nir: Add src and dest constructors
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/ralloc.h"
34 #include "util/set.h"
35 #include "main/mtypes.h"
36 #include "main/bitset.h"
37 #include "nir_types.h"
38 #include <stdio.h>
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 #define NIR_FALSE 0u
45 #define NIR_TRUE (~0u)
46
47 /** Defines a cast function
48 *
49 * This macro defines a cast function from in_type to out_type where
50 * out_type is some structure type that contains a field of type out_type.
51 *
52 * Note that you have to be a bit careful as the generated cast function
53 * destroys constness.
54 */
55 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
56 static inline out_type * \
57 name(const in_type *parent) \
58 { \
59 return exec_node_data(out_type, parent, field); \
60 }
61
62 struct nir_function_overload;
63 struct nir_function;
64 struct nir_shader;
65
66
67 /**
68 * Description of built-in state associated with a uniform
69 *
70 * \sa nir_variable::state_slots
71 */
72 typedef struct {
73 int tokens[5];
74 int swizzle;
75 } nir_state_slot;
76
77 typedef enum {
78 nir_var_shader_in,
79 nir_var_shader_out,
80 nir_var_global,
81 nir_var_local,
82 nir_var_uniform,
83 nir_var_system_value
84 } nir_variable_mode;
85
86 /**
87 * Data stored in an nir_constant
88 */
89 union nir_constant_data {
90 unsigned u[16];
91 int i[16];
92 float f[16];
93 bool b[16];
94 };
95
96 typedef struct nir_constant {
97 /**
98 * Value of the constant.
99 *
100 * The field used to back the values supplied by the constant is determined
101 * by the type associated with the \c nir_variable. Constants may be
102 * scalars, vectors, or matrices.
103 */
104 union nir_constant_data value;
105
106 /* Array elements / Structure Fields */
107 struct nir_constant **elements;
108 } nir_constant;
109
110 /**
111 * \brief Layout qualifiers for gl_FragDepth.
112 *
113 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
114 * with a layout qualifier.
115 */
116 typedef enum {
117 nir_depth_layout_none, /**< No depth layout is specified. */
118 nir_depth_layout_any,
119 nir_depth_layout_greater,
120 nir_depth_layout_less,
121 nir_depth_layout_unchanged
122 } nir_depth_layout;
123
124 /**
125 * Either a uniform, global variable, shader input, or shader output. Based on
126 * ir_variable - it should be easy to translate between the two.
127 */
128
129 typedef struct {
130 struct exec_node node;
131
132 /**
133 * Declared type of the variable
134 */
135 const struct glsl_type *type;
136
137 /**
138 * Declared name of the variable
139 */
140 char *name;
141
142 /**
143 * For variables which satisfy the is_interface_instance() predicate, this
144 * points to an array of integers such that if the ith member of the
145 * interface block is an array, max_ifc_array_access[i] is the maximum
146 * array element of that member that has been accessed. If the ith member
147 * of the interface block is not an array, max_ifc_array_access[i] is
148 * unused.
149 *
150 * For variables whose type is not an interface block, this pointer is
151 * NULL.
152 */
153 unsigned *max_ifc_array_access;
154
155 struct nir_variable_data {
156
157 /**
158 * Is the variable read-only?
159 *
160 * This is set for variables declared as \c const, shader inputs,
161 * and uniforms.
162 */
163 unsigned read_only:1;
164 unsigned centroid:1;
165 unsigned sample:1;
166 unsigned invariant:1;
167
168 /**
169 * Storage class of the variable.
170 *
171 * \sa nir_variable_mode
172 */
173 nir_variable_mode mode:4;
174
175 /**
176 * Interpolation mode for shader inputs / outputs
177 *
178 * \sa glsl_interp_qualifier
179 */
180 unsigned interpolation:2;
181
182 /**
183 * \name ARB_fragment_coord_conventions
184 * @{
185 */
186 unsigned origin_upper_left:1;
187 unsigned pixel_center_integer:1;
188 /*@}*/
189
190 /**
191 * Was the location explicitly set in the shader?
192 *
193 * If the location is explicitly set in the shader, it \b cannot be changed
194 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
195 * no effect).
196 */
197 unsigned explicit_location:1;
198 unsigned explicit_index:1;
199
200 /**
201 * Was an initial binding explicitly set in the shader?
202 *
203 * If so, constant_initializer contains an integer nir_constant
204 * representing the initial binding point.
205 */
206 unsigned explicit_binding:1;
207
208 /**
209 * Does this variable have an initializer?
210 *
211 * This is used by the linker to cross-validiate initializers of global
212 * variables.
213 */
214 unsigned has_initializer:1;
215
216 /**
217 * Is this variable a generic output or input that has not yet been matched
218 * up to a variable in another stage of the pipeline?
219 *
220 * This is used by the linker as scratch storage while assigning locations
221 * to generic inputs and outputs.
222 */
223 unsigned is_unmatched_generic_inout:1;
224
225 /**
226 * If non-zero, then this variable may be packed along with other variables
227 * into a single varying slot, so this offset should be applied when
228 * accessing components. For example, an offset of 1 means that the x
229 * component of this variable is actually stored in component y of the
230 * location specified by \c location.
231 */
232 unsigned location_frac:2;
233
234 /**
235 * Non-zero if this variable was created by lowering a named interface
236 * block which was not an array.
237 *
238 * Note that this variable and \c from_named_ifc_block_array will never
239 * both be non-zero.
240 */
241 unsigned from_named_ifc_block_nonarray:1;
242
243 /**
244 * Non-zero if this variable was created by lowering a named interface
245 * block which was an array.
246 *
247 * Note that this variable and \c from_named_ifc_block_nonarray will never
248 * both be non-zero.
249 */
250 unsigned from_named_ifc_block_array:1;
251
252 /**
253 * \brief Layout qualifier for gl_FragDepth.
254 *
255 * This is not equal to \c ir_depth_layout_none if and only if this
256 * variable is \c gl_FragDepth and a layout qualifier is specified.
257 */
258 nir_depth_layout depth_layout;
259
260 /**
261 * Storage location of the base of this variable
262 *
263 * The precise meaning of this field depends on the nature of the variable.
264 *
265 * - Vertex shader input: one of the values from \c gl_vert_attrib.
266 * - Vertex shader output: one of the values from \c gl_varying_slot.
267 * - Geometry shader input: one of the values from \c gl_varying_slot.
268 * - Geometry shader output: one of the values from \c gl_varying_slot.
269 * - Fragment shader input: one of the values from \c gl_varying_slot.
270 * - Fragment shader output: one of the values from \c gl_frag_result.
271 * - Uniforms: Per-stage uniform slot number for default uniform block.
272 * - Uniforms: Index within the uniform block definition for UBO members.
273 * - Other: This field is not currently used.
274 *
275 * If the variable is a uniform, shader input, or shader output, and the
276 * slot has not been assigned, the value will be -1.
277 */
278 int location;
279
280 /**
281 * The actual location of the variable in the IR. Only valid for inputs
282 * and outputs.
283 */
284 unsigned int driver_location;
285
286 /**
287 * output index for dual source blending.
288 */
289 int index;
290
291 /**
292 * Initial binding point for a sampler or UBO.
293 *
294 * For array types, this represents the binding point for the first element.
295 */
296 int binding;
297
298 /**
299 * Location an atomic counter is stored at.
300 */
301 struct {
302 unsigned buffer_index;
303 unsigned offset;
304 } atomic;
305
306 /**
307 * ARB_shader_image_load_store qualifiers.
308 */
309 struct {
310 bool read_only; /**< "readonly" qualifier. */
311 bool write_only; /**< "writeonly" qualifier. */
312 bool coherent;
313 bool _volatile;
314 bool restrict_flag;
315
316 /** Image internal format if specified explicitly, otherwise GL_NONE. */
317 GLenum format;
318 } image;
319
320 /**
321 * Highest element accessed with a constant expression array index
322 *
323 * Not used for non-array variables.
324 */
325 unsigned max_array_access;
326
327 } data;
328
329 /**
330 * Built-in state that backs this uniform
331 *
332 * Once set at variable creation, \c state_slots must remain invariant.
333 * This is because, ideally, this array would be shared by all clones of
334 * this variable in the IR tree. In other words, we'd really like for it
335 * to be a fly-weight.
336 *
337 * If the variable is not a uniform, \c num_state_slots will be zero and
338 * \c state_slots will be \c NULL.
339 */
340 /*@{*/
341 unsigned num_state_slots; /**< Number of state slots used */
342 nir_state_slot *state_slots; /**< State descriptors. */
343 /*@}*/
344
345 /**
346 * Constant expression assigned in the initializer of the variable
347 */
348 nir_constant *constant_initializer;
349
350 /**
351 * For variables that are in an interface block or are an instance of an
352 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
353 *
354 * \sa ir_variable::location
355 */
356 const struct glsl_type *interface_type;
357 } nir_variable;
358
359 typedef struct {
360 struct exec_node node;
361
362 unsigned num_components; /** < number of vector components */
363 unsigned num_array_elems; /** < size of array (0 for no array) */
364
365 /** generic register index. */
366 unsigned index;
367
368 /** only for debug purposes, can be NULL */
369 const char *name;
370
371 /** whether this register is local (per-function) or global (per-shader) */
372 bool is_global;
373
374 /**
375 * If this flag is set to true, then accessing channels >= num_components
376 * is well-defined, and simply spills over to the next array element. This
377 * is useful for backends that can do per-component accessing, in
378 * particular scalar backends. By setting this flag and making
379 * num_components equal to 1, structures can be packed tightly into
380 * registers and then registers can be accessed per-component to get to
381 * each structure member, even if it crosses vec4 boundaries.
382 */
383 bool is_packed;
384
385 /** set of nir_instr's where this register is used (read from) */
386 struct set *uses;
387
388 /** set of nir_instr's where this register is defined (written to) */
389 struct set *defs;
390
391 /** set of nir_if's where this register is used as a condition */
392 struct set *if_uses;
393 } nir_register;
394
395 typedef enum {
396 nir_instr_type_alu,
397 nir_instr_type_call,
398 nir_instr_type_tex,
399 nir_instr_type_intrinsic,
400 nir_instr_type_load_const,
401 nir_instr_type_jump,
402 nir_instr_type_ssa_undef,
403 nir_instr_type_phi,
404 nir_instr_type_parallel_copy,
405 } nir_instr_type;
406
407 typedef struct {
408 struct exec_node node;
409 nir_instr_type type;
410 struct nir_block *block;
411
412 /* flag for dead code elimination (see nir_opt_dce.c) */
413 bool live;
414 } nir_instr;
415
416 static inline nir_instr *
417 nir_instr_next(const nir_instr *instr)
418 {
419 return exec_node_data(nir_instr, (instr)->node.next, node);
420 }
421
422 static inline nir_instr *
423 nir_instr_prev(const nir_instr *instr)
424 {
425 return exec_node_data(nir_instr, (instr)->node.prev, node);
426 }
427
428 typedef struct {
429 /** for debugging only, can be NULL */
430 const char* name;
431
432 /** generic SSA definition index. */
433 unsigned index;
434
435 /** Index into the live_in and live_out bitfields */
436 unsigned live_index;
437
438 nir_instr *parent_instr;
439
440 /** set of nir_instr's where this register is used (read from) */
441 struct set *uses;
442
443 /** set of nir_if's where this register is used as a condition */
444 struct set *if_uses;
445
446 uint8_t num_components;
447 } nir_ssa_def;
448
449 struct nir_src;
450
451 typedef struct {
452 nir_register *reg;
453 struct nir_src *indirect; /** < NULL for no indirect offset */
454 unsigned base_offset;
455
456 /* TODO use-def chain goes here */
457 } nir_reg_src;
458
459 typedef struct {
460 nir_register *reg;
461 struct nir_src *indirect; /** < NULL for no indirect offset */
462 unsigned base_offset;
463
464 /* TODO def-use chain goes here */
465 } nir_reg_dest;
466
467 typedef struct nir_src {
468 union {
469 nir_reg_src reg;
470 nir_ssa_def *ssa;
471 };
472
473 bool is_ssa;
474 } nir_src;
475
476 typedef struct {
477 union {
478 nir_reg_dest reg;
479 nir_ssa_def ssa;
480 };
481
482 bool is_ssa;
483 } nir_dest;
484
485 static inline nir_src
486 nir_src_for_ssa(nir_ssa_def *def)
487 {
488 nir_src src;
489
490 src.is_ssa = true;
491 src.ssa = def;
492
493 return src;
494 }
495
496 static inline nir_src
497 nir_src_for_reg(nir_register *reg)
498 {
499 nir_src src;
500
501 src.is_ssa = false;
502 src.reg.reg = reg;
503 src.reg.indirect = NULL;
504 src.reg.base_offset = 0;
505
506 return src;
507 }
508
509 static inline nir_dest
510 nir_dest_for_reg(nir_register *reg)
511 {
512 nir_dest dest;
513
514 dest.is_ssa = false;
515 dest.reg.reg = reg;
516 dest.reg.indirect = NULL;
517 dest.reg.base_offset = 0;
518
519 return dest;
520 }
521
522 nir_src nir_src_copy(nir_src src, void *mem_ctx);
523 nir_dest nir_dest_copy(nir_dest dest, void *mem_ctx);
524
525 typedef struct {
526 nir_src src;
527
528 /**
529 * \name input modifiers
530 */
531 /*@{*/
532 /**
533 * For inputs interpreted as floating point, flips the sign bit. For
534 * inputs interpreted as integers, performs the two's complement negation.
535 */
536 bool negate;
537
538 /**
539 * Clears the sign bit for floating point values, and computes the integer
540 * absolute value for integers. Note that the negate modifier acts after
541 * the absolute value modifier, therefore if both are set then all inputs
542 * will become negative.
543 */
544 bool abs;
545 /*@}*/
546
547 /**
548 * For each input component, says which component of the register it is
549 * chosen from. Note that which elements of the swizzle are used and which
550 * are ignored are based on the write mask for most opcodes - for example,
551 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
552 * a swizzle of {2, x, 1, 0} where x means "don't care."
553 */
554 uint8_t swizzle[4];
555 } nir_alu_src;
556
557 typedef struct {
558 nir_dest dest;
559
560 /**
561 * \name saturate output modifier
562 *
563 * Only valid for opcodes that output floating-point numbers. Clamps the
564 * output to between 0.0 and 1.0 inclusive.
565 */
566
567 bool saturate;
568
569 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
570 } nir_alu_dest;
571
572 #define OPCODE(name, num_inputs, output_size, output_type, \
573 input_sizes, input_types, algebraic_props) \
574 nir_op_##name,
575
576 #define LAST_OPCODE(name) nir_last_opcode = nir_op_##name,
577
578 typedef enum {
579 #include "nir_opcodes.h"
580 nir_num_opcodes = nir_last_opcode + 1
581 } nir_op;
582
583 #undef OPCODE
584 #undef LAST_OPCODE
585
586 typedef enum {
587 nir_type_float,
588 nir_type_int,
589 nir_type_unsigned,
590 nir_type_bool
591 } nir_alu_type;
592
593 typedef enum {
594 NIR_OP_IS_COMMUTATIVE = (1 << 0),
595 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
596 } nir_op_algebraic_property;
597
598 typedef struct {
599 const char *name;
600
601 unsigned num_inputs;
602
603 /**
604 * The number of components in the output
605 *
606 * If non-zero, this is the size of the output and input sizes are
607 * explicitly given; swizzle and writemask are still in effect, but if
608 * the output component is masked out, then the input component may
609 * still be in use.
610 *
611 * If zero, the opcode acts in the standard, per-component manner; the
612 * operation is performed on each component (except the ones that are
613 * masked out) with the input being taken from the input swizzle for
614 * that component.
615 *
616 * The size of some of the inputs may be given (i.e. non-zero) even
617 * though output_size is zero; in that case, the inputs with a zero
618 * size act per-component, while the inputs with non-zero size don't.
619 */
620 unsigned output_size;
621
622 /**
623 * The type of vector that the instruction outputs. Note that the
624 * staurate modifier is only allowed on outputs with the float type.
625 */
626
627 nir_alu_type output_type;
628
629 /**
630 * The number of components in each input
631 */
632 unsigned input_sizes[4];
633
634 /**
635 * The type of vector that each input takes. Note that negate and
636 * absolute value are only allowed on inputs with int or float type and
637 * behave differently on the two.
638 */
639 nir_alu_type input_types[4];
640
641 nir_op_algebraic_property algebraic_properties;
642 } nir_op_info;
643
644 extern const nir_op_info nir_op_infos[nir_num_opcodes];
645
646 typedef struct nir_alu_instr {
647 nir_instr instr;
648 nir_op op;
649 nir_alu_dest dest;
650 nir_alu_src src[];
651 } nir_alu_instr;
652
653 /* is this source channel used? */
654 static inline bool
655 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
656 {
657 if (nir_op_infos[instr->op].input_sizes[src] > 0)
658 return channel < nir_op_infos[instr->op].input_sizes[src];
659
660 return (instr->dest.write_mask >> channel) & 1;
661 }
662
663 typedef enum {
664 nir_deref_type_var,
665 nir_deref_type_array,
666 nir_deref_type_struct
667 } nir_deref_type;
668
669 typedef struct nir_deref {
670 nir_deref_type deref_type;
671 struct nir_deref *child;
672 const struct glsl_type *type;
673 } nir_deref;
674
675 typedef struct {
676 nir_deref deref;
677
678 nir_variable *var;
679 } nir_deref_var;
680
681 /* This enum describes how the array is referenced. If the deref is
682 * direct then the base_offset is used. If the deref is indirect then then
683 * offset is given by base_offset + indirect. If the deref is a wildcard
684 * then the deref refers to all of the elements of the array at the same
685 * time. Wildcard dereferences are only ever allowed in copy_var
686 * intrinsics and the source and destination derefs must have matching
687 * wildcards.
688 */
689 typedef enum {
690 nir_deref_array_type_direct,
691 nir_deref_array_type_indirect,
692 nir_deref_array_type_wildcard,
693 } nir_deref_array_type;
694
695 typedef struct {
696 nir_deref deref;
697
698 nir_deref_array_type deref_array_type;
699 unsigned base_offset;
700 nir_src indirect;
701 } nir_deref_array;
702
703 typedef struct {
704 nir_deref deref;
705
706 unsigned index;
707 } nir_deref_struct;
708
709 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
710 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
711 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
712
713 typedef struct {
714 nir_instr instr;
715
716 unsigned num_params;
717 nir_deref_var **params;
718 nir_deref_var *return_deref;
719
720 struct nir_function_overload *callee;
721 } nir_call_instr;
722
723 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
724 num_variables, num_indices, flags) \
725 nir_intrinsic_##name,
726
727 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
728
729 typedef enum {
730 #include "nir_intrinsics.h"
731 nir_num_intrinsics = nir_last_intrinsic + 1
732 } nir_intrinsic_op;
733
734 #undef INTRINSIC
735 #undef LAST_INTRINSIC
736
737 /** Represents an intrinsic
738 *
739 * An intrinsic is an instruction type for handling things that are
740 * more-or-less regular operations but don't just consume and produce SSA
741 * values like ALU operations do. Intrinsics are not for things that have
742 * special semantic meaning such as phi nodes and parallel copies.
743 * Examples of intrinsics include variable load/store operations, system
744 * value loads, and the like. Even though texturing more-or-less falls
745 * under this category, texturing is its own instruction type because
746 * trying to represent texturing with intrinsics would lead to a
747 * combinatorial explosion of intrinsic opcodes.
748 *
749 * By having a single instruction type for handling a lot of different
750 * cases, optimization passes can look for intrinsics and, for the most
751 * part, completely ignore them. Each intrinsic type also has a few
752 * possible flags that govern whether or not they can be reordered or
753 * eliminated. That way passes like dead code elimination can still work
754 * on intrisics without understanding the meaning of each.
755 *
756 * Each intrinsic has some number of constant indices, some number of
757 * variables, and some number of sources. What these sources, variables,
758 * and indices mean depends on the intrinsic and is documented with the
759 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
760 * instructions are the only types of instruction that can operate on
761 * variables.
762 */
763 typedef struct {
764 nir_instr instr;
765
766 nir_intrinsic_op intrinsic;
767
768 nir_dest dest;
769
770 /** number of components if this is a vectorized intrinsic
771 *
772 * Similarly to ALU operations, some intrinsics are vectorized.
773 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
774 * For vectorized intrinsics, the num_components field specifies the
775 * number of destination components and the number of source components
776 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
777 */
778 uint8_t num_components;
779
780 int const_index[3];
781
782 nir_deref_var *variables[2];
783
784 nir_src src[];
785 } nir_intrinsic_instr;
786
787 /**
788 * \name NIR intrinsics semantic flags
789 *
790 * information about what the compiler can do with the intrinsics.
791 *
792 * \sa nir_intrinsic_info::flags
793 */
794 typedef enum {
795 /**
796 * whether the intrinsic can be safely eliminated if none of its output
797 * value is not being used.
798 */
799 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
800
801 /**
802 * Whether the intrinsic can be reordered with respect to any other
803 * intrinsic, i.e. whether the only reordering dependencies of the
804 * intrinsic are due to the register reads/writes.
805 */
806 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
807 } nir_intrinsic_semantic_flag;
808
809 #define NIR_INTRINSIC_MAX_INPUTS 4
810
811 typedef struct {
812 const char *name;
813
814 unsigned num_srcs; /** < number of register/SSA inputs */
815
816 /** number of components of each input register
817 *
818 * If this value is 0, the number of components is given by the
819 * num_components field of nir_intrinsic_instr.
820 */
821 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
822
823 bool has_dest;
824
825 /** number of components of the output register
826 *
827 * If this value is 0, the number of components is given by the
828 * num_components field of nir_intrinsic_instr.
829 */
830 unsigned dest_components;
831
832 /** the number of inputs/outputs that are variables */
833 unsigned num_variables;
834
835 /** the number of constant indices used by the intrinsic */
836 unsigned num_indices;
837
838 /** semantic flags for calls to this intrinsic */
839 nir_intrinsic_semantic_flag flags;
840 } nir_intrinsic_info;
841
842 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
843
844 /**
845 * \group texture information
846 *
847 * This gives semantic information about textures which is useful to the
848 * frontend, the backend, and lowering passes, but not the optimizer.
849 */
850
851 typedef enum {
852 nir_tex_src_coord,
853 nir_tex_src_projector,
854 nir_tex_src_comparitor, /* shadow comparitor */
855 nir_tex_src_offset,
856 nir_tex_src_bias,
857 nir_tex_src_lod,
858 nir_tex_src_ms_index, /* MSAA sample index */
859 nir_tex_src_ddx,
860 nir_tex_src_ddy,
861 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
862 nir_num_tex_src_types
863 } nir_tex_src_type;
864
865 typedef struct {
866 nir_src src;
867 nir_tex_src_type src_type;
868 } nir_tex_src;
869
870 typedef enum {
871 nir_texop_tex, /**< Regular texture look-up */
872 nir_texop_txb, /**< Texture look-up with LOD bias */
873 nir_texop_txl, /**< Texture look-up with explicit LOD */
874 nir_texop_txd, /**< Texture look-up with partial derivatvies */
875 nir_texop_txf, /**< Texel fetch with explicit LOD */
876 nir_texop_txf_ms, /**< Multisample texture fetch */
877 nir_texop_txs, /**< Texture size */
878 nir_texop_lod, /**< Texture lod query */
879 nir_texop_tg4, /**< Texture gather */
880 nir_texop_query_levels /**< Texture levels query */
881 } nir_texop;
882
883 typedef struct {
884 nir_instr instr;
885
886 enum glsl_sampler_dim sampler_dim;
887 nir_alu_type dest_type;
888
889 nir_texop op;
890 nir_dest dest;
891 nir_tex_src *src;
892 unsigned num_srcs, coord_components;
893 bool is_array, is_shadow;
894
895 /**
896 * If is_shadow is true, whether this is the old-style shadow that outputs 4
897 * components or the new-style shadow that outputs 1 component.
898 */
899 bool is_new_style_shadow;
900
901 /* constant offset - must be 0 if the offset source is used */
902 int const_offset[4];
903
904 /* gather component selector */
905 unsigned component : 2;
906
907 /** The sampler index
908 *
909 * If this texture instruction has a nir_tex_src_sampler_offset source,
910 * then the sampler index is given by sampler_index + sampler_offset.
911 */
912 unsigned sampler_index;
913
914 /** The size of the sampler array or 0 if it's not an array */
915 unsigned sampler_array_size;
916
917 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
918 } nir_tex_instr;
919
920 static inline unsigned
921 nir_tex_instr_dest_size(nir_tex_instr *instr)
922 {
923 if (instr->op == nir_texop_txs) {
924 unsigned ret;
925 switch (instr->sampler_dim) {
926 case GLSL_SAMPLER_DIM_1D:
927 case GLSL_SAMPLER_DIM_BUF:
928 ret = 1;
929 break;
930 case GLSL_SAMPLER_DIM_2D:
931 case GLSL_SAMPLER_DIM_CUBE:
932 case GLSL_SAMPLER_DIM_MS:
933 case GLSL_SAMPLER_DIM_RECT:
934 case GLSL_SAMPLER_DIM_EXTERNAL:
935 ret = 2;
936 break;
937 case GLSL_SAMPLER_DIM_3D:
938 ret = 3;
939 break;
940 default:
941 assert(0);
942 break;
943 }
944 if (instr->is_array)
945 ret++;
946 return ret;
947 }
948
949 if (instr->op == nir_texop_query_levels)
950 return 2;
951
952 if (instr->is_shadow && instr->is_new_style_shadow)
953 return 1;
954
955 return 4;
956 }
957
958 static inline unsigned
959 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
960 {
961 if (instr->src[src].src_type == nir_tex_src_coord)
962 return instr->coord_components;
963
964
965 if (instr->src[src].src_type == nir_tex_src_offset ||
966 instr->src[src].src_type == nir_tex_src_ddx ||
967 instr->src[src].src_type == nir_tex_src_ddy) {
968 if (instr->is_array)
969 return instr->coord_components - 1;
970 else
971 return instr->coord_components;
972 }
973
974 return 1;
975 }
976
977 static inline int
978 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
979 {
980 for (unsigned i = 0; i < instr->num_srcs; i++)
981 if (instr->src[i].src_type == type)
982 return (int) i;
983
984 return -1;
985 }
986
987 typedef struct {
988 union {
989 float f[4];
990 int32_t i[4];
991 uint32_t u[4];
992 };
993 } nir_const_value;
994
995 typedef struct {
996 nir_instr instr;
997
998 nir_const_value value;
999
1000 nir_ssa_def def;
1001 } nir_load_const_instr;
1002
1003 typedef enum {
1004 nir_jump_return,
1005 nir_jump_break,
1006 nir_jump_continue,
1007 } nir_jump_type;
1008
1009 typedef struct {
1010 nir_instr instr;
1011 nir_jump_type type;
1012 } nir_jump_instr;
1013
1014 /* creates a new SSA variable in an undefined state */
1015
1016 typedef struct {
1017 nir_instr instr;
1018 nir_ssa_def def;
1019 } nir_ssa_undef_instr;
1020
1021 typedef struct {
1022 struct exec_node node;
1023
1024 /* The predecessor block corresponding to this source */
1025 struct nir_block *pred;
1026
1027 nir_src src;
1028 } nir_phi_src;
1029
1030 #define nir_foreach_phi_src(phi, entry) \
1031 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1032
1033 typedef struct {
1034 nir_instr instr;
1035
1036 struct exec_list srcs; /** < list of nir_phi_src */
1037
1038 nir_dest dest;
1039 } nir_phi_instr;
1040
1041 typedef struct {
1042 struct exec_node node;
1043 nir_src src;
1044 nir_dest dest;
1045 } nir_parallel_copy_entry;
1046
1047 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1048 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1049
1050 typedef struct {
1051 nir_instr instr;
1052
1053 /* A list of nir_parallel_copy_entry's. The sources of all of the
1054 * entries are copied to the corresponding destinations "in parallel".
1055 * In other words, if we have two entries: a -> b and b -> a, the values
1056 * get swapped.
1057 */
1058 struct exec_list entries;
1059 } nir_parallel_copy_instr;
1060
1061 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1062 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1063 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1064 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1065 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1066 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1067 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1068 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1069 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1070 nir_parallel_copy_instr, instr)
1071
1072 /*
1073 * Control flow
1074 *
1075 * Control flow consists of a tree of control flow nodes, which include
1076 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1077 * instructions that always run start-to-finish. Each basic block also keeps
1078 * track of its successors (blocks which may run immediately after the current
1079 * block) and predecessors (blocks which could have run immediately before the
1080 * current block). Each function also has a start block and an end block which
1081 * all return statements point to (which is always empty). Together, all the
1082 * blocks with their predecessors and successors make up the control flow
1083 * graph (CFG) of the function. There are helpers that modify the tree of
1084 * control flow nodes while modifying the CFG appropriately; these should be
1085 * used instead of modifying the tree directly.
1086 */
1087
1088 typedef enum {
1089 nir_cf_node_block,
1090 nir_cf_node_if,
1091 nir_cf_node_loop,
1092 nir_cf_node_function
1093 } nir_cf_node_type;
1094
1095 typedef struct nir_cf_node {
1096 struct exec_node node;
1097 nir_cf_node_type type;
1098 struct nir_cf_node *parent;
1099 } nir_cf_node;
1100
1101 typedef struct nir_block {
1102 nir_cf_node cf_node;
1103
1104 struct exec_list instr_list; /** < list of nir_instr */
1105
1106 /** generic block index; generated by nir_index_blocks */
1107 unsigned index;
1108
1109 /*
1110 * Each block can only have up to 2 successors, so we put them in a simple
1111 * array - no need for anything more complicated.
1112 */
1113 struct nir_block *successors[2];
1114
1115 /* Set of nir_block predecessors in the CFG */
1116 struct set *predecessors;
1117
1118 /*
1119 * this node's immediate dominator in the dominance tree - set to NULL for
1120 * the start block.
1121 */
1122 struct nir_block *imm_dom;
1123
1124 /* This node's children in the dominance tree */
1125 unsigned num_dom_children;
1126 struct nir_block **dom_children;
1127
1128 /* Set of nir_block's on the dominance frontier of this block */
1129 struct set *dom_frontier;
1130
1131 /* live in and out for this block; used for liveness analysis */
1132 BITSET_WORD *live_in;
1133 BITSET_WORD *live_out;
1134 } nir_block;
1135
1136 static inline nir_instr *
1137 nir_block_first_instr(nir_block *block)
1138 {
1139 struct exec_node *head = exec_list_get_head(&block->instr_list);
1140 return exec_node_data(nir_instr, head, node);
1141 }
1142
1143 static inline nir_instr *
1144 nir_block_last_instr(nir_block *block)
1145 {
1146 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1147 return exec_node_data(nir_instr, tail, node);
1148 }
1149
1150 #define nir_foreach_instr(block, instr) \
1151 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1152 #define nir_foreach_instr_reverse(block, instr) \
1153 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1154 #define nir_foreach_instr_safe(block, instr) \
1155 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1156
1157 typedef struct {
1158 nir_cf_node cf_node;
1159 nir_src condition;
1160
1161 struct exec_list then_list; /** < list of nir_cf_node */
1162 struct exec_list else_list; /** < list of nir_cf_node */
1163 } nir_if;
1164
1165 static inline nir_cf_node *
1166 nir_if_first_then_node(nir_if *if_stmt)
1167 {
1168 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1169 return exec_node_data(nir_cf_node, head, node);
1170 }
1171
1172 static inline nir_cf_node *
1173 nir_if_last_then_node(nir_if *if_stmt)
1174 {
1175 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1176 return exec_node_data(nir_cf_node, tail, node);
1177 }
1178
1179 static inline nir_cf_node *
1180 nir_if_first_else_node(nir_if *if_stmt)
1181 {
1182 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1183 return exec_node_data(nir_cf_node, head, node);
1184 }
1185
1186 static inline nir_cf_node *
1187 nir_if_last_else_node(nir_if *if_stmt)
1188 {
1189 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1190 return exec_node_data(nir_cf_node, tail, node);
1191 }
1192
1193 typedef struct {
1194 nir_cf_node cf_node;
1195
1196 struct exec_list body; /** < list of nir_cf_node */
1197 } nir_loop;
1198
1199 static inline nir_cf_node *
1200 nir_loop_first_cf_node(nir_loop *loop)
1201 {
1202 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1203 }
1204
1205 static inline nir_cf_node *
1206 nir_loop_last_cf_node(nir_loop *loop)
1207 {
1208 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1209 }
1210
1211 /**
1212 * Various bits of metadata that can may be created or required by
1213 * optimization and analysis passes
1214 */
1215 typedef enum {
1216 nir_metadata_none = 0x0,
1217 nir_metadata_block_index = 0x1,
1218 nir_metadata_dominance = 0x2,
1219 nir_metadata_live_variables = 0x4,
1220 } nir_metadata;
1221
1222 typedef struct {
1223 nir_cf_node cf_node;
1224
1225 /** pointer to the overload of which this is an implementation */
1226 struct nir_function_overload *overload;
1227
1228 struct exec_list body; /** < list of nir_cf_node */
1229
1230 nir_block *start_block, *end_block;
1231
1232 /** list for all local variables in the function */
1233 struct exec_list locals;
1234
1235 /** array of variables used as parameters */
1236 unsigned num_params;
1237 nir_variable **params;
1238
1239 /** variable used to hold the result of the function */
1240 nir_variable *return_var;
1241
1242 /** list of local registers in the function */
1243 struct exec_list registers;
1244
1245 /** next available local register index */
1246 unsigned reg_alloc;
1247
1248 /** next available SSA value index */
1249 unsigned ssa_alloc;
1250
1251 /* total number of basic blocks, only valid when block_index_dirty = false */
1252 unsigned num_blocks;
1253
1254 nir_metadata valid_metadata;
1255 } nir_function_impl;
1256
1257 static inline nir_cf_node *
1258 nir_cf_node_next(nir_cf_node *node)
1259 {
1260 return exec_node_data(nir_cf_node, exec_node_get_next(&node->node), node);
1261 }
1262
1263 static inline nir_cf_node *
1264 nir_cf_node_prev(nir_cf_node *node)
1265 {
1266 return exec_node_data(nir_cf_node, exec_node_get_prev(&node->node), node);
1267 }
1268
1269 static inline bool
1270 nir_cf_node_is_first(const nir_cf_node *node)
1271 {
1272 return exec_node_is_head_sentinel(node->node.prev);
1273 }
1274
1275 static inline bool
1276 nir_cf_node_is_last(const nir_cf_node *node)
1277 {
1278 return exec_node_is_tail_sentinel(node->node.next);
1279 }
1280
1281 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1282 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1283 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1284 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1285
1286 typedef enum {
1287 nir_parameter_in,
1288 nir_parameter_out,
1289 nir_parameter_inout,
1290 } nir_parameter_type;
1291
1292 typedef struct {
1293 nir_parameter_type param_type;
1294 const struct glsl_type *type;
1295 } nir_parameter;
1296
1297 typedef struct nir_function_overload {
1298 struct exec_node node;
1299
1300 unsigned num_params;
1301 nir_parameter *params;
1302 const struct glsl_type *return_type;
1303
1304 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1305
1306 /** pointer to the function of which this is an overload */
1307 struct nir_function *function;
1308 } nir_function_overload;
1309
1310 typedef struct nir_function {
1311 struct exec_node node;
1312
1313 struct exec_list overload_list; /** < list of nir_function_overload */
1314 const char *name;
1315 struct nir_shader *shader;
1316 } nir_function;
1317
1318 #define nir_function_first_overload(func) \
1319 exec_node_data(nir_function_overload, \
1320 exec_list_get_head(&(func)->overload_list), node)
1321
1322 typedef struct nir_shader {
1323 /** hash table of name -> uniform nir_variable */
1324 struct hash_table *uniforms;
1325
1326 /** hash table of name -> input nir_variable */
1327 struct hash_table *inputs;
1328
1329 /** hash table of name -> output nir_variable */
1330 struct hash_table *outputs;
1331
1332 /** list of global variables in the shader */
1333 struct exec_list globals;
1334
1335 /** list of system value variables in the shader */
1336 struct exec_list system_values;
1337
1338 struct exec_list functions; /** < list of nir_function */
1339
1340 /** list of global register in the shader */
1341 struct exec_list registers;
1342
1343 /** structures used in this shader */
1344 unsigned num_user_structures;
1345 struct glsl_type **user_structures;
1346
1347 /** next available global register index */
1348 unsigned reg_alloc;
1349
1350 /**
1351 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1352 * access plus one
1353 */
1354 unsigned num_inputs, num_uniforms, num_outputs;
1355 } nir_shader;
1356
1357 #define nir_foreach_overload(shader, overload) \
1358 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1359 foreach_list_typed(nir_function_overload, overload, node, \
1360 &(func)->overload_list)
1361
1362 nir_shader *nir_shader_create(void *mem_ctx);
1363
1364 /** creates a register, including assigning it an index and adding it to the list */
1365 nir_register *nir_global_reg_create(nir_shader *shader);
1366
1367 nir_register *nir_local_reg_create(nir_function_impl *impl);
1368
1369 void nir_reg_remove(nir_register *reg);
1370
1371 /** creates a function and adds it to the shader's list of functions */
1372 nir_function *nir_function_create(nir_shader *shader, const char *name);
1373
1374 /** creates a null function returning null */
1375 nir_function_overload *nir_function_overload_create(nir_function *func);
1376
1377 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1378
1379 nir_block *nir_block_create(void *mem_ctx);
1380 nir_if *nir_if_create(void *mem_ctx);
1381 nir_loop *nir_loop_create(void *mem_ctx);
1382
1383 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1384
1385 /** puts a control flow node immediately after another control flow node */
1386 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1387
1388 /** puts a control flow node immediately before another control flow node */
1389 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1390
1391 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1392 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1393
1394 /** puts a control flow node at the end of a list from an if, loop, or function */
1395 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1396
1397 /** removes a control flow node, doing any cleanup necessary */
1398 void nir_cf_node_remove(nir_cf_node *node);
1399
1400 /** requests that the given pieces of metadata be generated */
1401 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1402 /** dirties all but the preserved metadata */
1403 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1404
1405 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1406 nir_alu_instr *nir_alu_instr_create(void *mem_ctx, nir_op op);
1407
1408 nir_jump_instr *nir_jump_instr_create(void *mem_ctx, nir_jump_type type);
1409
1410 nir_load_const_instr *nir_load_const_instr_create(void *mem_ctx,
1411 unsigned num_components);
1412
1413 nir_intrinsic_instr *nir_intrinsic_instr_create(void *mem_ctx,
1414 nir_intrinsic_op op);
1415
1416 nir_call_instr *nir_call_instr_create(void *mem_ctx,
1417 nir_function_overload *callee);
1418
1419 nir_tex_instr *nir_tex_instr_create(void *mem_ctx, unsigned num_srcs);
1420
1421 nir_phi_instr *nir_phi_instr_create(void *mem_ctx);
1422
1423 nir_parallel_copy_instr *nir_parallel_copy_instr_create(void *mem_ctx);
1424
1425 nir_ssa_undef_instr *nir_ssa_undef_instr_create(void *mem_ctx,
1426 unsigned num_components);
1427
1428 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1429 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1430 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1431
1432 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1433
1434 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1435 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1436
1437 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1438 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1439
1440 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1441 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1442
1443 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1444 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1445
1446 void nir_instr_remove(nir_instr *instr);
1447
1448 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1449 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1450 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1451 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1452 void *state);
1453 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1454 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1455
1456 nir_const_value *nir_src_as_const_value(nir_src src);
1457 bool nir_srcs_equal(nir_src src1, nir_src src2);
1458 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1459
1460 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1461 unsigned num_components, const char *name);
1462 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1463
1464 /* visits basic blocks in source-code order */
1465 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1466 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1467 void *state);
1468 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1469 void *state);
1470
1471 /* If the following CF node is an if, this function returns that if.
1472 * Otherwise, it returns NULL.
1473 */
1474 nir_if *nir_block_get_following_if(nir_block *block);
1475
1476 void nir_index_local_regs(nir_function_impl *impl);
1477 void nir_index_global_regs(nir_shader *shader);
1478 void nir_index_ssa_defs(nir_function_impl *impl);
1479
1480 void nir_index_blocks(nir_function_impl *impl);
1481
1482 void nir_print_shader(nir_shader *shader, FILE *fp);
1483
1484 #ifdef DEBUG
1485 void nir_validate_shader(nir_shader *shader);
1486 #else
1487 static inline void nir_validate_shader(nir_shader *shader) { }
1488 #endif /* DEBUG */
1489
1490 void nir_calc_dominance_impl(nir_function_impl *impl);
1491 void nir_calc_dominance(nir_shader *shader);
1492
1493 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1494 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1495
1496 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1497 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1498
1499 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1500 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1501
1502 void nir_split_var_copies(nir_shader *shader);
1503
1504 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1505 void nir_lower_var_copies(nir_shader *shader);
1506
1507 void nir_lower_global_vars_to_local(nir_shader *shader);
1508
1509 void nir_lower_locals_to_regs(nir_shader *shader);
1510
1511 void nir_lower_io(nir_shader *shader);
1512
1513 void nir_lower_vars_to_ssa(nir_shader *shader);
1514
1515 void nir_remove_dead_variables(nir_shader *shader);
1516
1517 void nir_lower_vec_to_movs(nir_shader *shader);
1518
1519 void nir_lower_samplers(nir_shader *shader,
1520 struct gl_shader_program *shader_program,
1521 struct gl_program *prog);
1522
1523 void nir_lower_system_values(nir_shader *shader);
1524
1525 void nir_lower_atomics(nir_shader *shader);
1526 void nir_lower_to_source_mods(nir_shader *shader);
1527
1528 void nir_live_variables_impl(nir_function_impl *impl);
1529 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1530
1531 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1532 void nir_convert_to_ssa(nir_shader *shader);
1533 void nir_convert_from_ssa(nir_shader *shader);
1534
1535 bool nir_opt_algebraic(nir_shader *shader);
1536 bool nir_opt_constant_folding(nir_shader *shader);
1537
1538 bool nir_opt_global_to_local(nir_shader *shader);
1539
1540 bool nir_copy_prop_impl(nir_function_impl *impl);
1541 bool nir_copy_prop(nir_shader *shader);
1542
1543 bool nir_opt_cse(nir_shader *shader);
1544
1545 bool nir_opt_dce_impl(nir_function_impl *impl);
1546 bool nir_opt_dce(nir_shader *shader);
1547
1548 bool nir_opt_peephole_select(nir_shader *shader);
1549 bool nir_opt_peephole_ffma(nir_shader *shader);
1550
1551 #ifdef __cplusplus
1552 } /* extern "C" */
1553 #endif