980fdd08f3353285ffa1c84cab75d45f9fb6c651
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/ralloc.h"
34 #include "util/set.h"
35 #include "main/mtypes.h"
36 #include "main/bitset.h"
37 #include "nir_types.h"
38 #include <stdio.h>
39
40 #include "nir_opcodes.h"
41
42 #ifdef __cplusplus
43 extern "C" {
44 #endif
45
46 #define NIR_FALSE 0u
47 #define NIR_TRUE (~0u)
48
49 /** Defines a cast function
50 *
51 * This macro defines a cast function from in_type to out_type where
52 * out_type is some structure type that contains a field of type out_type.
53 *
54 * Note that you have to be a bit careful as the generated cast function
55 * destroys constness.
56 */
57 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
58 static inline out_type * \
59 name(const in_type *parent) \
60 { \
61 return exec_node_data(out_type, parent, field); \
62 }
63
64 struct nir_function_overload;
65 struct nir_function;
66 struct nir_shader;
67
68
69 /**
70 * Description of built-in state associated with a uniform
71 *
72 * \sa nir_variable::state_slots
73 */
74 typedef struct {
75 int tokens[5];
76 int swizzle;
77 } nir_state_slot;
78
79 typedef enum {
80 nir_var_shader_in,
81 nir_var_shader_out,
82 nir_var_global,
83 nir_var_local,
84 nir_var_uniform,
85 nir_var_system_value
86 } nir_variable_mode;
87
88 /**
89 * Data stored in an nir_constant
90 */
91 union nir_constant_data {
92 unsigned u[16];
93 int i[16];
94 float f[16];
95 bool b[16];
96 };
97
98 typedef struct nir_constant {
99 /**
100 * Value of the constant.
101 *
102 * The field used to back the values supplied by the constant is determined
103 * by the type associated with the \c nir_variable. Constants may be
104 * scalars, vectors, or matrices.
105 */
106 union nir_constant_data value;
107
108 /* Array elements / Structure Fields */
109 struct nir_constant **elements;
110 } nir_constant;
111
112 /**
113 * \brief Layout qualifiers for gl_FragDepth.
114 *
115 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
116 * with a layout qualifier.
117 */
118 typedef enum {
119 nir_depth_layout_none, /**< No depth layout is specified. */
120 nir_depth_layout_any,
121 nir_depth_layout_greater,
122 nir_depth_layout_less,
123 nir_depth_layout_unchanged
124 } nir_depth_layout;
125
126 /**
127 * Either a uniform, global variable, shader input, or shader output. Based on
128 * ir_variable - it should be easy to translate between the two.
129 */
130
131 typedef struct {
132 struct exec_node node;
133
134 /**
135 * Declared type of the variable
136 */
137 const struct glsl_type *type;
138
139 /**
140 * Declared name of the variable
141 */
142 char *name;
143
144 /**
145 * For variables which satisfy the is_interface_instance() predicate, this
146 * points to an array of integers such that if the ith member of the
147 * interface block is an array, max_ifc_array_access[i] is the maximum
148 * array element of that member that has been accessed. If the ith member
149 * of the interface block is not an array, max_ifc_array_access[i] is
150 * unused.
151 *
152 * For variables whose type is not an interface block, this pointer is
153 * NULL.
154 */
155 unsigned *max_ifc_array_access;
156
157 struct nir_variable_data {
158
159 /**
160 * Is the variable read-only?
161 *
162 * This is set for variables declared as \c const, shader inputs,
163 * and uniforms.
164 */
165 unsigned read_only:1;
166 unsigned centroid:1;
167 unsigned sample:1;
168 unsigned invariant:1;
169
170 /**
171 * Storage class of the variable.
172 *
173 * \sa nir_variable_mode
174 */
175 nir_variable_mode mode:4;
176
177 /**
178 * Interpolation mode for shader inputs / outputs
179 *
180 * \sa glsl_interp_qualifier
181 */
182 unsigned interpolation:2;
183
184 /**
185 * \name ARB_fragment_coord_conventions
186 * @{
187 */
188 unsigned origin_upper_left:1;
189 unsigned pixel_center_integer:1;
190 /*@}*/
191
192 /**
193 * Was the location explicitly set in the shader?
194 *
195 * If the location is explicitly set in the shader, it \b cannot be changed
196 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
197 * no effect).
198 */
199 unsigned explicit_location:1;
200 unsigned explicit_index:1;
201
202 /**
203 * Was an initial binding explicitly set in the shader?
204 *
205 * If so, constant_initializer contains an integer nir_constant
206 * representing the initial binding point.
207 */
208 unsigned explicit_binding:1;
209
210 /**
211 * Does this variable have an initializer?
212 *
213 * This is used by the linker to cross-validiate initializers of global
214 * variables.
215 */
216 unsigned has_initializer:1;
217
218 /**
219 * Is this variable a generic output or input that has not yet been matched
220 * up to a variable in another stage of the pipeline?
221 *
222 * This is used by the linker as scratch storage while assigning locations
223 * to generic inputs and outputs.
224 */
225 unsigned is_unmatched_generic_inout:1;
226
227 /**
228 * If non-zero, then this variable may be packed along with other variables
229 * into a single varying slot, so this offset should be applied when
230 * accessing components. For example, an offset of 1 means that the x
231 * component of this variable is actually stored in component y of the
232 * location specified by \c location.
233 */
234 unsigned location_frac:2;
235
236 /**
237 * Non-zero if this variable was created by lowering a named interface
238 * block which was not an array.
239 *
240 * Note that this variable and \c from_named_ifc_block_array will never
241 * both be non-zero.
242 */
243 unsigned from_named_ifc_block_nonarray:1;
244
245 /**
246 * Non-zero if this variable was created by lowering a named interface
247 * block which was an array.
248 *
249 * Note that this variable and \c from_named_ifc_block_nonarray will never
250 * both be non-zero.
251 */
252 unsigned from_named_ifc_block_array:1;
253
254 /**
255 * \brief Layout qualifier for gl_FragDepth.
256 *
257 * This is not equal to \c ir_depth_layout_none if and only if this
258 * variable is \c gl_FragDepth and a layout qualifier is specified.
259 */
260 nir_depth_layout depth_layout;
261
262 /**
263 * Storage location of the base of this variable
264 *
265 * The precise meaning of this field depends on the nature of the variable.
266 *
267 * - Vertex shader input: one of the values from \c gl_vert_attrib.
268 * - Vertex shader output: one of the values from \c gl_varying_slot.
269 * - Geometry shader input: one of the values from \c gl_varying_slot.
270 * - Geometry shader output: one of the values from \c gl_varying_slot.
271 * - Fragment shader input: one of the values from \c gl_varying_slot.
272 * - Fragment shader output: one of the values from \c gl_frag_result.
273 * - Uniforms: Per-stage uniform slot number for default uniform block.
274 * - Uniforms: Index within the uniform block definition for UBO members.
275 * - Other: This field is not currently used.
276 *
277 * If the variable is a uniform, shader input, or shader output, and the
278 * slot has not been assigned, the value will be -1.
279 */
280 int location;
281
282 /**
283 * The actual location of the variable in the IR. Only valid for inputs
284 * and outputs.
285 */
286 unsigned int driver_location;
287
288 /**
289 * output index for dual source blending.
290 */
291 int index;
292
293 /**
294 * Initial binding point for a sampler or UBO.
295 *
296 * For array types, this represents the binding point for the first element.
297 */
298 int binding;
299
300 /**
301 * Location an atomic counter is stored at.
302 */
303 struct {
304 unsigned buffer_index;
305 unsigned offset;
306 } atomic;
307
308 /**
309 * ARB_shader_image_load_store qualifiers.
310 */
311 struct {
312 bool read_only; /**< "readonly" qualifier. */
313 bool write_only; /**< "writeonly" qualifier. */
314 bool coherent;
315 bool _volatile;
316 bool restrict_flag;
317
318 /** Image internal format if specified explicitly, otherwise GL_NONE. */
319 GLenum format;
320 } image;
321
322 /**
323 * Highest element accessed with a constant expression array index
324 *
325 * Not used for non-array variables.
326 */
327 unsigned max_array_access;
328
329 } data;
330
331 /**
332 * Built-in state that backs this uniform
333 *
334 * Once set at variable creation, \c state_slots must remain invariant.
335 * This is because, ideally, this array would be shared by all clones of
336 * this variable in the IR tree. In other words, we'd really like for it
337 * to be a fly-weight.
338 *
339 * If the variable is not a uniform, \c num_state_slots will be zero and
340 * \c state_slots will be \c NULL.
341 */
342 /*@{*/
343 unsigned num_state_slots; /**< Number of state slots used */
344 nir_state_slot *state_slots; /**< State descriptors. */
345 /*@}*/
346
347 /**
348 * Constant expression assigned in the initializer of the variable
349 */
350 nir_constant *constant_initializer;
351
352 /**
353 * For variables that are in an interface block or are an instance of an
354 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
355 *
356 * \sa ir_variable::location
357 */
358 const struct glsl_type *interface_type;
359 } nir_variable;
360
361 typedef struct {
362 struct exec_node node;
363
364 unsigned num_components; /** < number of vector components */
365 unsigned num_array_elems; /** < size of array (0 for no array) */
366
367 /** generic register index. */
368 unsigned index;
369
370 /** only for debug purposes, can be NULL */
371 const char *name;
372
373 /** whether this register is local (per-function) or global (per-shader) */
374 bool is_global;
375
376 /**
377 * If this flag is set to true, then accessing channels >= num_components
378 * is well-defined, and simply spills over to the next array element. This
379 * is useful for backends that can do per-component accessing, in
380 * particular scalar backends. By setting this flag and making
381 * num_components equal to 1, structures can be packed tightly into
382 * registers and then registers can be accessed per-component to get to
383 * each structure member, even if it crosses vec4 boundaries.
384 */
385 bool is_packed;
386
387 /** set of nir_instr's where this register is used (read from) */
388 struct set *uses;
389
390 /** set of nir_instr's where this register is defined (written to) */
391 struct set *defs;
392
393 /** set of nir_if's where this register is used as a condition */
394 struct set *if_uses;
395 } nir_register;
396
397 typedef enum {
398 nir_instr_type_alu,
399 nir_instr_type_call,
400 nir_instr_type_tex,
401 nir_instr_type_intrinsic,
402 nir_instr_type_load_const,
403 nir_instr_type_jump,
404 nir_instr_type_ssa_undef,
405 nir_instr_type_phi,
406 nir_instr_type_parallel_copy,
407 } nir_instr_type;
408
409 typedef struct {
410 struct exec_node node;
411 nir_instr_type type;
412 struct nir_block *block;
413
414 /* flag for dead code elimination (see nir_opt_dce.c) */
415 bool live;
416 } nir_instr;
417
418 static inline nir_instr *
419 nir_instr_next(const nir_instr *instr)
420 {
421 return exec_node_data(nir_instr, (instr)->node.next, node);
422 }
423
424 static inline nir_instr *
425 nir_instr_prev(const nir_instr *instr)
426 {
427 return exec_node_data(nir_instr, (instr)->node.prev, node);
428 }
429
430 typedef struct {
431 /** for debugging only, can be NULL */
432 const char* name;
433
434 /** generic SSA definition index. */
435 unsigned index;
436
437 /** Index into the live_in and live_out bitfields */
438 unsigned live_index;
439
440 nir_instr *parent_instr;
441
442 /** set of nir_instr's where this register is used (read from) */
443 struct set *uses;
444
445 /** set of nir_if's where this register is used as a condition */
446 struct set *if_uses;
447
448 uint8_t num_components;
449 } nir_ssa_def;
450
451 struct nir_src;
452
453 typedef struct {
454 nir_register *reg;
455 struct nir_src *indirect; /** < NULL for no indirect offset */
456 unsigned base_offset;
457
458 /* TODO use-def chain goes here */
459 } nir_reg_src;
460
461 typedef struct {
462 nir_register *reg;
463 struct nir_src *indirect; /** < NULL for no indirect offset */
464 unsigned base_offset;
465
466 /* TODO def-use chain goes here */
467 } nir_reg_dest;
468
469 typedef struct nir_src {
470 union {
471 nir_reg_src reg;
472 nir_ssa_def *ssa;
473 };
474
475 bool is_ssa;
476 } nir_src;
477
478 typedef struct {
479 union {
480 nir_reg_dest reg;
481 nir_ssa_def ssa;
482 };
483
484 bool is_ssa;
485 } nir_dest;
486
487 static inline nir_src
488 nir_src_for_ssa(nir_ssa_def *def)
489 {
490 nir_src src;
491
492 src.is_ssa = true;
493 src.ssa = def;
494
495 return src;
496 }
497
498 static inline nir_src
499 nir_src_for_reg(nir_register *reg)
500 {
501 nir_src src;
502
503 src.is_ssa = false;
504 src.reg.reg = reg;
505 src.reg.indirect = NULL;
506 src.reg.base_offset = 0;
507
508 return src;
509 }
510
511 static inline nir_dest
512 nir_dest_for_reg(nir_register *reg)
513 {
514 nir_dest dest;
515
516 dest.is_ssa = false;
517 dest.reg.reg = reg;
518 dest.reg.indirect = NULL;
519 dest.reg.base_offset = 0;
520
521 return dest;
522 }
523
524 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
525 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
526
527 typedef struct {
528 nir_src src;
529
530 /**
531 * \name input modifiers
532 */
533 /*@{*/
534 /**
535 * For inputs interpreted as floating point, flips the sign bit. For
536 * inputs interpreted as integers, performs the two's complement negation.
537 */
538 bool negate;
539
540 /**
541 * Clears the sign bit for floating point values, and computes the integer
542 * absolute value for integers. Note that the negate modifier acts after
543 * the absolute value modifier, therefore if both are set then all inputs
544 * will become negative.
545 */
546 bool abs;
547 /*@}*/
548
549 /**
550 * For each input component, says which component of the register it is
551 * chosen from. Note that which elements of the swizzle are used and which
552 * are ignored are based on the write mask for most opcodes - for example,
553 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
554 * a swizzle of {2, x, 1, 0} where x means "don't care."
555 */
556 uint8_t swizzle[4];
557 } nir_alu_src;
558
559 typedef struct {
560 nir_dest dest;
561
562 /**
563 * \name saturate output modifier
564 *
565 * Only valid for opcodes that output floating-point numbers. Clamps the
566 * output to between 0.0 and 1.0 inclusive.
567 */
568
569 bool saturate;
570
571 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
572 } nir_alu_dest;
573
574 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
575 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
576 void *mem_ctx);
577
578 typedef enum {
579 nir_type_float,
580 nir_type_int,
581 nir_type_unsigned,
582 nir_type_bool
583 } nir_alu_type;
584
585 typedef enum {
586 NIR_OP_IS_COMMUTATIVE = (1 << 0),
587 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
588 } nir_op_algebraic_property;
589
590 typedef struct {
591 const char *name;
592
593 unsigned num_inputs;
594
595 /**
596 * The number of components in the output
597 *
598 * If non-zero, this is the size of the output and input sizes are
599 * explicitly given; swizzle and writemask are still in effect, but if
600 * the output component is masked out, then the input component may
601 * still be in use.
602 *
603 * If zero, the opcode acts in the standard, per-component manner; the
604 * operation is performed on each component (except the ones that are
605 * masked out) with the input being taken from the input swizzle for
606 * that component.
607 *
608 * The size of some of the inputs may be given (i.e. non-zero) even
609 * though output_size is zero; in that case, the inputs with a zero
610 * size act per-component, while the inputs with non-zero size don't.
611 */
612 unsigned output_size;
613
614 /**
615 * The type of vector that the instruction outputs. Note that the
616 * staurate modifier is only allowed on outputs with the float type.
617 */
618
619 nir_alu_type output_type;
620
621 /**
622 * The number of components in each input
623 */
624 unsigned input_sizes[4];
625
626 /**
627 * The type of vector that each input takes. Note that negate and
628 * absolute value are only allowed on inputs with int or float type and
629 * behave differently on the two.
630 */
631 nir_alu_type input_types[4];
632
633 nir_op_algebraic_property algebraic_properties;
634 } nir_op_info;
635
636 extern const nir_op_info nir_op_infos[nir_num_opcodes];
637
638 typedef struct nir_alu_instr {
639 nir_instr instr;
640 nir_op op;
641 nir_alu_dest dest;
642 nir_alu_src src[];
643 } nir_alu_instr;
644
645 /* is this source channel used? */
646 static inline bool
647 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
648 {
649 if (nir_op_infos[instr->op].input_sizes[src] > 0)
650 return channel < nir_op_infos[instr->op].input_sizes[src];
651
652 return (instr->dest.write_mask >> channel) & 1;
653 }
654
655 /*
656 * For instructions whose destinations are SSA, get the number of channels
657 * used for a source
658 */
659 static inline unsigned
660 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
661 {
662 assert(instr->dest.dest.is_ssa);
663
664 if (nir_op_infos[instr->op].input_sizes[src] > 0)
665 return nir_op_infos[instr->op].input_sizes[src];
666
667 return instr->dest.dest.ssa.num_components;
668 }
669
670 typedef enum {
671 nir_deref_type_var,
672 nir_deref_type_array,
673 nir_deref_type_struct
674 } nir_deref_type;
675
676 typedef struct nir_deref {
677 nir_deref_type deref_type;
678 struct nir_deref *child;
679 const struct glsl_type *type;
680 } nir_deref;
681
682 typedef struct {
683 nir_deref deref;
684
685 nir_variable *var;
686 } nir_deref_var;
687
688 /* This enum describes how the array is referenced. If the deref is
689 * direct then the base_offset is used. If the deref is indirect then then
690 * offset is given by base_offset + indirect. If the deref is a wildcard
691 * then the deref refers to all of the elements of the array at the same
692 * time. Wildcard dereferences are only ever allowed in copy_var
693 * intrinsics and the source and destination derefs must have matching
694 * wildcards.
695 */
696 typedef enum {
697 nir_deref_array_type_direct,
698 nir_deref_array_type_indirect,
699 nir_deref_array_type_wildcard,
700 } nir_deref_array_type;
701
702 typedef struct {
703 nir_deref deref;
704
705 nir_deref_array_type deref_array_type;
706 unsigned base_offset;
707 nir_src indirect;
708 } nir_deref_array;
709
710 typedef struct {
711 nir_deref deref;
712
713 unsigned index;
714 } nir_deref_struct;
715
716 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
717 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
718 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
719
720 typedef struct {
721 nir_instr instr;
722
723 unsigned num_params;
724 nir_deref_var **params;
725 nir_deref_var *return_deref;
726
727 struct nir_function_overload *callee;
728 } nir_call_instr;
729
730 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
731 num_variables, num_indices, flags) \
732 nir_intrinsic_##name,
733
734 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
735
736 typedef enum {
737 #include "nir_intrinsics.h"
738 nir_num_intrinsics = nir_last_intrinsic + 1
739 } nir_intrinsic_op;
740
741 #undef INTRINSIC
742 #undef LAST_INTRINSIC
743
744 /** Represents an intrinsic
745 *
746 * An intrinsic is an instruction type for handling things that are
747 * more-or-less regular operations but don't just consume and produce SSA
748 * values like ALU operations do. Intrinsics are not for things that have
749 * special semantic meaning such as phi nodes and parallel copies.
750 * Examples of intrinsics include variable load/store operations, system
751 * value loads, and the like. Even though texturing more-or-less falls
752 * under this category, texturing is its own instruction type because
753 * trying to represent texturing with intrinsics would lead to a
754 * combinatorial explosion of intrinsic opcodes.
755 *
756 * By having a single instruction type for handling a lot of different
757 * cases, optimization passes can look for intrinsics and, for the most
758 * part, completely ignore them. Each intrinsic type also has a few
759 * possible flags that govern whether or not they can be reordered or
760 * eliminated. That way passes like dead code elimination can still work
761 * on intrisics without understanding the meaning of each.
762 *
763 * Each intrinsic has some number of constant indices, some number of
764 * variables, and some number of sources. What these sources, variables,
765 * and indices mean depends on the intrinsic and is documented with the
766 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
767 * instructions are the only types of instruction that can operate on
768 * variables.
769 */
770 typedef struct {
771 nir_instr instr;
772
773 nir_intrinsic_op intrinsic;
774
775 nir_dest dest;
776
777 /** number of components if this is a vectorized intrinsic
778 *
779 * Similarly to ALU operations, some intrinsics are vectorized.
780 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
781 * For vectorized intrinsics, the num_components field specifies the
782 * number of destination components and the number of source components
783 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
784 */
785 uint8_t num_components;
786
787 int const_index[3];
788
789 nir_deref_var *variables[2];
790
791 nir_src src[];
792 } nir_intrinsic_instr;
793
794 /**
795 * \name NIR intrinsics semantic flags
796 *
797 * information about what the compiler can do with the intrinsics.
798 *
799 * \sa nir_intrinsic_info::flags
800 */
801 typedef enum {
802 /**
803 * whether the intrinsic can be safely eliminated if none of its output
804 * value is not being used.
805 */
806 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
807
808 /**
809 * Whether the intrinsic can be reordered with respect to any other
810 * intrinsic, i.e. whether the only reordering dependencies of the
811 * intrinsic are due to the register reads/writes.
812 */
813 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
814 } nir_intrinsic_semantic_flag;
815
816 #define NIR_INTRINSIC_MAX_INPUTS 4
817
818 typedef struct {
819 const char *name;
820
821 unsigned num_srcs; /** < number of register/SSA inputs */
822
823 /** number of components of each input register
824 *
825 * If this value is 0, the number of components is given by the
826 * num_components field of nir_intrinsic_instr.
827 */
828 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
829
830 bool has_dest;
831
832 /** number of components of the output register
833 *
834 * If this value is 0, the number of components is given by the
835 * num_components field of nir_intrinsic_instr.
836 */
837 unsigned dest_components;
838
839 /** the number of inputs/outputs that are variables */
840 unsigned num_variables;
841
842 /** the number of constant indices used by the intrinsic */
843 unsigned num_indices;
844
845 /** semantic flags for calls to this intrinsic */
846 nir_intrinsic_semantic_flag flags;
847 } nir_intrinsic_info;
848
849 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
850
851 /**
852 * \group texture information
853 *
854 * This gives semantic information about textures which is useful to the
855 * frontend, the backend, and lowering passes, but not the optimizer.
856 */
857
858 typedef enum {
859 nir_tex_src_coord,
860 nir_tex_src_projector,
861 nir_tex_src_comparitor, /* shadow comparitor */
862 nir_tex_src_offset,
863 nir_tex_src_bias,
864 nir_tex_src_lod,
865 nir_tex_src_ms_index, /* MSAA sample index */
866 nir_tex_src_ddx,
867 nir_tex_src_ddy,
868 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
869 nir_num_tex_src_types
870 } nir_tex_src_type;
871
872 typedef struct {
873 nir_src src;
874 nir_tex_src_type src_type;
875 } nir_tex_src;
876
877 typedef enum {
878 nir_texop_tex, /**< Regular texture look-up */
879 nir_texop_txb, /**< Texture look-up with LOD bias */
880 nir_texop_txl, /**< Texture look-up with explicit LOD */
881 nir_texop_txd, /**< Texture look-up with partial derivatvies */
882 nir_texop_txf, /**< Texel fetch with explicit LOD */
883 nir_texop_txf_ms, /**< Multisample texture fetch */
884 nir_texop_txs, /**< Texture size */
885 nir_texop_lod, /**< Texture lod query */
886 nir_texop_tg4, /**< Texture gather */
887 nir_texop_query_levels /**< Texture levels query */
888 } nir_texop;
889
890 typedef struct {
891 nir_instr instr;
892
893 enum glsl_sampler_dim sampler_dim;
894 nir_alu_type dest_type;
895
896 nir_texop op;
897 nir_dest dest;
898 nir_tex_src *src;
899 unsigned num_srcs, coord_components;
900 bool is_array, is_shadow;
901
902 /**
903 * If is_shadow is true, whether this is the old-style shadow that outputs 4
904 * components or the new-style shadow that outputs 1 component.
905 */
906 bool is_new_style_shadow;
907
908 /* constant offset - must be 0 if the offset source is used */
909 int const_offset[4];
910
911 /* gather component selector */
912 unsigned component : 2;
913
914 /** The sampler index
915 *
916 * If this texture instruction has a nir_tex_src_sampler_offset source,
917 * then the sampler index is given by sampler_index + sampler_offset.
918 */
919 unsigned sampler_index;
920
921 /** The size of the sampler array or 0 if it's not an array */
922 unsigned sampler_array_size;
923
924 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
925 } nir_tex_instr;
926
927 static inline unsigned
928 nir_tex_instr_dest_size(nir_tex_instr *instr)
929 {
930 if (instr->op == nir_texop_txs) {
931 unsigned ret;
932 switch (instr->sampler_dim) {
933 case GLSL_SAMPLER_DIM_1D:
934 case GLSL_SAMPLER_DIM_BUF:
935 ret = 1;
936 break;
937 case GLSL_SAMPLER_DIM_2D:
938 case GLSL_SAMPLER_DIM_CUBE:
939 case GLSL_SAMPLER_DIM_MS:
940 case GLSL_SAMPLER_DIM_RECT:
941 case GLSL_SAMPLER_DIM_EXTERNAL:
942 ret = 2;
943 break;
944 case GLSL_SAMPLER_DIM_3D:
945 ret = 3;
946 break;
947 default:
948 unreachable("not reached");
949 }
950 if (instr->is_array)
951 ret++;
952 return ret;
953 }
954
955 if (instr->op == nir_texop_query_levels)
956 return 2;
957
958 if (instr->is_shadow && instr->is_new_style_shadow)
959 return 1;
960
961 return 4;
962 }
963
964 static inline unsigned
965 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
966 {
967 if (instr->src[src].src_type == nir_tex_src_coord)
968 return instr->coord_components;
969
970
971 if (instr->src[src].src_type == nir_tex_src_offset ||
972 instr->src[src].src_type == nir_tex_src_ddx ||
973 instr->src[src].src_type == nir_tex_src_ddy) {
974 if (instr->is_array)
975 return instr->coord_components - 1;
976 else
977 return instr->coord_components;
978 }
979
980 return 1;
981 }
982
983 static inline int
984 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
985 {
986 for (unsigned i = 0; i < instr->num_srcs; i++)
987 if (instr->src[i].src_type == type)
988 return (int) i;
989
990 return -1;
991 }
992
993 typedef struct {
994 union {
995 float f[4];
996 int32_t i[4];
997 uint32_t u[4];
998 };
999 } nir_const_value;
1000
1001 typedef struct {
1002 nir_instr instr;
1003
1004 nir_const_value value;
1005
1006 nir_ssa_def def;
1007 } nir_load_const_instr;
1008
1009 typedef enum {
1010 nir_jump_return,
1011 nir_jump_break,
1012 nir_jump_continue,
1013 } nir_jump_type;
1014
1015 typedef struct {
1016 nir_instr instr;
1017 nir_jump_type type;
1018 } nir_jump_instr;
1019
1020 /* creates a new SSA variable in an undefined state */
1021
1022 typedef struct {
1023 nir_instr instr;
1024 nir_ssa_def def;
1025 } nir_ssa_undef_instr;
1026
1027 typedef struct {
1028 struct exec_node node;
1029
1030 /* The predecessor block corresponding to this source */
1031 struct nir_block *pred;
1032
1033 nir_src src;
1034 } nir_phi_src;
1035
1036 #define nir_foreach_phi_src(phi, entry) \
1037 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1038
1039 typedef struct {
1040 nir_instr instr;
1041
1042 struct exec_list srcs; /** < list of nir_phi_src */
1043
1044 nir_dest dest;
1045 } nir_phi_instr;
1046
1047 typedef struct {
1048 struct exec_node node;
1049 nir_src src;
1050 nir_dest dest;
1051 } nir_parallel_copy_entry;
1052
1053 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1054 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1055
1056 typedef struct {
1057 nir_instr instr;
1058
1059 /* A list of nir_parallel_copy_entry's. The sources of all of the
1060 * entries are copied to the corresponding destinations "in parallel".
1061 * In other words, if we have two entries: a -> b and b -> a, the values
1062 * get swapped.
1063 */
1064 struct exec_list entries;
1065 } nir_parallel_copy_instr;
1066
1067 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1068 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1069 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1070 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1071 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1072 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1073 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1074 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1075 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1076 nir_parallel_copy_instr, instr)
1077
1078 /*
1079 * Control flow
1080 *
1081 * Control flow consists of a tree of control flow nodes, which include
1082 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1083 * instructions that always run start-to-finish. Each basic block also keeps
1084 * track of its successors (blocks which may run immediately after the current
1085 * block) and predecessors (blocks which could have run immediately before the
1086 * current block). Each function also has a start block and an end block which
1087 * all return statements point to (which is always empty). Together, all the
1088 * blocks with their predecessors and successors make up the control flow
1089 * graph (CFG) of the function. There are helpers that modify the tree of
1090 * control flow nodes while modifying the CFG appropriately; these should be
1091 * used instead of modifying the tree directly.
1092 */
1093
1094 typedef enum {
1095 nir_cf_node_block,
1096 nir_cf_node_if,
1097 nir_cf_node_loop,
1098 nir_cf_node_function
1099 } nir_cf_node_type;
1100
1101 typedef struct nir_cf_node {
1102 struct exec_node node;
1103 nir_cf_node_type type;
1104 struct nir_cf_node *parent;
1105 } nir_cf_node;
1106
1107 typedef struct nir_block {
1108 nir_cf_node cf_node;
1109
1110 struct exec_list instr_list; /** < list of nir_instr */
1111
1112 /** generic block index; generated by nir_index_blocks */
1113 unsigned index;
1114
1115 /*
1116 * Each block can only have up to 2 successors, so we put them in a simple
1117 * array - no need for anything more complicated.
1118 */
1119 struct nir_block *successors[2];
1120
1121 /* Set of nir_block predecessors in the CFG */
1122 struct set *predecessors;
1123
1124 /*
1125 * this node's immediate dominator in the dominance tree - set to NULL for
1126 * the start block.
1127 */
1128 struct nir_block *imm_dom;
1129
1130 /* This node's children in the dominance tree */
1131 unsigned num_dom_children;
1132 struct nir_block **dom_children;
1133
1134 /* Set of nir_block's on the dominance frontier of this block */
1135 struct set *dom_frontier;
1136
1137 /* live in and out for this block; used for liveness analysis */
1138 BITSET_WORD *live_in;
1139 BITSET_WORD *live_out;
1140 } nir_block;
1141
1142 static inline nir_instr *
1143 nir_block_first_instr(nir_block *block)
1144 {
1145 struct exec_node *head = exec_list_get_head(&block->instr_list);
1146 return exec_node_data(nir_instr, head, node);
1147 }
1148
1149 static inline nir_instr *
1150 nir_block_last_instr(nir_block *block)
1151 {
1152 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1153 return exec_node_data(nir_instr, tail, node);
1154 }
1155
1156 #define nir_foreach_instr(block, instr) \
1157 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1158 #define nir_foreach_instr_reverse(block, instr) \
1159 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1160 #define nir_foreach_instr_safe(block, instr) \
1161 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1162
1163 typedef struct {
1164 nir_cf_node cf_node;
1165 nir_src condition;
1166
1167 struct exec_list then_list; /** < list of nir_cf_node */
1168 struct exec_list else_list; /** < list of nir_cf_node */
1169 } nir_if;
1170
1171 static inline nir_cf_node *
1172 nir_if_first_then_node(nir_if *if_stmt)
1173 {
1174 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1175 return exec_node_data(nir_cf_node, head, node);
1176 }
1177
1178 static inline nir_cf_node *
1179 nir_if_last_then_node(nir_if *if_stmt)
1180 {
1181 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1182 return exec_node_data(nir_cf_node, tail, node);
1183 }
1184
1185 static inline nir_cf_node *
1186 nir_if_first_else_node(nir_if *if_stmt)
1187 {
1188 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1189 return exec_node_data(nir_cf_node, head, node);
1190 }
1191
1192 static inline nir_cf_node *
1193 nir_if_last_else_node(nir_if *if_stmt)
1194 {
1195 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1196 return exec_node_data(nir_cf_node, tail, node);
1197 }
1198
1199 typedef struct {
1200 nir_cf_node cf_node;
1201
1202 struct exec_list body; /** < list of nir_cf_node */
1203 } nir_loop;
1204
1205 static inline nir_cf_node *
1206 nir_loop_first_cf_node(nir_loop *loop)
1207 {
1208 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1209 }
1210
1211 static inline nir_cf_node *
1212 nir_loop_last_cf_node(nir_loop *loop)
1213 {
1214 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1215 }
1216
1217 /**
1218 * Various bits of metadata that can may be created or required by
1219 * optimization and analysis passes
1220 */
1221 typedef enum {
1222 nir_metadata_none = 0x0,
1223 nir_metadata_block_index = 0x1,
1224 nir_metadata_dominance = 0x2,
1225 nir_metadata_live_variables = 0x4,
1226 } nir_metadata;
1227
1228 typedef struct {
1229 nir_cf_node cf_node;
1230
1231 /** pointer to the overload of which this is an implementation */
1232 struct nir_function_overload *overload;
1233
1234 struct exec_list body; /** < list of nir_cf_node */
1235
1236 nir_block *start_block, *end_block;
1237
1238 /** list for all local variables in the function */
1239 struct exec_list locals;
1240
1241 /** array of variables used as parameters */
1242 unsigned num_params;
1243 nir_variable **params;
1244
1245 /** variable used to hold the result of the function */
1246 nir_variable *return_var;
1247
1248 /** list of local registers in the function */
1249 struct exec_list registers;
1250
1251 /** next available local register index */
1252 unsigned reg_alloc;
1253
1254 /** next available SSA value index */
1255 unsigned ssa_alloc;
1256
1257 /* total number of basic blocks, only valid when block_index_dirty = false */
1258 unsigned num_blocks;
1259
1260 nir_metadata valid_metadata;
1261 } nir_function_impl;
1262
1263 static inline nir_cf_node *
1264 nir_cf_node_next(nir_cf_node *node)
1265 {
1266 return exec_node_data(nir_cf_node, exec_node_get_next(&node->node), node);
1267 }
1268
1269 static inline nir_cf_node *
1270 nir_cf_node_prev(nir_cf_node *node)
1271 {
1272 return exec_node_data(nir_cf_node, exec_node_get_prev(&node->node), node);
1273 }
1274
1275 static inline bool
1276 nir_cf_node_is_first(const nir_cf_node *node)
1277 {
1278 return exec_node_is_head_sentinel(node->node.prev);
1279 }
1280
1281 static inline bool
1282 nir_cf_node_is_last(const nir_cf_node *node)
1283 {
1284 return exec_node_is_tail_sentinel(node->node.next);
1285 }
1286
1287 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1288 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1289 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1290 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1291
1292 typedef enum {
1293 nir_parameter_in,
1294 nir_parameter_out,
1295 nir_parameter_inout,
1296 } nir_parameter_type;
1297
1298 typedef struct {
1299 nir_parameter_type param_type;
1300 const struct glsl_type *type;
1301 } nir_parameter;
1302
1303 typedef struct nir_function_overload {
1304 struct exec_node node;
1305
1306 unsigned num_params;
1307 nir_parameter *params;
1308 const struct glsl_type *return_type;
1309
1310 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1311
1312 /** pointer to the function of which this is an overload */
1313 struct nir_function *function;
1314 } nir_function_overload;
1315
1316 typedef struct nir_function {
1317 struct exec_node node;
1318
1319 struct exec_list overload_list; /** < list of nir_function_overload */
1320 const char *name;
1321 struct nir_shader *shader;
1322 } nir_function;
1323
1324 #define nir_function_first_overload(func) \
1325 exec_node_data(nir_function_overload, \
1326 exec_list_get_head(&(func)->overload_list), node)
1327
1328 typedef struct nir_shader {
1329 /** hash table of name -> uniform nir_variable */
1330 struct hash_table *uniforms;
1331
1332 /** hash table of name -> input nir_variable */
1333 struct hash_table *inputs;
1334
1335 /** hash table of name -> output nir_variable */
1336 struct hash_table *outputs;
1337
1338 /** list of global variables in the shader */
1339 struct exec_list globals;
1340
1341 /** list of system value variables in the shader */
1342 struct exec_list system_values;
1343
1344 struct exec_list functions; /** < list of nir_function */
1345
1346 /** list of global register in the shader */
1347 struct exec_list registers;
1348
1349 /** structures used in this shader */
1350 unsigned num_user_structures;
1351 struct glsl_type **user_structures;
1352
1353 /** next available global register index */
1354 unsigned reg_alloc;
1355
1356 /**
1357 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1358 * access plus one
1359 */
1360 unsigned num_inputs, num_uniforms, num_outputs;
1361 } nir_shader;
1362
1363 #define nir_foreach_overload(shader, overload) \
1364 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1365 foreach_list_typed(nir_function_overload, overload, node, \
1366 &(func)->overload_list)
1367
1368 nir_shader *nir_shader_create(void *mem_ctx);
1369
1370 /** creates a register, including assigning it an index and adding it to the list */
1371 nir_register *nir_global_reg_create(nir_shader *shader);
1372
1373 nir_register *nir_local_reg_create(nir_function_impl *impl);
1374
1375 void nir_reg_remove(nir_register *reg);
1376
1377 /** creates a function and adds it to the shader's list of functions */
1378 nir_function *nir_function_create(nir_shader *shader, const char *name);
1379
1380 /** creates a null function returning null */
1381 nir_function_overload *nir_function_overload_create(nir_function *func);
1382
1383 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1384
1385 nir_block *nir_block_create(void *mem_ctx);
1386 nir_if *nir_if_create(void *mem_ctx);
1387 nir_loop *nir_loop_create(void *mem_ctx);
1388
1389 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1390
1391 /** puts a control flow node immediately after another control flow node */
1392 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1393
1394 /** puts a control flow node immediately before another control flow node */
1395 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1396
1397 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1398 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1399
1400 /** puts a control flow node at the end of a list from an if, loop, or function */
1401 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1402
1403 /** removes a control flow node, doing any cleanup necessary */
1404 void nir_cf_node_remove(nir_cf_node *node);
1405
1406 /** requests that the given pieces of metadata be generated */
1407 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1408 /** dirties all but the preserved metadata */
1409 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1410
1411 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1412 nir_alu_instr *nir_alu_instr_create(void *mem_ctx, nir_op op);
1413
1414 nir_jump_instr *nir_jump_instr_create(void *mem_ctx, nir_jump_type type);
1415
1416 nir_load_const_instr *nir_load_const_instr_create(void *mem_ctx,
1417 unsigned num_components);
1418
1419 nir_intrinsic_instr *nir_intrinsic_instr_create(void *mem_ctx,
1420 nir_intrinsic_op op);
1421
1422 nir_call_instr *nir_call_instr_create(void *mem_ctx,
1423 nir_function_overload *callee);
1424
1425 nir_tex_instr *nir_tex_instr_create(void *mem_ctx, unsigned num_srcs);
1426
1427 nir_phi_instr *nir_phi_instr_create(void *mem_ctx);
1428
1429 nir_parallel_copy_instr *nir_parallel_copy_instr_create(void *mem_ctx);
1430
1431 nir_ssa_undef_instr *nir_ssa_undef_instr_create(void *mem_ctx,
1432 unsigned num_components);
1433
1434 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1435 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1436 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1437
1438 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1439
1440 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1441 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1442
1443 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1444 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1445
1446 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1447 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1448
1449 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1450 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1451
1452 void nir_instr_remove(nir_instr *instr);
1453
1454 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1455 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1456 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1457 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1458 void *state);
1459 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1460 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1461
1462 nir_const_value *nir_src_as_const_value(nir_src src);
1463 bool nir_srcs_equal(nir_src src1, nir_src src2);
1464 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1465
1466 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1467 unsigned num_components, const char *name);
1468 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1469 unsigned num_components, const char *name);
1470 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1471
1472 /* visits basic blocks in source-code order */
1473 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1474 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1475 void *state);
1476 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1477 void *state);
1478
1479 /* If the following CF node is an if, this function returns that if.
1480 * Otherwise, it returns NULL.
1481 */
1482 nir_if *nir_block_get_following_if(nir_block *block);
1483
1484 void nir_index_local_regs(nir_function_impl *impl);
1485 void nir_index_global_regs(nir_shader *shader);
1486 void nir_index_ssa_defs(nir_function_impl *impl);
1487
1488 void nir_index_blocks(nir_function_impl *impl);
1489
1490 void nir_print_shader(nir_shader *shader, FILE *fp);
1491 void nir_print_instr(nir_instr *instr, FILE *fp);
1492
1493 #ifdef DEBUG
1494 void nir_validate_shader(nir_shader *shader);
1495 #else
1496 static inline void nir_validate_shader(nir_shader *shader) { }
1497 #endif /* DEBUG */
1498
1499 void nir_calc_dominance_impl(nir_function_impl *impl);
1500 void nir_calc_dominance(nir_shader *shader);
1501
1502 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1503 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1504
1505 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1506 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1507
1508 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1509 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1510
1511 void nir_split_var_copies(nir_shader *shader);
1512
1513 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1514 void nir_lower_var_copies(nir_shader *shader);
1515
1516 void nir_lower_global_vars_to_local(nir_shader *shader);
1517
1518 void nir_lower_locals_to_regs(nir_shader *shader);
1519
1520 void nir_lower_io(nir_shader *shader);
1521
1522 void nir_lower_vars_to_ssa(nir_shader *shader);
1523
1524 void nir_remove_dead_variables(nir_shader *shader);
1525
1526 void nir_lower_vec_to_movs(nir_shader *shader);
1527 void nir_lower_alu_to_scalar(nir_shader *shader);
1528
1529 void nir_lower_samplers(nir_shader *shader,
1530 struct gl_shader_program *shader_program,
1531 struct gl_program *prog);
1532
1533 void nir_lower_system_values(nir_shader *shader);
1534
1535 void nir_lower_atomics(nir_shader *shader);
1536 void nir_lower_to_source_mods(nir_shader *shader);
1537
1538 void nir_live_variables_impl(nir_function_impl *impl);
1539 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1540
1541 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1542 void nir_convert_to_ssa(nir_shader *shader);
1543 void nir_convert_from_ssa(nir_shader *shader);
1544
1545 bool nir_opt_algebraic(nir_shader *shader);
1546 bool nir_opt_constant_folding(nir_shader *shader);
1547
1548 bool nir_opt_global_to_local(nir_shader *shader);
1549
1550 bool nir_copy_prop_impl(nir_function_impl *impl);
1551 bool nir_copy_prop(nir_shader *shader);
1552
1553 bool nir_opt_cse(nir_shader *shader);
1554
1555 bool nir_opt_dce_impl(nir_function_impl *impl);
1556 bool nir_opt_dce(nir_shader *shader);
1557
1558 bool nir_opt_peephole_select(nir_shader *shader);
1559 bool nir_opt_peephole_ffma(nir_shader *shader);
1560
1561 #ifdef __cplusplus
1562 } /* extern "C" */
1563 #endif