nir: Store some geometry shader data in nir_shader.
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "glsl/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* Array elements / Structure Fields */
115 struct nir_constant **elements;
116 } nir_constant;
117
118 /**
119 * \brief Layout qualifiers for gl_FragDepth.
120 *
121 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
122 * with a layout qualifier.
123 */
124 typedef enum {
125 nir_depth_layout_none, /**< No depth layout is specified. */
126 nir_depth_layout_any,
127 nir_depth_layout_greater,
128 nir_depth_layout_less,
129 nir_depth_layout_unchanged
130 } nir_depth_layout;
131
132 /**
133 * Either a uniform, global variable, shader input, or shader output. Based on
134 * ir_variable - it should be easy to translate between the two.
135 */
136
137 typedef struct {
138 struct exec_node node;
139
140 /**
141 * Declared type of the variable
142 */
143 const struct glsl_type *type;
144
145 /**
146 * Declared name of the variable
147 */
148 char *name;
149
150 /**
151 * For variables which satisfy the is_interface_instance() predicate, this
152 * points to an array of integers such that if the ith member of the
153 * interface block is an array, max_ifc_array_access[i] is the maximum
154 * array element of that member that has been accessed. If the ith member
155 * of the interface block is not an array, max_ifc_array_access[i] is
156 * unused.
157 *
158 * For variables whose type is not an interface block, this pointer is
159 * NULL.
160 */
161 unsigned *max_ifc_array_access;
162
163 struct nir_variable_data {
164
165 /**
166 * Is the variable read-only?
167 *
168 * This is set for variables declared as \c const, shader inputs,
169 * and uniforms.
170 */
171 unsigned read_only:1;
172 unsigned centroid:1;
173 unsigned sample:1;
174 unsigned invariant:1;
175
176 /**
177 * Storage class of the variable.
178 *
179 * \sa nir_variable_mode
180 */
181 nir_variable_mode mode:4;
182
183 /**
184 * Interpolation mode for shader inputs / outputs
185 *
186 * \sa glsl_interp_qualifier
187 */
188 unsigned interpolation:2;
189
190 /**
191 * \name ARB_fragment_coord_conventions
192 * @{
193 */
194 unsigned origin_upper_left:1;
195 unsigned pixel_center_integer:1;
196 /*@}*/
197
198 /**
199 * Was the location explicitly set in the shader?
200 *
201 * If the location is explicitly set in the shader, it \b cannot be changed
202 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
203 * no effect).
204 */
205 unsigned explicit_location:1;
206 unsigned explicit_index:1;
207
208 /**
209 * Was an initial binding explicitly set in the shader?
210 *
211 * If so, constant_initializer contains an integer nir_constant
212 * representing the initial binding point.
213 */
214 unsigned explicit_binding:1;
215
216 /**
217 * Does this variable have an initializer?
218 *
219 * This is used by the linker to cross-validiate initializers of global
220 * variables.
221 */
222 unsigned has_initializer:1;
223
224 /**
225 * Is this variable a generic output or input that has not yet been matched
226 * up to a variable in another stage of the pipeline?
227 *
228 * This is used by the linker as scratch storage while assigning locations
229 * to generic inputs and outputs.
230 */
231 unsigned is_unmatched_generic_inout:1;
232
233 /**
234 * If non-zero, then this variable may be packed along with other variables
235 * into a single varying slot, so this offset should be applied when
236 * accessing components. For example, an offset of 1 means that the x
237 * component of this variable is actually stored in component y of the
238 * location specified by \c location.
239 */
240 unsigned location_frac:2;
241
242 /**
243 * Non-zero if this variable was created by lowering a named interface
244 * block which was not an array.
245 *
246 * Note that this variable and \c from_named_ifc_block_array will never
247 * both be non-zero.
248 */
249 unsigned from_named_ifc_block_nonarray:1;
250
251 /**
252 * Non-zero if this variable was created by lowering a named interface
253 * block which was an array.
254 *
255 * Note that this variable and \c from_named_ifc_block_nonarray will never
256 * both be non-zero.
257 */
258 unsigned from_named_ifc_block_array:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Other: This field is not currently used.
282 *
283 * If the variable is a uniform, shader input, or shader output, and the
284 * slot has not been assigned, the value will be -1.
285 */
286 int location;
287
288 /**
289 * The actual location of the variable in the IR. Only valid for inputs
290 * and outputs.
291 */
292 unsigned int driver_location;
293
294 /**
295 * output index for dual source blending.
296 */
297 int index;
298
299 /**
300 * Initial binding point for a sampler or UBO.
301 *
302 * For array types, this represents the binding point for the first element.
303 */
304 int binding;
305
306 /**
307 * Location an atomic counter is stored at.
308 */
309 struct {
310 unsigned buffer_index;
311 unsigned offset;
312 } atomic;
313
314 /**
315 * ARB_shader_image_load_store qualifiers.
316 */
317 struct {
318 bool read_only; /**< "readonly" qualifier. */
319 bool write_only; /**< "writeonly" qualifier. */
320 bool coherent;
321 bool _volatile;
322 bool restrict_flag;
323
324 /** Image internal format if specified explicitly, otherwise GL_NONE. */
325 GLenum format;
326 } image;
327
328 /**
329 * Highest element accessed with a constant expression array index
330 *
331 * Not used for non-array variables.
332 */
333 unsigned max_array_access;
334
335 } data;
336
337 /**
338 * Built-in state that backs this uniform
339 *
340 * Once set at variable creation, \c state_slots must remain invariant.
341 * This is because, ideally, this array would be shared by all clones of
342 * this variable in the IR tree. In other words, we'd really like for it
343 * to be a fly-weight.
344 *
345 * If the variable is not a uniform, \c num_state_slots will be zero and
346 * \c state_slots will be \c NULL.
347 */
348 /*@{*/
349 unsigned num_state_slots; /**< Number of state slots used */
350 nir_state_slot *state_slots; /**< State descriptors. */
351 /*@}*/
352
353 /**
354 * Constant expression assigned in the initializer of the variable
355 */
356 nir_constant *constant_initializer;
357
358 /**
359 * For variables that are in an interface block or are an instance of an
360 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
361 *
362 * \sa ir_variable::location
363 */
364 const struct glsl_type *interface_type;
365 } nir_variable;
366
367 typedef struct {
368 struct exec_node node;
369
370 unsigned num_components; /** < number of vector components */
371 unsigned num_array_elems; /** < size of array (0 for no array) */
372
373 /** generic register index. */
374 unsigned index;
375
376 /** only for debug purposes, can be NULL */
377 const char *name;
378
379 /** whether this register is local (per-function) or global (per-shader) */
380 bool is_global;
381
382 /**
383 * If this flag is set to true, then accessing channels >= num_components
384 * is well-defined, and simply spills over to the next array element. This
385 * is useful for backends that can do per-component accessing, in
386 * particular scalar backends. By setting this flag and making
387 * num_components equal to 1, structures can be packed tightly into
388 * registers and then registers can be accessed per-component to get to
389 * each structure member, even if it crosses vec4 boundaries.
390 */
391 bool is_packed;
392
393 /** set of nir_instr's where this register is used (read from) */
394 struct list_head uses;
395
396 /** set of nir_instr's where this register is defined (written to) */
397 struct list_head defs;
398
399 /** set of nir_if's where this register is used as a condition */
400 struct list_head if_uses;
401 } nir_register;
402
403 typedef enum {
404 nir_instr_type_alu,
405 nir_instr_type_call,
406 nir_instr_type_tex,
407 nir_instr_type_intrinsic,
408 nir_instr_type_load_const,
409 nir_instr_type_jump,
410 nir_instr_type_ssa_undef,
411 nir_instr_type_phi,
412 nir_instr_type_parallel_copy,
413 } nir_instr_type;
414
415 typedef struct nir_instr {
416 struct exec_node node;
417 nir_instr_type type;
418 struct nir_block *block;
419
420 /* A temporary for optimization and analysis passes to use for storing
421 * flags. For instance, DCE uses this to store the "dead/live" info.
422 */
423 uint8_t pass_flags;
424 } nir_instr;
425
426 static inline nir_instr *
427 nir_instr_next(nir_instr *instr)
428 {
429 struct exec_node *next = exec_node_get_next(&instr->node);
430 if (exec_node_is_tail_sentinel(next))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, next, node);
434 }
435
436 static inline nir_instr *
437 nir_instr_prev(nir_instr *instr)
438 {
439 struct exec_node *prev = exec_node_get_prev(&instr->node);
440 if (exec_node_is_head_sentinel(prev))
441 return NULL;
442 else
443 return exec_node_data(nir_instr, prev, node);
444 }
445
446 static inline bool
447 nir_instr_is_first(nir_instr *instr)
448 {
449 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
450 }
451
452 static inline bool
453 nir_instr_is_last(nir_instr *instr)
454 {
455 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
456 }
457
458 typedef struct {
459 /** for debugging only, can be NULL */
460 const char* name;
461
462 /** generic SSA definition index. */
463 unsigned index;
464
465 /** Index into the live_in and live_out bitfields */
466 unsigned live_index;
467
468 nir_instr *parent_instr;
469
470 /** set of nir_instr's where this register is used (read from) */
471 struct list_head uses;
472
473 /** set of nir_if's where this register is used as a condition */
474 struct list_head if_uses;
475
476 uint8_t num_components;
477 } nir_ssa_def;
478
479 struct nir_src;
480
481 typedef struct {
482 nir_register *reg;
483 struct nir_src *indirect; /** < NULL for no indirect offset */
484 unsigned base_offset;
485
486 /* TODO use-def chain goes here */
487 } nir_reg_src;
488
489 typedef struct {
490 nir_instr *parent_instr;
491 struct list_head def_link;
492
493 nir_register *reg;
494 struct nir_src *indirect; /** < NULL for no indirect offset */
495 unsigned base_offset;
496
497 /* TODO def-use chain goes here */
498 } nir_reg_dest;
499
500 struct nir_if;
501
502 typedef struct nir_src {
503 union {
504 nir_instr *parent_instr;
505 struct nir_if *parent_if;
506 };
507
508 struct list_head use_link;
509
510 union {
511 nir_reg_src reg;
512 nir_ssa_def *ssa;
513 };
514
515 bool is_ssa;
516 } nir_src;
517
518 #define NIR_SRC_INIT (nir_src) { { NULL } }
519
520 #define nir_foreach_use(reg_or_ssa_def, src) \
521 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
522
523 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
524 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
525
526 #define nir_foreach_if_use(reg_or_ssa_def, src) \
527 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
528
529 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
530 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
531
532 typedef struct {
533 union {
534 nir_reg_dest reg;
535 nir_ssa_def ssa;
536 };
537
538 bool is_ssa;
539 } nir_dest;
540
541 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
542
543 #define nir_foreach_def(reg, dest) \
544 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
545
546 #define nir_foreach_def_safe(reg, dest) \
547 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
548
549 static inline nir_src
550 nir_src_for_ssa(nir_ssa_def *def)
551 {
552 nir_src src = NIR_SRC_INIT;
553
554 src.is_ssa = true;
555 src.ssa = def;
556
557 return src;
558 }
559
560 static inline nir_src
561 nir_src_for_reg(nir_register *reg)
562 {
563 nir_src src = NIR_SRC_INIT;
564
565 src.is_ssa = false;
566 src.reg.reg = reg;
567 src.reg.indirect = NULL;
568 src.reg.base_offset = 0;
569
570 return src;
571 }
572
573 static inline nir_dest
574 nir_dest_for_reg(nir_register *reg)
575 {
576 nir_dest dest = NIR_DEST_INIT;
577
578 dest.reg.reg = reg;
579
580 return dest;
581 }
582
583 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
584 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
585
586 typedef struct {
587 nir_src src;
588
589 /**
590 * \name input modifiers
591 */
592 /*@{*/
593 /**
594 * For inputs interpreted as floating point, flips the sign bit. For
595 * inputs interpreted as integers, performs the two's complement negation.
596 */
597 bool negate;
598
599 /**
600 * Clears the sign bit for floating point values, and computes the integer
601 * absolute value for integers. Note that the negate modifier acts after
602 * the absolute value modifier, therefore if both are set then all inputs
603 * will become negative.
604 */
605 bool abs;
606 /*@}*/
607
608 /**
609 * For each input component, says which component of the register it is
610 * chosen from. Note that which elements of the swizzle are used and which
611 * are ignored are based on the write mask for most opcodes - for example,
612 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
613 * a swizzle of {2, x, 1, 0} where x means "don't care."
614 */
615 uint8_t swizzle[4];
616 } nir_alu_src;
617
618 typedef struct {
619 nir_dest dest;
620
621 /**
622 * \name saturate output modifier
623 *
624 * Only valid for opcodes that output floating-point numbers. Clamps the
625 * output to between 0.0 and 1.0 inclusive.
626 */
627
628 bool saturate;
629
630 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
631 } nir_alu_dest;
632
633 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
634 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
635 void *mem_ctx);
636
637 typedef enum {
638 nir_type_invalid = 0, /* Not a valid type */
639 nir_type_float,
640 nir_type_int,
641 nir_type_unsigned,
642 nir_type_bool
643 } nir_alu_type;
644
645 typedef enum {
646 NIR_OP_IS_COMMUTATIVE = (1 << 0),
647 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
648 } nir_op_algebraic_property;
649
650 typedef struct {
651 const char *name;
652
653 unsigned num_inputs;
654
655 /**
656 * The number of components in the output
657 *
658 * If non-zero, this is the size of the output and input sizes are
659 * explicitly given; swizzle and writemask are still in effect, but if
660 * the output component is masked out, then the input component may
661 * still be in use.
662 *
663 * If zero, the opcode acts in the standard, per-component manner; the
664 * operation is performed on each component (except the ones that are
665 * masked out) with the input being taken from the input swizzle for
666 * that component.
667 *
668 * The size of some of the inputs may be given (i.e. non-zero) even
669 * though output_size is zero; in that case, the inputs with a zero
670 * size act per-component, while the inputs with non-zero size don't.
671 */
672 unsigned output_size;
673
674 /**
675 * The type of vector that the instruction outputs. Note that the
676 * staurate modifier is only allowed on outputs with the float type.
677 */
678
679 nir_alu_type output_type;
680
681 /**
682 * The number of components in each input
683 */
684 unsigned input_sizes[4];
685
686 /**
687 * The type of vector that each input takes. Note that negate and
688 * absolute value are only allowed on inputs with int or float type and
689 * behave differently on the two.
690 */
691 nir_alu_type input_types[4];
692
693 nir_op_algebraic_property algebraic_properties;
694 } nir_op_info;
695
696 extern const nir_op_info nir_op_infos[nir_num_opcodes];
697
698 typedef struct nir_alu_instr {
699 nir_instr instr;
700 nir_op op;
701 nir_alu_dest dest;
702 nir_alu_src src[];
703 } nir_alu_instr;
704
705 /* is this source channel used? */
706 static inline bool
707 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
708 {
709 if (nir_op_infos[instr->op].input_sizes[src] > 0)
710 return channel < nir_op_infos[instr->op].input_sizes[src];
711
712 return (instr->dest.write_mask >> channel) & 1;
713 }
714
715 /*
716 * For instructions whose destinations are SSA, get the number of channels
717 * used for a source
718 */
719 static inline unsigned
720 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
721 {
722 assert(instr->dest.dest.is_ssa);
723
724 if (nir_op_infos[instr->op].input_sizes[src] > 0)
725 return nir_op_infos[instr->op].input_sizes[src];
726
727 return instr->dest.dest.ssa.num_components;
728 }
729
730 typedef enum {
731 nir_deref_type_var,
732 nir_deref_type_array,
733 nir_deref_type_struct
734 } nir_deref_type;
735
736 typedef struct nir_deref {
737 nir_deref_type deref_type;
738 struct nir_deref *child;
739 const struct glsl_type *type;
740 } nir_deref;
741
742 typedef struct {
743 nir_deref deref;
744
745 nir_variable *var;
746 } nir_deref_var;
747
748 /* This enum describes how the array is referenced. If the deref is
749 * direct then the base_offset is used. If the deref is indirect then then
750 * offset is given by base_offset + indirect. If the deref is a wildcard
751 * then the deref refers to all of the elements of the array at the same
752 * time. Wildcard dereferences are only ever allowed in copy_var
753 * intrinsics and the source and destination derefs must have matching
754 * wildcards.
755 */
756 typedef enum {
757 nir_deref_array_type_direct,
758 nir_deref_array_type_indirect,
759 nir_deref_array_type_wildcard,
760 } nir_deref_array_type;
761
762 typedef struct {
763 nir_deref deref;
764
765 nir_deref_array_type deref_array_type;
766 unsigned base_offset;
767 nir_src indirect;
768 } nir_deref_array;
769
770 typedef struct {
771 nir_deref deref;
772
773 unsigned index;
774 } nir_deref_struct;
775
776 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
777 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
778 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
779
780 typedef struct {
781 nir_instr instr;
782
783 unsigned num_params;
784 nir_deref_var **params;
785 nir_deref_var *return_deref;
786
787 struct nir_function_overload *callee;
788 } nir_call_instr;
789
790 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
791 num_variables, num_indices, flags) \
792 nir_intrinsic_##name,
793
794 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
795
796 typedef enum {
797 #include "nir_intrinsics.h"
798 nir_num_intrinsics = nir_last_intrinsic + 1
799 } nir_intrinsic_op;
800
801 #undef INTRINSIC
802 #undef LAST_INTRINSIC
803
804 /** Represents an intrinsic
805 *
806 * An intrinsic is an instruction type for handling things that are
807 * more-or-less regular operations but don't just consume and produce SSA
808 * values like ALU operations do. Intrinsics are not for things that have
809 * special semantic meaning such as phi nodes and parallel copies.
810 * Examples of intrinsics include variable load/store operations, system
811 * value loads, and the like. Even though texturing more-or-less falls
812 * under this category, texturing is its own instruction type because
813 * trying to represent texturing with intrinsics would lead to a
814 * combinatorial explosion of intrinsic opcodes.
815 *
816 * By having a single instruction type for handling a lot of different
817 * cases, optimization passes can look for intrinsics and, for the most
818 * part, completely ignore them. Each intrinsic type also has a few
819 * possible flags that govern whether or not they can be reordered or
820 * eliminated. That way passes like dead code elimination can still work
821 * on intrisics without understanding the meaning of each.
822 *
823 * Each intrinsic has some number of constant indices, some number of
824 * variables, and some number of sources. What these sources, variables,
825 * and indices mean depends on the intrinsic and is documented with the
826 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
827 * instructions are the only types of instruction that can operate on
828 * variables.
829 */
830 typedef struct {
831 nir_instr instr;
832
833 nir_intrinsic_op intrinsic;
834
835 nir_dest dest;
836
837 /** number of components if this is a vectorized intrinsic
838 *
839 * Similarly to ALU operations, some intrinsics are vectorized.
840 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
841 * For vectorized intrinsics, the num_components field specifies the
842 * number of destination components and the number of source components
843 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
844 */
845 uint8_t num_components;
846
847 int const_index[3];
848
849 nir_deref_var *variables[2];
850
851 nir_src src[];
852 } nir_intrinsic_instr;
853
854 /**
855 * \name NIR intrinsics semantic flags
856 *
857 * information about what the compiler can do with the intrinsics.
858 *
859 * \sa nir_intrinsic_info::flags
860 */
861 typedef enum {
862 /**
863 * whether the intrinsic can be safely eliminated if none of its output
864 * value is not being used.
865 */
866 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
867
868 /**
869 * Whether the intrinsic can be reordered with respect to any other
870 * intrinsic, i.e. whether the only reordering dependencies of the
871 * intrinsic are due to the register reads/writes.
872 */
873 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
874 } nir_intrinsic_semantic_flag;
875
876 #define NIR_INTRINSIC_MAX_INPUTS 4
877
878 typedef struct {
879 const char *name;
880
881 unsigned num_srcs; /** < number of register/SSA inputs */
882
883 /** number of components of each input register
884 *
885 * If this value is 0, the number of components is given by the
886 * num_components field of nir_intrinsic_instr.
887 */
888 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
889
890 bool has_dest;
891
892 /** number of components of the output register
893 *
894 * If this value is 0, the number of components is given by the
895 * num_components field of nir_intrinsic_instr.
896 */
897 unsigned dest_components;
898
899 /** the number of inputs/outputs that are variables */
900 unsigned num_variables;
901
902 /** the number of constant indices used by the intrinsic */
903 unsigned num_indices;
904
905 /** semantic flags for calls to this intrinsic */
906 nir_intrinsic_semantic_flag flags;
907 } nir_intrinsic_info;
908
909 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
910
911 /**
912 * \group texture information
913 *
914 * This gives semantic information about textures which is useful to the
915 * frontend, the backend, and lowering passes, but not the optimizer.
916 */
917
918 typedef enum {
919 nir_tex_src_coord,
920 nir_tex_src_projector,
921 nir_tex_src_comparitor, /* shadow comparitor */
922 nir_tex_src_offset,
923 nir_tex_src_bias,
924 nir_tex_src_lod,
925 nir_tex_src_ms_index, /* MSAA sample index */
926 nir_tex_src_ddx,
927 nir_tex_src_ddy,
928 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
929 nir_num_tex_src_types
930 } nir_tex_src_type;
931
932 typedef struct {
933 nir_src src;
934 nir_tex_src_type src_type;
935 } nir_tex_src;
936
937 typedef enum {
938 nir_texop_tex, /**< Regular texture look-up */
939 nir_texop_txb, /**< Texture look-up with LOD bias */
940 nir_texop_txl, /**< Texture look-up with explicit LOD */
941 nir_texop_txd, /**< Texture look-up with partial derivatvies */
942 nir_texop_txf, /**< Texel fetch with explicit LOD */
943 nir_texop_txf_ms, /**< Multisample texture fetch */
944 nir_texop_txs, /**< Texture size */
945 nir_texop_lod, /**< Texture lod query */
946 nir_texop_tg4, /**< Texture gather */
947 nir_texop_query_levels, /**< Texture levels query */
948 nir_texop_texture_samples, /**< Texture samples query */
949 } nir_texop;
950
951 typedef struct {
952 nir_instr instr;
953
954 enum glsl_sampler_dim sampler_dim;
955 nir_alu_type dest_type;
956
957 nir_texop op;
958 nir_dest dest;
959 nir_tex_src *src;
960 unsigned num_srcs, coord_components;
961 bool is_array, is_shadow;
962
963 /**
964 * If is_shadow is true, whether this is the old-style shadow that outputs 4
965 * components or the new-style shadow that outputs 1 component.
966 */
967 bool is_new_style_shadow;
968
969 /* constant offset - must be 0 if the offset source is used */
970 int const_offset[4];
971
972 /* gather component selector */
973 unsigned component : 2;
974
975 /** The sampler index
976 *
977 * If this texture instruction has a nir_tex_src_sampler_offset source,
978 * then the sampler index is given by sampler_index + sampler_offset.
979 */
980 unsigned sampler_index;
981
982 /** The size of the sampler array or 0 if it's not an array */
983 unsigned sampler_array_size;
984
985 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
986 } nir_tex_instr;
987
988 static inline unsigned
989 nir_tex_instr_dest_size(nir_tex_instr *instr)
990 {
991 switch (instr->op) {
992 case nir_texop_txs: {
993 unsigned ret;
994 switch (instr->sampler_dim) {
995 case GLSL_SAMPLER_DIM_1D:
996 case GLSL_SAMPLER_DIM_BUF:
997 ret = 1;
998 break;
999 case GLSL_SAMPLER_DIM_2D:
1000 case GLSL_SAMPLER_DIM_CUBE:
1001 case GLSL_SAMPLER_DIM_MS:
1002 case GLSL_SAMPLER_DIM_RECT:
1003 case GLSL_SAMPLER_DIM_EXTERNAL:
1004 ret = 2;
1005 break;
1006 case GLSL_SAMPLER_DIM_3D:
1007 ret = 3;
1008 break;
1009 default:
1010 unreachable("not reached");
1011 }
1012 if (instr->is_array)
1013 ret++;
1014 return ret;
1015 }
1016
1017 case nir_texop_lod:
1018 return 2;
1019
1020 case nir_texop_texture_samples:
1021 case nir_texop_query_levels:
1022 return 1;
1023
1024 default:
1025 if (instr->is_shadow && instr->is_new_style_shadow)
1026 return 1;
1027
1028 return 4;
1029 }
1030 }
1031
1032 static inline unsigned
1033 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1034 {
1035 if (instr->src[src].src_type == nir_tex_src_coord)
1036 return instr->coord_components;
1037
1038
1039 if (instr->src[src].src_type == nir_tex_src_offset ||
1040 instr->src[src].src_type == nir_tex_src_ddx ||
1041 instr->src[src].src_type == nir_tex_src_ddy) {
1042 if (instr->is_array)
1043 return instr->coord_components - 1;
1044 else
1045 return instr->coord_components;
1046 }
1047
1048 return 1;
1049 }
1050
1051 static inline int
1052 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1053 {
1054 for (unsigned i = 0; i < instr->num_srcs; i++)
1055 if (instr->src[i].src_type == type)
1056 return (int) i;
1057
1058 return -1;
1059 }
1060
1061 typedef struct {
1062 union {
1063 float f[4];
1064 int32_t i[4];
1065 uint32_t u[4];
1066 };
1067 } nir_const_value;
1068
1069 typedef struct {
1070 nir_instr instr;
1071
1072 nir_const_value value;
1073
1074 nir_ssa_def def;
1075 } nir_load_const_instr;
1076
1077 typedef enum {
1078 nir_jump_return,
1079 nir_jump_break,
1080 nir_jump_continue,
1081 } nir_jump_type;
1082
1083 typedef struct {
1084 nir_instr instr;
1085 nir_jump_type type;
1086 } nir_jump_instr;
1087
1088 /* creates a new SSA variable in an undefined state */
1089
1090 typedef struct {
1091 nir_instr instr;
1092 nir_ssa_def def;
1093 } nir_ssa_undef_instr;
1094
1095 typedef struct {
1096 struct exec_node node;
1097
1098 /* The predecessor block corresponding to this source */
1099 struct nir_block *pred;
1100
1101 nir_src src;
1102 } nir_phi_src;
1103
1104 #define nir_foreach_phi_src(phi, entry) \
1105 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1106 #define nir_foreach_phi_src_safe(phi, entry) \
1107 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1108
1109 typedef struct {
1110 nir_instr instr;
1111
1112 struct exec_list srcs; /** < list of nir_phi_src */
1113
1114 nir_dest dest;
1115 } nir_phi_instr;
1116
1117 typedef struct {
1118 struct exec_node node;
1119 nir_src src;
1120 nir_dest dest;
1121 } nir_parallel_copy_entry;
1122
1123 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1124 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1125
1126 typedef struct {
1127 nir_instr instr;
1128
1129 /* A list of nir_parallel_copy_entry's. The sources of all of the
1130 * entries are copied to the corresponding destinations "in parallel".
1131 * In other words, if we have two entries: a -> b and b -> a, the values
1132 * get swapped.
1133 */
1134 struct exec_list entries;
1135 } nir_parallel_copy_instr;
1136
1137 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1138 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1139 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1140 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1141 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1142 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1143 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1144 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1145 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1146 nir_parallel_copy_instr, instr)
1147
1148 /*
1149 * Control flow
1150 *
1151 * Control flow consists of a tree of control flow nodes, which include
1152 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1153 * instructions that always run start-to-finish. Each basic block also keeps
1154 * track of its successors (blocks which may run immediately after the current
1155 * block) and predecessors (blocks which could have run immediately before the
1156 * current block). Each function also has a start block and an end block which
1157 * all return statements point to (which is always empty). Together, all the
1158 * blocks with their predecessors and successors make up the control flow
1159 * graph (CFG) of the function. There are helpers that modify the tree of
1160 * control flow nodes while modifying the CFG appropriately; these should be
1161 * used instead of modifying the tree directly.
1162 */
1163
1164 typedef enum {
1165 nir_cf_node_block,
1166 nir_cf_node_if,
1167 nir_cf_node_loop,
1168 nir_cf_node_function
1169 } nir_cf_node_type;
1170
1171 typedef struct nir_cf_node {
1172 struct exec_node node;
1173 nir_cf_node_type type;
1174 struct nir_cf_node *parent;
1175 } nir_cf_node;
1176
1177 typedef struct nir_block {
1178 nir_cf_node cf_node;
1179
1180 struct exec_list instr_list; /** < list of nir_instr */
1181
1182 /** generic block index; generated by nir_index_blocks */
1183 unsigned index;
1184
1185 /*
1186 * Each block can only have up to 2 successors, so we put them in a simple
1187 * array - no need for anything more complicated.
1188 */
1189 struct nir_block *successors[2];
1190
1191 /* Set of nir_block predecessors in the CFG */
1192 struct set *predecessors;
1193
1194 /*
1195 * this node's immediate dominator in the dominance tree - set to NULL for
1196 * the start block.
1197 */
1198 struct nir_block *imm_dom;
1199
1200 /* This node's children in the dominance tree */
1201 unsigned num_dom_children;
1202 struct nir_block **dom_children;
1203
1204 /* Set of nir_block's on the dominance frontier of this block */
1205 struct set *dom_frontier;
1206
1207 /*
1208 * These two indices have the property that dom_{pre,post}_index for each
1209 * child of this block in the dominance tree will always be between
1210 * dom_pre_index and dom_post_index for this block, which makes testing if
1211 * a given block is dominated by another block an O(1) operation.
1212 */
1213 unsigned dom_pre_index, dom_post_index;
1214
1215 /* live in and out for this block; used for liveness analysis */
1216 BITSET_WORD *live_in;
1217 BITSET_WORD *live_out;
1218 } nir_block;
1219
1220 static inline nir_instr *
1221 nir_block_first_instr(nir_block *block)
1222 {
1223 struct exec_node *head = exec_list_get_head(&block->instr_list);
1224 return exec_node_data(nir_instr, head, node);
1225 }
1226
1227 static inline nir_instr *
1228 nir_block_last_instr(nir_block *block)
1229 {
1230 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1231 return exec_node_data(nir_instr, tail, node);
1232 }
1233
1234 #define nir_foreach_instr(block, instr) \
1235 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1236 #define nir_foreach_instr_reverse(block, instr) \
1237 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1238 #define nir_foreach_instr_safe(block, instr) \
1239 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1240 #define nir_foreach_instr_safe_reverse(block, instr) \
1241 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1242
1243 typedef struct nir_if {
1244 nir_cf_node cf_node;
1245 nir_src condition;
1246
1247 struct exec_list then_list; /** < list of nir_cf_node */
1248 struct exec_list else_list; /** < list of nir_cf_node */
1249 } nir_if;
1250
1251 static inline nir_cf_node *
1252 nir_if_first_then_node(nir_if *if_stmt)
1253 {
1254 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1255 return exec_node_data(nir_cf_node, head, node);
1256 }
1257
1258 static inline nir_cf_node *
1259 nir_if_last_then_node(nir_if *if_stmt)
1260 {
1261 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1262 return exec_node_data(nir_cf_node, tail, node);
1263 }
1264
1265 static inline nir_cf_node *
1266 nir_if_first_else_node(nir_if *if_stmt)
1267 {
1268 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1269 return exec_node_data(nir_cf_node, head, node);
1270 }
1271
1272 static inline nir_cf_node *
1273 nir_if_last_else_node(nir_if *if_stmt)
1274 {
1275 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1276 return exec_node_data(nir_cf_node, tail, node);
1277 }
1278
1279 typedef struct {
1280 nir_cf_node cf_node;
1281
1282 struct exec_list body; /** < list of nir_cf_node */
1283 } nir_loop;
1284
1285 static inline nir_cf_node *
1286 nir_loop_first_cf_node(nir_loop *loop)
1287 {
1288 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1289 }
1290
1291 static inline nir_cf_node *
1292 nir_loop_last_cf_node(nir_loop *loop)
1293 {
1294 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1295 }
1296
1297 /**
1298 * Various bits of metadata that can may be created or required by
1299 * optimization and analysis passes
1300 */
1301 typedef enum {
1302 nir_metadata_none = 0x0,
1303 nir_metadata_block_index = 0x1,
1304 nir_metadata_dominance = 0x2,
1305 nir_metadata_live_variables = 0x4,
1306 } nir_metadata;
1307
1308 typedef struct {
1309 nir_cf_node cf_node;
1310
1311 /** pointer to the overload of which this is an implementation */
1312 struct nir_function_overload *overload;
1313
1314 struct exec_list body; /** < list of nir_cf_node */
1315
1316 nir_block *end_block;
1317
1318 /** list for all local variables in the function */
1319 struct exec_list locals;
1320
1321 /** array of variables used as parameters */
1322 unsigned num_params;
1323 nir_variable **params;
1324
1325 /** variable used to hold the result of the function */
1326 nir_variable *return_var;
1327
1328 /** list of local registers in the function */
1329 struct exec_list registers;
1330
1331 /** next available local register index */
1332 unsigned reg_alloc;
1333
1334 /** next available SSA value index */
1335 unsigned ssa_alloc;
1336
1337 /* total number of basic blocks, only valid when block_index_dirty = false */
1338 unsigned num_blocks;
1339
1340 nir_metadata valid_metadata;
1341 } nir_function_impl;
1342
1343 static inline nir_block *
1344 nir_start_block(nir_function_impl *impl)
1345 {
1346 return (nir_block *) exec_list_get_head(&impl->body);
1347 }
1348
1349 static inline nir_cf_node *
1350 nir_cf_node_next(nir_cf_node *node)
1351 {
1352 struct exec_node *next = exec_node_get_next(&node->node);
1353 if (exec_node_is_tail_sentinel(next))
1354 return NULL;
1355 else
1356 return exec_node_data(nir_cf_node, next, node);
1357 }
1358
1359 static inline nir_cf_node *
1360 nir_cf_node_prev(nir_cf_node *node)
1361 {
1362 struct exec_node *prev = exec_node_get_prev(&node->node);
1363 if (exec_node_is_head_sentinel(prev))
1364 return NULL;
1365 else
1366 return exec_node_data(nir_cf_node, prev, node);
1367 }
1368
1369 static inline bool
1370 nir_cf_node_is_first(const nir_cf_node *node)
1371 {
1372 return exec_node_is_head_sentinel(node->node.prev);
1373 }
1374
1375 static inline bool
1376 nir_cf_node_is_last(const nir_cf_node *node)
1377 {
1378 return exec_node_is_tail_sentinel(node->node.next);
1379 }
1380
1381 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1382 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1383 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1384 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1385
1386 typedef enum {
1387 nir_parameter_in,
1388 nir_parameter_out,
1389 nir_parameter_inout,
1390 } nir_parameter_type;
1391
1392 typedef struct {
1393 nir_parameter_type param_type;
1394 const struct glsl_type *type;
1395 } nir_parameter;
1396
1397 typedef struct nir_function_overload {
1398 struct exec_node node;
1399
1400 unsigned num_params;
1401 nir_parameter *params;
1402 const struct glsl_type *return_type;
1403
1404 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1405
1406 /** pointer to the function of which this is an overload */
1407 struct nir_function *function;
1408 } nir_function_overload;
1409
1410 typedef struct nir_function {
1411 struct exec_node node;
1412
1413 struct exec_list overload_list; /** < list of nir_function_overload */
1414 const char *name;
1415 struct nir_shader *shader;
1416 } nir_function;
1417
1418 #define nir_function_first_overload(func) \
1419 exec_node_data(nir_function_overload, \
1420 exec_list_get_head(&(func)->overload_list), node)
1421
1422 typedef struct nir_shader_compiler_options {
1423 bool lower_ffma;
1424 bool lower_flrp;
1425 bool lower_fpow;
1426 bool lower_fsat;
1427 bool lower_fsqrt;
1428 /** lowers fneg and ineg to fsub and isub. */
1429 bool lower_negate;
1430 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1431 bool lower_sub;
1432
1433 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1434 bool lower_scmp;
1435
1436 /**
1437 * Does the driver support real 32-bit integers? (Otherwise, integers
1438 * are simulated by floats.)
1439 */
1440 bool native_integers;
1441 } nir_shader_compiler_options;
1442
1443 typedef struct nir_shader {
1444 /** hash table of name -> uniform nir_variable */
1445 struct exec_list uniforms;
1446
1447 /** hash table of name -> input nir_variable */
1448 struct exec_list inputs;
1449
1450 /** hash table of name -> output nir_variable */
1451 struct exec_list outputs;
1452
1453 /** Set of driver-specific options for the shader.
1454 *
1455 * The memory for the options is expected to be kept in a single static
1456 * copy by the driver.
1457 */
1458 const struct nir_shader_compiler_options *options;
1459
1460 /** list of global variables in the shader */
1461 struct exec_list globals;
1462
1463 /** list of system value variables in the shader */
1464 struct exec_list system_values;
1465
1466 struct exec_list functions; /** < list of nir_function */
1467
1468 /** list of global register in the shader */
1469 struct exec_list registers;
1470
1471 /** next available global register index */
1472 unsigned reg_alloc;
1473
1474 /**
1475 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1476 * access plus one
1477 */
1478 unsigned num_inputs, num_uniforms, num_outputs;
1479
1480 /** The shader stage, such as MESA_SHADER_VERTEX. */
1481 gl_shader_stage stage;
1482
1483 struct {
1484 /** The maximum number of vertices the geometry shader might write. */
1485 unsigned vertices_out;
1486
1487 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1488 unsigned invocations;
1489 } gs;
1490 } nir_shader;
1491
1492 #define nir_foreach_overload(shader, overload) \
1493 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1494 foreach_list_typed(nir_function_overload, overload, node, \
1495 &(func)->overload_list)
1496
1497 nir_shader *nir_shader_create(void *mem_ctx,
1498 gl_shader_stage stage,
1499 const nir_shader_compiler_options *options);
1500
1501 /** creates a register, including assigning it an index and adding it to the list */
1502 nir_register *nir_global_reg_create(nir_shader *shader);
1503
1504 nir_register *nir_local_reg_create(nir_function_impl *impl);
1505
1506 void nir_reg_remove(nir_register *reg);
1507
1508 /** creates a function and adds it to the shader's list of functions */
1509 nir_function *nir_function_create(nir_shader *shader, const char *name);
1510
1511 /** creates a null function returning null */
1512 nir_function_overload *nir_function_overload_create(nir_function *func);
1513
1514 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1515
1516 nir_block *nir_block_create(void *mem_ctx);
1517 nir_if *nir_if_create(void *mem_ctx);
1518 nir_loop *nir_loop_create(void *mem_ctx);
1519
1520 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1521
1522 /** requests that the given pieces of metadata be generated */
1523 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1524 /** dirties all but the preserved metadata */
1525 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1526
1527 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1528 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1529
1530 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1531
1532 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1533 unsigned num_components);
1534
1535 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1536 nir_intrinsic_op op);
1537
1538 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1539 nir_function_overload *callee);
1540
1541 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1542
1543 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1544
1545 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1546
1547 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1548 unsigned num_components);
1549
1550 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1551 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1552 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1553
1554 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1555
1556 nir_load_const_instr *
1557 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1558
1559 /**
1560 * NIR Cursors and Instruction Insertion API
1561 * @{
1562 *
1563 * A tiny struct representing a point to insert/extract instructions or
1564 * control flow nodes. Helps reduce the combinatorial explosion of possible
1565 * points to insert/extract.
1566 *
1567 * \sa nir_control_flow.h
1568 */
1569 typedef enum {
1570 nir_cursor_before_block,
1571 nir_cursor_after_block,
1572 nir_cursor_before_instr,
1573 nir_cursor_after_instr,
1574 } nir_cursor_option;
1575
1576 typedef struct {
1577 nir_cursor_option option;
1578 union {
1579 nir_block *block;
1580 nir_instr *instr;
1581 };
1582 } nir_cursor;
1583
1584 static inline nir_cursor
1585 nir_before_block(nir_block *block)
1586 {
1587 nir_cursor cursor;
1588 cursor.option = nir_cursor_before_block;
1589 cursor.block = block;
1590 return cursor;
1591 }
1592
1593 static inline nir_cursor
1594 nir_after_block(nir_block *block)
1595 {
1596 nir_cursor cursor;
1597 cursor.option = nir_cursor_after_block;
1598 cursor.block = block;
1599 return cursor;
1600 }
1601
1602 static inline nir_cursor
1603 nir_before_instr(nir_instr *instr)
1604 {
1605 nir_cursor cursor;
1606 cursor.option = nir_cursor_before_instr;
1607 cursor.instr = instr;
1608 return cursor;
1609 }
1610
1611 static inline nir_cursor
1612 nir_after_instr(nir_instr *instr)
1613 {
1614 nir_cursor cursor;
1615 cursor.option = nir_cursor_after_instr;
1616 cursor.instr = instr;
1617 return cursor;
1618 }
1619
1620 static inline nir_cursor
1621 nir_after_block_before_jump(nir_block *block)
1622 {
1623 nir_instr *last_instr = nir_block_last_instr(block);
1624 if (last_instr && last_instr->type == nir_instr_type_jump) {
1625 return nir_before_instr(last_instr);
1626 } else {
1627 return nir_after_block(block);
1628 }
1629 }
1630
1631 static inline nir_cursor
1632 nir_before_cf_node(nir_cf_node *node)
1633 {
1634 if (node->type == nir_cf_node_block)
1635 return nir_before_block(nir_cf_node_as_block(node));
1636
1637 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1638 }
1639
1640 static inline nir_cursor
1641 nir_after_cf_node(nir_cf_node *node)
1642 {
1643 if (node->type == nir_cf_node_block)
1644 return nir_after_block(nir_cf_node_as_block(node));
1645
1646 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1647 }
1648
1649 static inline nir_cursor
1650 nir_before_cf_list(struct exec_list *cf_list)
1651 {
1652 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1653 exec_list_get_head(cf_list), node);
1654 return nir_before_cf_node(first_node);
1655 }
1656
1657 static inline nir_cursor
1658 nir_after_cf_list(struct exec_list *cf_list)
1659 {
1660 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1661 exec_list_get_tail(cf_list), node);
1662 return nir_after_cf_node(last_node);
1663 }
1664
1665 /**
1666 * Insert a NIR instruction at the given cursor.
1667 *
1668 * Note: This does not update the cursor.
1669 */
1670 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1671
1672 static inline void
1673 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1674 {
1675 nir_instr_insert(nir_before_instr(instr), before);
1676 }
1677
1678 static inline void
1679 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1680 {
1681 nir_instr_insert(nir_after_instr(instr), after);
1682 }
1683
1684 static inline void
1685 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1686 {
1687 nir_instr_insert(nir_before_block(block), before);
1688 }
1689
1690 static inline void
1691 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1692 {
1693 nir_instr_insert(nir_after_block(block), after);
1694 }
1695
1696 static inline void
1697 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1698 {
1699 nir_instr_insert(nir_before_cf_node(node), before);
1700 }
1701
1702 static inline void
1703 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1704 {
1705 nir_instr_insert(nir_after_cf_node(node), after);
1706 }
1707
1708 static inline void
1709 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1710 {
1711 nir_instr_insert(nir_before_cf_list(list), before);
1712 }
1713
1714 static inline void
1715 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1716 {
1717 nir_instr_insert(nir_after_cf_list(list), after);
1718 }
1719
1720 void nir_instr_remove(nir_instr *instr);
1721
1722 /** @} */
1723
1724 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1725 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1726 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1727 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1728 void *state);
1729 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1730 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1731
1732 nir_const_value *nir_src_as_const_value(nir_src src);
1733 bool nir_srcs_equal(nir_src src1, nir_src src2);
1734 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1735 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1736 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1737
1738 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1739 unsigned num_components, const char *name);
1740 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1741 unsigned num_components, const char *name);
1742 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1743
1744 /* visits basic blocks in source-code order */
1745 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1746 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1747 void *state);
1748 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1749 void *state);
1750 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1751 void *state);
1752
1753 /* If the following CF node is an if, this function returns that if.
1754 * Otherwise, it returns NULL.
1755 */
1756 nir_if *nir_block_get_following_if(nir_block *block);
1757
1758 nir_loop *nir_block_get_following_loop(nir_block *block);
1759
1760 void nir_index_local_regs(nir_function_impl *impl);
1761 void nir_index_global_regs(nir_shader *shader);
1762 void nir_index_ssa_defs(nir_function_impl *impl);
1763
1764 void nir_index_blocks(nir_function_impl *impl);
1765
1766 void nir_print_shader(nir_shader *shader, FILE *fp);
1767 void nir_print_instr(const nir_instr *instr, FILE *fp);
1768
1769 #ifdef DEBUG
1770 void nir_validate_shader(nir_shader *shader);
1771 #else
1772 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1773 #endif /* DEBUG */
1774
1775 void nir_calc_dominance_impl(nir_function_impl *impl);
1776 void nir_calc_dominance(nir_shader *shader);
1777
1778 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1779 bool nir_block_dominates(nir_block *parent, nir_block *child);
1780
1781 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1782 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1783
1784 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1785 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1786
1787 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1788 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1789
1790 void nir_split_var_copies(nir_shader *shader);
1791
1792 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1793 void nir_lower_var_copies(nir_shader *shader);
1794
1795 void nir_lower_global_vars_to_local(nir_shader *shader);
1796
1797 void nir_lower_locals_to_regs(nir_shader *shader);
1798
1799 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1800
1801 void nir_assign_var_locations(struct exec_list *var_list,
1802 unsigned *size,
1803 int (*type_size)(const struct glsl_type *));
1804
1805 void nir_lower_io(nir_shader *shader,
1806 int (*type_size)(const struct glsl_type *));
1807 void nir_lower_vars_to_ssa(nir_shader *shader);
1808
1809 void nir_remove_dead_variables(nir_shader *shader);
1810
1811 void nir_lower_vec_to_movs(nir_shader *shader);
1812 void nir_lower_alu_to_scalar(nir_shader *shader);
1813 void nir_lower_load_const_to_scalar(nir_shader *shader);
1814
1815 void nir_lower_phis_to_scalar(nir_shader *shader);
1816
1817 void nir_lower_samplers(nir_shader *shader,
1818 const struct gl_shader_program *shader_program);
1819
1820 void nir_lower_system_values(nir_shader *shader);
1821 void nir_lower_tex_projector(nir_shader *shader);
1822 void nir_lower_idiv(nir_shader *shader);
1823
1824 void nir_lower_atomics(nir_shader *shader);
1825 void nir_lower_to_source_mods(nir_shader *shader);
1826
1827 void nir_normalize_cubemap_coords(nir_shader *shader);
1828
1829 void nir_live_variables_impl(nir_function_impl *impl);
1830 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1831
1832 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1833 void nir_convert_to_ssa(nir_shader *shader);
1834
1835 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
1836 * registers. If false, convert all values (even those not involved in a phi
1837 * node) to registers.
1838 */
1839 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
1840
1841 bool nir_opt_algebraic(nir_shader *shader);
1842 bool nir_opt_algebraic_late(nir_shader *shader);
1843 bool nir_opt_constant_folding(nir_shader *shader);
1844
1845 bool nir_opt_global_to_local(nir_shader *shader);
1846
1847 bool nir_copy_prop_impl(nir_function_impl *impl);
1848 bool nir_copy_prop(nir_shader *shader);
1849
1850 bool nir_opt_cse(nir_shader *shader);
1851
1852 bool nir_opt_dce_impl(nir_function_impl *impl);
1853 bool nir_opt_dce(nir_shader *shader);
1854
1855 bool nir_opt_dead_cf(nir_shader *shader);
1856
1857 void nir_opt_gcm(nir_shader *shader);
1858
1859 bool nir_opt_peephole_select(nir_shader *shader);
1860 bool nir_opt_peephole_ffma(nir_shader *shader);
1861
1862 bool nir_opt_remove_phis(nir_shader *shader);
1863
1864 bool nir_opt_undef(nir_shader *shader);
1865
1866 void nir_sweep(nir_shader *shader);
1867
1868 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
1869
1870 #ifdef __cplusplus
1871 } /* extern "C" */
1872 #endif