nir: Drop dependency on mtypes.h for core NIR.
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/ralloc.h"
34 #include "util/set.h"
35 #include "util/bitset.h"
36 #include "nir_types.h"
37 #include <stdio.h>
38
39 #include "nir_opcodes.h"
40
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44
45 struct gl_program;
46 struct gl_shader_program;
47
48 #define NIR_FALSE 0u
49 #define NIR_TRUE (~0u)
50
51 /** Defines a cast function
52 *
53 * This macro defines a cast function from in_type to out_type where
54 * out_type is some structure type that contains a field of type out_type.
55 *
56 * Note that you have to be a bit careful as the generated cast function
57 * destroys constness.
58 */
59 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
60 static inline out_type * \
61 name(const in_type *parent) \
62 { \
63 return exec_node_data(out_type, parent, field); \
64 }
65
66 struct nir_function_overload;
67 struct nir_function;
68 struct nir_shader;
69
70
71 /**
72 * Description of built-in state associated with a uniform
73 *
74 * \sa nir_variable::state_slots
75 */
76 typedef struct {
77 int tokens[5];
78 int swizzle;
79 } nir_state_slot;
80
81 typedef enum {
82 nir_var_shader_in,
83 nir_var_shader_out,
84 nir_var_global,
85 nir_var_local,
86 nir_var_uniform,
87 nir_var_system_value
88 } nir_variable_mode;
89
90 /**
91 * Data stored in an nir_constant
92 */
93 union nir_constant_data {
94 unsigned u[16];
95 int i[16];
96 float f[16];
97 bool b[16];
98 };
99
100 typedef struct nir_constant {
101 /**
102 * Value of the constant.
103 *
104 * The field used to back the values supplied by the constant is determined
105 * by the type associated with the \c nir_variable. Constants may be
106 * scalars, vectors, or matrices.
107 */
108 union nir_constant_data value;
109
110 /* Array elements / Structure Fields */
111 struct nir_constant **elements;
112 } nir_constant;
113
114 /**
115 * \brief Layout qualifiers for gl_FragDepth.
116 *
117 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
118 * with a layout qualifier.
119 */
120 typedef enum {
121 nir_depth_layout_none, /**< No depth layout is specified. */
122 nir_depth_layout_any,
123 nir_depth_layout_greater,
124 nir_depth_layout_less,
125 nir_depth_layout_unchanged
126 } nir_depth_layout;
127
128 /**
129 * Either a uniform, global variable, shader input, or shader output. Based on
130 * ir_variable - it should be easy to translate between the two.
131 */
132
133 typedef struct {
134 struct exec_node node;
135
136 /**
137 * Declared type of the variable
138 */
139 const struct glsl_type *type;
140
141 /**
142 * Declared name of the variable
143 */
144 char *name;
145
146 /**
147 * For variables which satisfy the is_interface_instance() predicate, this
148 * points to an array of integers such that if the ith member of the
149 * interface block is an array, max_ifc_array_access[i] is the maximum
150 * array element of that member that has been accessed. If the ith member
151 * of the interface block is not an array, max_ifc_array_access[i] is
152 * unused.
153 *
154 * For variables whose type is not an interface block, this pointer is
155 * NULL.
156 */
157 unsigned *max_ifc_array_access;
158
159 struct nir_variable_data {
160
161 /**
162 * Is the variable read-only?
163 *
164 * This is set for variables declared as \c const, shader inputs,
165 * and uniforms.
166 */
167 unsigned read_only:1;
168 unsigned centroid:1;
169 unsigned sample:1;
170 unsigned invariant:1;
171
172 /**
173 * Storage class of the variable.
174 *
175 * \sa nir_variable_mode
176 */
177 nir_variable_mode mode:4;
178
179 /**
180 * Interpolation mode for shader inputs / outputs
181 *
182 * \sa glsl_interp_qualifier
183 */
184 unsigned interpolation:2;
185
186 /**
187 * \name ARB_fragment_coord_conventions
188 * @{
189 */
190 unsigned origin_upper_left:1;
191 unsigned pixel_center_integer:1;
192 /*@}*/
193
194 /**
195 * Was the location explicitly set in the shader?
196 *
197 * If the location is explicitly set in the shader, it \b cannot be changed
198 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
199 * no effect).
200 */
201 unsigned explicit_location:1;
202 unsigned explicit_index:1;
203
204 /**
205 * Was an initial binding explicitly set in the shader?
206 *
207 * If so, constant_initializer contains an integer nir_constant
208 * representing the initial binding point.
209 */
210 unsigned explicit_binding:1;
211
212 /**
213 * Does this variable have an initializer?
214 *
215 * This is used by the linker to cross-validiate initializers of global
216 * variables.
217 */
218 unsigned has_initializer:1;
219
220 /**
221 * Is this variable a generic output or input that has not yet been matched
222 * up to a variable in another stage of the pipeline?
223 *
224 * This is used by the linker as scratch storage while assigning locations
225 * to generic inputs and outputs.
226 */
227 unsigned is_unmatched_generic_inout:1;
228
229 /**
230 * If non-zero, then this variable may be packed along with other variables
231 * into a single varying slot, so this offset should be applied when
232 * accessing components. For example, an offset of 1 means that the x
233 * component of this variable is actually stored in component y of the
234 * location specified by \c location.
235 */
236 unsigned location_frac:2;
237
238 /**
239 * Non-zero if this variable was created by lowering a named interface
240 * block which was not an array.
241 *
242 * Note that this variable and \c from_named_ifc_block_array will never
243 * both be non-zero.
244 */
245 unsigned from_named_ifc_block_nonarray:1;
246
247 /**
248 * Non-zero if this variable was created by lowering a named interface
249 * block which was an array.
250 *
251 * Note that this variable and \c from_named_ifc_block_nonarray will never
252 * both be non-zero.
253 */
254 unsigned from_named_ifc_block_array:1;
255
256 /**
257 * \brief Layout qualifier for gl_FragDepth.
258 *
259 * This is not equal to \c ir_depth_layout_none if and only if this
260 * variable is \c gl_FragDepth and a layout qualifier is specified.
261 */
262 nir_depth_layout depth_layout;
263
264 /**
265 * Storage location of the base of this variable
266 *
267 * The precise meaning of this field depends on the nature of the variable.
268 *
269 * - Vertex shader input: one of the values from \c gl_vert_attrib.
270 * - Vertex shader output: one of the values from \c gl_varying_slot.
271 * - Geometry shader input: one of the values from \c gl_varying_slot.
272 * - Geometry shader output: one of the values from \c gl_varying_slot.
273 * - Fragment shader input: one of the values from \c gl_varying_slot.
274 * - Fragment shader output: one of the values from \c gl_frag_result.
275 * - Uniforms: Per-stage uniform slot number for default uniform block.
276 * - Uniforms: Index within the uniform block definition for UBO members.
277 * - Other: This field is not currently used.
278 *
279 * If the variable is a uniform, shader input, or shader output, and the
280 * slot has not been assigned, the value will be -1.
281 */
282 int location;
283
284 /**
285 * The actual location of the variable in the IR. Only valid for inputs
286 * and outputs.
287 */
288 unsigned int driver_location;
289
290 /**
291 * output index for dual source blending.
292 */
293 int index;
294
295 /**
296 * Initial binding point for a sampler or UBO.
297 *
298 * For array types, this represents the binding point for the first element.
299 */
300 int binding;
301
302 /**
303 * Location an atomic counter is stored at.
304 */
305 struct {
306 unsigned buffer_index;
307 unsigned offset;
308 } atomic;
309
310 /**
311 * ARB_shader_image_load_store qualifiers.
312 */
313 struct {
314 bool read_only; /**< "readonly" qualifier. */
315 bool write_only; /**< "writeonly" qualifier. */
316 bool coherent;
317 bool _volatile;
318 bool restrict_flag;
319
320 /** Image internal format if specified explicitly, otherwise GL_NONE. */
321 GLenum format;
322 } image;
323
324 /**
325 * Highest element accessed with a constant expression array index
326 *
327 * Not used for non-array variables.
328 */
329 unsigned max_array_access;
330
331 } data;
332
333 /**
334 * Built-in state that backs this uniform
335 *
336 * Once set at variable creation, \c state_slots must remain invariant.
337 * This is because, ideally, this array would be shared by all clones of
338 * this variable in the IR tree. In other words, we'd really like for it
339 * to be a fly-weight.
340 *
341 * If the variable is not a uniform, \c num_state_slots will be zero and
342 * \c state_slots will be \c NULL.
343 */
344 /*@{*/
345 unsigned num_state_slots; /**< Number of state slots used */
346 nir_state_slot *state_slots; /**< State descriptors. */
347 /*@}*/
348
349 /**
350 * Constant expression assigned in the initializer of the variable
351 */
352 nir_constant *constant_initializer;
353
354 /**
355 * For variables that are in an interface block or are an instance of an
356 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
357 *
358 * \sa ir_variable::location
359 */
360 const struct glsl_type *interface_type;
361 } nir_variable;
362
363 typedef struct {
364 struct exec_node node;
365
366 unsigned num_components; /** < number of vector components */
367 unsigned num_array_elems; /** < size of array (0 for no array) */
368
369 /** generic register index. */
370 unsigned index;
371
372 /** only for debug purposes, can be NULL */
373 const char *name;
374
375 /** whether this register is local (per-function) or global (per-shader) */
376 bool is_global;
377
378 /**
379 * If this flag is set to true, then accessing channels >= num_components
380 * is well-defined, and simply spills over to the next array element. This
381 * is useful for backends that can do per-component accessing, in
382 * particular scalar backends. By setting this flag and making
383 * num_components equal to 1, structures can be packed tightly into
384 * registers and then registers can be accessed per-component to get to
385 * each structure member, even if it crosses vec4 boundaries.
386 */
387 bool is_packed;
388
389 /** set of nir_instr's where this register is used (read from) */
390 struct set *uses;
391
392 /** set of nir_instr's where this register is defined (written to) */
393 struct set *defs;
394
395 /** set of nir_if's where this register is used as a condition */
396 struct set *if_uses;
397 } nir_register;
398
399 typedef enum {
400 nir_instr_type_alu,
401 nir_instr_type_call,
402 nir_instr_type_tex,
403 nir_instr_type_intrinsic,
404 nir_instr_type_load_const,
405 nir_instr_type_jump,
406 nir_instr_type_ssa_undef,
407 nir_instr_type_phi,
408 nir_instr_type_parallel_copy,
409 } nir_instr_type;
410
411 typedef struct {
412 struct exec_node node;
413 nir_instr_type type;
414 struct nir_block *block;
415
416 /* A temporary for optimization and analysis passes to use for storing
417 * flags. For instance, DCE uses this to store the "dead/live" info.
418 */
419 uint8_t pass_flags;
420 } nir_instr;
421
422 static inline nir_instr *
423 nir_instr_next(nir_instr *instr)
424 {
425 struct exec_node *next = exec_node_get_next(&instr->node);
426 if (exec_node_is_tail_sentinel(next))
427 return NULL;
428 else
429 return exec_node_data(nir_instr, next, node);
430 }
431
432 static inline nir_instr *
433 nir_instr_prev(nir_instr *instr)
434 {
435 struct exec_node *prev = exec_node_get_prev(&instr->node);
436 if (exec_node_is_head_sentinel(prev))
437 return NULL;
438 else
439 return exec_node_data(nir_instr, prev, node);
440 }
441
442 typedef struct {
443 /** for debugging only, can be NULL */
444 const char* name;
445
446 /** generic SSA definition index. */
447 unsigned index;
448
449 /** Index into the live_in and live_out bitfields */
450 unsigned live_index;
451
452 nir_instr *parent_instr;
453
454 /** set of nir_instr's where this register is used (read from) */
455 struct set *uses;
456
457 /** set of nir_if's where this register is used as a condition */
458 struct set *if_uses;
459
460 uint8_t num_components;
461 } nir_ssa_def;
462
463 struct nir_src;
464
465 typedef struct {
466 nir_register *reg;
467 struct nir_src *indirect; /** < NULL for no indirect offset */
468 unsigned base_offset;
469
470 /* TODO use-def chain goes here */
471 } nir_reg_src;
472
473 typedef struct {
474 nir_register *reg;
475 struct nir_src *indirect; /** < NULL for no indirect offset */
476 unsigned base_offset;
477
478 /* TODO def-use chain goes here */
479 } nir_reg_dest;
480
481 typedef struct nir_src {
482 union {
483 nir_reg_src reg;
484 nir_ssa_def *ssa;
485 };
486
487 bool is_ssa;
488 } nir_src;
489
490 typedef struct {
491 union {
492 nir_reg_dest reg;
493 nir_ssa_def ssa;
494 };
495
496 bool is_ssa;
497 } nir_dest;
498
499 static inline nir_src
500 nir_src_for_ssa(nir_ssa_def *def)
501 {
502 nir_src src;
503
504 src.is_ssa = true;
505 src.ssa = def;
506
507 return src;
508 }
509
510 static inline nir_src
511 nir_src_for_reg(nir_register *reg)
512 {
513 nir_src src;
514
515 src.is_ssa = false;
516 src.reg.reg = reg;
517 src.reg.indirect = NULL;
518 src.reg.base_offset = 0;
519
520 return src;
521 }
522
523 static inline nir_dest
524 nir_dest_for_reg(nir_register *reg)
525 {
526 nir_dest dest;
527
528 dest.is_ssa = false;
529 dest.reg.reg = reg;
530 dest.reg.indirect = NULL;
531 dest.reg.base_offset = 0;
532
533 return dest;
534 }
535
536 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
537 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
538
539 typedef struct {
540 nir_src src;
541
542 /**
543 * \name input modifiers
544 */
545 /*@{*/
546 /**
547 * For inputs interpreted as floating point, flips the sign bit. For
548 * inputs interpreted as integers, performs the two's complement negation.
549 */
550 bool negate;
551
552 /**
553 * Clears the sign bit for floating point values, and computes the integer
554 * absolute value for integers. Note that the negate modifier acts after
555 * the absolute value modifier, therefore if both are set then all inputs
556 * will become negative.
557 */
558 bool abs;
559 /*@}*/
560
561 /**
562 * For each input component, says which component of the register it is
563 * chosen from. Note that which elements of the swizzle are used and which
564 * are ignored are based on the write mask for most opcodes - for example,
565 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
566 * a swizzle of {2, x, 1, 0} where x means "don't care."
567 */
568 uint8_t swizzle[4];
569 } nir_alu_src;
570
571 typedef struct {
572 nir_dest dest;
573
574 /**
575 * \name saturate output modifier
576 *
577 * Only valid for opcodes that output floating-point numbers. Clamps the
578 * output to between 0.0 and 1.0 inclusive.
579 */
580
581 bool saturate;
582
583 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
584 } nir_alu_dest;
585
586 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
587 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
588 void *mem_ctx);
589
590 typedef enum {
591 nir_type_invalid = 0, /* Not a valid type */
592 nir_type_float,
593 nir_type_int,
594 nir_type_unsigned,
595 nir_type_bool
596 } nir_alu_type;
597
598 typedef enum {
599 NIR_OP_IS_COMMUTATIVE = (1 << 0),
600 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
601 } nir_op_algebraic_property;
602
603 typedef struct {
604 const char *name;
605
606 unsigned num_inputs;
607
608 /**
609 * The number of components in the output
610 *
611 * If non-zero, this is the size of the output and input sizes are
612 * explicitly given; swizzle and writemask are still in effect, but if
613 * the output component is masked out, then the input component may
614 * still be in use.
615 *
616 * If zero, the opcode acts in the standard, per-component manner; the
617 * operation is performed on each component (except the ones that are
618 * masked out) with the input being taken from the input swizzle for
619 * that component.
620 *
621 * The size of some of the inputs may be given (i.e. non-zero) even
622 * though output_size is zero; in that case, the inputs with a zero
623 * size act per-component, while the inputs with non-zero size don't.
624 */
625 unsigned output_size;
626
627 /**
628 * The type of vector that the instruction outputs. Note that the
629 * staurate modifier is only allowed on outputs with the float type.
630 */
631
632 nir_alu_type output_type;
633
634 /**
635 * The number of components in each input
636 */
637 unsigned input_sizes[4];
638
639 /**
640 * The type of vector that each input takes. Note that negate and
641 * absolute value are only allowed on inputs with int or float type and
642 * behave differently on the two.
643 */
644 nir_alu_type input_types[4];
645
646 nir_op_algebraic_property algebraic_properties;
647 } nir_op_info;
648
649 extern const nir_op_info nir_op_infos[nir_num_opcodes];
650
651 typedef struct nir_alu_instr {
652 nir_instr instr;
653 nir_op op;
654 nir_alu_dest dest;
655 nir_alu_src src[];
656 } nir_alu_instr;
657
658 /* is this source channel used? */
659 static inline bool
660 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
661 {
662 if (nir_op_infos[instr->op].input_sizes[src] > 0)
663 return channel < nir_op_infos[instr->op].input_sizes[src];
664
665 return (instr->dest.write_mask >> channel) & 1;
666 }
667
668 /*
669 * For instructions whose destinations are SSA, get the number of channels
670 * used for a source
671 */
672 static inline unsigned
673 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
674 {
675 assert(instr->dest.dest.is_ssa);
676
677 if (nir_op_infos[instr->op].input_sizes[src] > 0)
678 return nir_op_infos[instr->op].input_sizes[src];
679
680 return instr->dest.dest.ssa.num_components;
681 }
682
683 typedef enum {
684 nir_deref_type_var,
685 nir_deref_type_array,
686 nir_deref_type_struct
687 } nir_deref_type;
688
689 typedef struct nir_deref {
690 nir_deref_type deref_type;
691 struct nir_deref *child;
692 const struct glsl_type *type;
693 } nir_deref;
694
695 typedef struct {
696 nir_deref deref;
697
698 nir_variable *var;
699 } nir_deref_var;
700
701 /* This enum describes how the array is referenced. If the deref is
702 * direct then the base_offset is used. If the deref is indirect then then
703 * offset is given by base_offset + indirect. If the deref is a wildcard
704 * then the deref refers to all of the elements of the array at the same
705 * time. Wildcard dereferences are only ever allowed in copy_var
706 * intrinsics and the source and destination derefs must have matching
707 * wildcards.
708 */
709 typedef enum {
710 nir_deref_array_type_direct,
711 nir_deref_array_type_indirect,
712 nir_deref_array_type_wildcard,
713 } nir_deref_array_type;
714
715 typedef struct {
716 nir_deref deref;
717
718 nir_deref_array_type deref_array_type;
719 unsigned base_offset;
720 nir_src indirect;
721 } nir_deref_array;
722
723 typedef struct {
724 nir_deref deref;
725
726 unsigned index;
727 } nir_deref_struct;
728
729 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
730 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
731 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
732
733 typedef struct {
734 nir_instr instr;
735
736 unsigned num_params;
737 nir_deref_var **params;
738 nir_deref_var *return_deref;
739
740 struct nir_function_overload *callee;
741 } nir_call_instr;
742
743 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
744 num_variables, num_indices, flags) \
745 nir_intrinsic_##name,
746
747 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
748
749 typedef enum {
750 #include "nir_intrinsics.h"
751 nir_num_intrinsics = nir_last_intrinsic + 1
752 } nir_intrinsic_op;
753
754 #undef INTRINSIC
755 #undef LAST_INTRINSIC
756
757 /** Represents an intrinsic
758 *
759 * An intrinsic is an instruction type for handling things that are
760 * more-or-less regular operations but don't just consume and produce SSA
761 * values like ALU operations do. Intrinsics are not for things that have
762 * special semantic meaning such as phi nodes and parallel copies.
763 * Examples of intrinsics include variable load/store operations, system
764 * value loads, and the like. Even though texturing more-or-less falls
765 * under this category, texturing is its own instruction type because
766 * trying to represent texturing with intrinsics would lead to a
767 * combinatorial explosion of intrinsic opcodes.
768 *
769 * By having a single instruction type for handling a lot of different
770 * cases, optimization passes can look for intrinsics and, for the most
771 * part, completely ignore them. Each intrinsic type also has a few
772 * possible flags that govern whether or not they can be reordered or
773 * eliminated. That way passes like dead code elimination can still work
774 * on intrisics without understanding the meaning of each.
775 *
776 * Each intrinsic has some number of constant indices, some number of
777 * variables, and some number of sources. What these sources, variables,
778 * and indices mean depends on the intrinsic and is documented with the
779 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
780 * instructions are the only types of instruction that can operate on
781 * variables.
782 */
783 typedef struct {
784 nir_instr instr;
785
786 nir_intrinsic_op intrinsic;
787
788 nir_dest dest;
789
790 /** number of components if this is a vectorized intrinsic
791 *
792 * Similarly to ALU operations, some intrinsics are vectorized.
793 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
794 * For vectorized intrinsics, the num_components field specifies the
795 * number of destination components and the number of source components
796 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
797 */
798 uint8_t num_components;
799
800 int const_index[3];
801
802 nir_deref_var *variables[2];
803
804 nir_src src[];
805 } nir_intrinsic_instr;
806
807 /**
808 * \name NIR intrinsics semantic flags
809 *
810 * information about what the compiler can do with the intrinsics.
811 *
812 * \sa nir_intrinsic_info::flags
813 */
814 typedef enum {
815 /**
816 * whether the intrinsic can be safely eliminated if none of its output
817 * value is not being used.
818 */
819 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
820
821 /**
822 * Whether the intrinsic can be reordered with respect to any other
823 * intrinsic, i.e. whether the only reordering dependencies of the
824 * intrinsic are due to the register reads/writes.
825 */
826 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
827 } nir_intrinsic_semantic_flag;
828
829 #define NIR_INTRINSIC_MAX_INPUTS 4
830
831 typedef struct {
832 const char *name;
833
834 unsigned num_srcs; /** < number of register/SSA inputs */
835
836 /** number of components of each input register
837 *
838 * If this value is 0, the number of components is given by the
839 * num_components field of nir_intrinsic_instr.
840 */
841 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
842
843 bool has_dest;
844
845 /** number of components of the output register
846 *
847 * If this value is 0, the number of components is given by the
848 * num_components field of nir_intrinsic_instr.
849 */
850 unsigned dest_components;
851
852 /** the number of inputs/outputs that are variables */
853 unsigned num_variables;
854
855 /** the number of constant indices used by the intrinsic */
856 unsigned num_indices;
857
858 /** semantic flags for calls to this intrinsic */
859 nir_intrinsic_semantic_flag flags;
860 } nir_intrinsic_info;
861
862 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
863
864 /**
865 * \group texture information
866 *
867 * This gives semantic information about textures which is useful to the
868 * frontend, the backend, and lowering passes, but not the optimizer.
869 */
870
871 typedef enum {
872 nir_tex_src_coord,
873 nir_tex_src_projector,
874 nir_tex_src_comparitor, /* shadow comparitor */
875 nir_tex_src_offset,
876 nir_tex_src_bias,
877 nir_tex_src_lod,
878 nir_tex_src_ms_index, /* MSAA sample index */
879 nir_tex_src_ddx,
880 nir_tex_src_ddy,
881 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
882 nir_num_tex_src_types
883 } nir_tex_src_type;
884
885 typedef struct {
886 nir_src src;
887 nir_tex_src_type src_type;
888 } nir_tex_src;
889
890 typedef enum {
891 nir_texop_tex, /**< Regular texture look-up */
892 nir_texop_txb, /**< Texture look-up with LOD bias */
893 nir_texop_txl, /**< Texture look-up with explicit LOD */
894 nir_texop_txd, /**< Texture look-up with partial derivatvies */
895 nir_texop_txf, /**< Texel fetch with explicit LOD */
896 nir_texop_txf_ms, /**< Multisample texture fetch */
897 nir_texop_txs, /**< Texture size */
898 nir_texop_lod, /**< Texture lod query */
899 nir_texop_tg4, /**< Texture gather */
900 nir_texop_query_levels /**< Texture levels query */
901 } nir_texop;
902
903 typedef struct {
904 nir_instr instr;
905
906 enum glsl_sampler_dim sampler_dim;
907 nir_alu_type dest_type;
908
909 nir_texop op;
910 nir_dest dest;
911 nir_tex_src *src;
912 unsigned num_srcs, coord_components;
913 bool is_array, is_shadow;
914
915 /**
916 * If is_shadow is true, whether this is the old-style shadow that outputs 4
917 * components or the new-style shadow that outputs 1 component.
918 */
919 bool is_new_style_shadow;
920
921 /* constant offset - must be 0 if the offset source is used */
922 int const_offset[4];
923
924 /* gather component selector */
925 unsigned component : 2;
926
927 /** The sampler index
928 *
929 * If this texture instruction has a nir_tex_src_sampler_offset source,
930 * then the sampler index is given by sampler_index + sampler_offset.
931 */
932 unsigned sampler_index;
933
934 /** The size of the sampler array or 0 if it's not an array */
935 unsigned sampler_array_size;
936
937 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
938 } nir_tex_instr;
939
940 static inline unsigned
941 nir_tex_instr_dest_size(nir_tex_instr *instr)
942 {
943 if (instr->op == nir_texop_txs) {
944 unsigned ret;
945 switch (instr->sampler_dim) {
946 case GLSL_SAMPLER_DIM_1D:
947 case GLSL_SAMPLER_DIM_BUF:
948 ret = 1;
949 break;
950 case GLSL_SAMPLER_DIM_2D:
951 case GLSL_SAMPLER_DIM_CUBE:
952 case GLSL_SAMPLER_DIM_MS:
953 case GLSL_SAMPLER_DIM_RECT:
954 case GLSL_SAMPLER_DIM_EXTERNAL:
955 ret = 2;
956 break;
957 case GLSL_SAMPLER_DIM_3D:
958 ret = 3;
959 break;
960 default:
961 unreachable("not reached");
962 }
963 if (instr->is_array)
964 ret++;
965 return ret;
966 }
967
968 if (instr->op == nir_texop_query_levels)
969 return 2;
970
971 if (instr->is_shadow && instr->is_new_style_shadow)
972 return 1;
973
974 return 4;
975 }
976
977 static inline unsigned
978 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
979 {
980 if (instr->src[src].src_type == nir_tex_src_coord)
981 return instr->coord_components;
982
983
984 if (instr->src[src].src_type == nir_tex_src_offset ||
985 instr->src[src].src_type == nir_tex_src_ddx ||
986 instr->src[src].src_type == nir_tex_src_ddy) {
987 if (instr->is_array)
988 return instr->coord_components - 1;
989 else
990 return instr->coord_components;
991 }
992
993 return 1;
994 }
995
996 static inline int
997 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
998 {
999 for (unsigned i = 0; i < instr->num_srcs; i++)
1000 if (instr->src[i].src_type == type)
1001 return (int) i;
1002
1003 return -1;
1004 }
1005
1006 typedef struct {
1007 union {
1008 float f[4];
1009 int32_t i[4];
1010 uint32_t u[4];
1011 };
1012 } nir_const_value;
1013
1014 typedef struct {
1015 nir_instr instr;
1016
1017 nir_const_value value;
1018
1019 nir_ssa_def def;
1020 } nir_load_const_instr;
1021
1022 typedef enum {
1023 nir_jump_return,
1024 nir_jump_break,
1025 nir_jump_continue,
1026 } nir_jump_type;
1027
1028 typedef struct {
1029 nir_instr instr;
1030 nir_jump_type type;
1031 } nir_jump_instr;
1032
1033 /* creates a new SSA variable in an undefined state */
1034
1035 typedef struct {
1036 nir_instr instr;
1037 nir_ssa_def def;
1038 } nir_ssa_undef_instr;
1039
1040 typedef struct {
1041 struct exec_node node;
1042
1043 /* The predecessor block corresponding to this source */
1044 struct nir_block *pred;
1045
1046 nir_src src;
1047 } nir_phi_src;
1048
1049 #define nir_foreach_phi_src(phi, entry) \
1050 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1051
1052 typedef struct {
1053 nir_instr instr;
1054
1055 struct exec_list srcs; /** < list of nir_phi_src */
1056
1057 nir_dest dest;
1058 } nir_phi_instr;
1059
1060 typedef struct {
1061 struct exec_node node;
1062 nir_src src;
1063 nir_dest dest;
1064 } nir_parallel_copy_entry;
1065
1066 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1067 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1068
1069 typedef struct {
1070 nir_instr instr;
1071
1072 /* A list of nir_parallel_copy_entry's. The sources of all of the
1073 * entries are copied to the corresponding destinations "in parallel".
1074 * In other words, if we have two entries: a -> b and b -> a, the values
1075 * get swapped.
1076 */
1077 struct exec_list entries;
1078 } nir_parallel_copy_instr;
1079
1080 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1081 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1082 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1083 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1084 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1085 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1086 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1087 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1088 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1089 nir_parallel_copy_instr, instr)
1090
1091 /*
1092 * Control flow
1093 *
1094 * Control flow consists of a tree of control flow nodes, which include
1095 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1096 * instructions that always run start-to-finish. Each basic block also keeps
1097 * track of its successors (blocks which may run immediately after the current
1098 * block) and predecessors (blocks which could have run immediately before the
1099 * current block). Each function also has a start block and an end block which
1100 * all return statements point to (which is always empty). Together, all the
1101 * blocks with their predecessors and successors make up the control flow
1102 * graph (CFG) of the function. There are helpers that modify the tree of
1103 * control flow nodes while modifying the CFG appropriately; these should be
1104 * used instead of modifying the tree directly.
1105 */
1106
1107 typedef enum {
1108 nir_cf_node_block,
1109 nir_cf_node_if,
1110 nir_cf_node_loop,
1111 nir_cf_node_function
1112 } nir_cf_node_type;
1113
1114 typedef struct nir_cf_node {
1115 struct exec_node node;
1116 nir_cf_node_type type;
1117 struct nir_cf_node *parent;
1118 } nir_cf_node;
1119
1120 typedef struct nir_block {
1121 nir_cf_node cf_node;
1122
1123 struct exec_list instr_list; /** < list of nir_instr */
1124
1125 /** generic block index; generated by nir_index_blocks */
1126 unsigned index;
1127
1128 /*
1129 * Each block can only have up to 2 successors, so we put them in a simple
1130 * array - no need for anything more complicated.
1131 */
1132 struct nir_block *successors[2];
1133
1134 /* Set of nir_block predecessors in the CFG */
1135 struct set *predecessors;
1136
1137 /*
1138 * this node's immediate dominator in the dominance tree - set to NULL for
1139 * the start block.
1140 */
1141 struct nir_block *imm_dom;
1142
1143 /* This node's children in the dominance tree */
1144 unsigned num_dom_children;
1145 struct nir_block **dom_children;
1146
1147 /* Set of nir_block's on the dominance frontier of this block */
1148 struct set *dom_frontier;
1149
1150 /*
1151 * These two indices have the property that dom_{pre,post}_index for each
1152 * child of this block in the dominance tree will always be between
1153 * dom_pre_index and dom_post_index for this block, which makes testing if
1154 * a given block is dominated by another block an O(1) operation.
1155 */
1156 unsigned dom_pre_index, dom_post_index;
1157
1158 /* live in and out for this block; used for liveness analysis */
1159 BITSET_WORD *live_in;
1160 BITSET_WORD *live_out;
1161 } nir_block;
1162
1163 static inline nir_instr *
1164 nir_block_first_instr(nir_block *block)
1165 {
1166 struct exec_node *head = exec_list_get_head(&block->instr_list);
1167 return exec_node_data(nir_instr, head, node);
1168 }
1169
1170 static inline nir_instr *
1171 nir_block_last_instr(nir_block *block)
1172 {
1173 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1174 return exec_node_data(nir_instr, tail, node);
1175 }
1176
1177 #define nir_foreach_instr(block, instr) \
1178 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1179 #define nir_foreach_instr_reverse(block, instr) \
1180 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1181 #define nir_foreach_instr_safe(block, instr) \
1182 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1183
1184 typedef struct {
1185 nir_cf_node cf_node;
1186 nir_src condition;
1187
1188 struct exec_list then_list; /** < list of nir_cf_node */
1189 struct exec_list else_list; /** < list of nir_cf_node */
1190 } nir_if;
1191
1192 static inline nir_cf_node *
1193 nir_if_first_then_node(nir_if *if_stmt)
1194 {
1195 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1196 return exec_node_data(nir_cf_node, head, node);
1197 }
1198
1199 static inline nir_cf_node *
1200 nir_if_last_then_node(nir_if *if_stmt)
1201 {
1202 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1203 return exec_node_data(nir_cf_node, tail, node);
1204 }
1205
1206 static inline nir_cf_node *
1207 nir_if_first_else_node(nir_if *if_stmt)
1208 {
1209 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1210 return exec_node_data(nir_cf_node, head, node);
1211 }
1212
1213 static inline nir_cf_node *
1214 nir_if_last_else_node(nir_if *if_stmt)
1215 {
1216 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1217 return exec_node_data(nir_cf_node, tail, node);
1218 }
1219
1220 typedef struct {
1221 nir_cf_node cf_node;
1222
1223 struct exec_list body; /** < list of nir_cf_node */
1224 } nir_loop;
1225
1226 static inline nir_cf_node *
1227 nir_loop_first_cf_node(nir_loop *loop)
1228 {
1229 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1230 }
1231
1232 static inline nir_cf_node *
1233 nir_loop_last_cf_node(nir_loop *loop)
1234 {
1235 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1236 }
1237
1238 /**
1239 * Various bits of metadata that can may be created or required by
1240 * optimization and analysis passes
1241 */
1242 typedef enum {
1243 nir_metadata_none = 0x0,
1244 nir_metadata_block_index = 0x1,
1245 nir_metadata_dominance = 0x2,
1246 nir_metadata_live_variables = 0x4,
1247 } nir_metadata;
1248
1249 typedef struct {
1250 nir_cf_node cf_node;
1251
1252 /** pointer to the overload of which this is an implementation */
1253 struct nir_function_overload *overload;
1254
1255 struct exec_list body; /** < list of nir_cf_node */
1256
1257 nir_block *start_block, *end_block;
1258
1259 /** list for all local variables in the function */
1260 struct exec_list locals;
1261
1262 /** array of variables used as parameters */
1263 unsigned num_params;
1264 nir_variable **params;
1265
1266 /** variable used to hold the result of the function */
1267 nir_variable *return_var;
1268
1269 /** list of local registers in the function */
1270 struct exec_list registers;
1271
1272 /** next available local register index */
1273 unsigned reg_alloc;
1274
1275 /** next available SSA value index */
1276 unsigned ssa_alloc;
1277
1278 /* total number of basic blocks, only valid when block_index_dirty = false */
1279 unsigned num_blocks;
1280
1281 nir_metadata valid_metadata;
1282 } nir_function_impl;
1283
1284 static inline nir_cf_node *
1285 nir_cf_node_next(nir_cf_node *node)
1286 {
1287 struct exec_node *next = exec_node_get_next(&node->node);
1288 if (exec_node_is_tail_sentinel(next))
1289 return NULL;
1290 else
1291 return exec_node_data(nir_cf_node, next, node);
1292 }
1293
1294 static inline nir_cf_node *
1295 nir_cf_node_prev(nir_cf_node *node)
1296 {
1297 struct exec_node *prev = exec_node_get_prev(&node->node);
1298 if (exec_node_is_head_sentinel(prev))
1299 return NULL;
1300 else
1301 return exec_node_data(nir_cf_node, prev, node);
1302 }
1303
1304 static inline bool
1305 nir_cf_node_is_first(const nir_cf_node *node)
1306 {
1307 return exec_node_is_head_sentinel(node->node.prev);
1308 }
1309
1310 static inline bool
1311 nir_cf_node_is_last(const nir_cf_node *node)
1312 {
1313 return exec_node_is_tail_sentinel(node->node.next);
1314 }
1315
1316 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1317 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1318 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1319 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1320
1321 typedef enum {
1322 nir_parameter_in,
1323 nir_parameter_out,
1324 nir_parameter_inout,
1325 } nir_parameter_type;
1326
1327 typedef struct {
1328 nir_parameter_type param_type;
1329 const struct glsl_type *type;
1330 } nir_parameter;
1331
1332 typedef struct nir_function_overload {
1333 struct exec_node node;
1334
1335 unsigned num_params;
1336 nir_parameter *params;
1337 const struct glsl_type *return_type;
1338
1339 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1340
1341 /** pointer to the function of which this is an overload */
1342 struct nir_function *function;
1343 } nir_function_overload;
1344
1345 typedef struct nir_function {
1346 struct exec_node node;
1347
1348 struct exec_list overload_list; /** < list of nir_function_overload */
1349 const char *name;
1350 struct nir_shader *shader;
1351 } nir_function;
1352
1353 #define nir_function_first_overload(func) \
1354 exec_node_data(nir_function_overload, \
1355 exec_list_get_head(&(func)->overload_list), node)
1356
1357 typedef struct nir_shader_compiler_options {
1358 bool lower_ffma;
1359 bool lower_fpow;
1360 bool lower_fsat;
1361 bool lower_fsqrt;
1362 /** lowers fneg and ineg to fsub and isub. */
1363 bool lower_negate;
1364 } nir_shader_compiler_options;
1365
1366 typedef struct nir_shader {
1367 /** hash table of name -> uniform nir_variable */
1368 struct hash_table *uniforms;
1369
1370 /** hash table of name -> input nir_variable */
1371 struct hash_table *inputs;
1372
1373 /** hash table of name -> output nir_variable */
1374 struct hash_table *outputs;
1375
1376 /** Set of driver-specific options for the shader.
1377 *
1378 * The memory for the options is expected to be kept in a single static
1379 * copy by the driver.
1380 */
1381 const struct nir_shader_compiler_options *options;
1382
1383 /** list of global variables in the shader */
1384 struct exec_list globals;
1385
1386 /** list of system value variables in the shader */
1387 struct exec_list system_values;
1388
1389 struct exec_list functions; /** < list of nir_function */
1390
1391 /** list of global register in the shader */
1392 struct exec_list registers;
1393
1394 /** structures used in this shader */
1395 unsigned num_user_structures;
1396 struct glsl_type **user_structures;
1397
1398 /** next available global register index */
1399 unsigned reg_alloc;
1400
1401 /**
1402 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1403 * access plus one
1404 */
1405 unsigned num_inputs, num_uniforms, num_outputs;
1406 } nir_shader;
1407
1408 #define nir_foreach_overload(shader, overload) \
1409 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1410 foreach_list_typed(nir_function_overload, overload, node, \
1411 &(func)->overload_list)
1412
1413 nir_shader *nir_shader_create(void *mem_ctx,
1414 const nir_shader_compiler_options *options);
1415
1416 /** creates a register, including assigning it an index and adding it to the list */
1417 nir_register *nir_global_reg_create(nir_shader *shader);
1418
1419 nir_register *nir_local_reg_create(nir_function_impl *impl);
1420
1421 void nir_reg_remove(nir_register *reg);
1422
1423 /** creates a function and adds it to the shader's list of functions */
1424 nir_function *nir_function_create(nir_shader *shader, const char *name);
1425
1426 /** creates a null function returning null */
1427 nir_function_overload *nir_function_overload_create(nir_function *func);
1428
1429 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1430
1431 nir_block *nir_block_create(void *mem_ctx);
1432 nir_if *nir_if_create(void *mem_ctx);
1433 nir_loop *nir_loop_create(void *mem_ctx);
1434
1435 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1436
1437 /** puts a control flow node immediately after another control flow node */
1438 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1439
1440 /** puts a control flow node immediately before another control flow node */
1441 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1442
1443 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1444 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1445
1446 /** puts a control flow node at the end of a list from an if, loop, or function */
1447 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1448
1449 /** removes a control flow node, doing any cleanup necessary */
1450 void nir_cf_node_remove(nir_cf_node *node);
1451
1452 /** requests that the given pieces of metadata be generated */
1453 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1454 /** dirties all but the preserved metadata */
1455 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1456
1457 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1458 nir_alu_instr *nir_alu_instr_create(void *mem_ctx, nir_op op);
1459
1460 nir_jump_instr *nir_jump_instr_create(void *mem_ctx, nir_jump_type type);
1461
1462 nir_load_const_instr *nir_load_const_instr_create(void *mem_ctx,
1463 unsigned num_components);
1464
1465 nir_intrinsic_instr *nir_intrinsic_instr_create(void *mem_ctx,
1466 nir_intrinsic_op op);
1467
1468 nir_call_instr *nir_call_instr_create(void *mem_ctx,
1469 nir_function_overload *callee);
1470
1471 nir_tex_instr *nir_tex_instr_create(void *mem_ctx, unsigned num_srcs);
1472
1473 nir_phi_instr *nir_phi_instr_create(void *mem_ctx);
1474
1475 nir_parallel_copy_instr *nir_parallel_copy_instr_create(void *mem_ctx);
1476
1477 nir_ssa_undef_instr *nir_ssa_undef_instr_create(void *mem_ctx,
1478 unsigned num_components);
1479
1480 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1481 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1482 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1483
1484 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1485
1486 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1487 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1488
1489 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1490 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1491
1492 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1493 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1494
1495 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1496 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1497
1498 void nir_instr_remove(nir_instr *instr);
1499
1500 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1501 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1502 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1503 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1504 void *state);
1505 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1506 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1507
1508 nir_const_value *nir_src_as_const_value(nir_src src);
1509 bool nir_srcs_equal(nir_src src1, nir_src src2);
1510 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1511
1512 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1513 unsigned num_components, const char *name);
1514 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1515 unsigned num_components, const char *name);
1516 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1517
1518 /* visits basic blocks in source-code order */
1519 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1520 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1521 void *state);
1522 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1523 void *state);
1524
1525 /* If the following CF node is an if, this function returns that if.
1526 * Otherwise, it returns NULL.
1527 */
1528 nir_if *nir_block_get_following_if(nir_block *block);
1529
1530 void nir_index_local_regs(nir_function_impl *impl);
1531 void nir_index_global_regs(nir_shader *shader);
1532 void nir_index_ssa_defs(nir_function_impl *impl);
1533
1534 void nir_index_blocks(nir_function_impl *impl);
1535
1536 void nir_print_shader(nir_shader *shader, FILE *fp);
1537 void nir_print_instr(const nir_instr *instr, FILE *fp);
1538
1539 #ifdef DEBUG
1540 void nir_validate_shader(nir_shader *shader);
1541 #else
1542 static inline void nir_validate_shader(nir_shader *shader) { }
1543 #endif /* DEBUG */
1544
1545 void nir_calc_dominance_impl(nir_function_impl *impl);
1546 void nir_calc_dominance(nir_shader *shader);
1547
1548 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1549 bool nir_block_dominates(nir_block *parent, nir_block *child);
1550
1551 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1552 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1553
1554 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1555 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1556
1557 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1558 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1559
1560 void nir_split_var_copies(nir_shader *shader);
1561
1562 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1563 void nir_lower_var_copies(nir_shader *shader);
1564
1565 void nir_lower_global_vars_to_local(nir_shader *shader);
1566
1567 void nir_lower_locals_to_regs(nir_shader *shader);
1568
1569 void nir_lower_io(nir_shader *shader);
1570
1571 void nir_lower_vars_to_ssa(nir_shader *shader);
1572
1573 void nir_remove_dead_variables(nir_shader *shader);
1574
1575 void nir_lower_vec_to_movs(nir_shader *shader);
1576 void nir_lower_alu_to_scalar(nir_shader *shader);
1577
1578 void nir_lower_phis_to_scalar(nir_shader *shader);
1579
1580 void nir_lower_samplers(nir_shader *shader,
1581 struct gl_shader_program *shader_program,
1582 struct gl_program *prog);
1583
1584 void nir_lower_system_values(nir_shader *shader);
1585
1586 void nir_lower_atomics(nir_shader *shader);
1587 void nir_lower_to_source_mods(nir_shader *shader);
1588
1589 void nir_live_variables_impl(nir_function_impl *impl);
1590 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1591
1592 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1593 void nir_convert_to_ssa(nir_shader *shader);
1594 void nir_convert_from_ssa(nir_shader *shader);
1595
1596 bool nir_opt_algebraic(nir_shader *shader);
1597 bool nir_opt_constant_folding(nir_shader *shader);
1598
1599 bool nir_opt_global_to_local(nir_shader *shader);
1600
1601 bool nir_copy_prop_impl(nir_function_impl *impl);
1602 bool nir_copy_prop(nir_shader *shader);
1603
1604 bool nir_opt_cse(nir_shader *shader);
1605
1606 bool nir_opt_dce_impl(nir_function_impl *impl);
1607 bool nir_opt_dce(nir_shader *shader);
1608
1609 void nir_opt_gcm(nir_shader *shader);
1610
1611 bool nir_opt_peephole_select(nir_shader *shader);
1612 bool nir_opt_peephole_ffma(nir_shader *shader);
1613
1614 bool nir_opt_remove_phis(nir_shader *shader);
1615
1616 #ifdef __cplusplus
1617 } /* extern "C" */
1618 #endif