510 bool is_ssa;
511 } nir_src;
512
513 #define NIR_SRC_INIT (nir_src) { { NULL } }
514
515 #define nir_foreach_use(reg_or_ssa_def, src) \
516 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
517
518 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
519 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
520
521 #define nir_foreach_if_use(reg_or_ssa_def, src) \
522 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
523
524 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
525 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
526
527 typedef struct {
528 union {
529 nir_reg_dest reg;
530 nir_ssa_def ssa;
531 };
532
533 bool is_ssa;
534 } nir_dest;
535
536 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
537
538 #define nir_foreach_def(reg, dest) \
539 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
540
541 #define nir_foreach_def_safe(reg, dest) \
542 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
543
544 static inline nir_src
545 nir_src_for_ssa(nir_ssa_def *def)
546 {
547 nir_src src = NIR_SRC_INIT;
548
549 src.is_ssa = true;
550 src.ssa = def;
551
552 return src;
553 }
554
555 static inline nir_src
556 nir_src_for_reg(nir_register *reg)
557 {
558 nir_src src = NIR_SRC_INIT;
559
560 src.is_ssa = false;
561 src.reg.reg = reg;
562 src.reg.indirect = NULL;
563 src.reg.base_offset = 0;
564
565 return src;
566 }
567
568 static inline nir_instr *
569 nir_src_get_parent_instr(const nir_src *src)
570 {
571 if (src->is_ssa) {
572 return src->ssa->parent_instr;
573 } else {
574 return src->reg.reg->parent_instr;
575 }
576 }
577
578 static inline nir_dest
579 nir_dest_for_reg(nir_register *reg)
580 {
581 nir_dest dest = NIR_DEST_INIT;
582
583 dest.reg.reg = reg;
584
585 return dest;
586 }
587
588 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
589 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
590
591 typedef struct {
592 nir_src src;
593
594 /**
595 * \name input modifiers
596 */
597 /*@{*/
598 /**
599 * For inputs interpreted as floating point, flips the sign bit. For
600 * inputs interpreted as integers, performs the two's complement negation.
601 */
602 bool negate;
603
604 /**
605 * Clears the sign bit for floating point values, and computes the integer
606 * absolute value for integers. Note that the negate modifier acts after
607 * the absolute value modifier, therefore if both are set then all inputs
608 * will become negative.
609 */
610 bool abs;
611 /*@}*/
612
613 /**
614 * For each input component, says which component of the register it is
615 * chosen from. Note that which elements of the swizzle are used and which
616 * are ignored are based on the write mask for most opcodes - for example,
617 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
618 * a swizzle of {2, x, 1, 0} where x means "don't care."
619 */
620 uint8_t swizzle[4];
621 } nir_alu_src;
622
623 typedef struct {
624 nir_dest dest;
625
626 /**
627 * \name saturate output modifier
628 *
629 * Only valid for opcodes that output floating-point numbers. Clamps the
630 * output to between 0.0 and 1.0 inclusive.
631 */
632
633 bool saturate;
634
635 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
636 } nir_alu_dest;
637
638 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
639 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
640 void *mem_ctx);
641
642 typedef enum {
643 nir_type_invalid = 0, /* Not a valid type */
644 nir_type_float,
645 nir_type_int,
646 nir_type_unsigned,
647 nir_type_bool
648 } nir_alu_type;
649
650 typedef enum {
651 NIR_OP_IS_COMMUTATIVE = (1 << 0),
652 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
653 } nir_op_algebraic_property;
654
655 typedef struct {
656 const char *name;
657
658 unsigned num_inputs;
659
660 /**
661 * The number of components in the output
662 *
663 * If non-zero, this is the size of the output and input sizes are
664 * explicitly given; swizzle and writemask are still in effect, but if
665 * the output component is masked out, then the input component may
666 * still be in use.
667 *
668 * If zero, the opcode acts in the standard, per-component manner; the
669 * operation is performed on each component (except the ones that are
670 * masked out) with the input being taken from the input swizzle for
671 * that component.
672 *
673 * The size of some of the inputs may be given (i.e. non-zero) even
674 * though output_size is zero; in that case, the inputs with a zero
675 * size act per-component, while the inputs with non-zero size don't.
676 */
677 unsigned output_size;
678
679 /**
680 * The type of vector that the instruction outputs. Note that the
681 * staurate modifier is only allowed on outputs with the float type.
682 */
683
684 nir_alu_type output_type;
685
686 /**
687 * The number of components in each input
688 */
689 unsigned input_sizes[4];
690
691 /**
692 * The type of vector that each input takes. Note that negate and
693 * absolute value are only allowed on inputs with int or float type and
694 * behave differently on the two.
695 */
696 nir_alu_type input_types[4];
697
698 nir_op_algebraic_property algebraic_properties;
699 } nir_op_info;
700
701 extern const nir_op_info nir_op_infos[nir_num_opcodes];
702
703 typedef struct nir_alu_instr {
704 nir_instr instr;
705 nir_op op;
706 nir_alu_dest dest;
707 nir_alu_src src[];
708 } nir_alu_instr;
709
710 /* is this source channel used? */
711 static inline bool
712 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
713 {
714 if (nir_op_infos[instr->op].input_sizes[src] > 0)
715 return channel < nir_op_infos[instr->op].input_sizes[src];
716
717 return (instr->dest.write_mask >> channel) & 1;
718 }
719
720 /*
721 * For instructions whose destinations are SSA, get the number of channels
722 * used for a source
723 */
724 static inline unsigned
725 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
726 {
727 assert(instr->dest.dest.is_ssa);
728
729 if (nir_op_infos[instr->op].input_sizes[src] > 0)
730 return nir_op_infos[instr->op].input_sizes[src];
731
732 return instr->dest.dest.ssa.num_components;
733 }
734
735 typedef enum {
736 nir_deref_type_var,
737 nir_deref_type_array,
738 nir_deref_type_struct
739 } nir_deref_type;
740
741 typedef struct nir_deref {
742 nir_deref_type deref_type;
743 struct nir_deref *child;
744 const struct glsl_type *type;
745 } nir_deref;
746
747 typedef struct {
748 nir_deref deref;
749
750 nir_variable *var;
751 } nir_deref_var;
752
753 /* This enum describes how the array is referenced. If the deref is
754 * direct then the base_offset is used. If the deref is indirect then then
755 * offset is given by base_offset + indirect. If the deref is a wildcard
756 * then the deref refers to all of the elements of the array at the same
757 * time. Wildcard dereferences are only ever allowed in copy_var
758 * intrinsics and the source and destination derefs must have matching
759 * wildcards.
760 */
761 typedef enum {
762 nir_deref_array_type_direct,
763 nir_deref_array_type_indirect,
764 nir_deref_array_type_wildcard,
765 } nir_deref_array_type;
766
767 typedef struct {
768 nir_deref deref;
769
770 nir_deref_array_type deref_array_type;
771 unsigned base_offset;
772 nir_src indirect;
773 } nir_deref_array;
774
775 typedef struct {
776 nir_deref deref;
777
778 unsigned index;
779 } nir_deref_struct;
780
781 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
782 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
783 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
784
785 typedef struct {
786 nir_instr instr;
787
788 unsigned num_params;
789 nir_deref_var **params;
790 nir_deref_var *return_deref;
791
792 struct nir_function_overload *callee;
793 } nir_call_instr;
794
795 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
796 num_variables, num_indices, flags) \
797 nir_intrinsic_##name,
798
799 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
800
801 typedef enum {
802 #include "nir_intrinsics.h"
803 nir_num_intrinsics = nir_last_intrinsic + 1
804 } nir_intrinsic_op;
805
806 #undef INTRINSIC
807 #undef LAST_INTRINSIC
808
809 /** Represents an intrinsic
810 *
811 * An intrinsic is an instruction type for handling things that are
812 * more-or-less regular operations but don't just consume and produce SSA
813 * values like ALU operations do. Intrinsics are not for things that have
814 * special semantic meaning such as phi nodes and parallel copies.
815 * Examples of intrinsics include variable load/store operations, system
816 * value loads, and the like. Even though texturing more-or-less falls
817 * under this category, texturing is its own instruction type because
818 * trying to represent texturing with intrinsics would lead to a
819 * combinatorial explosion of intrinsic opcodes.
820 *
821 * By having a single instruction type for handling a lot of different
822 * cases, optimization passes can look for intrinsics and, for the most
823 * part, completely ignore them. Each intrinsic type also has a few
824 * possible flags that govern whether or not they can be reordered or
825 * eliminated. That way passes like dead code elimination can still work
826 * on intrisics without understanding the meaning of each.
827 *
828 * Each intrinsic has some number of constant indices, some number of
829 * variables, and some number of sources. What these sources, variables,
830 * and indices mean depends on the intrinsic and is documented with the
831 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
832 * instructions are the only types of instruction that can operate on
833 * variables.
834 */
835 typedef struct {
836 nir_instr instr;
837
838 nir_intrinsic_op intrinsic;
839
840 nir_dest dest;
841
842 /** number of components if this is a vectorized intrinsic
843 *
844 * Similarly to ALU operations, some intrinsics are vectorized.
845 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
846 * For vectorized intrinsics, the num_components field specifies the
847 * number of destination components and the number of source components
848 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
849 */
850 uint8_t num_components;
851
852 int const_index[3];
853
854 nir_deref_var *variables[2];
855
856 nir_src src[];
857 } nir_intrinsic_instr;
858
859 /**
860 * \name NIR intrinsics semantic flags
861 *
862 * information about what the compiler can do with the intrinsics.
863 *
864 * \sa nir_intrinsic_info::flags
865 */
866 typedef enum {
867 /**
868 * whether the intrinsic can be safely eliminated if none of its output
869 * value is not being used.
870 */
871 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
872
873 /**
874 * Whether the intrinsic can be reordered with respect to any other
875 * intrinsic, i.e. whether the only reordering dependencies of the
876 * intrinsic are due to the register reads/writes.
877 */
878 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
879 } nir_intrinsic_semantic_flag;
880
881 #define NIR_INTRINSIC_MAX_INPUTS 4
882
883 typedef struct {
884 const char *name;
885
886 unsigned num_srcs; /** < number of register/SSA inputs */
887
888 /** number of components of each input register
889 *
890 * If this value is 0, the number of components is given by the
891 * num_components field of nir_intrinsic_instr.
892 */
893 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
894
895 bool has_dest;
896
897 /** number of components of the output register
898 *
899 * If this value is 0, the number of components is given by the
900 * num_components field of nir_intrinsic_instr.
901 */
902 unsigned dest_components;
903
904 /** the number of inputs/outputs that are variables */
905 unsigned num_variables;
906
907 /** the number of constant indices used by the intrinsic */
908 unsigned num_indices;
909
910 /** semantic flags for calls to this intrinsic */
911 nir_intrinsic_semantic_flag flags;
912 } nir_intrinsic_info;
913
914 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
915
916 /**
917 * \group texture information
918 *
919 * This gives semantic information about textures which is useful to the
920 * frontend, the backend, and lowering passes, but not the optimizer.
921 */
922
923 typedef enum {
924 nir_tex_src_coord,
925 nir_tex_src_projector,
926 nir_tex_src_comparitor, /* shadow comparitor */
927 nir_tex_src_offset,
928 nir_tex_src_bias,
929 nir_tex_src_lod,
930 nir_tex_src_ms_index, /* MSAA sample index */
931 nir_tex_src_ddx,
932 nir_tex_src_ddy,
933 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
934 nir_num_tex_src_types
935 } nir_tex_src_type;
936
937 typedef struct {
938 nir_src src;
939 nir_tex_src_type src_type;
940 } nir_tex_src;
941
942 typedef enum {
943 nir_texop_tex, /**< Regular texture look-up */
944 nir_texop_txb, /**< Texture look-up with LOD bias */
945 nir_texop_txl, /**< Texture look-up with explicit LOD */
946 nir_texop_txd, /**< Texture look-up with partial derivatvies */
947 nir_texop_txf, /**< Texel fetch with explicit LOD */
948 nir_texop_txf_ms, /**< Multisample texture fetch */
949 nir_texop_txs, /**< Texture size */
950 nir_texop_lod, /**< Texture lod query */
951 nir_texop_tg4, /**< Texture gather */
952 nir_texop_query_levels /**< Texture levels query */
953 } nir_texop;
954
955 typedef struct {
956 nir_instr instr;
957
958 enum glsl_sampler_dim sampler_dim;
959 nir_alu_type dest_type;
960
961 nir_texop op;
962 nir_dest dest;
963 nir_tex_src *src;
964 unsigned num_srcs, coord_components;
965 bool is_array, is_shadow;
966
967 /**
968 * If is_shadow is true, whether this is the old-style shadow that outputs 4
969 * components or the new-style shadow that outputs 1 component.
970 */
971 bool is_new_style_shadow;
972
973 /* constant offset - must be 0 if the offset source is used */
974 int const_offset[4];
975
976 /* gather component selector */
977 unsigned component : 2;
978
979 /** The sampler index
980 *
981 * If this texture instruction has a nir_tex_src_sampler_offset source,
982 * then the sampler index is given by sampler_index + sampler_offset.
983 */
984 unsigned sampler_index;
985
986 /** The size of the sampler array or 0 if it's not an array */
987 unsigned sampler_array_size;
988
989 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
990 } nir_tex_instr;
991
992 static inline unsigned
993 nir_tex_instr_dest_size(nir_tex_instr *instr)
994 {
995 switch (instr->op) {
996 case nir_texop_txs: {
997 unsigned ret;
998 switch (instr->sampler_dim) {
999 case GLSL_SAMPLER_DIM_1D:
1000 case GLSL_SAMPLER_DIM_BUF:
1001 ret = 1;
1002 break;
1003 case GLSL_SAMPLER_DIM_2D:
1004 case GLSL_SAMPLER_DIM_CUBE:
1005 case GLSL_SAMPLER_DIM_MS:
1006 case GLSL_SAMPLER_DIM_RECT:
1007 case GLSL_SAMPLER_DIM_EXTERNAL:
1008 ret = 2;
1009 break;
1010 case GLSL_SAMPLER_DIM_3D:
1011 ret = 3;
1012 break;
1013 default:
1014 unreachable("not reached");
1015 }
1016 if (instr->is_array)
1017 ret++;
1018 return ret;
1019 }
1020
1021 case nir_texop_lod:
1022 return 2;
1023
1024 case nir_texop_query_levels:
1025 return 1;
1026
1027 default:
1028 if (instr->is_shadow && instr->is_new_style_shadow)
1029 return 1;
1030
1031 return 4;
1032 }
1033 }
1034
1035 static inline unsigned
1036 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1037 {
1038 if (instr->src[src].src_type == nir_tex_src_coord)
1039 return instr->coord_components;
1040
1041
1042 if (instr->src[src].src_type == nir_tex_src_offset ||
1043 instr->src[src].src_type == nir_tex_src_ddx ||
1044 instr->src[src].src_type == nir_tex_src_ddy) {
1045 if (instr->is_array)
1046 return instr->coord_components - 1;
1047 else
1048 return instr->coord_components;
1049 }
1050
1051 return 1;
1052 }
1053
1054 static inline int
1055 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1056 {
1057 for (unsigned i = 0; i < instr->num_srcs; i++)
1058 if (instr->src[i].src_type == type)
1059 return (int) i;
1060
1061 return -1;
1062 }
1063
1064 typedef struct {
1065 union {
1066 float f[4];
1067 int32_t i[4];
1068 uint32_t u[4];
1069 };
1070 } nir_const_value;
1071
1072 typedef struct {
1073 nir_instr instr;
1074
1075 nir_const_value value;
1076
1077 nir_ssa_def def;
1078 } nir_load_const_instr;
1079
1080 typedef enum {
1081 nir_jump_return,
1082 nir_jump_break,
1083 nir_jump_continue,
1084 } nir_jump_type;
1085
1086 typedef struct {
1087 nir_instr instr;
1088 nir_jump_type type;
1089 } nir_jump_instr;
1090
1091 /* creates a new SSA variable in an undefined state */
1092
1093 typedef struct {
1094 nir_instr instr;
1095 nir_ssa_def def;
1096 } nir_ssa_undef_instr;
1097
1098 typedef struct {
1099 struct exec_node node;
1100
1101 /* The predecessor block corresponding to this source */
1102 struct nir_block *pred;
1103
1104 nir_src src;
1105 } nir_phi_src;
1106
1107 #define nir_foreach_phi_src(phi, entry) \
1108 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1109
1110 typedef struct {
1111 nir_instr instr;
1112
1113 struct exec_list srcs; /** < list of nir_phi_src */
1114
1115 nir_dest dest;
1116 } nir_phi_instr;
1117
1118 typedef struct {
1119 struct exec_node node;
1120 nir_src src;
1121 nir_dest dest;
1122 } nir_parallel_copy_entry;
1123
1124 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1125 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1126
1127 typedef struct {
1128 nir_instr instr;
1129
1130 /* A list of nir_parallel_copy_entry's. The sources of all of the
1131 * entries are copied to the corresponding destinations "in parallel".
1132 * In other words, if we have two entries: a -> b and b -> a, the values
1133 * get swapped.
1134 */
1135 struct exec_list entries;
1136 } nir_parallel_copy_instr;
1137
1138 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1139 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1140 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1141 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1142 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1143 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1144 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1145 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1146 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1147 nir_parallel_copy_instr, instr)
1148
1149 /*
1150 * Control flow
1151 *
1152 * Control flow consists of a tree of control flow nodes, which include
1153 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1154 * instructions that always run start-to-finish. Each basic block also keeps
1155 * track of its successors (blocks which may run immediately after the current
1156 * block) and predecessors (blocks which could have run immediately before the
1157 * current block). Each function also has a start block and an end block which
1158 * all return statements point to (which is always empty). Together, all the
1159 * blocks with their predecessors and successors make up the control flow
1160 * graph (CFG) of the function. There are helpers that modify the tree of
1161 * control flow nodes while modifying the CFG appropriately; these should be
1162 * used instead of modifying the tree directly.
1163 */
1164
1165 typedef enum {
1166 nir_cf_node_block,
1167 nir_cf_node_if,
1168 nir_cf_node_loop,
1169 nir_cf_node_function
1170 } nir_cf_node_type;
1171
1172 typedef struct nir_cf_node {
1173 struct exec_node node;
1174 nir_cf_node_type type;
1175 struct nir_cf_node *parent;
1176 } nir_cf_node;
1177
1178 typedef struct nir_block {
1179 nir_cf_node cf_node;
1180
1181 struct exec_list instr_list; /** < list of nir_instr */
1182
1183 /** generic block index; generated by nir_index_blocks */
1184 unsigned index;
1185
1186 /*
1187 * Each block can only have up to 2 successors, so we put them in a simple
1188 * array - no need for anything more complicated.
1189 */
1190 struct nir_block *successors[2];
1191
1192 /* Set of nir_block predecessors in the CFG */
1193 struct set *predecessors;
1194
1195 /*
1196 * this node's immediate dominator in the dominance tree - set to NULL for
1197 * the start block.
1198 */
1199 struct nir_block *imm_dom;
1200
1201 /* This node's children in the dominance tree */
1202 unsigned num_dom_children;
1203 struct nir_block **dom_children;
1204
1205 /* Set of nir_block's on the dominance frontier of this block */
1206 struct set *dom_frontier;
1207
1208 /*
1209 * These two indices have the property that dom_{pre,post}_index for each
1210 * child of this block in the dominance tree will always be between
1211 * dom_pre_index and dom_post_index for this block, which makes testing if
1212 * a given block is dominated by another block an O(1) operation.
1213 */
1214 unsigned dom_pre_index, dom_post_index;
1215
1216 /* live in and out for this block; used for liveness analysis */
1217 BITSET_WORD *live_in;
1218 BITSET_WORD *live_out;
1219 } nir_block;
1220
1221 static inline nir_instr *
1222 nir_block_first_instr(nir_block *block)
1223 {
1224 struct exec_node *head = exec_list_get_head(&block->instr_list);
1225 return exec_node_data(nir_instr, head, node);
1226 }
1227
1228 static inline nir_instr *
1229 nir_block_last_instr(nir_block *block)
1230 {
1231 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1232 return exec_node_data(nir_instr, tail, node);
1233 }
1234
1235 #define nir_foreach_instr(block, instr) \
1236 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1237 #define nir_foreach_instr_reverse(block, instr) \
1238 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1239 #define nir_foreach_instr_safe(block, instr) \
1240 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1241
1242 typedef struct nir_if {
1243 nir_cf_node cf_node;
1244 nir_src condition;
1245
1246 struct exec_list then_list; /** < list of nir_cf_node */
1247 struct exec_list else_list; /** < list of nir_cf_node */
1248 } nir_if;
1249
1250 static inline nir_cf_node *
1251 nir_if_first_then_node(nir_if *if_stmt)
1252 {
1253 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1254 return exec_node_data(nir_cf_node, head, node);
1255 }
1256
1257 static inline nir_cf_node *
1258 nir_if_last_then_node(nir_if *if_stmt)
1259 {
1260 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1261 return exec_node_data(nir_cf_node, tail, node);
1262 }
1263
1264 static inline nir_cf_node *
1265 nir_if_first_else_node(nir_if *if_stmt)
1266 {
1267 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1268 return exec_node_data(nir_cf_node, head, node);
1269 }
1270
1271 static inline nir_cf_node *
1272 nir_if_last_else_node(nir_if *if_stmt)
1273 {
1274 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1275 return exec_node_data(nir_cf_node, tail, node);
1276 }
1277
1278 typedef struct {
1279 nir_cf_node cf_node;
1280
1281 struct exec_list body; /** < list of nir_cf_node */
1282 } nir_loop;
1283
1284 static inline nir_cf_node *
1285 nir_loop_first_cf_node(nir_loop *loop)
1286 {
1287 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1288 }
1289
1290 static inline nir_cf_node *
1291 nir_loop_last_cf_node(nir_loop *loop)
1292 {
1293 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1294 }
1295
1296 /**
1297 * Various bits of metadata that can may be created or required by
1298 * optimization and analysis passes
1299 */
1300 typedef enum {
1301 nir_metadata_none = 0x0,
1302 nir_metadata_block_index = 0x1,
1303 nir_metadata_dominance = 0x2,
1304 nir_metadata_live_variables = 0x4,
1305 } nir_metadata;
1306
1307 typedef struct {
1308 nir_cf_node cf_node;
1309
1310 /** pointer to the overload of which this is an implementation */
1311 struct nir_function_overload *overload;
1312
1313 struct exec_list body; /** < list of nir_cf_node */
1314
1315 nir_block *start_block, *end_block;
1316
1317 /** list for all local variables in the function */
1318 struct exec_list locals;
1319
1320 /** array of variables used as parameters */
1321 unsigned num_params;
1322 nir_variable **params;
1323
1324 /** variable used to hold the result of the function */
1325 nir_variable *return_var;
1326
1327 /** list of local registers in the function */
1328 struct exec_list registers;
1329
1330 /** next available local register index */
1331 unsigned reg_alloc;
1332
1333 /** next available SSA value index */
1334 unsigned ssa_alloc;
1335
1336 /* total number of basic blocks, only valid when block_index_dirty = false */
1337 unsigned num_blocks;
1338
1339 nir_metadata valid_metadata;
1340 } nir_function_impl;
1341
1342 static inline nir_cf_node *
1343 nir_cf_node_next(nir_cf_node *node)
1344 {
1345 struct exec_node *next = exec_node_get_next(&node->node);
1346 if (exec_node_is_tail_sentinel(next))
1347 return NULL;
1348 else
1349 return exec_node_data(nir_cf_node, next, node);
1350 }
1351
1352 static inline nir_cf_node *
1353 nir_cf_node_prev(nir_cf_node *node)
1354 {
1355 struct exec_node *prev = exec_node_get_prev(&node->node);
1356 if (exec_node_is_head_sentinel(prev))
1357 return NULL;
1358 else
1359 return exec_node_data(nir_cf_node, prev, node);
1360 }
1361
1362 static inline bool
1363 nir_cf_node_is_first(const nir_cf_node *node)
1364 {
1365 return exec_node_is_head_sentinel(node->node.prev);
1366 }
1367
1368 static inline bool
1369 nir_cf_node_is_last(const nir_cf_node *node)
1370 {
1371 return exec_node_is_tail_sentinel(node->node.next);
1372 }
1373
1374 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1375 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1376 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1377 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1378
1379 typedef enum {
1380 nir_parameter_in,
1381 nir_parameter_out,
1382 nir_parameter_inout,
1383 } nir_parameter_type;
1384
1385 typedef struct {
1386 nir_parameter_type param_type;
1387 const struct glsl_type *type;
1388 } nir_parameter;
1389
1390 typedef struct nir_function_overload {
1391 struct exec_node node;
1392
1393 unsigned num_params;
1394 nir_parameter *params;
1395 const struct glsl_type *return_type;
1396
1397 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1398
1399 /** pointer to the function of which this is an overload */
1400 struct nir_function *function;
1401 } nir_function_overload;
1402
1403 typedef struct nir_function {
1404 struct exec_node node;
1405
1406 struct exec_list overload_list; /** < list of nir_function_overload */
1407 const char *name;
1408 struct nir_shader *shader;
1409 } nir_function;
1410
1411 #define nir_function_first_overload(func) \
1412 exec_node_data(nir_function_overload, \
1413 exec_list_get_head(&(func)->overload_list), node)
1414
1415 typedef struct nir_shader_compiler_options {
1416 bool lower_ffma;
1417 bool lower_flrp;
1418 bool lower_fpow;
1419 bool lower_fsat;
1420 bool lower_fsqrt;
1421 /** lowers fneg and ineg to fsub and isub. */
1422 bool lower_negate;
1423 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1424 bool lower_sub;
1425
1426 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1427 bool lower_scmp;
1428
1429 /**
1430 * Does the driver support real 32-bit integers? (Otherwise, integers
1431 * are simulated by floats.)
1432 */
1433 bool native_integers;
1434 } nir_shader_compiler_options;
1435
1436 typedef struct nir_shader {
1437 /** hash table of name -> uniform nir_variable */
1438 struct exec_list uniforms;
1439
1440 /** hash table of name -> input nir_variable */
1441 struct exec_list inputs;
1442
1443 /** hash table of name -> output nir_variable */
1444 struct exec_list outputs;
1445
1446 /** Set of driver-specific options for the shader.
1447 *
1448 * The memory for the options is expected to be kept in a single static
1449 * copy by the driver.
1450 */
1451 const struct nir_shader_compiler_options *options;
1452
1453 /** list of global variables in the shader */
1454 struct exec_list globals;
1455
1456 /** list of system value variables in the shader */
1457 struct exec_list system_values;
1458
1459 struct exec_list functions; /** < list of nir_function */
1460
1461 /** list of global register in the shader */
1462 struct exec_list registers;
1463
1464 /** next available global register index */
1465 unsigned reg_alloc;
1466
1467 /**
1468 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1469 * access plus one
1470 */
1471 unsigned num_inputs, num_uniforms, num_outputs;
1472
1473 /** the number of uniforms that are only accessed directly */
1474 unsigned num_direct_uniforms;
1475 } nir_shader;
1476
1477 #define nir_foreach_overload(shader, overload) \
1478 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1479 foreach_list_typed(nir_function_overload, overload, node, \
1480 &(func)->overload_list)
1481
1482 nir_shader *nir_shader_create(void *mem_ctx,
1483 const nir_shader_compiler_options *options);
1484
1485 /** creates a register, including assigning it an index and adding it to the list */
1486 nir_register *nir_global_reg_create(nir_shader *shader);
1487
1488 nir_register *nir_local_reg_create(nir_function_impl *impl);
1489
1490 void nir_reg_remove(nir_register *reg);
1491
1492 /** creates a function and adds it to the shader's list of functions */
1493 nir_function *nir_function_create(nir_shader *shader, const char *name);
1494
1495 /** creates a null function returning null */
1496 nir_function_overload *nir_function_overload_create(nir_function *func);
1497
1498 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1499
1500 nir_block *nir_block_create(void *mem_ctx);
1501 nir_if *nir_if_create(void *mem_ctx);
1502 nir_loop *nir_loop_create(void *mem_ctx);
1503
1504 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1505
1506 /** puts a control flow node immediately after another control flow node */
1507 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1508
1509 /** puts a control flow node immediately before another control flow node */
1510 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1511
1512 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1513 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1514
1515 /** puts a control flow node at the end of a list from an if, loop, or function */
1516 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1517
1518 /** removes a control flow node, doing any cleanup necessary */
1519 void nir_cf_node_remove(nir_cf_node *node);
1520
1521 /** requests that the given pieces of metadata be generated */
1522 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1523 /** dirties all but the preserved metadata */
1524 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1525
1526 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1527 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1528
1529 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1530
1531 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1532 unsigned num_components);
1533
1534 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1535 nir_intrinsic_op op);
1536
1537 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1538 nir_function_overload *callee);
1539
1540 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1541
1542 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1543
1544 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1545
1546 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1547 unsigned num_components);
1548
1549 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1550 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1551 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1552
1553 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1554
1555 nir_load_const_instr *
1556 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1557
1558 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1559 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1560
1561 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1562 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1563
1564 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1565 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1566
1567 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1568 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1569
1570 void nir_instr_remove(nir_instr *instr);
1571
1572 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1573 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1574 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1575 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1576 void *state);
1577 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1578 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1579
1580 nir_const_value *nir_src_as_const_value(nir_src src);
1581 bool nir_srcs_equal(nir_src src1, nir_src src2);
1582 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1583 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1584 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1585
1586 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1587 unsigned num_components, const char *name);
1588 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1589 unsigned num_components, const char *name);
1590 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1591
1592 /* visits basic blocks in source-code order */
1593 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1594 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1595 void *state);
1596 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1597 void *state);
1598
1599 /* If the following CF node is an if, this function returns that if.
1600 * Otherwise, it returns NULL.
1601 */
1602 nir_if *nir_block_get_following_if(nir_block *block);
1603
1604 void nir_index_local_regs(nir_function_impl *impl);
1605 void nir_index_global_regs(nir_shader *shader);
1606 void nir_index_ssa_defs(nir_function_impl *impl);
1607
1608 void nir_index_blocks(nir_function_impl *impl);
1609
1610 void nir_print_shader(nir_shader *shader, FILE *fp);
1611 void nir_print_instr(const nir_instr *instr, FILE *fp);
1612
1613 #ifdef DEBUG
1614 void nir_validate_shader(nir_shader *shader);
1615 #else
1616 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1617 #endif /* DEBUG */
1618
1619 void nir_calc_dominance_impl(nir_function_impl *impl);
1620 void nir_calc_dominance(nir_shader *shader);
1621
1622 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1623 bool nir_block_dominates(nir_block *parent, nir_block *child);
1624
1625 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1626 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1627
1628 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1629 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1630
1631 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1632 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1633
1634 void nir_split_var_copies(nir_shader *shader);
1635
1636 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1637 void nir_lower_var_copies(nir_shader *shader);
1638
1639 void nir_lower_global_vars_to_local(nir_shader *shader);
1640
1641 void nir_lower_locals_to_regs(nir_shader *shader);
1642
1643 void nir_assign_var_locations_scalar(struct exec_list *var_list,
1644 unsigned *size);
1645 void nir_assign_var_locations_scalar_direct_first(nir_shader *shader,
1646 struct exec_list *var_list,
1647 unsigned *direct_size,
1648 unsigned *size);
1649
1650 void nir_lower_io(nir_shader *shader);
1651
1652 void nir_lower_vars_to_ssa(nir_shader *shader);
1653
1654 void nir_remove_dead_variables(nir_shader *shader);
1655
1656 void nir_lower_vec_to_movs(nir_shader *shader);
1657 void nir_lower_alu_to_scalar(nir_shader *shader);
1658
1659 void nir_lower_phis_to_scalar(nir_shader *shader);
1660
1661 void nir_lower_samplers(nir_shader *shader,
1662 const struct gl_shader_program *shader_program,
1663 gl_shader_stage stage);
1664
1665 void nir_lower_system_values(nir_shader *shader);
1666 void nir_lower_tex_projector(nir_shader *shader);
1667 void nir_lower_idiv(nir_shader *shader);
1668
1669 void nir_lower_atomics(nir_shader *shader);
1670 void nir_lower_to_source_mods(nir_shader *shader);
1671
1672 void nir_normalize_cubemap_coords(nir_shader *shader);
1673
1674 void nir_live_variables_impl(nir_function_impl *impl);
1675 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1676
1677 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1678 void nir_convert_to_ssa(nir_shader *shader);
1679 void nir_convert_from_ssa(nir_shader *shader);
1680
1681 bool nir_opt_algebraic(nir_shader *shader);
1682 bool nir_opt_algebraic_late(nir_shader *shader);
1683 bool nir_opt_constant_folding(nir_shader *shader);
1684
1685 bool nir_opt_global_to_local(nir_shader *shader);
1686
1687 bool nir_copy_prop_impl(nir_function_impl *impl);
1688 bool nir_copy_prop(nir_shader *shader);
1689
1690 bool nir_opt_cse(nir_shader *shader);
1691
1692 bool nir_opt_dce_impl(nir_function_impl *impl);
1693 bool nir_opt_dce(nir_shader *shader);
1694
1695 void nir_opt_gcm(nir_shader *shader);
1696
1697 bool nir_opt_peephole_select(nir_shader *shader);
1698 bool nir_opt_peephole_ffma(nir_shader *shader);
1699
1700 bool nir_opt_remove_phis(nir_shader *shader);
1701
1702 void nir_sweep(nir_shader *shader);
1703
1704 #ifdef __cplusplus
1705 } /* extern "C" */
1706 #endif