a109f0fa2974d8e2a520928a6be7680883dcf884
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/ralloc.h"
34 #include "util/set.h"
35 #include "main/mtypes.h"
36 #include "main/bitset.h"
37 #include "nir_types.h"
38 #include <stdio.h>
39
40 #include "nir_opcodes.h"
41
42 #ifdef __cplusplus
43 extern "C" {
44 #endif
45
46 #define NIR_FALSE 0u
47 #define NIR_TRUE (~0u)
48
49 /** Defines a cast function
50 *
51 * This macro defines a cast function from in_type to out_type where
52 * out_type is some structure type that contains a field of type out_type.
53 *
54 * Note that you have to be a bit careful as the generated cast function
55 * destroys constness.
56 */
57 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
58 static inline out_type * \
59 name(const in_type *parent) \
60 { \
61 return exec_node_data(out_type, parent, field); \
62 }
63
64 struct nir_function_overload;
65 struct nir_function;
66 struct nir_shader;
67
68
69 /**
70 * Description of built-in state associated with a uniform
71 *
72 * \sa nir_variable::state_slots
73 */
74 typedef struct {
75 int tokens[5];
76 int swizzle;
77 } nir_state_slot;
78
79 typedef enum {
80 nir_var_shader_in,
81 nir_var_shader_out,
82 nir_var_global,
83 nir_var_local,
84 nir_var_uniform,
85 nir_var_system_value
86 } nir_variable_mode;
87
88 /**
89 * Data stored in an nir_constant
90 */
91 union nir_constant_data {
92 unsigned u[16];
93 int i[16];
94 float f[16];
95 bool b[16];
96 };
97
98 typedef struct nir_constant {
99 /**
100 * Value of the constant.
101 *
102 * The field used to back the values supplied by the constant is determined
103 * by the type associated with the \c nir_variable. Constants may be
104 * scalars, vectors, or matrices.
105 */
106 union nir_constant_data value;
107
108 /* Array elements / Structure Fields */
109 struct nir_constant **elements;
110 } nir_constant;
111
112 /**
113 * \brief Layout qualifiers for gl_FragDepth.
114 *
115 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
116 * with a layout qualifier.
117 */
118 typedef enum {
119 nir_depth_layout_none, /**< No depth layout is specified. */
120 nir_depth_layout_any,
121 nir_depth_layout_greater,
122 nir_depth_layout_less,
123 nir_depth_layout_unchanged
124 } nir_depth_layout;
125
126 /**
127 * Either a uniform, global variable, shader input, or shader output. Based on
128 * ir_variable - it should be easy to translate between the two.
129 */
130
131 typedef struct {
132 struct exec_node node;
133
134 /**
135 * Declared type of the variable
136 */
137 const struct glsl_type *type;
138
139 /**
140 * Declared name of the variable
141 */
142 char *name;
143
144 /**
145 * For variables which satisfy the is_interface_instance() predicate, this
146 * points to an array of integers such that if the ith member of the
147 * interface block is an array, max_ifc_array_access[i] is the maximum
148 * array element of that member that has been accessed. If the ith member
149 * of the interface block is not an array, max_ifc_array_access[i] is
150 * unused.
151 *
152 * For variables whose type is not an interface block, this pointer is
153 * NULL.
154 */
155 unsigned *max_ifc_array_access;
156
157 struct nir_variable_data {
158
159 /**
160 * Is the variable read-only?
161 *
162 * This is set for variables declared as \c const, shader inputs,
163 * and uniforms.
164 */
165 unsigned read_only:1;
166 unsigned centroid:1;
167 unsigned sample:1;
168 unsigned invariant:1;
169
170 /**
171 * Storage class of the variable.
172 *
173 * \sa nir_variable_mode
174 */
175 nir_variable_mode mode:4;
176
177 /**
178 * Interpolation mode for shader inputs / outputs
179 *
180 * \sa glsl_interp_qualifier
181 */
182 unsigned interpolation:2;
183
184 /**
185 * \name ARB_fragment_coord_conventions
186 * @{
187 */
188 unsigned origin_upper_left:1;
189 unsigned pixel_center_integer:1;
190 /*@}*/
191
192 /**
193 * Was the location explicitly set in the shader?
194 *
195 * If the location is explicitly set in the shader, it \b cannot be changed
196 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
197 * no effect).
198 */
199 unsigned explicit_location:1;
200 unsigned explicit_index:1;
201
202 /**
203 * Was an initial binding explicitly set in the shader?
204 *
205 * If so, constant_initializer contains an integer nir_constant
206 * representing the initial binding point.
207 */
208 unsigned explicit_binding:1;
209
210 /**
211 * Does this variable have an initializer?
212 *
213 * This is used by the linker to cross-validiate initializers of global
214 * variables.
215 */
216 unsigned has_initializer:1;
217
218 /**
219 * Is this variable a generic output or input that has not yet been matched
220 * up to a variable in another stage of the pipeline?
221 *
222 * This is used by the linker as scratch storage while assigning locations
223 * to generic inputs and outputs.
224 */
225 unsigned is_unmatched_generic_inout:1;
226
227 /**
228 * If non-zero, then this variable may be packed along with other variables
229 * into a single varying slot, so this offset should be applied when
230 * accessing components. For example, an offset of 1 means that the x
231 * component of this variable is actually stored in component y of the
232 * location specified by \c location.
233 */
234 unsigned location_frac:2;
235
236 /**
237 * Non-zero if this variable was created by lowering a named interface
238 * block which was not an array.
239 *
240 * Note that this variable and \c from_named_ifc_block_array will never
241 * both be non-zero.
242 */
243 unsigned from_named_ifc_block_nonarray:1;
244
245 /**
246 * Non-zero if this variable was created by lowering a named interface
247 * block which was an array.
248 *
249 * Note that this variable and \c from_named_ifc_block_nonarray will never
250 * both be non-zero.
251 */
252 unsigned from_named_ifc_block_array:1;
253
254 /**
255 * \brief Layout qualifier for gl_FragDepth.
256 *
257 * This is not equal to \c ir_depth_layout_none if and only if this
258 * variable is \c gl_FragDepth and a layout qualifier is specified.
259 */
260 nir_depth_layout depth_layout;
261
262 /**
263 * Storage location of the base of this variable
264 *
265 * The precise meaning of this field depends on the nature of the variable.
266 *
267 * - Vertex shader input: one of the values from \c gl_vert_attrib.
268 * - Vertex shader output: one of the values from \c gl_varying_slot.
269 * - Geometry shader input: one of the values from \c gl_varying_slot.
270 * - Geometry shader output: one of the values from \c gl_varying_slot.
271 * - Fragment shader input: one of the values from \c gl_varying_slot.
272 * - Fragment shader output: one of the values from \c gl_frag_result.
273 * - Uniforms: Per-stage uniform slot number for default uniform block.
274 * - Uniforms: Index within the uniform block definition for UBO members.
275 * - Other: This field is not currently used.
276 *
277 * If the variable is a uniform, shader input, or shader output, and the
278 * slot has not been assigned, the value will be -1.
279 */
280 int location;
281
282 /**
283 * The actual location of the variable in the IR. Only valid for inputs
284 * and outputs.
285 */
286 unsigned int driver_location;
287
288 /**
289 * output index for dual source blending.
290 */
291 int index;
292
293 /**
294 * Initial binding point for a sampler or UBO.
295 *
296 * For array types, this represents the binding point for the first element.
297 */
298 int binding;
299
300 /**
301 * Location an atomic counter is stored at.
302 */
303 struct {
304 unsigned buffer_index;
305 unsigned offset;
306 } atomic;
307
308 /**
309 * ARB_shader_image_load_store qualifiers.
310 */
311 struct {
312 bool read_only; /**< "readonly" qualifier. */
313 bool write_only; /**< "writeonly" qualifier. */
314 bool coherent;
315 bool _volatile;
316 bool restrict_flag;
317
318 /** Image internal format if specified explicitly, otherwise GL_NONE. */
319 GLenum format;
320 } image;
321
322 /**
323 * Highest element accessed with a constant expression array index
324 *
325 * Not used for non-array variables.
326 */
327 unsigned max_array_access;
328
329 } data;
330
331 /**
332 * Built-in state that backs this uniform
333 *
334 * Once set at variable creation, \c state_slots must remain invariant.
335 * This is because, ideally, this array would be shared by all clones of
336 * this variable in the IR tree. In other words, we'd really like for it
337 * to be a fly-weight.
338 *
339 * If the variable is not a uniform, \c num_state_slots will be zero and
340 * \c state_slots will be \c NULL.
341 */
342 /*@{*/
343 unsigned num_state_slots; /**< Number of state slots used */
344 nir_state_slot *state_slots; /**< State descriptors. */
345 /*@}*/
346
347 /**
348 * Constant expression assigned in the initializer of the variable
349 */
350 nir_constant *constant_initializer;
351
352 /**
353 * For variables that are in an interface block or are an instance of an
354 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
355 *
356 * \sa ir_variable::location
357 */
358 const struct glsl_type *interface_type;
359 } nir_variable;
360
361 typedef struct {
362 struct exec_node node;
363
364 unsigned num_components; /** < number of vector components */
365 unsigned num_array_elems; /** < size of array (0 for no array) */
366
367 /** generic register index. */
368 unsigned index;
369
370 /** only for debug purposes, can be NULL */
371 const char *name;
372
373 /** whether this register is local (per-function) or global (per-shader) */
374 bool is_global;
375
376 /**
377 * If this flag is set to true, then accessing channels >= num_components
378 * is well-defined, and simply spills over to the next array element. This
379 * is useful for backends that can do per-component accessing, in
380 * particular scalar backends. By setting this flag and making
381 * num_components equal to 1, structures can be packed tightly into
382 * registers and then registers can be accessed per-component to get to
383 * each structure member, even if it crosses vec4 boundaries.
384 */
385 bool is_packed;
386
387 /** set of nir_instr's where this register is used (read from) */
388 struct set *uses;
389
390 /** set of nir_instr's where this register is defined (written to) */
391 struct set *defs;
392
393 /** set of nir_if's where this register is used as a condition */
394 struct set *if_uses;
395 } nir_register;
396
397 typedef enum {
398 nir_instr_type_alu,
399 nir_instr_type_call,
400 nir_instr_type_tex,
401 nir_instr_type_intrinsic,
402 nir_instr_type_load_const,
403 nir_instr_type_jump,
404 nir_instr_type_ssa_undef,
405 nir_instr_type_phi,
406 nir_instr_type_parallel_copy,
407 } nir_instr_type;
408
409 typedef struct {
410 struct exec_node node;
411 nir_instr_type type;
412 struct nir_block *block;
413
414 /* A temporary for optimization and analysis passes to use for storing
415 * flags. For instance, DCE uses this to store the "dead/live" info.
416 */
417 uint8_t pass_flags;
418 } nir_instr;
419
420 static inline nir_instr *
421 nir_instr_next(nir_instr *instr)
422 {
423 struct exec_node *next = exec_node_get_next(&instr->node);
424 if (exec_node_is_tail_sentinel(next))
425 return NULL;
426 else
427 return exec_node_data(nir_instr, next, node);
428 }
429
430 static inline nir_instr *
431 nir_instr_prev(nir_instr *instr)
432 {
433 struct exec_node *prev = exec_node_get_prev(&instr->node);
434 if (exec_node_is_head_sentinel(prev))
435 return NULL;
436 else
437 return exec_node_data(nir_instr, prev, node);
438 }
439
440 typedef struct {
441 /** for debugging only, can be NULL */
442 const char* name;
443
444 /** generic SSA definition index. */
445 unsigned index;
446
447 /** Index into the live_in and live_out bitfields */
448 unsigned live_index;
449
450 nir_instr *parent_instr;
451
452 /** set of nir_instr's where this register is used (read from) */
453 struct set *uses;
454
455 /** set of nir_if's where this register is used as a condition */
456 struct set *if_uses;
457
458 uint8_t num_components;
459 } nir_ssa_def;
460
461 struct nir_src;
462
463 typedef struct {
464 nir_register *reg;
465 struct nir_src *indirect; /** < NULL for no indirect offset */
466 unsigned base_offset;
467
468 /* TODO use-def chain goes here */
469 } nir_reg_src;
470
471 typedef struct {
472 nir_register *reg;
473 struct nir_src *indirect; /** < NULL for no indirect offset */
474 unsigned base_offset;
475
476 /* TODO def-use chain goes here */
477 } nir_reg_dest;
478
479 typedef struct nir_src {
480 union {
481 nir_reg_src reg;
482 nir_ssa_def *ssa;
483 };
484
485 bool is_ssa;
486 } nir_src;
487
488 typedef struct {
489 union {
490 nir_reg_dest reg;
491 nir_ssa_def ssa;
492 };
493
494 bool is_ssa;
495 } nir_dest;
496
497 static inline nir_src
498 nir_src_for_ssa(nir_ssa_def *def)
499 {
500 nir_src src;
501
502 src.is_ssa = true;
503 src.ssa = def;
504
505 return src;
506 }
507
508 static inline nir_src
509 nir_src_for_reg(nir_register *reg)
510 {
511 nir_src src;
512
513 src.is_ssa = false;
514 src.reg.reg = reg;
515 src.reg.indirect = NULL;
516 src.reg.base_offset = 0;
517
518 return src;
519 }
520
521 static inline nir_dest
522 nir_dest_for_reg(nir_register *reg)
523 {
524 nir_dest dest;
525
526 dest.is_ssa = false;
527 dest.reg.reg = reg;
528 dest.reg.indirect = NULL;
529 dest.reg.base_offset = 0;
530
531 return dest;
532 }
533
534 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
535 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
536
537 typedef struct {
538 nir_src src;
539
540 /**
541 * \name input modifiers
542 */
543 /*@{*/
544 /**
545 * For inputs interpreted as floating point, flips the sign bit. For
546 * inputs interpreted as integers, performs the two's complement negation.
547 */
548 bool negate;
549
550 /**
551 * Clears the sign bit for floating point values, and computes the integer
552 * absolute value for integers. Note that the negate modifier acts after
553 * the absolute value modifier, therefore if both are set then all inputs
554 * will become negative.
555 */
556 bool abs;
557 /*@}*/
558
559 /**
560 * For each input component, says which component of the register it is
561 * chosen from. Note that which elements of the swizzle are used and which
562 * are ignored are based on the write mask for most opcodes - for example,
563 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
564 * a swizzle of {2, x, 1, 0} where x means "don't care."
565 */
566 uint8_t swizzle[4];
567 } nir_alu_src;
568
569 typedef struct {
570 nir_dest dest;
571
572 /**
573 * \name saturate output modifier
574 *
575 * Only valid for opcodes that output floating-point numbers. Clamps the
576 * output to between 0.0 and 1.0 inclusive.
577 */
578
579 bool saturate;
580
581 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
582 } nir_alu_dest;
583
584 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
585 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
586 void *mem_ctx);
587
588 typedef enum {
589 nir_type_invalid = 0, /* Not a valid type */
590 nir_type_float,
591 nir_type_int,
592 nir_type_unsigned,
593 nir_type_bool
594 } nir_alu_type;
595
596 typedef enum {
597 NIR_OP_IS_COMMUTATIVE = (1 << 0),
598 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
599 } nir_op_algebraic_property;
600
601 typedef struct {
602 const char *name;
603
604 unsigned num_inputs;
605
606 /**
607 * The number of components in the output
608 *
609 * If non-zero, this is the size of the output and input sizes are
610 * explicitly given; swizzle and writemask are still in effect, but if
611 * the output component is masked out, then the input component may
612 * still be in use.
613 *
614 * If zero, the opcode acts in the standard, per-component manner; the
615 * operation is performed on each component (except the ones that are
616 * masked out) with the input being taken from the input swizzle for
617 * that component.
618 *
619 * The size of some of the inputs may be given (i.e. non-zero) even
620 * though output_size is zero; in that case, the inputs with a zero
621 * size act per-component, while the inputs with non-zero size don't.
622 */
623 unsigned output_size;
624
625 /**
626 * The type of vector that the instruction outputs. Note that the
627 * staurate modifier is only allowed on outputs with the float type.
628 */
629
630 nir_alu_type output_type;
631
632 /**
633 * The number of components in each input
634 */
635 unsigned input_sizes[4];
636
637 /**
638 * The type of vector that each input takes. Note that negate and
639 * absolute value are only allowed on inputs with int or float type and
640 * behave differently on the two.
641 */
642 nir_alu_type input_types[4];
643
644 nir_op_algebraic_property algebraic_properties;
645 } nir_op_info;
646
647 extern const nir_op_info nir_op_infos[nir_num_opcodes];
648
649 typedef struct nir_alu_instr {
650 nir_instr instr;
651 nir_op op;
652 nir_alu_dest dest;
653 nir_alu_src src[];
654 } nir_alu_instr;
655
656 /* is this source channel used? */
657 static inline bool
658 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
659 {
660 if (nir_op_infos[instr->op].input_sizes[src] > 0)
661 return channel < nir_op_infos[instr->op].input_sizes[src];
662
663 return (instr->dest.write_mask >> channel) & 1;
664 }
665
666 /*
667 * For instructions whose destinations are SSA, get the number of channels
668 * used for a source
669 */
670 static inline unsigned
671 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
672 {
673 assert(instr->dest.dest.is_ssa);
674
675 if (nir_op_infos[instr->op].input_sizes[src] > 0)
676 return nir_op_infos[instr->op].input_sizes[src];
677
678 return instr->dest.dest.ssa.num_components;
679 }
680
681 typedef enum {
682 nir_deref_type_var,
683 nir_deref_type_array,
684 nir_deref_type_struct
685 } nir_deref_type;
686
687 typedef struct nir_deref {
688 nir_deref_type deref_type;
689 struct nir_deref *child;
690 const struct glsl_type *type;
691 } nir_deref;
692
693 typedef struct {
694 nir_deref deref;
695
696 nir_variable *var;
697 } nir_deref_var;
698
699 /* This enum describes how the array is referenced. If the deref is
700 * direct then the base_offset is used. If the deref is indirect then then
701 * offset is given by base_offset + indirect. If the deref is a wildcard
702 * then the deref refers to all of the elements of the array at the same
703 * time. Wildcard dereferences are only ever allowed in copy_var
704 * intrinsics and the source and destination derefs must have matching
705 * wildcards.
706 */
707 typedef enum {
708 nir_deref_array_type_direct,
709 nir_deref_array_type_indirect,
710 nir_deref_array_type_wildcard,
711 } nir_deref_array_type;
712
713 typedef struct {
714 nir_deref deref;
715
716 nir_deref_array_type deref_array_type;
717 unsigned base_offset;
718 nir_src indirect;
719 } nir_deref_array;
720
721 typedef struct {
722 nir_deref deref;
723
724 unsigned index;
725 } nir_deref_struct;
726
727 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
728 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
729 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
730
731 typedef struct {
732 nir_instr instr;
733
734 unsigned num_params;
735 nir_deref_var **params;
736 nir_deref_var *return_deref;
737
738 struct nir_function_overload *callee;
739 } nir_call_instr;
740
741 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
742 num_variables, num_indices, flags) \
743 nir_intrinsic_##name,
744
745 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
746
747 typedef enum {
748 #include "nir_intrinsics.h"
749 nir_num_intrinsics = nir_last_intrinsic + 1
750 } nir_intrinsic_op;
751
752 #undef INTRINSIC
753 #undef LAST_INTRINSIC
754
755 /** Represents an intrinsic
756 *
757 * An intrinsic is an instruction type for handling things that are
758 * more-or-less regular operations but don't just consume and produce SSA
759 * values like ALU operations do. Intrinsics are not for things that have
760 * special semantic meaning such as phi nodes and parallel copies.
761 * Examples of intrinsics include variable load/store operations, system
762 * value loads, and the like. Even though texturing more-or-less falls
763 * under this category, texturing is its own instruction type because
764 * trying to represent texturing with intrinsics would lead to a
765 * combinatorial explosion of intrinsic opcodes.
766 *
767 * By having a single instruction type for handling a lot of different
768 * cases, optimization passes can look for intrinsics and, for the most
769 * part, completely ignore them. Each intrinsic type also has a few
770 * possible flags that govern whether or not they can be reordered or
771 * eliminated. That way passes like dead code elimination can still work
772 * on intrisics without understanding the meaning of each.
773 *
774 * Each intrinsic has some number of constant indices, some number of
775 * variables, and some number of sources. What these sources, variables,
776 * and indices mean depends on the intrinsic and is documented with the
777 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
778 * instructions are the only types of instruction that can operate on
779 * variables.
780 */
781 typedef struct {
782 nir_instr instr;
783
784 nir_intrinsic_op intrinsic;
785
786 nir_dest dest;
787
788 /** number of components if this is a vectorized intrinsic
789 *
790 * Similarly to ALU operations, some intrinsics are vectorized.
791 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
792 * For vectorized intrinsics, the num_components field specifies the
793 * number of destination components and the number of source components
794 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
795 */
796 uint8_t num_components;
797
798 int const_index[3];
799
800 nir_deref_var *variables[2];
801
802 nir_src src[];
803 } nir_intrinsic_instr;
804
805 /**
806 * \name NIR intrinsics semantic flags
807 *
808 * information about what the compiler can do with the intrinsics.
809 *
810 * \sa nir_intrinsic_info::flags
811 */
812 typedef enum {
813 /**
814 * whether the intrinsic can be safely eliminated if none of its output
815 * value is not being used.
816 */
817 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
818
819 /**
820 * Whether the intrinsic can be reordered with respect to any other
821 * intrinsic, i.e. whether the only reordering dependencies of the
822 * intrinsic are due to the register reads/writes.
823 */
824 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
825 } nir_intrinsic_semantic_flag;
826
827 #define NIR_INTRINSIC_MAX_INPUTS 4
828
829 typedef struct {
830 const char *name;
831
832 unsigned num_srcs; /** < number of register/SSA inputs */
833
834 /** number of components of each input register
835 *
836 * If this value is 0, the number of components is given by the
837 * num_components field of nir_intrinsic_instr.
838 */
839 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
840
841 bool has_dest;
842
843 /** number of components of the output register
844 *
845 * If this value is 0, the number of components is given by the
846 * num_components field of nir_intrinsic_instr.
847 */
848 unsigned dest_components;
849
850 /** the number of inputs/outputs that are variables */
851 unsigned num_variables;
852
853 /** the number of constant indices used by the intrinsic */
854 unsigned num_indices;
855
856 /** semantic flags for calls to this intrinsic */
857 nir_intrinsic_semantic_flag flags;
858 } nir_intrinsic_info;
859
860 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
861
862 /**
863 * \group texture information
864 *
865 * This gives semantic information about textures which is useful to the
866 * frontend, the backend, and lowering passes, but not the optimizer.
867 */
868
869 typedef enum {
870 nir_tex_src_coord,
871 nir_tex_src_projector,
872 nir_tex_src_comparitor, /* shadow comparitor */
873 nir_tex_src_offset,
874 nir_tex_src_bias,
875 nir_tex_src_lod,
876 nir_tex_src_ms_index, /* MSAA sample index */
877 nir_tex_src_ddx,
878 nir_tex_src_ddy,
879 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
880 nir_num_tex_src_types
881 } nir_tex_src_type;
882
883 typedef struct {
884 nir_src src;
885 nir_tex_src_type src_type;
886 } nir_tex_src;
887
888 typedef enum {
889 nir_texop_tex, /**< Regular texture look-up */
890 nir_texop_txb, /**< Texture look-up with LOD bias */
891 nir_texop_txl, /**< Texture look-up with explicit LOD */
892 nir_texop_txd, /**< Texture look-up with partial derivatvies */
893 nir_texop_txf, /**< Texel fetch with explicit LOD */
894 nir_texop_txf_ms, /**< Multisample texture fetch */
895 nir_texop_txs, /**< Texture size */
896 nir_texop_lod, /**< Texture lod query */
897 nir_texop_tg4, /**< Texture gather */
898 nir_texop_query_levels /**< Texture levels query */
899 } nir_texop;
900
901 typedef struct {
902 nir_instr instr;
903
904 enum glsl_sampler_dim sampler_dim;
905 nir_alu_type dest_type;
906
907 nir_texop op;
908 nir_dest dest;
909 nir_tex_src *src;
910 unsigned num_srcs, coord_components;
911 bool is_array, is_shadow;
912
913 /**
914 * If is_shadow is true, whether this is the old-style shadow that outputs 4
915 * components or the new-style shadow that outputs 1 component.
916 */
917 bool is_new_style_shadow;
918
919 /* constant offset - must be 0 if the offset source is used */
920 int const_offset[4];
921
922 /* gather component selector */
923 unsigned component : 2;
924
925 /** The sampler index
926 *
927 * If this texture instruction has a nir_tex_src_sampler_offset source,
928 * then the sampler index is given by sampler_index + sampler_offset.
929 */
930 unsigned sampler_index;
931
932 /** The size of the sampler array or 0 if it's not an array */
933 unsigned sampler_array_size;
934
935 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
936 } nir_tex_instr;
937
938 static inline unsigned
939 nir_tex_instr_dest_size(nir_tex_instr *instr)
940 {
941 if (instr->op == nir_texop_txs) {
942 unsigned ret;
943 switch (instr->sampler_dim) {
944 case GLSL_SAMPLER_DIM_1D:
945 case GLSL_SAMPLER_DIM_BUF:
946 ret = 1;
947 break;
948 case GLSL_SAMPLER_DIM_2D:
949 case GLSL_SAMPLER_DIM_CUBE:
950 case GLSL_SAMPLER_DIM_MS:
951 case GLSL_SAMPLER_DIM_RECT:
952 case GLSL_SAMPLER_DIM_EXTERNAL:
953 ret = 2;
954 break;
955 case GLSL_SAMPLER_DIM_3D:
956 ret = 3;
957 break;
958 default:
959 unreachable("not reached");
960 }
961 if (instr->is_array)
962 ret++;
963 return ret;
964 }
965
966 if (instr->op == nir_texop_query_levels)
967 return 2;
968
969 if (instr->is_shadow && instr->is_new_style_shadow)
970 return 1;
971
972 return 4;
973 }
974
975 static inline unsigned
976 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
977 {
978 if (instr->src[src].src_type == nir_tex_src_coord)
979 return instr->coord_components;
980
981
982 if (instr->src[src].src_type == nir_tex_src_offset ||
983 instr->src[src].src_type == nir_tex_src_ddx ||
984 instr->src[src].src_type == nir_tex_src_ddy) {
985 if (instr->is_array)
986 return instr->coord_components - 1;
987 else
988 return instr->coord_components;
989 }
990
991 return 1;
992 }
993
994 static inline int
995 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
996 {
997 for (unsigned i = 0; i < instr->num_srcs; i++)
998 if (instr->src[i].src_type == type)
999 return (int) i;
1000
1001 return -1;
1002 }
1003
1004 typedef struct {
1005 union {
1006 float f[4];
1007 int32_t i[4];
1008 uint32_t u[4];
1009 };
1010 } nir_const_value;
1011
1012 typedef struct {
1013 nir_instr instr;
1014
1015 nir_const_value value;
1016
1017 nir_ssa_def def;
1018 } nir_load_const_instr;
1019
1020 typedef enum {
1021 nir_jump_return,
1022 nir_jump_break,
1023 nir_jump_continue,
1024 } nir_jump_type;
1025
1026 typedef struct {
1027 nir_instr instr;
1028 nir_jump_type type;
1029 } nir_jump_instr;
1030
1031 /* creates a new SSA variable in an undefined state */
1032
1033 typedef struct {
1034 nir_instr instr;
1035 nir_ssa_def def;
1036 } nir_ssa_undef_instr;
1037
1038 typedef struct {
1039 struct exec_node node;
1040
1041 /* The predecessor block corresponding to this source */
1042 struct nir_block *pred;
1043
1044 nir_src src;
1045 } nir_phi_src;
1046
1047 #define nir_foreach_phi_src(phi, entry) \
1048 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1049
1050 typedef struct {
1051 nir_instr instr;
1052
1053 struct exec_list srcs; /** < list of nir_phi_src */
1054
1055 nir_dest dest;
1056 } nir_phi_instr;
1057
1058 typedef struct {
1059 struct exec_node node;
1060 nir_src src;
1061 nir_dest dest;
1062 } nir_parallel_copy_entry;
1063
1064 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1065 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1066
1067 typedef struct {
1068 nir_instr instr;
1069
1070 /* A list of nir_parallel_copy_entry's. The sources of all of the
1071 * entries are copied to the corresponding destinations "in parallel".
1072 * In other words, if we have two entries: a -> b and b -> a, the values
1073 * get swapped.
1074 */
1075 struct exec_list entries;
1076 } nir_parallel_copy_instr;
1077
1078 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1079 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1080 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1081 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1082 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1083 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1084 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1085 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1086 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1087 nir_parallel_copy_instr, instr)
1088
1089 /*
1090 * Control flow
1091 *
1092 * Control flow consists of a tree of control flow nodes, which include
1093 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1094 * instructions that always run start-to-finish. Each basic block also keeps
1095 * track of its successors (blocks which may run immediately after the current
1096 * block) and predecessors (blocks which could have run immediately before the
1097 * current block). Each function also has a start block and an end block which
1098 * all return statements point to (which is always empty). Together, all the
1099 * blocks with their predecessors and successors make up the control flow
1100 * graph (CFG) of the function. There are helpers that modify the tree of
1101 * control flow nodes while modifying the CFG appropriately; these should be
1102 * used instead of modifying the tree directly.
1103 */
1104
1105 typedef enum {
1106 nir_cf_node_block,
1107 nir_cf_node_if,
1108 nir_cf_node_loop,
1109 nir_cf_node_function
1110 } nir_cf_node_type;
1111
1112 typedef struct nir_cf_node {
1113 struct exec_node node;
1114 nir_cf_node_type type;
1115 struct nir_cf_node *parent;
1116 } nir_cf_node;
1117
1118 typedef struct nir_block {
1119 nir_cf_node cf_node;
1120
1121 struct exec_list instr_list; /** < list of nir_instr */
1122
1123 /** generic block index; generated by nir_index_blocks */
1124 unsigned index;
1125
1126 /*
1127 * Each block can only have up to 2 successors, so we put them in a simple
1128 * array - no need for anything more complicated.
1129 */
1130 struct nir_block *successors[2];
1131
1132 /* Set of nir_block predecessors in the CFG */
1133 struct set *predecessors;
1134
1135 /*
1136 * this node's immediate dominator in the dominance tree - set to NULL for
1137 * the start block.
1138 */
1139 struct nir_block *imm_dom;
1140
1141 /* This node's children in the dominance tree */
1142 unsigned num_dom_children;
1143 struct nir_block **dom_children;
1144
1145 /* Set of nir_block's on the dominance frontier of this block */
1146 struct set *dom_frontier;
1147
1148 /*
1149 * These two indices have the property that dom_{pre,post}_index for each
1150 * child of this block in the dominance tree will always be between
1151 * dom_pre_index and dom_post_index for this block, which makes testing if
1152 * a given block is dominated by another block an O(1) operation.
1153 */
1154 unsigned dom_pre_index, dom_post_index;
1155
1156 /* live in and out for this block; used for liveness analysis */
1157 BITSET_WORD *live_in;
1158 BITSET_WORD *live_out;
1159 } nir_block;
1160
1161 static inline nir_instr *
1162 nir_block_first_instr(nir_block *block)
1163 {
1164 struct exec_node *head = exec_list_get_head(&block->instr_list);
1165 return exec_node_data(nir_instr, head, node);
1166 }
1167
1168 static inline nir_instr *
1169 nir_block_last_instr(nir_block *block)
1170 {
1171 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1172 return exec_node_data(nir_instr, tail, node);
1173 }
1174
1175 #define nir_foreach_instr(block, instr) \
1176 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1177 #define nir_foreach_instr_reverse(block, instr) \
1178 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1179 #define nir_foreach_instr_safe(block, instr) \
1180 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1181
1182 typedef struct {
1183 nir_cf_node cf_node;
1184 nir_src condition;
1185
1186 struct exec_list then_list; /** < list of nir_cf_node */
1187 struct exec_list else_list; /** < list of nir_cf_node */
1188 } nir_if;
1189
1190 static inline nir_cf_node *
1191 nir_if_first_then_node(nir_if *if_stmt)
1192 {
1193 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1194 return exec_node_data(nir_cf_node, head, node);
1195 }
1196
1197 static inline nir_cf_node *
1198 nir_if_last_then_node(nir_if *if_stmt)
1199 {
1200 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1201 return exec_node_data(nir_cf_node, tail, node);
1202 }
1203
1204 static inline nir_cf_node *
1205 nir_if_first_else_node(nir_if *if_stmt)
1206 {
1207 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1208 return exec_node_data(nir_cf_node, head, node);
1209 }
1210
1211 static inline nir_cf_node *
1212 nir_if_last_else_node(nir_if *if_stmt)
1213 {
1214 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1215 return exec_node_data(nir_cf_node, tail, node);
1216 }
1217
1218 typedef struct {
1219 nir_cf_node cf_node;
1220
1221 struct exec_list body; /** < list of nir_cf_node */
1222 } nir_loop;
1223
1224 static inline nir_cf_node *
1225 nir_loop_first_cf_node(nir_loop *loop)
1226 {
1227 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1228 }
1229
1230 static inline nir_cf_node *
1231 nir_loop_last_cf_node(nir_loop *loop)
1232 {
1233 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1234 }
1235
1236 /**
1237 * Various bits of metadata that can may be created or required by
1238 * optimization and analysis passes
1239 */
1240 typedef enum {
1241 nir_metadata_none = 0x0,
1242 nir_metadata_block_index = 0x1,
1243 nir_metadata_dominance = 0x2,
1244 nir_metadata_live_variables = 0x4,
1245 } nir_metadata;
1246
1247 typedef struct {
1248 nir_cf_node cf_node;
1249
1250 /** pointer to the overload of which this is an implementation */
1251 struct nir_function_overload *overload;
1252
1253 struct exec_list body; /** < list of nir_cf_node */
1254
1255 nir_block *start_block, *end_block;
1256
1257 /** list for all local variables in the function */
1258 struct exec_list locals;
1259
1260 /** array of variables used as parameters */
1261 unsigned num_params;
1262 nir_variable **params;
1263
1264 /** variable used to hold the result of the function */
1265 nir_variable *return_var;
1266
1267 /** list of local registers in the function */
1268 struct exec_list registers;
1269
1270 /** next available local register index */
1271 unsigned reg_alloc;
1272
1273 /** next available SSA value index */
1274 unsigned ssa_alloc;
1275
1276 /* total number of basic blocks, only valid when block_index_dirty = false */
1277 unsigned num_blocks;
1278
1279 nir_metadata valid_metadata;
1280 } nir_function_impl;
1281
1282 static inline nir_cf_node *
1283 nir_cf_node_next(nir_cf_node *node)
1284 {
1285 struct exec_node *next = exec_node_get_next(&node->node);
1286 if (exec_node_is_tail_sentinel(next))
1287 return NULL;
1288 else
1289 return exec_node_data(nir_cf_node, next, node);
1290 }
1291
1292 static inline nir_cf_node *
1293 nir_cf_node_prev(nir_cf_node *node)
1294 {
1295 struct exec_node *prev = exec_node_get_prev(&node->node);
1296 if (exec_node_is_head_sentinel(prev))
1297 return NULL;
1298 else
1299 return exec_node_data(nir_cf_node, prev, node);
1300 }
1301
1302 static inline bool
1303 nir_cf_node_is_first(const nir_cf_node *node)
1304 {
1305 return exec_node_is_head_sentinel(node->node.prev);
1306 }
1307
1308 static inline bool
1309 nir_cf_node_is_last(const nir_cf_node *node)
1310 {
1311 return exec_node_is_tail_sentinel(node->node.next);
1312 }
1313
1314 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1315 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1316 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1317 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1318
1319 typedef enum {
1320 nir_parameter_in,
1321 nir_parameter_out,
1322 nir_parameter_inout,
1323 } nir_parameter_type;
1324
1325 typedef struct {
1326 nir_parameter_type param_type;
1327 const struct glsl_type *type;
1328 } nir_parameter;
1329
1330 typedef struct nir_function_overload {
1331 struct exec_node node;
1332
1333 unsigned num_params;
1334 nir_parameter *params;
1335 const struct glsl_type *return_type;
1336
1337 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1338
1339 /** pointer to the function of which this is an overload */
1340 struct nir_function *function;
1341 } nir_function_overload;
1342
1343 typedef struct nir_function {
1344 struct exec_node node;
1345
1346 struct exec_list overload_list; /** < list of nir_function_overload */
1347 const char *name;
1348 struct nir_shader *shader;
1349 } nir_function;
1350
1351 #define nir_function_first_overload(func) \
1352 exec_node_data(nir_function_overload, \
1353 exec_list_get_head(&(func)->overload_list), node)
1354
1355 typedef struct nir_shader_compiler_options {
1356 bool lower_ffma;
1357 bool lower_fpow;
1358 bool lower_fsat;
1359 bool lower_fsqrt;
1360 /** lowers fneg and ineg to fsub and isub. */
1361 bool lower_negate;
1362 } nir_shader_compiler_options;
1363
1364 typedef struct nir_shader {
1365 /** hash table of name -> uniform nir_variable */
1366 struct hash_table *uniforms;
1367
1368 /** hash table of name -> input nir_variable */
1369 struct hash_table *inputs;
1370
1371 /** hash table of name -> output nir_variable */
1372 struct hash_table *outputs;
1373
1374 /** Set of driver-specific options for the shader.
1375 *
1376 * The memory for the options is expected to be kept in a single static
1377 * copy by the driver.
1378 */
1379 const struct nir_shader_compiler_options *options;
1380
1381 /** list of global variables in the shader */
1382 struct exec_list globals;
1383
1384 /** list of system value variables in the shader */
1385 struct exec_list system_values;
1386
1387 struct exec_list functions; /** < list of nir_function */
1388
1389 /** list of global register in the shader */
1390 struct exec_list registers;
1391
1392 /** structures used in this shader */
1393 unsigned num_user_structures;
1394 struct glsl_type **user_structures;
1395
1396 /** next available global register index */
1397 unsigned reg_alloc;
1398
1399 /**
1400 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1401 * access plus one
1402 */
1403 unsigned num_inputs, num_uniforms, num_outputs;
1404 } nir_shader;
1405
1406 #define nir_foreach_overload(shader, overload) \
1407 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1408 foreach_list_typed(nir_function_overload, overload, node, \
1409 &(func)->overload_list)
1410
1411 nir_shader *nir_shader_create(void *mem_ctx,
1412 const nir_shader_compiler_options *options);
1413
1414 /** creates a register, including assigning it an index and adding it to the list */
1415 nir_register *nir_global_reg_create(nir_shader *shader);
1416
1417 nir_register *nir_local_reg_create(nir_function_impl *impl);
1418
1419 void nir_reg_remove(nir_register *reg);
1420
1421 /** creates a function and adds it to the shader's list of functions */
1422 nir_function *nir_function_create(nir_shader *shader, const char *name);
1423
1424 /** creates a null function returning null */
1425 nir_function_overload *nir_function_overload_create(nir_function *func);
1426
1427 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1428
1429 nir_block *nir_block_create(void *mem_ctx);
1430 nir_if *nir_if_create(void *mem_ctx);
1431 nir_loop *nir_loop_create(void *mem_ctx);
1432
1433 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1434
1435 /** puts a control flow node immediately after another control flow node */
1436 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1437
1438 /** puts a control flow node immediately before another control flow node */
1439 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1440
1441 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1442 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1443
1444 /** puts a control flow node at the end of a list from an if, loop, or function */
1445 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1446
1447 /** removes a control flow node, doing any cleanup necessary */
1448 void nir_cf_node_remove(nir_cf_node *node);
1449
1450 /** requests that the given pieces of metadata be generated */
1451 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1452 /** dirties all but the preserved metadata */
1453 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1454
1455 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1456 nir_alu_instr *nir_alu_instr_create(void *mem_ctx, nir_op op);
1457
1458 nir_jump_instr *nir_jump_instr_create(void *mem_ctx, nir_jump_type type);
1459
1460 nir_load_const_instr *nir_load_const_instr_create(void *mem_ctx,
1461 unsigned num_components);
1462
1463 nir_intrinsic_instr *nir_intrinsic_instr_create(void *mem_ctx,
1464 nir_intrinsic_op op);
1465
1466 nir_call_instr *nir_call_instr_create(void *mem_ctx,
1467 nir_function_overload *callee);
1468
1469 nir_tex_instr *nir_tex_instr_create(void *mem_ctx, unsigned num_srcs);
1470
1471 nir_phi_instr *nir_phi_instr_create(void *mem_ctx);
1472
1473 nir_parallel_copy_instr *nir_parallel_copy_instr_create(void *mem_ctx);
1474
1475 nir_ssa_undef_instr *nir_ssa_undef_instr_create(void *mem_ctx,
1476 unsigned num_components);
1477
1478 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1479 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1480 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1481
1482 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1483
1484 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1485 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1486
1487 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1488 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1489
1490 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1491 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1492
1493 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1494 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1495
1496 void nir_instr_remove(nir_instr *instr);
1497
1498 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1499 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1500 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1501 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1502 void *state);
1503 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1504 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1505
1506 nir_const_value *nir_src_as_const_value(nir_src src);
1507 bool nir_srcs_equal(nir_src src1, nir_src src2);
1508 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1509
1510 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1511 unsigned num_components, const char *name);
1512 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1513 unsigned num_components, const char *name);
1514 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1515
1516 /* visits basic blocks in source-code order */
1517 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1518 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1519 void *state);
1520 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1521 void *state);
1522
1523 /* If the following CF node is an if, this function returns that if.
1524 * Otherwise, it returns NULL.
1525 */
1526 nir_if *nir_block_get_following_if(nir_block *block);
1527
1528 void nir_index_local_regs(nir_function_impl *impl);
1529 void nir_index_global_regs(nir_shader *shader);
1530 void nir_index_ssa_defs(nir_function_impl *impl);
1531
1532 void nir_index_blocks(nir_function_impl *impl);
1533
1534 void nir_print_shader(nir_shader *shader, FILE *fp);
1535 void nir_print_instr(const nir_instr *instr, FILE *fp);
1536
1537 #ifdef DEBUG
1538 void nir_validate_shader(nir_shader *shader);
1539 #else
1540 static inline void nir_validate_shader(nir_shader *shader) { }
1541 #endif /* DEBUG */
1542
1543 void nir_calc_dominance_impl(nir_function_impl *impl);
1544 void nir_calc_dominance(nir_shader *shader);
1545
1546 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1547 bool nir_block_dominates(nir_block *parent, nir_block *child);
1548
1549 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1550 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1551
1552 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1553 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1554
1555 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1556 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1557
1558 void nir_split_var_copies(nir_shader *shader);
1559
1560 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1561 void nir_lower_var_copies(nir_shader *shader);
1562
1563 void nir_lower_global_vars_to_local(nir_shader *shader);
1564
1565 void nir_lower_locals_to_regs(nir_shader *shader);
1566
1567 void nir_lower_io(nir_shader *shader);
1568
1569 void nir_lower_vars_to_ssa(nir_shader *shader);
1570
1571 void nir_remove_dead_variables(nir_shader *shader);
1572
1573 void nir_lower_vec_to_movs(nir_shader *shader);
1574 void nir_lower_alu_to_scalar(nir_shader *shader);
1575
1576 void nir_lower_phis_to_scalar(nir_shader *shader);
1577
1578 void nir_lower_samplers(nir_shader *shader,
1579 struct gl_shader_program *shader_program,
1580 struct gl_program *prog);
1581
1582 void nir_lower_system_values(nir_shader *shader);
1583
1584 void nir_lower_atomics(nir_shader *shader);
1585 void nir_lower_to_source_mods(nir_shader *shader);
1586
1587 void nir_live_variables_impl(nir_function_impl *impl);
1588 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1589
1590 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1591 void nir_convert_to_ssa(nir_shader *shader);
1592 void nir_convert_from_ssa(nir_shader *shader);
1593
1594 bool nir_opt_algebraic(nir_shader *shader);
1595 bool nir_opt_constant_folding(nir_shader *shader);
1596
1597 bool nir_opt_global_to_local(nir_shader *shader);
1598
1599 bool nir_copy_prop_impl(nir_function_impl *impl);
1600 bool nir_copy_prop(nir_shader *shader);
1601
1602 bool nir_opt_cse(nir_shader *shader);
1603
1604 bool nir_opt_dce_impl(nir_function_impl *impl);
1605 bool nir_opt_dce(nir_shader *shader);
1606
1607 void nir_opt_gcm(nir_shader *shader);
1608
1609 bool nir_opt_peephole_select(nir_shader *shader);
1610 bool nir_opt_peephole_ffma(nir_shader *shader);
1611
1612 bool nir_opt_remove_phis(nir_shader *shader);
1613
1614 #ifdef __cplusplus
1615 } /* extern "C" */
1616 #endif