nir/gather_info: Handle multi-slot variables in io bitfields
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_all = -1,
86 nir_var_shader_in,
87 nir_var_shader_out,
88 nir_var_global,
89 nir_var_local,
90 nir_var_uniform,
91 nir_var_shader_storage,
92 nir_var_system_value
93 } nir_variable_mode;
94
95 /**
96 * Data stored in an nir_constant
97 */
98 union nir_constant_data {
99 unsigned u[16];
100 int i[16];
101 float f[16];
102 bool b[16];
103 };
104
105 typedef struct nir_constant {
106 /**
107 * Value of the constant.
108 *
109 * The field used to back the values supplied by the constant is determined
110 * by the type associated with the \c nir_variable. Constants may be
111 * scalars, vectors, or matrices.
112 */
113 union nir_constant_data value;
114
115 /* we could get this from the var->type but makes clone *much* easier to
116 * not have to care about the type.
117 */
118 unsigned num_elements;
119
120 /* Array elements / Structure Fields */
121 struct nir_constant **elements;
122 } nir_constant;
123
124 /**
125 * \brief Layout qualifiers for gl_FragDepth.
126 *
127 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
128 * with a layout qualifier.
129 */
130 typedef enum {
131 nir_depth_layout_none, /**< No depth layout is specified. */
132 nir_depth_layout_any,
133 nir_depth_layout_greater,
134 nir_depth_layout_less,
135 nir_depth_layout_unchanged
136 } nir_depth_layout;
137
138 /**
139 * Either a uniform, global variable, shader input, or shader output. Based on
140 * ir_variable - it should be easy to translate between the two.
141 */
142
143 typedef struct {
144 struct exec_node node;
145
146 /**
147 * Declared type of the variable
148 */
149 const struct glsl_type *type;
150
151 /**
152 * Declared name of the variable
153 */
154 char *name;
155
156 struct nir_variable_data {
157
158 /**
159 * Is the variable read-only?
160 *
161 * This is set for variables declared as \c const, shader inputs,
162 * and uniforms.
163 */
164 unsigned read_only:1;
165 unsigned centroid:1;
166 unsigned sample:1;
167 unsigned patch:1;
168 unsigned invariant:1;
169
170 /**
171 * Storage class of the variable.
172 *
173 * \sa nir_variable_mode
174 */
175 nir_variable_mode mode:4;
176
177 /**
178 * Interpolation mode for shader inputs / outputs
179 *
180 * \sa glsl_interp_qualifier
181 */
182 unsigned interpolation:2;
183
184 /**
185 * \name ARB_fragment_coord_conventions
186 * @{
187 */
188 unsigned origin_upper_left:1;
189 unsigned pixel_center_integer:1;
190 /*@}*/
191
192 /**
193 * Was the location explicitly set in the shader?
194 *
195 * If the location is explicitly set in the shader, it \b cannot be changed
196 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
197 * no effect).
198 */
199 unsigned explicit_location:1;
200 unsigned explicit_index:1;
201
202 /**
203 * Was an initial binding explicitly set in the shader?
204 *
205 * If so, constant_initializer contains an integer nir_constant
206 * representing the initial binding point.
207 */
208 unsigned explicit_binding:1;
209
210 /**
211 * Does this variable have an initializer?
212 *
213 * This is used by the linker to cross-validiate initializers of global
214 * variables.
215 */
216 unsigned has_initializer:1;
217
218 /**
219 * Is this variable a generic output or input that has not yet been matched
220 * up to a variable in another stage of the pipeline?
221 *
222 * This is used by the linker as scratch storage while assigning locations
223 * to generic inputs and outputs.
224 */
225 unsigned is_unmatched_generic_inout:1;
226
227 /**
228 * If non-zero, then this variable may be packed along with other variables
229 * into a single varying slot, so this offset should be applied when
230 * accessing components. For example, an offset of 1 means that the x
231 * component of this variable is actually stored in component y of the
232 * location specified by \c location.
233 */
234 unsigned location_frac:2;
235
236 /**
237 * Non-zero if this variable was created by lowering a named interface
238 * block which was not an array.
239 *
240 * Note that this variable and \c from_named_ifc_block_array will never
241 * both be non-zero.
242 */
243 unsigned from_named_ifc_block_nonarray:1;
244
245 /**
246 * Non-zero if this variable was created by lowering a named interface
247 * block which was an array.
248 *
249 * Note that this variable and \c from_named_ifc_block_nonarray will never
250 * both be non-zero.
251 */
252 unsigned from_named_ifc_block_array:1;
253
254 /**
255 * \brief Layout qualifier for gl_FragDepth.
256 *
257 * This is not equal to \c ir_depth_layout_none if and only if this
258 * variable is \c gl_FragDepth and a layout qualifier is specified.
259 */
260 nir_depth_layout depth_layout;
261
262 /**
263 * Storage location of the base of this variable
264 *
265 * The precise meaning of this field depends on the nature of the variable.
266 *
267 * - Vertex shader input: one of the values from \c gl_vert_attrib.
268 * - Vertex shader output: one of the values from \c gl_varying_slot.
269 * - Geometry shader input: one of the values from \c gl_varying_slot.
270 * - Geometry shader output: one of the values from \c gl_varying_slot.
271 * - Fragment shader input: one of the values from \c gl_varying_slot.
272 * - Fragment shader output: one of the values from \c gl_frag_result.
273 * - Uniforms: Per-stage uniform slot number for default uniform block.
274 * - Uniforms: Index within the uniform block definition for UBO members.
275 * - Non-UBO Uniforms: uniform slot number.
276 * - Other: This field is not currently used.
277 *
278 * If the variable is a uniform, shader input, or shader output, and the
279 * slot has not been assigned, the value will be -1.
280 */
281 int location;
282
283 /**
284 * The actual location of the variable in the IR. Only valid for inputs
285 * and outputs.
286 */
287 unsigned int driver_location;
288
289 /**
290 * output index for dual source blending.
291 */
292 int index;
293
294 /**
295 * Descriptor set binding for sampler or UBO.
296 */
297 int descriptor_set;
298
299 /**
300 * Initial binding point for a sampler or UBO.
301 *
302 * For array types, this represents the binding point for the first element.
303 */
304 int binding;
305
306 /**
307 * Location an atomic counter is stored at.
308 */
309 struct {
310 unsigned offset;
311 } atomic;
312
313 /**
314 * ARB_shader_image_load_store qualifiers.
315 */
316 struct {
317 bool read_only; /**< "readonly" qualifier. */
318 bool write_only; /**< "writeonly" qualifier. */
319 bool coherent;
320 bool _volatile;
321 bool restrict_flag;
322
323 /** Image internal format if specified explicitly, otherwise GL_NONE. */
324 GLenum format;
325 } image;
326
327 /**
328 * Highest element accessed with a constant expression array index
329 *
330 * Not used for non-array variables.
331 */
332 unsigned max_array_access;
333
334 } data;
335
336 /**
337 * Built-in state that backs this uniform
338 *
339 * Once set at variable creation, \c state_slots must remain invariant.
340 * This is because, ideally, this array would be shared by all clones of
341 * this variable in the IR tree. In other words, we'd really like for it
342 * to be a fly-weight.
343 *
344 * If the variable is not a uniform, \c num_state_slots will be zero and
345 * \c state_slots will be \c NULL.
346 */
347 /*@{*/
348 unsigned num_state_slots; /**< Number of state slots used */
349 nir_state_slot *state_slots; /**< State descriptors. */
350 /*@}*/
351
352 /**
353 * Constant expression assigned in the initializer of the variable
354 */
355 nir_constant *constant_initializer;
356
357 /**
358 * For variables that are in an interface block or are an instance of an
359 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
360 *
361 * \sa ir_variable::location
362 */
363 const struct glsl_type *interface_type;
364 } nir_variable;
365
366 #define nir_foreach_variable(var, var_list) \
367 foreach_list_typed(nir_variable, var, node, var_list)
368
369 /**
370 * Returns the bits in the inputs_read, outputs_written, or
371 * system_values_read bitfield corresponding to this variable.
372 */
373 static inline uint64_t
374 nir_variable_get_io_mask(nir_variable *var, gl_shader_stage stage)
375 {
376 assert(var->data.mode == nir_var_shader_in ||
377 var->data.mode == nir_var_shader_out ||
378 var->data.mode == nir_var_system_value);
379 assert(var->data.location >= 0);
380
381 const struct glsl_type *var_type = var->type;
382 if (stage == MESA_SHADER_GEOMETRY && var->data.mode == nir_var_shader_in) {
383 /* Most geometry shader inputs are per-vertex arrays */
384 if (var->data.location >= VARYING_SLOT_VAR0)
385 assert(glsl_type_is_array(var_type));
386
387 if (glsl_type_is_array(var_type))
388 var_type = glsl_get_array_element(var_type);
389 }
390
391 unsigned slots = glsl_count_attribute_slots(var_type);
392 return ((1ull << slots) - 1) << var->data.location;
393 }
394
395 typedef struct {
396 struct exec_node node;
397
398 unsigned num_components; /** < number of vector components */
399 unsigned num_array_elems; /** < size of array (0 for no array) */
400
401 /** generic register index. */
402 unsigned index;
403
404 /** only for debug purposes, can be NULL */
405 const char *name;
406
407 /** whether this register is local (per-function) or global (per-shader) */
408 bool is_global;
409
410 /**
411 * If this flag is set to true, then accessing channels >= num_components
412 * is well-defined, and simply spills over to the next array element. This
413 * is useful for backends that can do per-component accessing, in
414 * particular scalar backends. By setting this flag and making
415 * num_components equal to 1, structures can be packed tightly into
416 * registers and then registers can be accessed per-component to get to
417 * each structure member, even if it crosses vec4 boundaries.
418 */
419 bool is_packed;
420
421 /** set of nir_src's where this register is used (read from) */
422 struct list_head uses;
423
424 /** set of nir_dest's where this register is defined (written to) */
425 struct list_head defs;
426
427 /** set of nir_if's where this register is used as a condition */
428 struct list_head if_uses;
429 } nir_register;
430
431 typedef enum {
432 nir_instr_type_alu,
433 nir_instr_type_call,
434 nir_instr_type_tex,
435 nir_instr_type_intrinsic,
436 nir_instr_type_load_const,
437 nir_instr_type_jump,
438 nir_instr_type_ssa_undef,
439 nir_instr_type_phi,
440 nir_instr_type_parallel_copy,
441 } nir_instr_type;
442
443 typedef struct nir_instr {
444 struct exec_node node;
445 nir_instr_type type;
446 struct nir_block *block;
447
448 /** generic instruction index. */
449 unsigned index;
450
451 /* A temporary for optimization and analysis passes to use for storing
452 * flags. For instance, DCE uses this to store the "dead/live" info.
453 */
454 uint8_t pass_flags;
455 } nir_instr;
456
457 static inline nir_instr *
458 nir_instr_next(nir_instr *instr)
459 {
460 struct exec_node *next = exec_node_get_next(&instr->node);
461 if (exec_node_is_tail_sentinel(next))
462 return NULL;
463 else
464 return exec_node_data(nir_instr, next, node);
465 }
466
467 static inline nir_instr *
468 nir_instr_prev(nir_instr *instr)
469 {
470 struct exec_node *prev = exec_node_get_prev(&instr->node);
471 if (exec_node_is_head_sentinel(prev))
472 return NULL;
473 else
474 return exec_node_data(nir_instr, prev, node);
475 }
476
477 static inline bool
478 nir_instr_is_first(nir_instr *instr)
479 {
480 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
481 }
482
483 static inline bool
484 nir_instr_is_last(nir_instr *instr)
485 {
486 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
487 }
488
489 typedef struct {
490 /** for debugging only, can be NULL */
491 const char* name;
492
493 /** generic SSA definition index. */
494 unsigned index;
495
496 /** Index into the live_in and live_out bitfields */
497 unsigned live_index;
498
499 nir_instr *parent_instr;
500
501 /** set of nir_instr's where this register is used (read from) */
502 struct list_head uses;
503
504 /** set of nir_if's where this register is used as a condition */
505 struct list_head if_uses;
506
507 uint8_t num_components;
508 } nir_ssa_def;
509
510 struct nir_src;
511
512 typedef struct {
513 nir_register *reg;
514 struct nir_src *indirect; /** < NULL for no indirect offset */
515 unsigned base_offset;
516
517 /* TODO use-def chain goes here */
518 } nir_reg_src;
519
520 typedef struct {
521 nir_instr *parent_instr;
522 struct list_head def_link;
523
524 nir_register *reg;
525 struct nir_src *indirect; /** < NULL for no indirect offset */
526 unsigned base_offset;
527
528 /* TODO def-use chain goes here */
529 } nir_reg_dest;
530
531 struct nir_if;
532
533 typedef struct nir_src {
534 union {
535 nir_instr *parent_instr;
536 struct nir_if *parent_if;
537 };
538
539 struct list_head use_link;
540
541 union {
542 nir_reg_src reg;
543 nir_ssa_def *ssa;
544 };
545
546 bool is_ssa;
547 } nir_src;
548
549 #ifdef __cplusplus
550 # define NIR_SRC_INIT nir_src()
551 #else
552 # define NIR_SRC_INIT (nir_src) { { NULL } }
553 #endif
554
555 #define nir_foreach_use(reg_or_ssa_def, src) \
556 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
557
558 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
559 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
560
561 #define nir_foreach_if_use(reg_or_ssa_def, src) \
562 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
563
564 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
565 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
566
567 typedef struct {
568 union {
569 nir_reg_dest reg;
570 nir_ssa_def ssa;
571 };
572
573 bool is_ssa;
574 } nir_dest;
575
576 #ifdef __cplusplus
577 # define NIR_DEST_INIT nir_dest()
578 #else
579 # define NIR_DEST_INIT (nir_dest) { { { NULL } } }
580 #endif
581
582 #define nir_foreach_def(reg, dest) \
583 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
584
585 #define nir_foreach_def_safe(reg, dest) \
586 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
587
588 static inline nir_src
589 nir_src_for_ssa(nir_ssa_def *def)
590 {
591 nir_src src = NIR_SRC_INIT;
592
593 src.is_ssa = true;
594 src.ssa = def;
595
596 return src;
597 }
598
599 static inline nir_src
600 nir_src_for_reg(nir_register *reg)
601 {
602 nir_src src = NIR_SRC_INIT;
603
604 src.is_ssa = false;
605 src.reg.reg = reg;
606 src.reg.indirect = NULL;
607 src.reg.base_offset = 0;
608
609 return src;
610 }
611
612 static inline nir_dest
613 nir_dest_for_reg(nir_register *reg)
614 {
615 nir_dest dest = NIR_DEST_INIT;
616
617 dest.reg.reg = reg;
618
619 return dest;
620 }
621
622 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
623 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
624
625 typedef struct {
626 nir_src src;
627
628 /**
629 * \name input modifiers
630 */
631 /*@{*/
632 /**
633 * For inputs interpreted as floating point, flips the sign bit. For
634 * inputs interpreted as integers, performs the two's complement negation.
635 */
636 bool negate;
637
638 /**
639 * Clears the sign bit for floating point values, and computes the integer
640 * absolute value for integers. Note that the negate modifier acts after
641 * the absolute value modifier, therefore if both are set then all inputs
642 * will become negative.
643 */
644 bool abs;
645 /*@}*/
646
647 /**
648 * For each input component, says which component of the register it is
649 * chosen from. Note that which elements of the swizzle are used and which
650 * are ignored are based on the write mask for most opcodes - for example,
651 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
652 * a swizzle of {2, x, 1, 0} where x means "don't care."
653 */
654 uint8_t swizzle[4];
655 } nir_alu_src;
656
657 typedef struct {
658 nir_dest dest;
659
660 /**
661 * \name saturate output modifier
662 *
663 * Only valid for opcodes that output floating-point numbers. Clamps the
664 * output to between 0.0 and 1.0 inclusive.
665 */
666
667 bool saturate;
668
669 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
670 } nir_alu_dest;
671
672 typedef enum {
673 nir_type_invalid = 0, /* Not a valid type */
674 nir_type_float,
675 nir_type_int,
676 nir_type_uint,
677 nir_type_bool
678 } nir_alu_type;
679
680 typedef enum {
681 NIR_OP_IS_COMMUTATIVE = (1 << 0),
682 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
683 } nir_op_algebraic_property;
684
685 typedef struct {
686 const char *name;
687
688 unsigned num_inputs;
689
690 /**
691 * The number of components in the output
692 *
693 * If non-zero, this is the size of the output and input sizes are
694 * explicitly given; swizzle and writemask are still in effect, but if
695 * the output component is masked out, then the input component may
696 * still be in use.
697 *
698 * If zero, the opcode acts in the standard, per-component manner; the
699 * operation is performed on each component (except the ones that are
700 * masked out) with the input being taken from the input swizzle for
701 * that component.
702 *
703 * The size of some of the inputs may be given (i.e. non-zero) even
704 * though output_size is zero; in that case, the inputs with a zero
705 * size act per-component, while the inputs with non-zero size don't.
706 */
707 unsigned output_size;
708
709 /**
710 * The type of vector that the instruction outputs. Note that the
711 * staurate modifier is only allowed on outputs with the float type.
712 */
713
714 nir_alu_type output_type;
715
716 /**
717 * The number of components in each input
718 */
719 unsigned input_sizes[4];
720
721 /**
722 * The type of vector that each input takes. Note that negate and
723 * absolute value are only allowed on inputs with int or float type and
724 * behave differently on the two.
725 */
726 nir_alu_type input_types[4];
727
728 nir_op_algebraic_property algebraic_properties;
729 } nir_op_info;
730
731 extern const nir_op_info nir_op_infos[nir_num_opcodes];
732
733 typedef struct nir_alu_instr {
734 nir_instr instr;
735 nir_op op;
736 nir_alu_dest dest;
737 nir_alu_src src[];
738 } nir_alu_instr;
739
740 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
741 nir_alu_instr *instr);
742 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
743 nir_alu_instr *instr);
744
745 /* is this source channel used? */
746 static inline bool
747 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
748 {
749 if (nir_op_infos[instr->op].input_sizes[src] > 0)
750 return channel < nir_op_infos[instr->op].input_sizes[src];
751
752 return (instr->dest.write_mask >> channel) & 1;
753 }
754
755 /*
756 * For instructions whose destinations are SSA, get the number of channels
757 * used for a source
758 */
759 static inline unsigned
760 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
761 {
762 assert(instr->dest.dest.is_ssa);
763
764 if (nir_op_infos[instr->op].input_sizes[src] > 0)
765 return nir_op_infos[instr->op].input_sizes[src];
766
767 return instr->dest.dest.ssa.num_components;
768 }
769
770 typedef enum {
771 nir_deref_type_var,
772 nir_deref_type_array,
773 nir_deref_type_struct
774 } nir_deref_type;
775
776 typedef struct nir_deref {
777 nir_deref_type deref_type;
778 struct nir_deref *child;
779 const struct glsl_type *type;
780 } nir_deref;
781
782 typedef struct {
783 nir_deref deref;
784
785 nir_variable *var;
786 } nir_deref_var;
787
788 /* This enum describes how the array is referenced. If the deref is
789 * direct then the base_offset is used. If the deref is indirect then then
790 * offset is given by base_offset + indirect. If the deref is a wildcard
791 * then the deref refers to all of the elements of the array at the same
792 * time. Wildcard dereferences are only ever allowed in copy_var
793 * intrinsics and the source and destination derefs must have matching
794 * wildcards.
795 */
796 typedef enum {
797 nir_deref_array_type_direct,
798 nir_deref_array_type_indirect,
799 nir_deref_array_type_wildcard,
800 } nir_deref_array_type;
801
802 typedef struct {
803 nir_deref deref;
804
805 nir_deref_array_type deref_array_type;
806 unsigned base_offset;
807 nir_src indirect;
808 } nir_deref_array;
809
810 typedef struct {
811 nir_deref deref;
812
813 unsigned index;
814 } nir_deref_struct;
815
816 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
817 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
818 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
819
820 /* Returns the last deref in the chain. */
821 static inline nir_deref *
822 nir_deref_tail(nir_deref *deref)
823 {
824 while (deref->child)
825 deref = deref->child;
826 return deref;
827 }
828
829 typedef struct {
830 nir_instr instr;
831
832 unsigned num_params;
833 nir_deref_var **params;
834 nir_deref_var *return_deref;
835
836 struct nir_function_overload *callee;
837 } nir_call_instr;
838
839 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
840 num_variables, num_indices, flags) \
841 nir_intrinsic_##name,
842
843 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
844
845 typedef enum {
846 #include "nir_intrinsics.h"
847 nir_num_intrinsics = nir_last_intrinsic + 1
848 } nir_intrinsic_op;
849
850 #undef INTRINSIC
851 #undef LAST_INTRINSIC
852
853 /** Represents an intrinsic
854 *
855 * An intrinsic is an instruction type for handling things that are
856 * more-or-less regular operations but don't just consume and produce SSA
857 * values like ALU operations do. Intrinsics are not for things that have
858 * special semantic meaning such as phi nodes and parallel copies.
859 * Examples of intrinsics include variable load/store operations, system
860 * value loads, and the like. Even though texturing more-or-less falls
861 * under this category, texturing is its own instruction type because
862 * trying to represent texturing with intrinsics would lead to a
863 * combinatorial explosion of intrinsic opcodes.
864 *
865 * By having a single instruction type for handling a lot of different
866 * cases, optimization passes can look for intrinsics and, for the most
867 * part, completely ignore them. Each intrinsic type also has a few
868 * possible flags that govern whether or not they can be reordered or
869 * eliminated. That way passes like dead code elimination can still work
870 * on intrisics without understanding the meaning of each.
871 *
872 * Each intrinsic has some number of constant indices, some number of
873 * variables, and some number of sources. What these sources, variables,
874 * and indices mean depends on the intrinsic and is documented with the
875 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
876 * instructions are the only types of instruction that can operate on
877 * variables.
878 */
879 typedef struct {
880 nir_instr instr;
881
882 nir_intrinsic_op intrinsic;
883
884 nir_dest dest;
885
886 /** number of components if this is a vectorized intrinsic
887 *
888 * Similarly to ALU operations, some intrinsics are vectorized.
889 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
890 * For vectorized intrinsics, the num_components field specifies the
891 * number of destination components and the number of source components
892 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
893 */
894 uint8_t num_components;
895
896 int const_index[3];
897
898 nir_deref_var *variables[2];
899
900 nir_src src[];
901 } nir_intrinsic_instr;
902
903 /**
904 * \name NIR intrinsics semantic flags
905 *
906 * information about what the compiler can do with the intrinsics.
907 *
908 * \sa nir_intrinsic_info::flags
909 */
910 typedef enum {
911 /**
912 * whether the intrinsic can be safely eliminated if none of its output
913 * value is not being used.
914 */
915 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
916
917 /**
918 * Whether the intrinsic can be reordered with respect to any other
919 * intrinsic, i.e. whether the only reordering dependencies of the
920 * intrinsic are due to the register reads/writes.
921 */
922 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
923 } nir_intrinsic_semantic_flag;
924
925 #define NIR_INTRINSIC_MAX_INPUTS 4
926
927 typedef struct {
928 const char *name;
929
930 unsigned num_srcs; /** < number of register/SSA inputs */
931
932 /** number of components of each input register
933 *
934 * If this value is 0, the number of components is given by the
935 * num_components field of nir_intrinsic_instr.
936 */
937 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
938
939 bool has_dest;
940
941 /** number of components of the output register
942 *
943 * If this value is 0, the number of components is given by the
944 * num_components field of nir_intrinsic_instr.
945 */
946 unsigned dest_components;
947
948 /** the number of inputs/outputs that are variables */
949 unsigned num_variables;
950
951 /** the number of constant indices used by the intrinsic */
952 unsigned num_indices;
953
954 /** semantic flags for calls to this intrinsic */
955 nir_intrinsic_semantic_flag flags;
956 } nir_intrinsic_info;
957
958 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
959
960 /**
961 * \group texture information
962 *
963 * This gives semantic information about textures which is useful to the
964 * frontend, the backend, and lowering passes, but not the optimizer.
965 */
966
967 typedef enum {
968 nir_tex_src_coord,
969 nir_tex_src_projector,
970 nir_tex_src_comparitor, /* shadow comparitor */
971 nir_tex_src_offset,
972 nir_tex_src_bias,
973 nir_tex_src_lod,
974 nir_tex_src_ms_index, /* MSAA sample index */
975 nir_tex_src_ddx,
976 nir_tex_src_ddy,
977 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
978 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
979 nir_num_tex_src_types
980 } nir_tex_src_type;
981
982 typedef struct {
983 nir_src src;
984 nir_tex_src_type src_type;
985 } nir_tex_src;
986
987 typedef enum {
988 nir_texop_tex, /**< Regular texture look-up */
989 nir_texop_txb, /**< Texture look-up with LOD bias */
990 nir_texop_txl, /**< Texture look-up with explicit LOD */
991 nir_texop_txd, /**< Texture look-up with partial derivatvies */
992 nir_texop_txf, /**< Texel fetch with explicit LOD */
993 nir_texop_txf_ms, /**< Multisample texture fetch */
994 nir_texop_txs, /**< Texture size */
995 nir_texop_lod, /**< Texture lod query */
996 nir_texop_tg4, /**< Texture gather */
997 nir_texop_query_levels, /**< Texture levels query */
998 nir_texop_texture_samples, /**< Texture samples query */
999 nir_texop_samples_identical, /**< Query whether all samples are definitely
1000 * identical.
1001 */
1002 } nir_texop;
1003
1004 typedef struct {
1005 nir_instr instr;
1006
1007 enum glsl_sampler_dim sampler_dim;
1008 nir_alu_type dest_type;
1009
1010 nir_texop op;
1011 nir_dest dest;
1012 nir_tex_src *src;
1013 unsigned num_srcs, coord_components;
1014 bool is_array, is_shadow;
1015
1016 /**
1017 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1018 * components or the new-style shadow that outputs 1 component.
1019 */
1020 bool is_new_style_shadow;
1021
1022 /* constant offset - must be 0 if the offset source is used */
1023 int const_offset[4];
1024
1025 /* gather component selector */
1026 unsigned component : 2;
1027
1028 /** The texture index
1029 *
1030 * If this texture instruction has a nir_tex_src_texture_offset source,
1031 * then the texture index is given by texture_index + texture_offset.
1032 */
1033 unsigned texture_index;
1034
1035 /** The size of the texture array or 0 if it's not an array */
1036 unsigned texture_array_size;
1037
1038 /** The texture deref
1039 *
1040 * If both this and `sampler` are both NULL, use texture_index instead.
1041 * If `texture` is NULL, but `sampler` is non-NULL, then the texture is
1042 * implied from the sampler.
1043 */
1044 nir_deref_var *texture;
1045
1046 /** The sampler index
1047 *
1048 * If this texture instruction has a nir_tex_src_sampler_offset source,
1049 * then the sampler index is given by sampler_index + sampler_offset.
1050 */
1051 unsigned sampler_index;
1052
1053 /** The sampler deref
1054 *
1055 * If this is null, use sampler_index instead.
1056 */
1057 nir_deref_var *sampler;
1058 } nir_tex_instr;
1059
1060 static inline unsigned
1061 nir_tex_instr_dest_size(nir_tex_instr *instr)
1062 {
1063 switch (instr->op) {
1064 case nir_texop_txs: {
1065 unsigned ret;
1066 switch (instr->sampler_dim) {
1067 case GLSL_SAMPLER_DIM_1D:
1068 case GLSL_SAMPLER_DIM_BUF:
1069 ret = 1;
1070 break;
1071 case GLSL_SAMPLER_DIM_2D:
1072 case GLSL_SAMPLER_DIM_CUBE:
1073 case GLSL_SAMPLER_DIM_MS:
1074 case GLSL_SAMPLER_DIM_RECT:
1075 case GLSL_SAMPLER_DIM_EXTERNAL:
1076 ret = 2;
1077 break;
1078 case GLSL_SAMPLER_DIM_3D:
1079 ret = 3;
1080 break;
1081 default:
1082 unreachable("not reached");
1083 }
1084 if (instr->is_array)
1085 ret++;
1086 return ret;
1087 }
1088
1089 case nir_texop_lod:
1090 return 2;
1091
1092 case nir_texop_texture_samples:
1093 case nir_texop_query_levels:
1094 case nir_texop_samples_identical:
1095 return 1;
1096
1097 default:
1098 if (instr->is_shadow && instr->is_new_style_shadow)
1099 return 1;
1100
1101 return 4;
1102 }
1103 }
1104
1105 /* Returns true if this texture operation queries something about the texture
1106 * rather than actually sampling it.
1107 */
1108 static inline bool
1109 nir_tex_instr_is_query(nir_tex_instr *instr)
1110 {
1111 switch (instr->op) {
1112 case nir_texop_txs:
1113 case nir_texop_lod:
1114 case nir_texop_texture_samples:
1115 case nir_texop_query_levels:
1116 return true;
1117 case nir_texop_tex:
1118 case nir_texop_txb:
1119 case nir_texop_txl:
1120 case nir_texop_txd:
1121 case nir_texop_txf:
1122 case nir_texop_txf_ms:
1123 case nir_texop_tg4:
1124 return false;
1125 default:
1126 unreachable("Invalid texture opcode");
1127 }
1128 }
1129
1130 static inline unsigned
1131 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1132 {
1133 if (instr->src[src].src_type == nir_tex_src_coord)
1134 return instr->coord_components;
1135
1136
1137 if (instr->src[src].src_type == nir_tex_src_offset ||
1138 instr->src[src].src_type == nir_tex_src_ddx ||
1139 instr->src[src].src_type == nir_tex_src_ddy) {
1140 if (instr->is_array)
1141 return instr->coord_components - 1;
1142 else
1143 return instr->coord_components;
1144 }
1145
1146 return 1;
1147 }
1148
1149 static inline int
1150 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1151 {
1152 for (unsigned i = 0; i < instr->num_srcs; i++)
1153 if (instr->src[i].src_type == type)
1154 return (int) i;
1155
1156 return -1;
1157 }
1158
1159 typedef struct {
1160 union {
1161 float f[4];
1162 int32_t i[4];
1163 uint32_t u[4];
1164 };
1165 } nir_const_value;
1166
1167 typedef struct {
1168 nir_instr instr;
1169
1170 nir_const_value value;
1171
1172 nir_ssa_def def;
1173 } nir_load_const_instr;
1174
1175 typedef enum {
1176 nir_jump_return,
1177 nir_jump_break,
1178 nir_jump_continue,
1179 } nir_jump_type;
1180
1181 typedef struct {
1182 nir_instr instr;
1183 nir_jump_type type;
1184 } nir_jump_instr;
1185
1186 /* creates a new SSA variable in an undefined state */
1187
1188 typedef struct {
1189 nir_instr instr;
1190 nir_ssa_def def;
1191 } nir_ssa_undef_instr;
1192
1193 typedef struct {
1194 struct exec_node node;
1195
1196 /* The predecessor block corresponding to this source */
1197 struct nir_block *pred;
1198
1199 nir_src src;
1200 } nir_phi_src;
1201
1202 #define nir_foreach_phi_src(phi, entry) \
1203 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1204 #define nir_foreach_phi_src_safe(phi, entry) \
1205 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1206
1207 typedef struct {
1208 nir_instr instr;
1209
1210 struct exec_list srcs; /** < list of nir_phi_src */
1211
1212 nir_dest dest;
1213 } nir_phi_instr;
1214
1215 typedef struct {
1216 struct exec_node node;
1217 nir_src src;
1218 nir_dest dest;
1219 } nir_parallel_copy_entry;
1220
1221 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1222 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1223
1224 typedef struct {
1225 nir_instr instr;
1226
1227 /* A list of nir_parallel_copy_entry's. The sources of all of the
1228 * entries are copied to the corresponding destinations "in parallel".
1229 * In other words, if we have two entries: a -> b and b -> a, the values
1230 * get swapped.
1231 */
1232 struct exec_list entries;
1233 } nir_parallel_copy_instr;
1234
1235 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1236 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1237 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1238 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1239 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1240 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1241 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1242 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1243 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1244 nir_parallel_copy_instr, instr)
1245
1246 /*
1247 * Control flow
1248 *
1249 * Control flow consists of a tree of control flow nodes, which include
1250 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1251 * instructions that always run start-to-finish. Each basic block also keeps
1252 * track of its successors (blocks which may run immediately after the current
1253 * block) and predecessors (blocks which could have run immediately before the
1254 * current block). Each function also has a start block and an end block which
1255 * all return statements point to (which is always empty). Together, all the
1256 * blocks with their predecessors and successors make up the control flow
1257 * graph (CFG) of the function. There are helpers that modify the tree of
1258 * control flow nodes while modifying the CFG appropriately; these should be
1259 * used instead of modifying the tree directly.
1260 */
1261
1262 typedef enum {
1263 nir_cf_node_block,
1264 nir_cf_node_if,
1265 nir_cf_node_loop,
1266 nir_cf_node_function
1267 } nir_cf_node_type;
1268
1269 typedef struct nir_cf_node {
1270 struct exec_node node;
1271 nir_cf_node_type type;
1272 struct nir_cf_node *parent;
1273 } nir_cf_node;
1274
1275 typedef struct nir_block {
1276 nir_cf_node cf_node;
1277
1278 struct exec_list instr_list; /** < list of nir_instr */
1279
1280 /** generic block index; generated by nir_index_blocks */
1281 unsigned index;
1282
1283 /*
1284 * Each block can only have up to 2 successors, so we put them in a simple
1285 * array - no need for anything more complicated.
1286 */
1287 struct nir_block *successors[2];
1288
1289 /* Set of nir_block predecessors in the CFG */
1290 struct set *predecessors;
1291
1292 /*
1293 * this node's immediate dominator in the dominance tree - set to NULL for
1294 * the start block.
1295 */
1296 struct nir_block *imm_dom;
1297
1298 /* This node's children in the dominance tree */
1299 unsigned num_dom_children;
1300 struct nir_block **dom_children;
1301
1302 /* Set of nir_block's on the dominance frontier of this block */
1303 struct set *dom_frontier;
1304
1305 /*
1306 * These two indices have the property that dom_{pre,post}_index for each
1307 * child of this block in the dominance tree will always be between
1308 * dom_pre_index and dom_post_index for this block, which makes testing if
1309 * a given block is dominated by another block an O(1) operation.
1310 */
1311 unsigned dom_pre_index, dom_post_index;
1312
1313 /* live in and out for this block; used for liveness analysis */
1314 BITSET_WORD *live_in;
1315 BITSET_WORD *live_out;
1316 } nir_block;
1317
1318 static inline nir_instr *
1319 nir_block_first_instr(nir_block *block)
1320 {
1321 struct exec_node *head = exec_list_get_head(&block->instr_list);
1322 return exec_node_data(nir_instr, head, node);
1323 }
1324
1325 static inline nir_instr *
1326 nir_block_last_instr(nir_block *block)
1327 {
1328 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1329 return exec_node_data(nir_instr, tail, node);
1330 }
1331
1332 #define nir_foreach_instr(block, instr) \
1333 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1334 #define nir_foreach_instr_reverse(block, instr) \
1335 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1336 #define nir_foreach_instr_safe(block, instr) \
1337 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1338 #define nir_foreach_instr_reverse_safe(block, instr) \
1339 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1340
1341 typedef struct nir_if {
1342 nir_cf_node cf_node;
1343 nir_src condition;
1344
1345 struct exec_list then_list; /** < list of nir_cf_node */
1346 struct exec_list else_list; /** < list of nir_cf_node */
1347 } nir_if;
1348
1349 static inline nir_cf_node *
1350 nir_if_first_then_node(nir_if *if_stmt)
1351 {
1352 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1353 return exec_node_data(nir_cf_node, head, node);
1354 }
1355
1356 static inline nir_cf_node *
1357 nir_if_last_then_node(nir_if *if_stmt)
1358 {
1359 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1360 return exec_node_data(nir_cf_node, tail, node);
1361 }
1362
1363 static inline nir_cf_node *
1364 nir_if_first_else_node(nir_if *if_stmt)
1365 {
1366 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1367 return exec_node_data(nir_cf_node, head, node);
1368 }
1369
1370 static inline nir_cf_node *
1371 nir_if_last_else_node(nir_if *if_stmt)
1372 {
1373 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1374 return exec_node_data(nir_cf_node, tail, node);
1375 }
1376
1377 typedef struct {
1378 nir_cf_node cf_node;
1379
1380 struct exec_list body; /** < list of nir_cf_node */
1381 } nir_loop;
1382
1383 static inline nir_cf_node *
1384 nir_loop_first_cf_node(nir_loop *loop)
1385 {
1386 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1387 }
1388
1389 static inline nir_cf_node *
1390 nir_loop_last_cf_node(nir_loop *loop)
1391 {
1392 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1393 }
1394
1395 /**
1396 * Various bits of metadata that can may be created or required by
1397 * optimization and analysis passes
1398 */
1399 typedef enum {
1400 nir_metadata_none = 0x0,
1401 nir_metadata_block_index = 0x1,
1402 nir_metadata_dominance = 0x2,
1403 nir_metadata_live_ssa_defs = 0x4,
1404 nir_metadata_not_properly_reset = 0x8,
1405 } nir_metadata;
1406
1407 typedef struct {
1408 nir_cf_node cf_node;
1409
1410 /** pointer to the overload of which this is an implementation */
1411 struct nir_function_overload *overload;
1412
1413 struct exec_list body; /** < list of nir_cf_node */
1414
1415 nir_block *end_block;
1416
1417 /** list for all local variables in the function */
1418 struct exec_list locals;
1419
1420 /** array of variables used as parameters */
1421 unsigned num_params;
1422 nir_variable **params;
1423
1424 /** variable used to hold the result of the function */
1425 nir_variable *return_var;
1426
1427 /** list of local registers in the function */
1428 struct exec_list registers;
1429
1430 /** next available local register index */
1431 unsigned reg_alloc;
1432
1433 /** next available SSA value index */
1434 unsigned ssa_alloc;
1435
1436 /* total number of basic blocks, only valid when block_index_dirty = false */
1437 unsigned num_blocks;
1438
1439 nir_metadata valid_metadata;
1440 } nir_function_impl;
1441
1442 static inline nir_block *
1443 nir_start_block(nir_function_impl *impl)
1444 {
1445 return (nir_block *) exec_list_get_head(&impl->body);
1446 }
1447
1448 static inline nir_cf_node *
1449 nir_cf_node_next(nir_cf_node *node)
1450 {
1451 struct exec_node *next = exec_node_get_next(&node->node);
1452 if (exec_node_is_tail_sentinel(next))
1453 return NULL;
1454 else
1455 return exec_node_data(nir_cf_node, next, node);
1456 }
1457
1458 static inline nir_cf_node *
1459 nir_cf_node_prev(nir_cf_node *node)
1460 {
1461 struct exec_node *prev = exec_node_get_prev(&node->node);
1462 if (exec_node_is_head_sentinel(prev))
1463 return NULL;
1464 else
1465 return exec_node_data(nir_cf_node, prev, node);
1466 }
1467
1468 static inline bool
1469 nir_cf_node_is_first(const nir_cf_node *node)
1470 {
1471 return exec_node_is_head_sentinel(node->node.prev);
1472 }
1473
1474 static inline bool
1475 nir_cf_node_is_last(const nir_cf_node *node)
1476 {
1477 return exec_node_is_tail_sentinel(node->node.next);
1478 }
1479
1480 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1481 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1482 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1483 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1484
1485 typedef enum {
1486 nir_parameter_in,
1487 nir_parameter_out,
1488 nir_parameter_inout,
1489 } nir_parameter_type;
1490
1491 typedef struct {
1492 nir_parameter_type param_type;
1493 const struct glsl_type *type;
1494 } nir_parameter;
1495
1496 typedef struct nir_function_overload {
1497 struct exec_node node;
1498
1499 unsigned num_params;
1500 nir_parameter *params;
1501 const struct glsl_type *return_type;
1502
1503 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1504
1505 /** pointer to the function of which this is an overload */
1506 struct nir_function *function;
1507 } nir_function_overload;
1508
1509 typedef struct nir_function {
1510 struct exec_node node;
1511
1512 struct exec_list overload_list; /** < list of nir_function_overload */
1513 const char *name;
1514 struct nir_shader *shader;
1515 } nir_function;
1516
1517 #define nir_function_first_overload(func) \
1518 exec_node_data(nir_function_overload, \
1519 exec_list_get_head(&(func)->overload_list), node)
1520
1521 typedef struct nir_shader_compiler_options {
1522 bool lower_ffma;
1523 bool lower_fdiv;
1524 bool lower_flrp;
1525 bool lower_fpow;
1526 bool lower_fsat;
1527 bool lower_fsqrt;
1528 /** lowers fneg and ineg to fsub and isub. */
1529 bool lower_negate;
1530 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1531 bool lower_sub;
1532
1533 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1534 bool lower_scmp;
1535
1536 /* Does the native fdot instruction replicate its result for four
1537 * components? If so, then opt_algebraic_late will turn all fdotN
1538 * instructions into fdot_replicatedN instructions.
1539 */
1540 bool fdot_replicates;
1541
1542 /** lowers ffract to fsub+ffloor: */
1543 bool lower_ffract;
1544
1545 /**
1546 * Does the driver support real 32-bit integers? (Otherwise, integers
1547 * are simulated by floats.)
1548 */
1549 bool native_integers;
1550 } nir_shader_compiler_options;
1551
1552 typedef struct nir_shader_info {
1553 const char *name;
1554
1555 /* Descriptive name provided by the client; may be NULL */
1556 const char *label;
1557
1558 /* Number of textures used by this shader */
1559 unsigned num_textures;
1560 /* Number of uniform buffers used by this shader */
1561 unsigned num_ubos;
1562 /* Number of atomic buffers used by this shader */
1563 unsigned num_abos;
1564 /* Number of shader storage buffers used by this shader */
1565 unsigned num_ssbos;
1566 /* Number of images used by this shader */
1567 unsigned num_images;
1568
1569 /* Which inputs are actually read */
1570 uint64_t inputs_read;
1571 /* Which outputs are actually written */
1572 uint64_t outputs_written;
1573 /* Which system values are actually read */
1574 uint64_t system_values_read;
1575
1576 /* Which patch inputs are actually read */
1577 uint32_t patch_inputs_read;
1578 /* Which patch outputs are actually written */
1579 uint32_t patch_outputs_written;
1580
1581 /* Whether or not this shader ever uses textureGather() */
1582 bool uses_texture_gather;
1583
1584 /* Whether or not this shader uses the gl_ClipDistance output */
1585 bool uses_clip_distance_out;
1586
1587 /* Whether or not separate shader objects were used */
1588 bool separate_shader;
1589
1590 /** Was this shader linked with any transform feedback varyings? */
1591 bool has_transform_feedback_varyings;
1592
1593 union {
1594 struct {
1595 /** The number of vertices recieves per input primitive */
1596 unsigned vertices_in;
1597
1598 /** The output primitive type (GL enum value) */
1599 unsigned output_primitive;
1600
1601 /** The maximum number of vertices the geometry shader might write. */
1602 unsigned vertices_out;
1603
1604 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1605 unsigned invocations;
1606
1607 /** Whether or not this shader uses EndPrimitive */
1608 bool uses_end_primitive;
1609
1610 /** Whether or not this shader uses non-zero streams */
1611 bool uses_streams;
1612 } gs;
1613
1614 struct {
1615 bool uses_discard;
1616
1617 /**
1618 * Whether early fragment tests are enabled as defined by
1619 * ARB_shader_image_load_store.
1620 */
1621 bool early_fragment_tests;
1622
1623 /** gl_FragDepth layout for ARB_conservative_depth. */
1624 enum gl_frag_depth_layout depth_layout;
1625 } fs;
1626
1627 struct {
1628 unsigned local_size[3];
1629 } cs;
1630
1631 struct {
1632 /** The number of vertices in the TCS output patch. */
1633 unsigned vertices_out;
1634 } tcs;
1635 };
1636 } nir_shader_info;
1637
1638 typedef struct nir_shader {
1639 /** list of uniforms (nir_variable) */
1640 struct exec_list uniforms;
1641
1642 /** list of inputs (nir_variable) */
1643 struct exec_list inputs;
1644
1645 /** list of outputs (nir_variable) */
1646 struct exec_list outputs;
1647
1648 /** Set of driver-specific options for the shader.
1649 *
1650 * The memory for the options is expected to be kept in a single static
1651 * copy by the driver.
1652 */
1653 const struct nir_shader_compiler_options *options;
1654
1655 /** Various bits of compile-time information about a given shader */
1656 struct nir_shader_info info;
1657
1658 /** list of global variables in the shader (nir_variable) */
1659 struct exec_list globals;
1660
1661 /** list of system value variables in the shader (nir_variable) */
1662 struct exec_list system_values;
1663
1664 struct exec_list functions; /** < list of nir_function */
1665
1666 /** list of global register in the shader */
1667 struct exec_list registers;
1668
1669 /** next available global register index */
1670 unsigned reg_alloc;
1671
1672 /**
1673 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1674 * access plus one
1675 */
1676 unsigned num_inputs, num_uniforms, num_outputs;
1677
1678 /** The shader stage, such as MESA_SHADER_VERTEX. */
1679 gl_shader_stage stage;
1680 } nir_shader;
1681
1682 #define nir_foreach_overload(shader, overload) \
1683 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1684 foreach_list_typed(nir_function_overload, overload, node, \
1685 &(func)->overload_list)
1686
1687 nir_shader *nir_shader_create(void *mem_ctx,
1688 gl_shader_stage stage,
1689 const nir_shader_compiler_options *options);
1690
1691 /** creates a register, including assigning it an index and adding it to the list */
1692 nir_register *nir_global_reg_create(nir_shader *shader);
1693
1694 nir_register *nir_local_reg_create(nir_function_impl *impl);
1695
1696 void nir_reg_remove(nir_register *reg);
1697
1698 /** Adds a variable to the appropreate list in nir_shader */
1699 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1700
1701 static inline void
1702 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1703 {
1704 assert(var->data.mode == nir_var_local);
1705 exec_list_push_tail(&impl->locals, &var->node);
1706 }
1707
1708 /** creates a variable, sets a few defaults, and adds it to the list */
1709 nir_variable *nir_variable_create(nir_shader *shader,
1710 nir_variable_mode mode,
1711 const struct glsl_type *type,
1712 const char *name);
1713 /** creates a local variable and adds it to the list */
1714 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1715 const struct glsl_type *type,
1716 const char *name);
1717
1718 /** creates a function and adds it to the shader's list of functions */
1719 nir_function *nir_function_create(nir_shader *shader, const char *name);
1720
1721 /** creates a null function returning null */
1722 nir_function_overload *nir_function_overload_create(nir_function *func);
1723
1724 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1725 /** creates a function_impl that isn't tied to any particular overload */
1726 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1727
1728 nir_block *nir_block_create(nir_shader *shader);
1729 nir_if *nir_if_create(nir_shader *shader);
1730 nir_loop *nir_loop_create(nir_shader *shader);
1731
1732 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1733
1734 /** requests that the given pieces of metadata be generated */
1735 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1736 /** dirties all but the preserved metadata */
1737 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1738
1739 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1740 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1741
1742 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1743
1744 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1745 unsigned num_components);
1746
1747 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1748 nir_intrinsic_op op);
1749
1750 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1751 nir_function_overload *callee);
1752
1753 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1754
1755 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1756
1757 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1758
1759 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1760 unsigned num_components);
1761
1762 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1763 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1764 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1765
1766 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1767
1768 nir_load_const_instr *
1769 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1770
1771 /**
1772 * NIR Cursors and Instruction Insertion API
1773 * @{
1774 *
1775 * A tiny struct representing a point to insert/extract instructions or
1776 * control flow nodes. Helps reduce the combinatorial explosion of possible
1777 * points to insert/extract.
1778 *
1779 * \sa nir_control_flow.h
1780 */
1781 typedef enum {
1782 nir_cursor_before_block,
1783 nir_cursor_after_block,
1784 nir_cursor_before_instr,
1785 nir_cursor_after_instr,
1786 } nir_cursor_option;
1787
1788 typedef struct {
1789 nir_cursor_option option;
1790 union {
1791 nir_block *block;
1792 nir_instr *instr;
1793 };
1794 } nir_cursor;
1795
1796 static inline nir_block *
1797 nir_cursor_current_block(nir_cursor cursor)
1798 {
1799 if (cursor.option == nir_cursor_before_instr ||
1800 cursor.option == nir_cursor_after_instr) {
1801 return cursor.instr->block;
1802 } else {
1803 return cursor.block;
1804 }
1805 }
1806
1807 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1808
1809 static inline nir_cursor
1810 nir_before_block(nir_block *block)
1811 {
1812 nir_cursor cursor;
1813 cursor.option = nir_cursor_before_block;
1814 cursor.block = block;
1815 return cursor;
1816 }
1817
1818 static inline nir_cursor
1819 nir_after_block(nir_block *block)
1820 {
1821 nir_cursor cursor;
1822 cursor.option = nir_cursor_after_block;
1823 cursor.block = block;
1824 return cursor;
1825 }
1826
1827 static inline nir_cursor
1828 nir_before_instr(nir_instr *instr)
1829 {
1830 nir_cursor cursor;
1831 cursor.option = nir_cursor_before_instr;
1832 cursor.instr = instr;
1833 return cursor;
1834 }
1835
1836 static inline nir_cursor
1837 nir_after_instr(nir_instr *instr)
1838 {
1839 nir_cursor cursor;
1840 cursor.option = nir_cursor_after_instr;
1841 cursor.instr = instr;
1842 return cursor;
1843 }
1844
1845 static inline nir_cursor
1846 nir_after_block_before_jump(nir_block *block)
1847 {
1848 nir_instr *last_instr = nir_block_last_instr(block);
1849 if (last_instr && last_instr->type == nir_instr_type_jump) {
1850 return nir_before_instr(last_instr);
1851 } else {
1852 return nir_after_block(block);
1853 }
1854 }
1855
1856 static inline nir_cursor
1857 nir_before_cf_node(nir_cf_node *node)
1858 {
1859 if (node->type == nir_cf_node_block)
1860 return nir_before_block(nir_cf_node_as_block(node));
1861
1862 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1863 }
1864
1865 static inline nir_cursor
1866 nir_after_cf_node(nir_cf_node *node)
1867 {
1868 if (node->type == nir_cf_node_block)
1869 return nir_after_block(nir_cf_node_as_block(node));
1870
1871 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1872 }
1873
1874 static inline nir_cursor
1875 nir_before_cf_list(struct exec_list *cf_list)
1876 {
1877 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1878 exec_list_get_head(cf_list), node);
1879 return nir_before_cf_node(first_node);
1880 }
1881
1882 static inline nir_cursor
1883 nir_after_cf_list(struct exec_list *cf_list)
1884 {
1885 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1886 exec_list_get_tail(cf_list), node);
1887 return nir_after_cf_node(last_node);
1888 }
1889
1890 /**
1891 * Insert a NIR instruction at the given cursor.
1892 *
1893 * Note: This does not update the cursor.
1894 */
1895 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1896
1897 static inline void
1898 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1899 {
1900 nir_instr_insert(nir_before_instr(instr), before);
1901 }
1902
1903 static inline void
1904 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1905 {
1906 nir_instr_insert(nir_after_instr(instr), after);
1907 }
1908
1909 static inline void
1910 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1911 {
1912 nir_instr_insert(nir_before_block(block), before);
1913 }
1914
1915 static inline void
1916 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1917 {
1918 nir_instr_insert(nir_after_block(block), after);
1919 }
1920
1921 static inline void
1922 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1923 {
1924 nir_instr_insert(nir_before_cf_node(node), before);
1925 }
1926
1927 static inline void
1928 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1929 {
1930 nir_instr_insert(nir_after_cf_node(node), after);
1931 }
1932
1933 static inline void
1934 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1935 {
1936 nir_instr_insert(nir_before_cf_list(list), before);
1937 }
1938
1939 static inline void
1940 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1941 {
1942 nir_instr_insert(nir_after_cf_list(list), after);
1943 }
1944
1945 void nir_instr_remove(nir_instr *instr);
1946
1947 /** @} */
1948
1949 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1950 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1951 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1952 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1953 void *state);
1954 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1955 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1956
1957 nir_const_value *nir_src_as_const_value(nir_src src);
1958 bool nir_src_is_dynamically_uniform(nir_src src);
1959 bool nir_srcs_equal(nir_src src1, nir_src src2);
1960 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1961 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1962 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1963 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1964 nir_dest new_dest);
1965
1966 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1967 unsigned num_components, const char *name);
1968 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1969 unsigned num_components, const char *name);
1970 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1971 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
1972 nir_instr *after_me);
1973
1974 /* visits basic blocks in source-code order */
1975 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1976 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1977 void *state);
1978 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1979 void *state);
1980 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1981 void *state);
1982
1983 /* If the following CF node is an if, this function returns that if.
1984 * Otherwise, it returns NULL.
1985 */
1986 nir_if *nir_block_get_following_if(nir_block *block);
1987
1988 nir_loop *nir_block_get_following_loop(nir_block *block);
1989
1990 void nir_index_local_regs(nir_function_impl *impl);
1991 void nir_index_global_regs(nir_shader *shader);
1992 void nir_index_ssa_defs(nir_function_impl *impl);
1993 unsigned nir_index_instrs(nir_function_impl *impl);
1994
1995 void nir_index_blocks(nir_function_impl *impl);
1996
1997 void nir_print_shader(nir_shader *shader, FILE *fp);
1998 void nir_print_instr(const nir_instr *instr, FILE *fp);
1999
2000 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2001 nir_function_impl *nir_function_impl_clone(const nir_function_impl *impl);
2002
2003 #ifdef DEBUG
2004 void nir_validate_shader(nir_shader *shader);
2005 void nir_metadata_set_validation_flag(nir_shader *shader);
2006 void nir_metadata_check_validation_flag(nir_shader *shader);
2007 #else
2008 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2009 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2010 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2011 #endif /* DEBUG */
2012
2013 void nir_calc_dominance_impl(nir_function_impl *impl);
2014 void nir_calc_dominance(nir_shader *shader);
2015
2016 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2017 bool nir_block_dominates(nir_block *parent, nir_block *child);
2018
2019 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2020 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2021
2022 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2023 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2024
2025 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2026 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2027
2028 int nir_gs_count_vertices(const nir_shader *shader);
2029
2030 bool nir_split_var_copies(nir_shader *shader);
2031
2032 bool nir_lower_returns_impl(nir_function_impl *impl);
2033 bool nir_lower_returns(nir_shader *shader);
2034
2035 bool nir_inline_functions_impl(nir_function_impl *impl);
2036 bool nir_inline_functions(nir_shader *shader);
2037
2038 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2039 void nir_lower_var_copies(nir_shader *shader);
2040
2041 bool nir_lower_global_vars_to_local(nir_shader *shader);
2042
2043 bool nir_lower_locals_to_regs(nir_shader *shader);
2044
2045 void nir_lower_outputs_to_temporaries(nir_shader *shader);
2046
2047 void nir_lower_outputs_to_temporaries(nir_shader *shader);
2048
2049 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2050
2051 void nir_assign_var_locations(struct exec_list *var_list,
2052 unsigned *size,
2053 int (*type_size)(const struct glsl_type *));
2054
2055 void nir_lower_io(nir_shader *shader,
2056 nir_variable_mode mode,
2057 int (*type_size)(const struct glsl_type *));
2058 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2059 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2060
2061 void nir_lower_vars_to_ssa(nir_shader *shader);
2062
2063 bool nir_remove_dead_variables(nir_shader *shader);
2064
2065 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2066 bool nir_lower_vec_to_movs(nir_shader *shader);
2067 void nir_lower_alu_to_scalar(nir_shader *shader);
2068 void nir_lower_load_const_to_scalar(nir_shader *shader);
2069
2070 void nir_lower_phis_to_scalar(nir_shader *shader);
2071
2072 void nir_lower_samplers(nir_shader *shader,
2073 const struct gl_shader_program *shader_program);
2074
2075 bool nir_lower_system_values(nir_shader *shader);
2076
2077 typedef struct nir_lower_tex_options {
2078 /**
2079 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2080 * sampler types a texture projector is lowered.
2081 */
2082 unsigned lower_txp;
2083
2084 /**
2085 * If true, lower rect textures to 2D, using txs to fetch the
2086 * texture dimensions and dividing the texture coords by the
2087 * texture dims to normalize.
2088 */
2089 bool lower_rect;
2090
2091 /**
2092 * To emulate certain texture wrap modes, this can be used
2093 * to saturate the specified tex coord to [0.0, 1.0]. The
2094 * bits are according to sampler #, ie. if, for example:
2095 *
2096 * (conf->saturate_s & (1 << n))
2097 *
2098 * is true, then the s coord for sampler n is saturated.
2099 *
2100 * Note that clamping must happen *after* projector lowering
2101 * so any projected texture sample instruction with a clamped
2102 * coordinate gets automatically lowered, regardless of the
2103 * 'lower_txp' setting.
2104 */
2105 unsigned saturate_s;
2106 unsigned saturate_t;
2107 unsigned saturate_r;
2108
2109 /* Bitmask of samplers that need swizzling.
2110 *
2111 * If (swizzle_result & (1 << sampler_index)), then the swizzle in
2112 * swizzles[sampler_index] is applied to the result of the texturing
2113 * operation.
2114 */
2115 unsigned swizzle_result;
2116
2117 /* A swizzle for each sampler. Values 0-3 represent x, y, z, or w swizzles
2118 * while 4 and 5 represent 0 and 1 respectively.
2119 */
2120 uint8_t swizzles[32][4];
2121 } nir_lower_tex_options;
2122
2123 bool nir_lower_tex(nir_shader *shader,
2124 const nir_lower_tex_options *options);
2125
2126 void nir_lower_idiv(nir_shader *shader);
2127
2128 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2129 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2130
2131 void nir_lower_two_sided_color(nir_shader *shader);
2132
2133 void nir_lower_atomics(nir_shader *shader,
2134 const struct gl_shader_program *shader_program);
2135 void nir_lower_to_source_mods(nir_shader *shader);
2136
2137 bool nir_lower_gs_intrinsics(nir_shader *shader);
2138
2139 bool nir_normalize_cubemap_coords(nir_shader *shader);
2140
2141 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2142 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2143
2144 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2145 void nir_convert_to_ssa(nir_shader *shader);
2146
2147 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2148 * registers. If false, convert all values (even those not involved in a phi
2149 * node) to registers.
2150 */
2151 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2152
2153 bool nir_opt_algebraic(nir_shader *shader);
2154 bool nir_opt_algebraic_late(nir_shader *shader);
2155 bool nir_opt_constant_folding(nir_shader *shader);
2156
2157 bool nir_opt_global_to_local(nir_shader *shader);
2158
2159 bool nir_copy_prop(nir_shader *shader);
2160
2161 bool nir_opt_cse(nir_shader *shader);
2162
2163 bool nir_opt_dce(nir_shader *shader);
2164
2165 bool nir_opt_dead_cf(nir_shader *shader);
2166
2167 void nir_opt_gcm(nir_shader *shader);
2168
2169 bool nir_opt_peephole_select(nir_shader *shader);
2170
2171 bool nir_opt_remove_phis(nir_shader *shader);
2172
2173 bool nir_opt_undef(nir_shader *shader);
2174
2175 void nir_sweep(nir_shader *shader);
2176
2177 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2178 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2179
2180 #ifdef __cplusplus
2181 } /* extern "C" */
2182 #endif