gen7/pipeline: Actually use inputs_read from the VS for laying out inputs
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_all = -1,
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* we could get this from the var->type but makes clone *much* easier to
115 * not have to care about the type.
116 */
117 unsigned num_elements;
118
119 /* Array elements / Structure Fields */
120 struct nir_constant **elements;
121 } nir_constant;
122
123 /**
124 * \brief Layout qualifiers for gl_FragDepth.
125 *
126 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
127 * with a layout qualifier.
128 */
129 typedef enum {
130 nir_depth_layout_none, /**< No depth layout is specified. */
131 nir_depth_layout_any,
132 nir_depth_layout_greater,
133 nir_depth_layout_less,
134 nir_depth_layout_unchanged
135 } nir_depth_layout;
136
137 /**
138 * Either a uniform, global variable, shader input, or shader output. Based on
139 * ir_variable - it should be easy to translate between the two.
140 */
141
142 typedef struct {
143 struct exec_node node;
144
145 /**
146 * Declared type of the variable
147 */
148 const struct glsl_type *type;
149
150 /**
151 * Declared name of the variable
152 */
153 char *name;
154
155 struct nir_variable_data {
156
157 /**
158 * Is the variable read-only?
159 *
160 * This is set for variables declared as \c const, shader inputs,
161 * and uniforms.
162 */
163 unsigned read_only:1;
164 unsigned centroid:1;
165 unsigned sample:1;
166 unsigned patch:1;
167 unsigned invariant:1;
168
169 /**
170 * Storage class of the variable.
171 *
172 * \sa nir_variable_mode
173 */
174 nir_variable_mode mode:4;
175
176 /**
177 * Interpolation mode for shader inputs / outputs
178 *
179 * \sa glsl_interp_qualifier
180 */
181 unsigned interpolation:2;
182
183 /**
184 * \name ARB_fragment_coord_conventions
185 * @{
186 */
187 unsigned origin_upper_left:1;
188 unsigned pixel_center_integer:1;
189 /*@}*/
190
191 /**
192 * Was the location explicitly set in the shader?
193 *
194 * If the location is explicitly set in the shader, it \b cannot be changed
195 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
196 * no effect).
197 */
198 unsigned explicit_location:1;
199 unsigned explicit_index:1;
200
201 /**
202 * Was an initial binding explicitly set in the shader?
203 *
204 * If so, constant_initializer contains an integer nir_constant
205 * representing the initial binding point.
206 */
207 unsigned explicit_binding:1;
208
209 /**
210 * Does this variable have an initializer?
211 *
212 * This is used by the linker to cross-validiate initializers of global
213 * variables.
214 */
215 unsigned has_initializer:1;
216
217 /**
218 * If non-zero, then this variable may be packed along with other variables
219 * into a single varying slot, so this offset should be applied when
220 * accessing components. For example, an offset of 1 means that the x
221 * component of this variable is actually stored in component y of the
222 * location specified by \c location.
223 */
224 unsigned location_frac:2;
225
226 /**
227 * Non-zero if this variable was created by lowering a named interface
228 * block which was not an array.
229 *
230 * Note that this variable and \c from_named_ifc_block_array will never
231 * both be non-zero.
232 */
233 unsigned from_named_ifc_block_nonarray:1;
234
235 /**
236 * Non-zero if this variable was created by lowering a named interface
237 * block which was an array.
238 *
239 * Note that this variable and \c from_named_ifc_block_nonarray will never
240 * both be non-zero.
241 */
242 unsigned from_named_ifc_block_array:1;
243
244 /**
245 * \brief Layout qualifier for gl_FragDepth.
246 *
247 * This is not equal to \c ir_depth_layout_none if and only if this
248 * variable is \c gl_FragDepth and a layout qualifier is specified.
249 */
250 nir_depth_layout depth_layout;
251
252 /**
253 * Storage location of the base of this variable
254 *
255 * The precise meaning of this field depends on the nature of the variable.
256 *
257 * - Vertex shader input: one of the values from \c gl_vert_attrib.
258 * - Vertex shader output: one of the values from \c gl_varying_slot.
259 * - Geometry shader input: one of the values from \c gl_varying_slot.
260 * - Geometry shader output: one of the values from \c gl_varying_slot.
261 * - Fragment shader input: one of the values from \c gl_varying_slot.
262 * - Fragment shader output: one of the values from \c gl_frag_result.
263 * - Uniforms: Per-stage uniform slot number for default uniform block.
264 * - Uniforms: Index within the uniform block definition for UBO members.
265 * - Non-UBO Uniforms: uniform slot number.
266 * - Other: This field is not currently used.
267 *
268 * If the variable is a uniform, shader input, or shader output, and the
269 * slot has not been assigned, the value will be -1.
270 */
271 int location;
272
273 /**
274 * The actual location of the variable in the IR. Only valid for inputs
275 * and outputs.
276 */
277 unsigned int driver_location;
278
279 /**
280 * output index for dual source blending.
281 */
282 int index;
283
284 /**
285 * Descriptor set binding for sampler or UBO.
286 */
287 int descriptor_set;
288
289 /**
290 * Initial binding point for a sampler or UBO.
291 *
292 * For array types, this represents the binding point for the first element.
293 */
294 int binding;
295
296 /**
297 * Location an atomic counter is stored at.
298 */
299 struct {
300 unsigned offset;
301 } atomic;
302
303 /**
304 * ARB_shader_image_load_store qualifiers.
305 */
306 struct {
307 bool read_only; /**< "readonly" qualifier. */
308 bool write_only; /**< "writeonly" qualifier. */
309 bool coherent;
310 bool _volatile;
311 bool restrict_flag;
312
313 /** Image internal format if specified explicitly, otherwise GL_NONE. */
314 GLenum format;
315 } image;
316
317 /**
318 * Highest element accessed with a constant expression array index
319 *
320 * Not used for non-array variables.
321 */
322 unsigned max_array_access;
323
324 } data;
325
326 /**
327 * Built-in state that backs this uniform
328 *
329 * Once set at variable creation, \c state_slots must remain invariant.
330 * This is because, ideally, this array would be shared by all clones of
331 * this variable in the IR tree. In other words, we'd really like for it
332 * to be a fly-weight.
333 *
334 * If the variable is not a uniform, \c num_state_slots will be zero and
335 * \c state_slots will be \c NULL.
336 */
337 /*@{*/
338 unsigned num_state_slots; /**< Number of state slots used */
339 nir_state_slot *state_slots; /**< State descriptors. */
340 /*@}*/
341
342 /**
343 * Constant expression assigned in the initializer of the variable
344 */
345 nir_constant *constant_initializer;
346
347 /**
348 * For variables that are in an interface block or are an instance of an
349 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
350 *
351 * \sa ir_variable::location
352 */
353 const struct glsl_type *interface_type;
354 } nir_variable;
355
356 #define nir_foreach_variable(var, var_list) \
357 foreach_list_typed(nir_variable, var, node, var_list)
358
359 /**
360 * Returns the bits in the inputs_read, outputs_written, or
361 * system_values_read bitfield corresponding to this variable.
362 */
363 static inline uint64_t
364 nir_variable_get_io_mask(nir_variable *var, gl_shader_stage stage)
365 {
366 assert(var->data.mode == nir_var_shader_in ||
367 var->data.mode == nir_var_shader_out ||
368 var->data.mode == nir_var_system_value);
369 assert(var->data.location >= 0);
370
371 const struct glsl_type *var_type = var->type;
372 if (stage == MESA_SHADER_GEOMETRY && var->data.mode == nir_var_shader_in) {
373 /* Most geometry shader inputs are per-vertex arrays */
374 if (var->data.location >= VARYING_SLOT_VAR0)
375 assert(glsl_type_is_array(var_type));
376
377 if (glsl_type_is_array(var_type))
378 var_type = glsl_get_array_element(var_type);
379 }
380
381 bool is_vertex_input = (var->data.mode == nir_var_shader_in &&
382 stage == MESA_SHADER_VERTEX);
383 unsigned slots = glsl_count_attribute_slots(var_type, is_vertex_input);
384 return ((1ull << slots) - 1) << var->data.location;
385 }
386
387 typedef struct {
388 struct exec_node node;
389
390 unsigned num_components; /** < number of vector components */
391 unsigned num_array_elems; /** < size of array (0 for no array) */
392
393 /** generic register index. */
394 unsigned index;
395
396 /** only for debug purposes, can be NULL */
397 const char *name;
398
399 /** whether this register is local (per-function) or global (per-shader) */
400 bool is_global;
401
402 /**
403 * If this flag is set to true, then accessing channels >= num_components
404 * is well-defined, and simply spills over to the next array element. This
405 * is useful for backends that can do per-component accessing, in
406 * particular scalar backends. By setting this flag and making
407 * num_components equal to 1, structures can be packed tightly into
408 * registers and then registers can be accessed per-component to get to
409 * each structure member, even if it crosses vec4 boundaries.
410 */
411 bool is_packed;
412
413 /** set of nir_src's where this register is used (read from) */
414 struct list_head uses;
415
416 /** set of nir_dest's where this register is defined (written to) */
417 struct list_head defs;
418
419 /** set of nir_if's where this register is used as a condition */
420 struct list_head if_uses;
421 } nir_register;
422
423 typedef enum {
424 nir_instr_type_alu,
425 nir_instr_type_call,
426 nir_instr_type_tex,
427 nir_instr_type_intrinsic,
428 nir_instr_type_load_const,
429 nir_instr_type_jump,
430 nir_instr_type_ssa_undef,
431 nir_instr_type_phi,
432 nir_instr_type_parallel_copy,
433 } nir_instr_type;
434
435 typedef struct nir_instr {
436 struct exec_node node;
437 nir_instr_type type;
438 struct nir_block *block;
439
440 /** generic instruction index. */
441 unsigned index;
442
443 /* A temporary for optimization and analysis passes to use for storing
444 * flags. For instance, DCE uses this to store the "dead/live" info.
445 */
446 uint8_t pass_flags;
447 } nir_instr;
448
449 static inline nir_instr *
450 nir_instr_next(nir_instr *instr)
451 {
452 struct exec_node *next = exec_node_get_next(&instr->node);
453 if (exec_node_is_tail_sentinel(next))
454 return NULL;
455 else
456 return exec_node_data(nir_instr, next, node);
457 }
458
459 static inline nir_instr *
460 nir_instr_prev(nir_instr *instr)
461 {
462 struct exec_node *prev = exec_node_get_prev(&instr->node);
463 if (exec_node_is_head_sentinel(prev))
464 return NULL;
465 else
466 return exec_node_data(nir_instr, prev, node);
467 }
468
469 static inline bool
470 nir_instr_is_first(nir_instr *instr)
471 {
472 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
473 }
474
475 static inline bool
476 nir_instr_is_last(nir_instr *instr)
477 {
478 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
479 }
480
481 typedef struct {
482 /** for debugging only, can be NULL */
483 const char* name;
484
485 /** generic SSA definition index. */
486 unsigned index;
487
488 /** Index into the live_in and live_out bitfields */
489 unsigned live_index;
490
491 nir_instr *parent_instr;
492
493 /** set of nir_instr's where this register is used (read from) */
494 struct list_head uses;
495
496 /** set of nir_if's where this register is used as a condition */
497 struct list_head if_uses;
498
499 uint8_t num_components;
500 } nir_ssa_def;
501
502 struct nir_src;
503
504 typedef struct {
505 nir_register *reg;
506 struct nir_src *indirect; /** < NULL for no indirect offset */
507 unsigned base_offset;
508
509 /* TODO use-def chain goes here */
510 } nir_reg_src;
511
512 typedef struct {
513 nir_instr *parent_instr;
514 struct list_head def_link;
515
516 nir_register *reg;
517 struct nir_src *indirect; /** < NULL for no indirect offset */
518 unsigned base_offset;
519
520 /* TODO def-use chain goes here */
521 } nir_reg_dest;
522
523 struct nir_if;
524
525 typedef struct nir_src {
526 union {
527 nir_instr *parent_instr;
528 struct nir_if *parent_if;
529 };
530
531 struct list_head use_link;
532
533 union {
534 nir_reg_src reg;
535 nir_ssa_def *ssa;
536 };
537
538 bool is_ssa;
539 } nir_src;
540
541 #ifdef __cplusplus
542 # define NIR_SRC_INIT nir_src()
543 #else
544 # define NIR_SRC_INIT (nir_src) { { NULL } }
545 #endif
546
547 #define nir_foreach_use(reg_or_ssa_def, src) \
548 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
549
550 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
551 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
552
553 #define nir_foreach_if_use(reg_or_ssa_def, src) \
554 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
555
556 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
557 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
558
559 typedef struct {
560 union {
561 nir_reg_dest reg;
562 nir_ssa_def ssa;
563 };
564
565 bool is_ssa;
566 } nir_dest;
567
568 #ifdef __cplusplus
569 # define NIR_DEST_INIT nir_dest()
570 #else
571 # define NIR_DEST_INIT (nir_dest) { { { NULL } } }
572 #endif
573
574 #define nir_foreach_def(reg, dest) \
575 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
576
577 #define nir_foreach_def_safe(reg, dest) \
578 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
579
580 static inline nir_src
581 nir_src_for_ssa(nir_ssa_def *def)
582 {
583 nir_src src = NIR_SRC_INIT;
584
585 src.is_ssa = true;
586 src.ssa = def;
587
588 return src;
589 }
590
591 static inline nir_src
592 nir_src_for_reg(nir_register *reg)
593 {
594 nir_src src = NIR_SRC_INIT;
595
596 src.is_ssa = false;
597 src.reg.reg = reg;
598 src.reg.indirect = NULL;
599 src.reg.base_offset = 0;
600
601 return src;
602 }
603
604 static inline nir_dest
605 nir_dest_for_reg(nir_register *reg)
606 {
607 nir_dest dest = NIR_DEST_INIT;
608
609 dest.reg.reg = reg;
610
611 return dest;
612 }
613
614 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
615 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
616
617 typedef struct {
618 nir_src src;
619
620 /**
621 * \name input modifiers
622 */
623 /*@{*/
624 /**
625 * For inputs interpreted as floating point, flips the sign bit. For
626 * inputs interpreted as integers, performs the two's complement negation.
627 */
628 bool negate;
629
630 /**
631 * Clears the sign bit for floating point values, and computes the integer
632 * absolute value for integers. Note that the negate modifier acts after
633 * the absolute value modifier, therefore if both are set then all inputs
634 * will become negative.
635 */
636 bool abs;
637 /*@}*/
638
639 /**
640 * For each input component, says which component of the register it is
641 * chosen from. Note that which elements of the swizzle are used and which
642 * are ignored are based on the write mask for most opcodes - for example,
643 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
644 * a swizzle of {2, x, 1, 0} where x means "don't care."
645 */
646 uint8_t swizzle[4];
647 } nir_alu_src;
648
649 typedef struct {
650 nir_dest dest;
651
652 /**
653 * \name saturate output modifier
654 *
655 * Only valid for opcodes that output floating-point numbers. Clamps the
656 * output to between 0.0 and 1.0 inclusive.
657 */
658
659 bool saturate;
660
661 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
662 } nir_alu_dest;
663
664 typedef enum {
665 nir_type_invalid = 0, /* Not a valid type */
666 nir_type_float,
667 nir_type_int,
668 nir_type_uint,
669 nir_type_bool
670 } nir_alu_type;
671
672 typedef enum {
673 NIR_OP_IS_COMMUTATIVE = (1 << 0),
674 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
675 } nir_op_algebraic_property;
676
677 typedef struct {
678 const char *name;
679
680 unsigned num_inputs;
681
682 /**
683 * The number of components in the output
684 *
685 * If non-zero, this is the size of the output and input sizes are
686 * explicitly given; swizzle and writemask are still in effect, but if
687 * the output component is masked out, then the input component may
688 * still be in use.
689 *
690 * If zero, the opcode acts in the standard, per-component manner; the
691 * operation is performed on each component (except the ones that are
692 * masked out) with the input being taken from the input swizzle for
693 * that component.
694 *
695 * The size of some of the inputs may be given (i.e. non-zero) even
696 * though output_size is zero; in that case, the inputs with a zero
697 * size act per-component, while the inputs with non-zero size don't.
698 */
699 unsigned output_size;
700
701 /**
702 * The type of vector that the instruction outputs. Note that the
703 * staurate modifier is only allowed on outputs with the float type.
704 */
705
706 nir_alu_type output_type;
707
708 /**
709 * The number of components in each input
710 */
711 unsigned input_sizes[4];
712
713 /**
714 * The type of vector that each input takes. Note that negate and
715 * absolute value are only allowed on inputs with int or float type and
716 * behave differently on the two.
717 */
718 nir_alu_type input_types[4];
719
720 nir_op_algebraic_property algebraic_properties;
721 } nir_op_info;
722
723 extern const nir_op_info nir_op_infos[nir_num_opcodes];
724
725 typedef struct nir_alu_instr {
726 nir_instr instr;
727 nir_op op;
728 nir_alu_dest dest;
729 nir_alu_src src[];
730 } nir_alu_instr;
731
732 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
733 nir_alu_instr *instr);
734 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
735 nir_alu_instr *instr);
736
737 /* is this source channel used? */
738 static inline bool
739 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
740 {
741 if (nir_op_infos[instr->op].input_sizes[src] > 0)
742 return channel < nir_op_infos[instr->op].input_sizes[src];
743
744 return (instr->dest.write_mask >> channel) & 1;
745 }
746
747 /*
748 * For instructions whose destinations are SSA, get the number of channels
749 * used for a source
750 */
751 static inline unsigned
752 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
753 {
754 assert(instr->dest.dest.is_ssa);
755
756 if (nir_op_infos[instr->op].input_sizes[src] > 0)
757 return nir_op_infos[instr->op].input_sizes[src];
758
759 return instr->dest.dest.ssa.num_components;
760 }
761
762 typedef enum {
763 nir_deref_type_var,
764 nir_deref_type_array,
765 nir_deref_type_struct
766 } nir_deref_type;
767
768 typedef struct nir_deref {
769 nir_deref_type deref_type;
770 struct nir_deref *child;
771 const struct glsl_type *type;
772 } nir_deref;
773
774 typedef struct {
775 nir_deref deref;
776
777 nir_variable *var;
778 } nir_deref_var;
779
780 /* This enum describes how the array is referenced. If the deref is
781 * direct then the base_offset is used. If the deref is indirect then then
782 * offset is given by base_offset + indirect. If the deref is a wildcard
783 * then the deref refers to all of the elements of the array at the same
784 * time. Wildcard dereferences are only ever allowed in copy_var
785 * intrinsics and the source and destination derefs must have matching
786 * wildcards.
787 */
788 typedef enum {
789 nir_deref_array_type_direct,
790 nir_deref_array_type_indirect,
791 nir_deref_array_type_wildcard,
792 } nir_deref_array_type;
793
794 typedef struct {
795 nir_deref deref;
796
797 nir_deref_array_type deref_array_type;
798 unsigned base_offset;
799 nir_src indirect;
800 } nir_deref_array;
801
802 typedef struct {
803 nir_deref deref;
804
805 unsigned index;
806 } nir_deref_struct;
807
808 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
809 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
810 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
811
812 /* Returns the last deref in the chain. */
813 static inline nir_deref *
814 nir_deref_tail(nir_deref *deref)
815 {
816 while (deref->child)
817 deref = deref->child;
818 return deref;
819 }
820
821 typedef struct {
822 nir_instr instr;
823
824 unsigned num_params;
825 nir_deref_var **params;
826 nir_deref_var *return_deref;
827
828 struct nir_function *callee;
829 } nir_call_instr;
830
831 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
832 num_variables, num_indices, flags) \
833 nir_intrinsic_##name,
834
835 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
836
837 typedef enum {
838 #include "nir_intrinsics.h"
839 nir_num_intrinsics = nir_last_intrinsic + 1
840 } nir_intrinsic_op;
841
842 #undef INTRINSIC
843 #undef LAST_INTRINSIC
844
845 /** Represents an intrinsic
846 *
847 * An intrinsic is an instruction type for handling things that are
848 * more-or-less regular operations but don't just consume and produce SSA
849 * values like ALU operations do. Intrinsics are not for things that have
850 * special semantic meaning such as phi nodes and parallel copies.
851 * Examples of intrinsics include variable load/store operations, system
852 * value loads, and the like. Even though texturing more-or-less falls
853 * under this category, texturing is its own instruction type because
854 * trying to represent texturing with intrinsics would lead to a
855 * combinatorial explosion of intrinsic opcodes.
856 *
857 * By having a single instruction type for handling a lot of different
858 * cases, optimization passes can look for intrinsics and, for the most
859 * part, completely ignore them. Each intrinsic type also has a few
860 * possible flags that govern whether or not they can be reordered or
861 * eliminated. That way passes like dead code elimination can still work
862 * on intrisics without understanding the meaning of each.
863 *
864 * Each intrinsic has some number of constant indices, some number of
865 * variables, and some number of sources. What these sources, variables,
866 * and indices mean depends on the intrinsic and is documented with the
867 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
868 * instructions are the only types of instruction that can operate on
869 * variables.
870 */
871 typedef struct {
872 nir_instr instr;
873
874 nir_intrinsic_op intrinsic;
875
876 nir_dest dest;
877
878 /** number of components if this is a vectorized intrinsic
879 *
880 * Similarly to ALU operations, some intrinsics are vectorized.
881 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
882 * For vectorized intrinsics, the num_components field specifies the
883 * number of destination components and the number of source components
884 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
885 */
886 uint8_t num_components;
887
888 int const_index[3];
889
890 nir_deref_var *variables[2];
891
892 nir_src src[];
893 } nir_intrinsic_instr;
894
895 /**
896 * \name NIR intrinsics semantic flags
897 *
898 * information about what the compiler can do with the intrinsics.
899 *
900 * \sa nir_intrinsic_info::flags
901 */
902 typedef enum {
903 /**
904 * whether the intrinsic can be safely eliminated if none of its output
905 * value is not being used.
906 */
907 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
908
909 /**
910 * Whether the intrinsic can be reordered with respect to any other
911 * intrinsic, i.e. whether the only reordering dependencies of the
912 * intrinsic are due to the register reads/writes.
913 */
914 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
915 } nir_intrinsic_semantic_flag;
916
917 #define NIR_INTRINSIC_MAX_INPUTS 4
918
919 typedef struct {
920 const char *name;
921
922 unsigned num_srcs; /** < number of register/SSA inputs */
923
924 /** number of components of each input register
925 *
926 * If this value is 0, the number of components is given by the
927 * num_components field of nir_intrinsic_instr.
928 */
929 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
930
931 bool has_dest;
932
933 /** number of components of the output register
934 *
935 * If this value is 0, the number of components is given by the
936 * num_components field of nir_intrinsic_instr.
937 */
938 unsigned dest_components;
939
940 /** the number of inputs/outputs that are variables */
941 unsigned num_variables;
942
943 /** the number of constant indices used by the intrinsic */
944 unsigned num_indices;
945
946 /** semantic flags for calls to this intrinsic */
947 nir_intrinsic_semantic_flag flags;
948 } nir_intrinsic_info;
949
950 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
951
952 /**
953 * \group texture information
954 *
955 * This gives semantic information about textures which is useful to the
956 * frontend, the backend, and lowering passes, but not the optimizer.
957 */
958
959 typedef enum {
960 nir_tex_src_coord,
961 nir_tex_src_projector,
962 nir_tex_src_comparitor, /* shadow comparitor */
963 nir_tex_src_offset,
964 nir_tex_src_bias,
965 nir_tex_src_lod,
966 nir_tex_src_ms_index, /* MSAA sample index */
967 nir_tex_src_ddx,
968 nir_tex_src_ddy,
969 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
970 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
971 nir_num_tex_src_types
972 } nir_tex_src_type;
973
974 typedef struct {
975 nir_src src;
976 nir_tex_src_type src_type;
977 } nir_tex_src;
978
979 typedef enum {
980 nir_texop_tex, /**< Regular texture look-up */
981 nir_texop_txb, /**< Texture look-up with LOD bias */
982 nir_texop_txl, /**< Texture look-up with explicit LOD */
983 nir_texop_txd, /**< Texture look-up with partial derivatvies */
984 nir_texop_txf, /**< Texel fetch with explicit LOD */
985 nir_texop_txf_ms, /**< Multisample texture fetch */
986 nir_texop_txs, /**< Texture size */
987 nir_texop_lod, /**< Texture lod query */
988 nir_texop_tg4, /**< Texture gather */
989 nir_texop_query_levels, /**< Texture levels query */
990 nir_texop_texture_samples, /**< Texture samples query */
991 nir_texop_samples_identical, /**< Query whether all samples are definitely
992 * identical.
993 */
994 } nir_texop;
995
996 typedef struct {
997 nir_instr instr;
998
999 enum glsl_sampler_dim sampler_dim;
1000 nir_alu_type dest_type;
1001
1002 nir_texop op;
1003 nir_dest dest;
1004 nir_tex_src *src;
1005 unsigned num_srcs, coord_components;
1006 bool is_array, is_shadow;
1007
1008 /**
1009 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1010 * components or the new-style shadow that outputs 1 component.
1011 */
1012 bool is_new_style_shadow;
1013
1014 /* constant offset - must be 0 if the offset source is used */
1015 int const_offset[4];
1016
1017 /* gather component selector */
1018 unsigned component : 2;
1019
1020 /** The texture index
1021 *
1022 * If this texture instruction has a nir_tex_src_texture_offset source,
1023 * then the texture index is given by texture_index + texture_offset.
1024 */
1025 unsigned texture_index;
1026
1027 /** The size of the texture array or 0 if it's not an array */
1028 unsigned texture_array_size;
1029
1030 /** The texture deref
1031 *
1032 * If both this and `sampler` are both NULL, use texture_index instead.
1033 * If `texture` is NULL, but `sampler` is non-NULL, then the texture is
1034 * implied from the sampler.
1035 */
1036 nir_deref_var *texture;
1037
1038 /** The sampler index
1039 *
1040 * If this texture instruction has a nir_tex_src_sampler_offset source,
1041 * then the sampler index is given by sampler_index + sampler_offset.
1042 */
1043 unsigned sampler_index;
1044
1045 /** The sampler deref
1046 *
1047 * If this is null, use sampler_index instead.
1048 */
1049 nir_deref_var *sampler;
1050 } nir_tex_instr;
1051
1052 static inline unsigned
1053 nir_tex_instr_dest_size(nir_tex_instr *instr)
1054 {
1055 switch (instr->op) {
1056 case nir_texop_txs: {
1057 unsigned ret;
1058 switch (instr->sampler_dim) {
1059 case GLSL_SAMPLER_DIM_1D:
1060 case GLSL_SAMPLER_DIM_BUF:
1061 ret = 1;
1062 break;
1063 case GLSL_SAMPLER_DIM_2D:
1064 case GLSL_SAMPLER_DIM_CUBE:
1065 case GLSL_SAMPLER_DIM_MS:
1066 case GLSL_SAMPLER_DIM_RECT:
1067 case GLSL_SAMPLER_DIM_EXTERNAL:
1068 ret = 2;
1069 break;
1070 case GLSL_SAMPLER_DIM_3D:
1071 ret = 3;
1072 break;
1073 default:
1074 unreachable("not reached");
1075 }
1076 if (instr->is_array)
1077 ret++;
1078 return ret;
1079 }
1080
1081 case nir_texop_lod:
1082 return 2;
1083
1084 case nir_texop_texture_samples:
1085 case nir_texop_query_levels:
1086 case nir_texop_samples_identical:
1087 return 1;
1088
1089 default:
1090 if (instr->is_shadow && instr->is_new_style_shadow)
1091 return 1;
1092
1093 return 4;
1094 }
1095 }
1096
1097 /* Returns true if this texture operation queries something about the texture
1098 * rather than actually sampling it.
1099 */
1100 static inline bool
1101 nir_tex_instr_is_query(nir_tex_instr *instr)
1102 {
1103 switch (instr->op) {
1104 case nir_texop_txs:
1105 case nir_texop_lod:
1106 case nir_texop_texture_samples:
1107 case nir_texop_query_levels:
1108 return true;
1109 case nir_texop_tex:
1110 case nir_texop_txb:
1111 case nir_texop_txl:
1112 case nir_texop_txd:
1113 case nir_texop_txf:
1114 case nir_texop_txf_ms:
1115 case nir_texop_tg4:
1116 return false;
1117 default:
1118 unreachable("Invalid texture opcode");
1119 }
1120 }
1121
1122 static inline unsigned
1123 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1124 {
1125 if (instr->src[src].src_type == nir_tex_src_coord)
1126 return instr->coord_components;
1127
1128
1129 if (instr->src[src].src_type == nir_tex_src_offset ||
1130 instr->src[src].src_type == nir_tex_src_ddx ||
1131 instr->src[src].src_type == nir_tex_src_ddy) {
1132 if (instr->is_array)
1133 return instr->coord_components - 1;
1134 else
1135 return instr->coord_components;
1136 }
1137
1138 return 1;
1139 }
1140
1141 static inline int
1142 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1143 {
1144 for (unsigned i = 0; i < instr->num_srcs; i++)
1145 if (instr->src[i].src_type == type)
1146 return (int) i;
1147
1148 return -1;
1149 }
1150
1151 typedef struct {
1152 union {
1153 float f[4];
1154 int32_t i[4];
1155 uint32_t u[4];
1156 };
1157 } nir_const_value;
1158
1159 typedef struct {
1160 nir_instr instr;
1161
1162 nir_const_value value;
1163
1164 nir_ssa_def def;
1165 } nir_load_const_instr;
1166
1167 typedef enum {
1168 nir_jump_return,
1169 nir_jump_break,
1170 nir_jump_continue,
1171 } nir_jump_type;
1172
1173 typedef struct {
1174 nir_instr instr;
1175 nir_jump_type type;
1176 } nir_jump_instr;
1177
1178 /* creates a new SSA variable in an undefined state */
1179
1180 typedef struct {
1181 nir_instr instr;
1182 nir_ssa_def def;
1183 } nir_ssa_undef_instr;
1184
1185 typedef struct {
1186 struct exec_node node;
1187
1188 /* The predecessor block corresponding to this source */
1189 struct nir_block *pred;
1190
1191 nir_src src;
1192 } nir_phi_src;
1193
1194 #define nir_foreach_phi_src(phi, entry) \
1195 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1196 #define nir_foreach_phi_src_safe(phi, entry) \
1197 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1198
1199 typedef struct {
1200 nir_instr instr;
1201
1202 struct exec_list srcs; /** < list of nir_phi_src */
1203
1204 nir_dest dest;
1205 } nir_phi_instr;
1206
1207 typedef struct {
1208 struct exec_node node;
1209 nir_src src;
1210 nir_dest dest;
1211 } nir_parallel_copy_entry;
1212
1213 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1214 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1215
1216 typedef struct {
1217 nir_instr instr;
1218
1219 /* A list of nir_parallel_copy_entry's. The sources of all of the
1220 * entries are copied to the corresponding destinations "in parallel".
1221 * In other words, if we have two entries: a -> b and b -> a, the values
1222 * get swapped.
1223 */
1224 struct exec_list entries;
1225 } nir_parallel_copy_instr;
1226
1227 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1228 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1229 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1230 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1231 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1232 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1233 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1234 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1235 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1236 nir_parallel_copy_instr, instr)
1237
1238 /*
1239 * Control flow
1240 *
1241 * Control flow consists of a tree of control flow nodes, which include
1242 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1243 * instructions that always run start-to-finish. Each basic block also keeps
1244 * track of its successors (blocks which may run immediately after the current
1245 * block) and predecessors (blocks which could have run immediately before the
1246 * current block). Each function also has a start block and an end block which
1247 * all return statements point to (which is always empty). Together, all the
1248 * blocks with their predecessors and successors make up the control flow
1249 * graph (CFG) of the function. There are helpers that modify the tree of
1250 * control flow nodes while modifying the CFG appropriately; these should be
1251 * used instead of modifying the tree directly.
1252 */
1253
1254 typedef enum {
1255 nir_cf_node_block,
1256 nir_cf_node_if,
1257 nir_cf_node_loop,
1258 nir_cf_node_function
1259 } nir_cf_node_type;
1260
1261 typedef struct nir_cf_node {
1262 struct exec_node node;
1263 nir_cf_node_type type;
1264 struct nir_cf_node *parent;
1265 } nir_cf_node;
1266
1267 typedef struct nir_block {
1268 nir_cf_node cf_node;
1269
1270 struct exec_list instr_list; /** < list of nir_instr */
1271
1272 /** generic block index; generated by nir_index_blocks */
1273 unsigned index;
1274
1275 /*
1276 * Each block can only have up to 2 successors, so we put them in a simple
1277 * array - no need for anything more complicated.
1278 */
1279 struct nir_block *successors[2];
1280
1281 /* Set of nir_block predecessors in the CFG */
1282 struct set *predecessors;
1283
1284 /*
1285 * this node's immediate dominator in the dominance tree - set to NULL for
1286 * the start block.
1287 */
1288 struct nir_block *imm_dom;
1289
1290 /* This node's children in the dominance tree */
1291 unsigned num_dom_children;
1292 struct nir_block **dom_children;
1293
1294 /* Set of nir_block's on the dominance frontier of this block */
1295 struct set *dom_frontier;
1296
1297 /*
1298 * These two indices have the property that dom_{pre,post}_index for each
1299 * child of this block in the dominance tree will always be between
1300 * dom_pre_index and dom_post_index for this block, which makes testing if
1301 * a given block is dominated by another block an O(1) operation.
1302 */
1303 unsigned dom_pre_index, dom_post_index;
1304
1305 /* live in and out for this block; used for liveness analysis */
1306 BITSET_WORD *live_in;
1307 BITSET_WORD *live_out;
1308 } nir_block;
1309
1310 static inline nir_instr *
1311 nir_block_first_instr(nir_block *block)
1312 {
1313 struct exec_node *head = exec_list_get_head(&block->instr_list);
1314 return exec_node_data(nir_instr, head, node);
1315 }
1316
1317 static inline nir_instr *
1318 nir_block_last_instr(nir_block *block)
1319 {
1320 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1321 return exec_node_data(nir_instr, tail, node);
1322 }
1323
1324 #define nir_foreach_instr(block, instr) \
1325 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1326 #define nir_foreach_instr_reverse(block, instr) \
1327 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1328 #define nir_foreach_instr_safe(block, instr) \
1329 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1330 #define nir_foreach_instr_reverse_safe(block, instr) \
1331 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1332
1333 typedef struct nir_if {
1334 nir_cf_node cf_node;
1335 nir_src condition;
1336
1337 struct exec_list then_list; /** < list of nir_cf_node */
1338 struct exec_list else_list; /** < list of nir_cf_node */
1339 } nir_if;
1340
1341 static inline nir_cf_node *
1342 nir_if_first_then_node(nir_if *if_stmt)
1343 {
1344 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1345 return exec_node_data(nir_cf_node, head, node);
1346 }
1347
1348 static inline nir_cf_node *
1349 nir_if_last_then_node(nir_if *if_stmt)
1350 {
1351 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1352 return exec_node_data(nir_cf_node, tail, node);
1353 }
1354
1355 static inline nir_cf_node *
1356 nir_if_first_else_node(nir_if *if_stmt)
1357 {
1358 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1359 return exec_node_data(nir_cf_node, head, node);
1360 }
1361
1362 static inline nir_cf_node *
1363 nir_if_last_else_node(nir_if *if_stmt)
1364 {
1365 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1366 return exec_node_data(nir_cf_node, tail, node);
1367 }
1368
1369 typedef struct {
1370 nir_cf_node cf_node;
1371
1372 struct exec_list body; /** < list of nir_cf_node */
1373 } nir_loop;
1374
1375 static inline nir_cf_node *
1376 nir_loop_first_cf_node(nir_loop *loop)
1377 {
1378 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1379 }
1380
1381 static inline nir_cf_node *
1382 nir_loop_last_cf_node(nir_loop *loop)
1383 {
1384 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1385 }
1386
1387 /**
1388 * Various bits of metadata that can may be created or required by
1389 * optimization and analysis passes
1390 */
1391 typedef enum {
1392 nir_metadata_none = 0x0,
1393 nir_metadata_block_index = 0x1,
1394 nir_metadata_dominance = 0x2,
1395 nir_metadata_live_ssa_defs = 0x4,
1396 nir_metadata_not_properly_reset = 0x8,
1397 } nir_metadata;
1398
1399 typedef struct {
1400 nir_cf_node cf_node;
1401
1402 /** pointer to the function of which this is an implementation */
1403 struct nir_function *function;
1404
1405 struct exec_list body; /** < list of nir_cf_node */
1406
1407 nir_block *end_block;
1408
1409 /** list for all local variables in the function */
1410 struct exec_list locals;
1411
1412 /** array of variables used as parameters */
1413 unsigned num_params;
1414 nir_variable **params;
1415
1416 /** variable used to hold the result of the function */
1417 nir_variable *return_var;
1418
1419 /** list of local registers in the function */
1420 struct exec_list registers;
1421
1422 /** next available local register index */
1423 unsigned reg_alloc;
1424
1425 /** next available SSA value index */
1426 unsigned ssa_alloc;
1427
1428 /* total number of basic blocks, only valid when block_index_dirty = false */
1429 unsigned num_blocks;
1430
1431 nir_metadata valid_metadata;
1432 } nir_function_impl;
1433
1434 static inline nir_block *
1435 nir_start_block(nir_function_impl *impl)
1436 {
1437 return (nir_block *) exec_list_get_head(&impl->body);
1438 }
1439
1440 static inline nir_cf_node *
1441 nir_cf_node_next(nir_cf_node *node)
1442 {
1443 struct exec_node *next = exec_node_get_next(&node->node);
1444 if (exec_node_is_tail_sentinel(next))
1445 return NULL;
1446 else
1447 return exec_node_data(nir_cf_node, next, node);
1448 }
1449
1450 static inline nir_cf_node *
1451 nir_cf_node_prev(nir_cf_node *node)
1452 {
1453 struct exec_node *prev = exec_node_get_prev(&node->node);
1454 if (exec_node_is_head_sentinel(prev))
1455 return NULL;
1456 else
1457 return exec_node_data(nir_cf_node, prev, node);
1458 }
1459
1460 static inline bool
1461 nir_cf_node_is_first(const nir_cf_node *node)
1462 {
1463 return exec_node_is_head_sentinel(node->node.prev);
1464 }
1465
1466 static inline bool
1467 nir_cf_node_is_last(const nir_cf_node *node)
1468 {
1469 return exec_node_is_tail_sentinel(node->node.next);
1470 }
1471
1472 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1473 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1474 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1475 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1476
1477 typedef enum {
1478 nir_parameter_in,
1479 nir_parameter_out,
1480 nir_parameter_inout,
1481 } nir_parameter_type;
1482
1483 typedef struct {
1484 nir_parameter_type param_type;
1485 const struct glsl_type *type;
1486 } nir_parameter;
1487
1488 typedef struct nir_function {
1489 struct exec_node node;
1490
1491 const char *name;
1492 struct nir_shader *shader;
1493
1494 unsigned num_params;
1495 nir_parameter *params;
1496 const struct glsl_type *return_type;
1497
1498 /** The implementation of this function.
1499 *
1500 * If the function is only declared and not implemented, this is NULL.
1501 */
1502 nir_function_impl *impl;
1503 } nir_function;
1504
1505 typedef struct nir_shader_compiler_options {
1506 bool lower_ffma;
1507 bool lower_fdiv;
1508 bool lower_flrp;
1509 bool lower_fpow;
1510 bool lower_fsat;
1511 bool lower_fsqrt;
1512 /** lowers fneg and ineg to fsub and isub. */
1513 bool lower_negate;
1514 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1515 bool lower_sub;
1516
1517 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1518 bool lower_scmp;
1519
1520 /* Does the native fdot instruction replicate its result for four
1521 * components? If so, then opt_algebraic_late will turn all fdotN
1522 * instructions into fdot_replicatedN instructions.
1523 */
1524 bool fdot_replicates;
1525
1526 /** lowers ffract to fsub+ffloor: */
1527 bool lower_ffract;
1528
1529 /**
1530 * Does the driver support real 32-bit integers? (Otherwise, integers
1531 * are simulated by floats.)
1532 */
1533 bool native_integers;
1534 } nir_shader_compiler_options;
1535
1536 typedef struct nir_shader_info {
1537 const char *name;
1538
1539 /* Descriptive name provided by the client; may be NULL */
1540 const char *label;
1541
1542 /* Number of textures used by this shader */
1543 unsigned num_textures;
1544 /* Number of uniform buffers used by this shader */
1545 unsigned num_ubos;
1546 /* Number of atomic buffers used by this shader */
1547 unsigned num_abos;
1548 /* Number of shader storage buffers used by this shader */
1549 unsigned num_ssbos;
1550 /* Number of images used by this shader */
1551 unsigned num_images;
1552
1553 /* Which inputs are actually read */
1554 uint64_t inputs_read;
1555 /* Which outputs are actually written */
1556 uint64_t outputs_written;
1557 /* Which system values are actually read */
1558 uint64_t system_values_read;
1559
1560 /* Which patch inputs are actually read */
1561 uint32_t patch_inputs_read;
1562 /* Which patch outputs are actually written */
1563 uint32_t patch_outputs_written;
1564
1565 /* Whether or not this shader ever uses textureGather() */
1566 bool uses_texture_gather;
1567
1568 /* Whether or not this shader uses the gl_ClipDistance output */
1569 bool uses_clip_distance_out;
1570
1571 /* Whether or not separate shader objects were used */
1572 bool separate_shader;
1573
1574 /** Was this shader linked with any transform feedback varyings? */
1575 bool has_transform_feedback_varyings;
1576
1577 union {
1578 struct {
1579 /** The number of vertices recieves per input primitive */
1580 unsigned vertices_in;
1581
1582 /** The output primitive type (GL enum value) */
1583 unsigned output_primitive;
1584
1585 /** The maximum number of vertices the geometry shader might write. */
1586 unsigned vertices_out;
1587
1588 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1589 unsigned invocations;
1590
1591 /** Whether or not this shader uses EndPrimitive */
1592 bool uses_end_primitive;
1593
1594 /** Whether or not this shader uses non-zero streams */
1595 bool uses_streams;
1596 } gs;
1597
1598 struct {
1599 bool uses_discard;
1600
1601 /**
1602 * Whether early fragment tests are enabled as defined by
1603 * ARB_shader_image_load_store.
1604 */
1605 bool early_fragment_tests;
1606
1607 /** gl_FragDepth layout for ARB_conservative_depth. */
1608 enum gl_frag_depth_layout depth_layout;
1609 } fs;
1610
1611 struct {
1612 unsigned local_size[3];
1613 } cs;
1614
1615 struct {
1616 /** The number of vertices in the TCS output patch. */
1617 unsigned vertices_out;
1618 } tcs;
1619 };
1620 } nir_shader_info;
1621
1622 typedef struct nir_shader {
1623 /** list of uniforms (nir_variable) */
1624 struct exec_list uniforms;
1625
1626 /** list of inputs (nir_variable) */
1627 struct exec_list inputs;
1628
1629 /** list of outputs (nir_variable) */
1630 struct exec_list outputs;
1631
1632 /** Set of driver-specific options for the shader.
1633 *
1634 * The memory for the options is expected to be kept in a single static
1635 * copy by the driver.
1636 */
1637 const struct nir_shader_compiler_options *options;
1638
1639 /** Various bits of compile-time information about a given shader */
1640 struct nir_shader_info info;
1641
1642 /** list of global variables in the shader (nir_variable) */
1643 struct exec_list globals;
1644
1645 /** list of system value variables in the shader (nir_variable) */
1646 struct exec_list system_values;
1647
1648 struct exec_list functions; /** < list of nir_function */
1649
1650 /** list of global register in the shader */
1651 struct exec_list registers;
1652
1653 /** next available global register index */
1654 unsigned reg_alloc;
1655
1656 /**
1657 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1658 * access plus one
1659 */
1660 unsigned num_inputs, num_uniforms, num_outputs;
1661
1662 /** The shader stage, such as MESA_SHADER_VERTEX. */
1663 gl_shader_stage stage;
1664 } nir_shader;
1665
1666 #define nir_foreach_function(shader, func) \
1667 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1668
1669 nir_shader *nir_shader_create(void *mem_ctx,
1670 gl_shader_stage stage,
1671 const nir_shader_compiler_options *options);
1672
1673 /** creates a register, including assigning it an index and adding it to the list */
1674 nir_register *nir_global_reg_create(nir_shader *shader);
1675
1676 nir_register *nir_local_reg_create(nir_function_impl *impl);
1677
1678 void nir_reg_remove(nir_register *reg);
1679
1680 /** Adds a variable to the appropreate list in nir_shader */
1681 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1682
1683 static inline void
1684 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1685 {
1686 assert(var->data.mode == nir_var_local);
1687 exec_list_push_tail(&impl->locals, &var->node);
1688 }
1689
1690 /** creates a variable, sets a few defaults, and adds it to the list */
1691 nir_variable *nir_variable_create(nir_shader *shader,
1692 nir_variable_mode mode,
1693 const struct glsl_type *type,
1694 const char *name);
1695 /** creates a local variable and adds it to the list */
1696 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1697 const struct glsl_type *type,
1698 const char *name);
1699
1700 /** creates a function and adds it to the shader's list of functions */
1701 nir_function *nir_function_create(nir_shader *shader, const char *name);
1702
1703 nir_function_impl *nir_function_impl_create(nir_function *func);
1704 /** creates a function_impl that isn't tied to any particular function */
1705 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1706
1707 nir_block *nir_block_create(nir_shader *shader);
1708 nir_if *nir_if_create(nir_shader *shader);
1709 nir_loop *nir_loop_create(nir_shader *shader);
1710
1711 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1712
1713 /** requests that the given pieces of metadata be generated */
1714 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1715 /** dirties all but the preserved metadata */
1716 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1717
1718 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1719 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1720
1721 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1722
1723 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1724 unsigned num_components);
1725
1726 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1727 nir_intrinsic_op op);
1728
1729 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1730 nir_function *callee);
1731
1732 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1733
1734 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1735
1736 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1737
1738 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1739 unsigned num_components);
1740
1741 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1742 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1743 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1744
1745 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1746
1747 nir_load_const_instr *
1748 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1749
1750 /**
1751 * NIR Cursors and Instruction Insertion API
1752 * @{
1753 *
1754 * A tiny struct representing a point to insert/extract instructions or
1755 * control flow nodes. Helps reduce the combinatorial explosion of possible
1756 * points to insert/extract.
1757 *
1758 * \sa nir_control_flow.h
1759 */
1760 typedef enum {
1761 nir_cursor_before_block,
1762 nir_cursor_after_block,
1763 nir_cursor_before_instr,
1764 nir_cursor_after_instr,
1765 } nir_cursor_option;
1766
1767 typedef struct {
1768 nir_cursor_option option;
1769 union {
1770 nir_block *block;
1771 nir_instr *instr;
1772 };
1773 } nir_cursor;
1774
1775 static inline nir_block *
1776 nir_cursor_current_block(nir_cursor cursor)
1777 {
1778 if (cursor.option == nir_cursor_before_instr ||
1779 cursor.option == nir_cursor_after_instr) {
1780 return cursor.instr->block;
1781 } else {
1782 return cursor.block;
1783 }
1784 }
1785
1786 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1787
1788 static inline nir_cursor
1789 nir_before_block(nir_block *block)
1790 {
1791 nir_cursor cursor;
1792 cursor.option = nir_cursor_before_block;
1793 cursor.block = block;
1794 return cursor;
1795 }
1796
1797 static inline nir_cursor
1798 nir_after_block(nir_block *block)
1799 {
1800 nir_cursor cursor;
1801 cursor.option = nir_cursor_after_block;
1802 cursor.block = block;
1803 return cursor;
1804 }
1805
1806 static inline nir_cursor
1807 nir_before_instr(nir_instr *instr)
1808 {
1809 nir_cursor cursor;
1810 cursor.option = nir_cursor_before_instr;
1811 cursor.instr = instr;
1812 return cursor;
1813 }
1814
1815 static inline nir_cursor
1816 nir_after_instr(nir_instr *instr)
1817 {
1818 nir_cursor cursor;
1819 cursor.option = nir_cursor_after_instr;
1820 cursor.instr = instr;
1821 return cursor;
1822 }
1823
1824 static inline nir_cursor
1825 nir_after_block_before_jump(nir_block *block)
1826 {
1827 nir_instr *last_instr = nir_block_last_instr(block);
1828 if (last_instr && last_instr->type == nir_instr_type_jump) {
1829 return nir_before_instr(last_instr);
1830 } else {
1831 return nir_after_block(block);
1832 }
1833 }
1834
1835 static inline nir_cursor
1836 nir_before_cf_node(nir_cf_node *node)
1837 {
1838 if (node->type == nir_cf_node_block)
1839 return nir_before_block(nir_cf_node_as_block(node));
1840
1841 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1842 }
1843
1844 static inline nir_cursor
1845 nir_after_cf_node(nir_cf_node *node)
1846 {
1847 if (node->type == nir_cf_node_block)
1848 return nir_after_block(nir_cf_node_as_block(node));
1849
1850 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1851 }
1852
1853 static inline nir_cursor
1854 nir_after_cf_node_and_phis(nir_cf_node *node)
1855 {
1856 if (node->type == nir_cf_node_block)
1857 return nir_after_block(nir_cf_node_as_block(node));
1858
1859 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
1860 assert(block->cf_node.type == nir_cf_node_block);
1861
1862 nir_foreach_instr(block, instr) {
1863 if (instr->type != nir_instr_type_phi)
1864 return nir_before_instr(instr);
1865 }
1866 return nir_after_block(block);
1867 }
1868
1869 static inline nir_cursor
1870 nir_before_cf_list(struct exec_list *cf_list)
1871 {
1872 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1873 exec_list_get_head(cf_list), node);
1874 return nir_before_cf_node(first_node);
1875 }
1876
1877 static inline nir_cursor
1878 nir_after_cf_list(struct exec_list *cf_list)
1879 {
1880 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1881 exec_list_get_tail(cf_list), node);
1882 return nir_after_cf_node(last_node);
1883 }
1884
1885 /**
1886 * Insert a NIR instruction at the given cursor.
1887 *
1888 * Note: This does not update the cursor.
1889 */
1890 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1891
1892 static inline void
1893 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1894 {
1895 nir_instr_insert(nir_before_instr(instr), before);
1896 }
1897
1898 static inline void
1899 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1900 {
1901 nir_instr_insert(nir_after_instr(instr), after);
1902 }
1903
1904 static inline void
1905 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1906 {
1907 nir_instr_insert(nir_before_block(block), before);
1908 }
1909
1910 static inline void
1911 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1912 {
1913 nir_instr_insert(nir_after_block(block), after);
1914 }
1915
1916 static inline void
1917 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1918 {
1919 nir_instr_insert(nir_before_cf_node(node), before);
1920 }
1921
1922 static inline void
1923 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1924 {
1925 nir_instr_insert(nir_after_cf_node(node), after);
1926 }
1927
1928 static inline void
1929 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1930 {
1931 nir_instr_insert(nir_before_cf_list(list), before);
1932 }
1933
1934 static inline void
1935 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1936 {
1937 nir_instr_insert(nir_after_cf_list(list), after);
1938 }
1939
1940 void nir_instr_remove(nir_instr *instr);
1941
1942 /** @} */
1943
1944 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1945 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1946 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1947 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1948 void *state);
1949 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1950 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1951
1952 nir_const_value *nir_src_as_const_value(nir_src src);
1953 bool nir_src_is_dynamically_uniform(nir_src src);
1954 bool nir_srcs_equal(nir_src src1, nir_src src2);
1955 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1956 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1957 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1958 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1959 nir_dest new_dest);
1960
1961 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1962 unsigned num_components, const char *name);
1963 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1964 unsigned num_components, const char *name);
1965 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1966 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
1967 nir_instr *after_me);
1968
1969 /* visits basic blocks in source-code order */
1970 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1971 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1972 void *state);
1973 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1974 void *state);
1975 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1976 void *state);
1977
1978 /* If the following CF node is an if, this function returns that if.
1979 * Otherwise, it returns NULL.
1980 */
1981 nir_if *nir_block_get_following_if(nir_block *block);
1982
1983 nir_loop *nir_block_get_following_loop(nir_block *block);
1984
1985 void nir_index_local_regs(nir_function_impl *impl);
1986 void nir_index_global_regs(nir_shader *shader);
1987 void nir_index_ssa_defs(nir_function_impl *impl);
1988 unsigned nir_index_instrs(nir_function_impl *impl);
1989
1990 void nir_index_blocks(nir_function_impl *impl);
1991
1992 void nir_print_shader(nir_shader *shader, FILE *fp);
1993 void nir_print_instr(const nir_instr *instr, FILE *fp);
1994
1995 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
1996 nir_function_impl *nir_function_impl_clone(const nir_function_impl *impl);
1997
1998 #ifdef DEBUG
1999 void nir_validate_shader(nir_shader *shader);
2000 void nir_metadata_set_validation_flag(nir_shader *shader);
2001 void nir_metadata_check_validation_flag(nir_shader *shader);
2002 #else
2003 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2004 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2005 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2006 #endif /* DEBUG */
2007
2008 void nir_calc_dominance_impl(nir_function_impl *impl);
2009 void nir_calc_dominance(nir_shader *shader);
2010
2011 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2012 bool nir_block_dominates(nir_block *parent, nir_block *child);
2013
2014 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2015 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2016
2017 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2018 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2019
2020 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2021 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2022
2023 int nir_gs_count_vertices(const nir_shader *shader);
2024
2025 bool nir_split_var_copies(nir_shader *shader);
2026
2027 bool nir_lower_returns_impl(nir_function_impl *impl);
2028 bool nir_lower_returns(nir_shader *shader);
2029
2030 bool nir_inline_functions_impl(nir_function_impl *impl);
2031 bool nir_inline_functions(nir_shader *shader);
2032
2033 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2034 void nir_lower_var_copies(nir_shader *shader);
2035
2036 bool nir_lower_global_vars_to_local(nir_shader *shader);
2037
2038 bool nir_lower_locals_to_regs(nir_shader *shader);
2039
2040 void nir_lower_outputs_to_temporaries(nir_shader *shader);
2041
2042 void nir_lower_outputs_to_temporaries(nir_shader *shader);
2043
2044 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2045
2046 void nir_assign_var_locations(struct exec_list *var_list,
2047 unsigned *size,
2048 int (*type_size)(const struct glsl_type *));
2049
2050 void nir_lower_io(nir_shader *shader,
2051 nir_variable_mode mode,
2052 int (*type_size)(const struct glsl_type *));
2053 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2054 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2055
2056 void nir_lower_vars_to_ssa(nir_shader *shader);
2057
2058 bool nir_remove_dead_variables(nir_shader *shader);
2059
2060 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2061 bool nir_lower_vec_to_movs(nir_shader *shader);
2062 void nir_lower_alu_to_scalar(nir_shader *shader);
2063 void nir_lower_load_const_to_scalar(nir_shader *shader);
2064
2065 void nir_lower_phis_to_scalar(nir_shader *shader);
2066
2067 void nir_lower_samplers(nir_shader *shader,
2068 const struct gl_shader_program *shader_program);
2069
2070 bool nir_lower_system_values(nir_shader *shader);
2071
2072 typedef struct nir_lower_tex_options {
2073 /**
2074 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2075 * sampler types a texture projector is lowered.
2076 */
2077 unsigned lower_txp;
2078
2079 /**
2080 * If true, lower rect textures to 2D, using txs to fetch the
2081 * texture dimensions and dividing the texture coords by the
2082 * texture dims to normalize.
2083 */
2084 bool lower_rect;
2085
2086 /**
2087 * To emulate certain texture wrap modes, this can be used
2088 * to saturate the specified tex coord to [0.0, 1.0]. The
2089 * bits are according to sampler #, ie. if, for example:
2090 *
2091 * (conf->saturate_s & (1 << n))
2092 *
2093 * is true, then the s coord for sampler n is saturated.
2094 *
2095 * Note that clamping must happen *after* projector lowering
2096 * so any projected texture sample instruction with a clamped
2097 * coordinate gets automatically lowered, regardless of the
2098 * 'lower_txp' setting.
2099 */
2100 unsigned saturate_s;
2101 unsigned saturate_t;
2102 unsigned saturate_r;
2103
2104 /* Bitmask of samplers that need swizzling.
2105 *
2106 * If (swizzle_result & (1 << sampler_index)), then the swizzle in
2107 * swizzles[sampler_index] is applied to the result of the texturing
2108 * operation.
2109 */
2110 unsigned swizzle_result;
2111
2112 /* A swizzle for each sampler. Values 0-3 represent x, y, z, or w swizzles
2113 * while 4 and 5 represent 0 and 1 respectively.
2114 */
2115 uint8_t swizzles[32][4];
2116 } nir_lower_tex_options;
2117
2118 bool nir_lower_tex(nir_shader *shader,
2119 const nir_lower_tex_options *options);
2120
2121 void nir_lower_idiv(nir_shader *shader);
2122
2123 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2124 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2125
2126 void nir_lower_two_sided_color(nir_shader *shader);
2127
2128 void nir_lower_atomics(nir_shader *shader,
2129 const struct gl_shader_program *shader_program);
2130 void nir_lower_to_source_mods(nir_shader *shader);
2131
2132 bool nir_lower_gs_intrinsics(nir_shader *shader);
2133
2134 bool nir_normalize_cubemap_coords(nir_shader *shader);
2135
2136 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2137 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2138
2139 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2140 void nir_convert_to_ssa(nir_shader *shader);
2141
2142 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2143 * registers. If false, convert all values (even those not involved in a phi
2144 * node) to registers.
2145 */
2146 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2147
2148 bool nir_opt_algebraic(nir_shader *shader);
2149 bool nir_opt_algebraic_late(nir_shader *shader);
2150 bool nir_opt_constant_folding(nir_shader *shader);
2151
2152 bool nir_opt_global_to_local(nir_shader *shader);
2153
2154 bool nir_copy_prop(nir_shader *shader);
2155
2156 bool nir_opt_cse(nir_shader *shader);
2157
2158 bool nir_opt_dce(nir_shader *shader);
2159
2160 bool nir_opt_dead_cf(nir_shader *shader);
2161
2162 void nir_opt_gcm(nir_shader *shader);
2163
2164 bool nir_opt_peephole_select(nir_shader *shader);
2165
2166 bool nir_opt_remove_phis(nir_shader *shader);
2167
2168 bool nir_opt_undef(nir_shader *shader);
2169
2170 void nir_sweep(nir_shader *shader);
2171
2172 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2173 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2174
2175 #ifdef __cplusplus
2176 } /* extern "C" */
2177 #endif